Automated Integration of Continental-scale Observations in Near-Real Time for Simulation and Analysis of Biosphere–Atmosphere Interactions

David J. Durden¹, Stefan Metzger^{1,2}, Housen Chu³, Nathan Collier⁴, Kenneth J. Davis⁵, Ankur R. Desai², Jitendra Kumar^{4,6}, William R. Wieder^{7,8}, Min Xu⁴, and Forrest M. Hoffman^{4,9}

 1 National Ecological Observatory Network Program, Battelle, Boulder, CO 80301

ddurden@battelleecology.org, smetzger@battelleecology.org

² Department of Atmospheric and Oceanic Sciences, University of Wisconsin, Madison, WI 53706, USA

desai@aos.wisc.edu, smetzger@battelleecology.org

 $^3\,$ Lawrence Berkeley National Laboratory, Berkeley, CA 94702 USA

hchu@lbl.gov

⁴ Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA nathaniel.collier@gmail.com, jkumar@climatemodeling.org, xum1@ornl.gov, forrest@climatemodeling.org

Department of Meteorology and Atmospheric Science, and Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, PA, 16802 USA

kjd10@psu.edu

- ⁶ Bredesen Center, University of Tennessee, Knoxville, TN 37996 USA jkumar@climatemodeling.org
- Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO 80307 USA

wwieder@ucar.edu

 8 Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80309 $$\operatorname{USA}$$

wwieder@ucar.edu

 9 Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 USA

forrest@climatemodeling.org

Abstract. The National Ecological Observatory Network (NEON) is a continental-scale observatory with sites across the US collecting standardized ecological observations that will operate for multiple decades. To maximize the utility of NEON data, we envision edge computing systems that gather, calibrate, aggregate, and ingest measurements in an integrated fashion. Edge systems will employ machine learning methods to cross-calibrate, gap-fill and provision data in near-real time to the NEON Data Portal and to High Performance Computing (HPC) systems, running ensembles of Earth system models (ESMs) that as-

2 Durden et al.

similate the data. For the first time gridded EC data products and response functions promise to offset pervasive observational biases through evaluating, benchmarking, optimizing parameters, and training new machine learning parameterizations within ESMs all at the same model-grid scale. Leveraging open-source software for EC data analysis, we are already building software infrastructure for integration of near-real time data streams into the International Land Model Benchmarking (ILAMB) package for use by the wider research community. We will present a perspective on the design and integration of end-to-end infrastructure for data acquisition, edge computing, HPC simulation, analysis, and validation, where Artificial Intelligence (AI) approaches are used throughout the distributed workflow to improve accuracy and computational performance.

Keywords: data-model integration, eddy-covariance, environmental observatory, National Ecological Observatory Network (NEON), edge computing systems, high performance computing, Earth system models, land surface models, model benchmarking, International Land Model Benchmarking (ILAMB)

1 Introduction

Advanced computational resources and new algorithmic developments have extended our environmental understanding over the past few decades. Now, an unprecedented volume of standardized observational data products (ODPs) are being realized through the National Ecological Observatory Network (NEON). NEON collects environmental and biological data with in situ sensors, observational sampling, and aerial overflights. Core components of NEON infrastructure are 47 tower sites, where eddy-covariance (EC) sensors are used to determine the surface-atmosphere exchange of momentum, heat, water, and carbon dioxide to assess interactions at the soil-vegetation-atmosphere interface. This continentalscale data set, having numerous contextual observations available in near-real time, affords new data-model integration opportunities to leverage such observations for new scientific understanding and to potentially enable viable ecological forecasting capabilities. This paper explores several ways that continued development of data-model integration, through new measurements, synthesized ODPs, and access to near-real-time data, contributes to improved scientific understanding of ecosystem processes and advances efforts to constrain uncertainty in Earth system models (ESMs) and subsequent benchmarking. First, we provide a background for the potential of data-model integration, the state of ESMs and benchmarking, and the growth of network-scale observations. Next, we discuss our vision for integrating network observations to improve model predictive capabilities, minimize prediction uncertainties, and advance forecast accuracy with scale-aware ODPs and near-real time data. Lastly, the roadmap to accomplishing our stated goals is outlined with considerations of emerging technologies that have the potential to broaden our goals.

1.1 Improving Scientific Understanding through Data-model Integration

Data-model integration is quickly becoming a fundamental component in efforts to evaluate and enhance our capabilities to simulate Earth system processes (Fer et al., 2018). Data-model integration improvements can be realized through improved parameterization of initial conditions, data assimilation techniques to inform model states or parameters during simulations, and comprehensive benchmarking of model structure and evaluation against observations (Dietze et al., 2014; Zobitz et al., 2011). Network-scale observations of ecosystem functions, such as surface-atmosphere exchange (SAE) of energy, water vapor, and trace gases, have historically (Stöckli et al., 2008) and continue to lead to novel advances in model performance (Fer et al., 2018).

Improved Model Optimization and Benchmarking.

Additional Contextual Observations. Optimized model parameterization or constraints via data assimilation typically targets periods or conditions when model uncertainty is greatest. Enhanced access to numerous contextual observations can inform underlying model processes or elucidate missing information. Data assimilation constrains model predictions by comparing model output with ODPs, determining probabilistic differences, and advancing ensemble members with informed posteriors. The improved availability of repeated and interoperable insitu, reanalysis, and remote sensing data with quantified uncertainty for weighting in assimilation and model benchmark scoring is expected to facilitate tuning process representations in ESMs and inform data providers of ODP requirements that are still unmet (Hoffman et al., 2017; Collier et al., 2018).

Resolving Scale Mismatch between Simulations and Observations. Terrestrial ecosystem processes are widely recognized to be heterogeneous at spatial scales well below those resolved by most ESMs resulting in a spatial representativeness uncertainty when evaluating/informing models with single point observations (e.g., Riley and Shen, 2014). Scaling has been shown to be non-linear with vegetation cover (e.g., Launiainen et al., 2016) and sensitive to resolution, scaling method, and the magnitude of heterogeneity (Wang et al., 2016; Liu et al., 2016). SAE observations based on the eddy-covariance (EC) flux technique (e.g., Aubinet et al., 2012) are one example of a process-scale benchmark for assessing the performance of ESMs (e.g., Fox et al., 2009; Williams et al., 2009; Schwalm et al., 2010; Schaefer et al., 2012) that suffers from such scale mismatch. Using sitebased EC measurements for model benchmarking is thus complicated by biases arising from unmet assumptions on the observations. These include the limited and varying spatial representativeness of the observations at model grid scale (e.g., Chen et al., 2011; Griebel et al., 2020), and the observations violating the conservation of energy (e.g., Mauder et al., 2020). Both of these biases increase with spatial heterogeneity, which complicates regional-scale model benchmarking and improvement (e.g., Metzger, 2018; Xu et al., 2020). Therefore, spatial

4 Durden et al.

scaling of site-based flux observations to ESM grid scales using multi-scale observations is needed to reduce uncertainties in flux estimates and constrain model benchmarking.

From Hindcasting to Forecasting. Ecosystem models are key to synthesizing process understanding, examining simulated ecosystem functioning against observations at local to regional scales, and can provide the scientific basis for field measurement campaigns (Dietze et al., 2014). The Predictive Ecosystem Analyzer (PEcAn) framework is a powerful ecoinformatics framework that utilizes Bayesian data assimilation techniques to inform models with ODPs. As such, PEcAn is a prime example of the synergistic improvements realized through data-model integration for both model parameterization and observational data requirements to reduce uncertainty (Kattge et al., 2011; Dietze et al., 2013; LeBauer et al., 2013). Access to low latency, repeated, and interoperable ODPs with quantified uncertainty is facilitating a movement to near-term ecological forecasting. These forecasts are envisioned to inform land-use decision makers with the most accurate predictions of ecosystem function via iterative model assessment and improvement through comparison with near-real-time data (Dietze et al., 2018). Similar model evaluation and benchmarking of ESMs can be realized; however, this approach likely involves a large number of perturbed parameter ensembles (PPE) of models or machine learning-based surrogate models running on high performance computing (HPC) systems.

1.2 Earth System Models and Benchmarking

Earth system models (ESMs) are designed to simulate the coupled multiscale, multiphysics processes associated with interactive dynamics, physics, chemistry, and biology across the land, ocean, sea ice, land ice, and atmosphere that drive the Earth's climate system (Randall et al., 2018). Originally conceived as models of physics and dynamics, focused primarily on atmosphere and ocean processes, early global climate models evolved into ESMs with the inclusion of terrestrial and marine ecosystem processes, atmospheric chemistry, and human system interactions (Flato, 2011; Bonan and Doney, 2018). Research with these coupled ESMs has demonstrated that the carbon cycle responds to climate but also that large nonlinear climate feedbacks are produced by the biosphere (Friedlingstein et al., 2001, 2006; Arora et al., 2013). Terrestrial ecosystems in ESMs are represented by a variety of vegetation types, an amount of leaf area, functioning of stomata in leaves, and carbon and nutrient pools that interact with energy and water cycles (Bonan, 2016). Relatively simplistic representations of vegetation and soil processes in land surface models (LSMs), typically contained within coupled ESMs, capture the mean state behavior of plants and soils over large spatial scales on annual time scales. However, process understanding limits the ability to reduce errors and biases when compared with observational data at local scales (Schimel et al., 1997).

Forecasting ecosystem responses to environmental forcing is important for resource management and understanding impacts of rapid climate change or land

use change (Clark et al., 2001; Foley et al., 2005; Luo et al., 2011). While long-term EC flux measurements help to constrain energy, water, and carbon cycles for individual biomes (Baldocchi et al., 2001), more rapid integration of these data with models—employing data assimilation and benchmarking tools for uncertainty quantification, parameter optimization, and structural optimization—will improve understanding of these processes and lead to more mechanistic representations in models and more accurate ecosystem forecasts (Williams et al., 2009; Raupach et al., 2005).

LSMs rely on a collection of process representations, called parameterizations, embodied in numerical algorithms that employ many often-uncertain parameters to approximate the evolution of carbon, water, and energy in the natural world (Bonan, 2019). Data assimilation methods are commonly used to calibrate and evaluate model accuracy and parameter uncertainty (Luo et al., 2011). Raupach et al. (2005) presented methods for assimilating diverse data and separating observational from model errors to produce more accurate forecasts of the global carbon cycle. These methods have been applied across scales, from global inversions (e.g., Ricciuto et al., 2008) to individual tree stands (e.g., Moore et al., 2008; Ricciuto et al., 2011), with a variety of approaches, including Kalman filters or ensemble Kalman filters (e.g., Quaife et al., 2008), other maximum likelihood techniques, and least squares optimization methods (e.g., Prihodko et al., 2008). Sophisticated data assimilation packages that ingest EC flux measurements are now being coupled directly to complex forward land surface models for use on HPC systems (Fox et al., 2018; Bastrikov et al., 2018). Perturbed physics ensembles (also called perturbed parameter ensembles) or PPEs employ thousands of ensemble simulations to develop an understanding of the sensitivity or importance of individual parameters or to quantify the impacts of their uncertainties on feedbacks, extremes, or model skill (Sanderson et al., 2010; Fischer et al., 2011). Conducting large numbers of ensemble simulations to search for optimal parameter combinations for complex ESMs has become so computationally intensive that in some cases surrogate models are being developed and used in place of running LSMs directly (Li et al., 2018; Lu et al., 2018). For example, Ricciuto et al. (2018) analyzed the sensitivity of five key carbon variables to 68 model parameters in the US Department of Energy's (DOE's) Energy Exascale Earth System Model (E3SM) land model using a global sensitivity analysis on 96 FLUXNET sites. Lu et al. (2018) further optimized 8 of 68 parameters of the E3SM land model using surrogate-based global optimization. Executing these direct or surrogate simulations is one part of the challenge; evaluating model results in a systematic fashion is another.

Systematic evaluation of model results, through comparison with observational data, is important for quantifying model fidelity (Randerson et al., 2009). As ESMs become more complex, routine assessment of model performance must be performed for verification of new parameterizations, evaluation of impacts on other model components, and validation of simulations under changing environmental conditions. The land modeling community has developed a variety of evaluation approaches for terrestrial carbon cycle models (Cadule et al., 2010;

Blyth et al., 2011; Abramowitz, 2012; Anav et al., 2013; Piao et al., 2013). Some benchmarking approaches are based on an expected, pre-defined level of performance (Abramowitz, 2005; Best et al., 2015), but most systematic benchmarking strategies produce a skill score based on a direct model-data comparison. Lack of standardized evaluation metrics and methods have limited adoption of model benchmarking and use of a wide diversity of observational data sets.

The International Land Model Benchmarking (ILAMB) project was organized to engage the research community in the development of standardized and internationally accepted benchmarks for land model performance. The ILAMB community aims to strengthen linkages among experimental, remote sensing, and climate modeling communities in the design of new model tests and new measurement programs, and supports the design and development of open source benchmarking tools through international workshops and working group activities (Hoffman et al., 2017). With support primarily from the US Department of Energy, community ILAMB activities have resulted in creation of an ILAMB benchmarking software package for evaluation of LSMs that incorporate biogeochemical cycles (Hoffman et al., 2017; Collier et al., 2018). The ILAMB package produces graphical and tabular diagnostics across a range of biogeochemistry, hydrology, radiation and energy, and forcing variables. It scores multi-model performance for period mean, bias, root-mean-square error (RMSE), spatial distribution, interannual coefficient of variation, seasonal cycle, and long-term trend. The design philosophy and details of its implementation and methodology are described by Collier et al. (2018). Efforts are underway to directly link ILAMB to PEcAn for more rapid assessment of site-level simulations over diurnal time scales. Being an open source and extensible package with a scalable design, so that it can run on the largest HPC systems, makes it a good choice for evaluating the results of ensemble simulations aimed at parameter optimization and uncertainty assessment.

1.3 Network-scale Observations

Network-scale flux tower observations—such as those available from FLUXNET (Baldocchi et al., 2001), AmeriFlux (Novick et al., 2018), ICOS, TERN, or NEON (Metzger et al., 2019a)—are revolutionizing ecosystem science by providing observations that cover large spatial areas across a broad variety of ecoclimatic zones. The proliferation of standardized and interoperable flux network ODPs through cross-network collaboration and integration strengthens the ability of observations to explain measured environmental variability. For instance, NEON provides data to AmeriFlux, which along with ICOS and TERN, feed into FLUXNET. However, limitations exist on standardized measurements across networks, and substantial latency can be incurred for fully quality controlled data sets with quantified uncertainties.

NEON is a continental-scale observatory with sites across the US that will operate for multiple decades. NEON produces data products, software, and services to facilitate research on the impacts of climate change, land-use change,

and invasive species. NEON collects environmental and biological data with insitu sensors, biometric observations, and aerial overflights. One of NEON's core components is its 47 tower sites, where EC sensors are used to determine the SAE of momentum, heat, water, and carbon dioxide to assess interactions at the soil–vegetation–atmosphere interface. These data are streamed from tower sites to a central NEON headquarters facility. There, calibration coefficients are applied, quality assurance and quality control are performed, and additional processing algorithms are applied to derive higher level data products. The resulting ODPs are served on the NEON data portal, currently with about a one month latency. The latency of biometric and airborne remote sensing data varies by ODP. One unique aspect of NEON ODPs is the standardization of sensor infrastructure, biometric protocols and algorithms for processing. This standardization and ubiquitous availability of "contextual" observations with respect to SAE processes, position NEON ODPs as a perfect test suite for ESM hypothesis testing and benchmarking.

2 Visions to Improve Model Performance with Network-scale Observations

2.1 Scale-aware Observational Data Products for ESM Evaluation

Improved understanding of model-data interfaces enables maximizing the usefulness of ODPs for ESM improvement. For data-model integration, we commonly rely on half-hourly intervals as the lowest common timestep denominator. That is, we expect both ODPs and models to capture in half-hourly slices the dynamics emerging from environmental processes at a much broader range of scales. From the observational perspective, inconsistencies arise when we interpret continuous, nonlinear environmental processes and non-symmetrical observation techniques through discrete data processing and analytics that assume linearity and Gaussianity. Resultant half-hourly ODPs may be biased on the order of several 10% due to space/time ambiguity associated with scaling (Xu et al., 2017), violation of energy conservation (Mauder et al., 2020), etc.: our models might perform better or worse than we think because we already know that our current ODP reference is off. Here we explore how we could rectify the situation by creating half-hourly ODPs that capture environmental processes at scales consistent with expectations for data-model integration.

A Complementary Benchmarking Framework. To resolve the scale mismatch between simulations and observations, participants of the DOE-funded 2019 RUBISCO-AmeriFlux Working Group Meeting (Hawkins et al., 2020) conceived a scale-aware benchmarking framework that complements top-down ODP constraints with bottom-up ODP process information across DOC, DOE, NASA and NSF projects (Fig. 1). The proposed approach will enable consistent regional-scale evaluations of carbon, water, and energy cycles in ESMs. At the center of the framework is the ILAMB package, which facilitates benchmarking ESMs in

a modular fashion. The NCAR-NEON Community Land Model (CLM5) implementation is one example of an enhanced ESM module for use with ILAMB. Participants of the NSF-funded 2019 NCAR-NEON Workshop conceived an implementation of CLM5 that leverages an unprecedented range of contextual observations to constrain model uncertainty. In the past e.g. plot-based biometric observations, high-resolution airborne remote sensing, gas phase and water phase isotopes, replicate soil properties, as well as aquatic properties in adjacent lakes and streams have not been uniformly available at the flux tower network scale. With the advent of NEON these contextual observations are routinely available alongside traditional flux tower data from all 47 NEON terrestrial field sites, in standardized format via the NEON Data Portal and Application Programming Interface (API; Metzger et al., 2019a). A particular science focus of the NCAR-NEON CLM5 implementation is error characterization, including model structure, parameters, initial conditions, meteorological forcing, and observational error.

Large-scale observations of the atmospheric composition and its variation across time and space provide a first principal constraint on the benchmarking framework (e.g., Tans et al., 1990; Gurney et al., 2003; Battle et al., 2000; Pacala et al., 2001). The strength of this top-down ODP constraint is that it provides a direct measure of atmospheric stocks, though attribution to surface processes remains challenging (e.g., Houweling et al., 2017). These top-down constraints are available from tall towers (e.g., Miles et al., 2012; Andrews et al., 2014), airborne (e.g., Sweeney et al., 2015; Miller et al., 2016; Barkley et al., 2019) and spaceborne observations (e.g., Chen et al., 2020). One example is NASA's Atmospheric Carbon and Transport (ACT) - America campaign, which measured atmospheric carbon concentrations, trace gases and meteorological conditions via aircraft in five campaigns spanning all four seasons from 2016–2019 (Davis et al., 2019). ACT-America's airborne measurements are temporally sparse, but spatially extensive, covering four seasons and major ecoregions of the central and eastern United States. These flights are designed to provide regional-scale, seasonal constraints on carbon exchange rates by mapping out carbon and related trace gases (Baier et al., 2020) within synoptic weather systems (Pal et al., 2020), complementing the temporally-rich but relatively spatially sparse tower observations and spatially comprehensive column averaged space-borne observations.

Network-scale flux tower observations such as available from FLUXNET (Baldocchi et al., 2001), AmeriFlux (Novick et al., 2018) or NEON (Metzger et al., 2019a) provide the second principal constraint on the benchmarking framework. The strength of this bottom-up constraint is that SAE observations provide a direct and independent benchmark for assessing the process-scale performance of ESMs, though scale mismatch and surface energy imbalance remain challenging. Here, we seek to improve model benchmarking with flux tower data through two synergistic bottom-up approaches, an "extensive" and an "intensive" approach. The extensive bottom-up approach annotates AmeriFlux data with spatial attributes (e.g., land cover, vegetation indices, etc.; Chu et al.,

2020). Thanks to comparatively weak data requirements this approach is readily applied to 200+ AmeriFlux sites. Site spatial representativeness can now be assessed by comparing spatial attributes in the flux surface source area vs. the target domain, such as a model grid cell. This approach facilitates shortlisting spatially representative sites (e.g., sites with similar plant functional type and vegetation characteristics between the flux source area and target domain) for initial model benchmarking, and improved model representation of compound ecosystems. The extensive approach also serves as a prior to identify and prioritize the sites where the intensive approach is deemed necessary, which we explore in more detail in the following section.

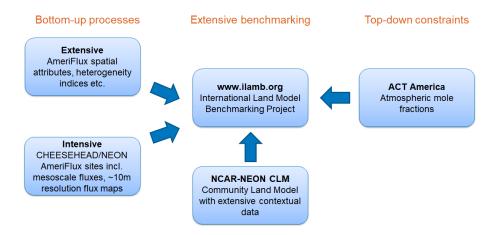


Fig. 1. Scale-aware benchmarking framework that complements bottom-up process information with top-down constraints across DOC, DOE, NASA and NSF projects. Presented during the AGU 2020 Fall Meeting NCAR-NEON Town Hall (Metzger et al., 2019b)

Scale-equivalent Observational Benchmarks. In contrast to the shortlisting employed in the extensive bottom-up approach, the intensive bottom-up approach aims to fully utilize the variability inherent to changing flux tower sample characteristics. The aim here is to develop scale-aware ODPs from point and line observations for improved model benchmarking at equivalent space and time resolutions. This is achieved by fully incorporating the source area dynamics in source area-to-target-area upscaling (Fu et al., 2014; Metzger et al., 2013a; Ran et al., 2016; Xu et al., 2017). These approaches show great merits in providing space-time explicit flux ODPs that model predictions could be readily benchmarked against at designated grid cells. Furthermore, the Environmental Response Function (ERF) Virtual Control Volume (VCV) spatio-temporal data assimilation system shows promise to also close the surface energy imbalance fre-

quently observed at flux towers (Metzger, 2018; Xu et al., 2020), which to date hamstrings data synthesis and model-data fusion with a pervasive bias (e.g., Cui and Chui, 2019; Mauder et al., 2020; Stoy et al., 2013).

While ERF promises complete data utilization it has comparatively strong data requirements. This includes EC high-frequency data, which are currently limited to AmeriFlux Core (N = 14) and NEON (N = 47) sites, and Ameri-Flux Tech Team site visits (N = 40-50). Specifically, surface and meteorological controls on the fluxes change at minute timescales through transience of source areas, the passing of clouds, etc. Thus, performing ERF analyses at minuteand decameter-resolution allows separating meteorological and surface controls on the fluxes in unprecedented clarity: spectral averaging and source attribution of high-frequency data combined with machine learning connect fluxes to meteorological and surface properties, and ultimately transfer the joint information to the model grid scale. The utilization of high-frequency wavelet flux calculations produces response variable observation with large sample sizes and high signal-to-noise ratio. Thus, providing ample data for the boosted regression trees technique to extract the key driver-response relationships (Metzger et al., 2013a). Results include half-hourly flux maps and propagated uncertainties, alongside estimates of the spatial mean and land-cover specific fluxes and their variation across space (Fig. 2). Figure 2 illustrates the mapped projection of turbulent sensible heat flux, the transfer of heat inducing a change in temperature, throughout the day across a $30 \text{ km} \times 30 \text{ km}$ grid centered on the AmeriFlux Park Falls tall tower site. The derived spatially attributed fluxes from ERF are observed to transition from negative to positive as the surface warms during the day, with clear hot- and cold-spots observable due to the landscapes heterogenuous ecosystem. By including mesoscale motions in a continuous, fixed-frame representation of all hot- and cold-spots within a model grid cell ERF-VCV reduces advective errors by at least one order of magnitude, which effectively closes the surface energy balance (Xu et al., 2020). Where ESMs do not explicitly represent site heterogeneity, we integrate flux maps to probability density functions and from there to statistical measures of location and dispersion (Metzger, 2018). We will add these to the ILAMB database of regional simulations to design new, probability-based model benchmarking metrics/scores, and inform the weighting of observations in the data assimilation, uncertainty quantification, and site-level validation processes.

The flux maps are accompanied by a set of non-linear response functions, jointly extracted from ground, airborne, and spaceborne data (Fig. 3). These will serve as benchmarks for diagnosing calibrated models and attributing remote sensing data to surface processes. Ultimately, they allow designing new benchmarking metrics/scores based on ERF-observed vs. ESM-modeled driver-response relationships/surfaces (e.g., Koven et al., 2017).

The promise of scale-aware model benchmarking is that we can better ascribe differences between models and observations to process, parameter, driver, and random error (Dietze, 2017), to which we might otherwise falsely attribute scale-related differences. In short: to what extent can we better evaluate or benchmark

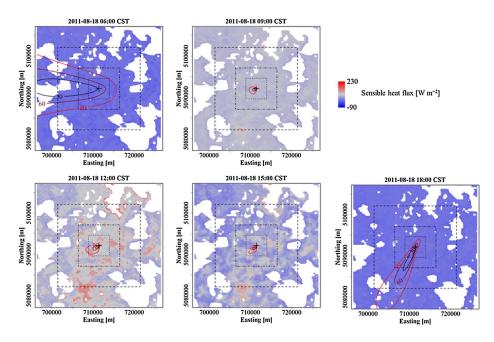


Fig. 2. Flux source area variations over time at the AmeriFlux Park Falls tall tower at 122 m measurement height, modified after (Metzger et al., 2013b). The transient source areas are superimposed over the fixed-frame ERF-derived grids of turbulent sensible heat flux. Reprinted from Agricultural and Forest Meteorology, Volume 255, Stefan Metzger, Surface-atmosphere exchange in a box: Making the control volume a suitable representation for in-situ observations, Pages 68–80, Copyright (2018), with permission from Elsevier.

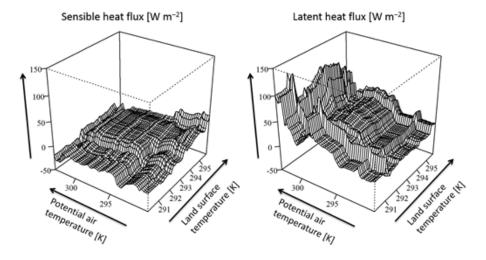


Fig. 3. Multi-dimensional flux response functions at the AmeriFlux Park Falls tall tower at 122 m measurement height, modified after (Metzger et al., 2013b).

models with flux data when we consider a flux product that fully matches the scale of the model output and considers the mixing of spatial and temporal variability that occurs at many flux tower sites? The approach outlined here provides a framework to partition observational uncertainty into scale-related and instrument-related components. Benchmarking or data assimilation is not possible without proper characterization of uncertainty in both observation and model. A systematic approach is essential to make forward progress. A systematic application of a scale-aware benchmark also allows for identification of "ideal" sites or a complementary suite of measurements necessary for an observational site to be considered a high-quality benchmark.

To this last point, recent field experiments have exploited the "super-site" concept to better evaluate the mix of measurement types, extent, and frequency to develop a robust scale-aware benchmark. For example, the Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors 2019 (CHEESEHEAD19) field project deployed a quasi-random extensive set of EC flux towers within a "model grid", coupled with a range of airborne and ground based sampling of surface and atmospheric properties and expansive collection of satellite remote sensing imagery (Butterworth et al., 2020). Campaigns like this or the proposed NCAR-NEON super-site project provide a window into the capability of scale-aware benchmarks. They provide a framework for future experimental design of long-term super-sites or identification of core observables necessary to develop scale-aware benchmarks at other sites.

Similarly, nesting sub-grid models within global gridded ESMs provides another opportunity to incorporate scale dependencies within the model. The NOAA Climate Process Team (CPT) Coupling of Land and Atmospheric Subgrid Parameterizations (CLASP) is evaluating how large eddy simulations (LES) and parameterizations can be used to enhance representation of subgrid processes in a model. Such approaches further enhance the value of a scale-aware benchmark.

These experiments and developments thus provide a testbed for evolving the scale-aware benchmark approach. With these, we can start to ask: how much can we relax the high frequency and high resolution data requirements of the ERF approach and still reliably estimate grid-resolved fluxes and uncertainty? How does varying combinations of EC, concentration gradient, tower-mounted imaging, and new sensing techniques expand the reach of the methods into different trace gas fluxes or with higher accuracy? Can ERF also be used to map and predict state variables like biomass, leaf area, canopy chemistry, near-surface temperatures, and other sources of subgrid variability that facilitate space-time consistent ESM inputs and outputs? What are new ways to benchmark models once a space and time resolved benchmark or subgrid model is available? Is the information value of the benchmark limited to the single "grid-cell" of the land-surface model or is the spatial/temporal correlation structure useful for propagating the benchmark to other locations? A number of open research questions and exciting directions are currently foreseen, such as space/time gap-

filling and partitioning to resolve issues inherent to current approaches, including confounding space/time transience with biophysical processes.

To summarize, ERF-derived ODPs fully match the scale of ESM inputs and outputs, and comply with previously unmet observational assumptions. The results are half-hourly flux maps of a model subgrid domain that facilitate consistent integration among multi-scale observations and models at flux tower sites. Individual flux pixels even provide a direct link to plot-scale surface observations, such as soil plots and biometric observations. Furthermore, in-situ response function benchmarks improve model diagnosis and remote sensing data interpretation. These scale-aware properties promise unequalled realism for integrating observations and models through overcoming long-standing differences in perception across disciplines.

2.2 Near-real time Data Accessibility for ESM and Benchmarking

SAE ODPs for evaluating ESM are currently either available from individual sites in near-real-time, or from many networked sites with latencies on the order of 6 months to 1 year. Due to its central collection and processing structure NEON has the opportunity to push the boundaries of near-real-time data availability to facilitate ecological forecasting, data assimilation into ESMs, and ESM benchmarking. Currently, the vast majority of NEON's 53 terrestrial instrumented systems (TIS) data products are available with a 1-month latency via the NEON data portal (https://data.neonscience.org/) and API (https://data.neonscience.org/data-api/) due to a monthly publication cycle. However, NEON SAE processing pipeline improvements are in development to reduce data latency to 1–5 days. To our knowledge, this would be the largest EC tower data set provided in near-real-time globally.

A pilot project envisioned from the aforementioned NCAR-NEON workshop developed a workflow to grab NEON data from the API, perform some quality assurance and quality control, gap-fill data, partition fluxes, and package data in a netCDF data format that is ingestible by CLM5, ILAMB, and PEcAn. The workflow is being hosted on Github (https://github.com/NEONScience/ NCAR-NEON), has been containerized (https://quay.io/repository/ddurden/ ncar-neon-ddurden), and is deployable via command line for integration with job schedulers or workflow managers. The NEON data pipeline is transitioning to a microservices-based Pachyderm architecture (https://www.pachyderm.com/), a version control system for data that preserves data provenance. In the Pachyderm pipeline, any new commit to data, metadata, or processing code triggers the reprocessing of downstream derived products. Integration of ODP generation for model-data fusion into this architecture promises near-real time data access with full provenance. Work with the scientific community still remains to address where community modeling and benchmarking data sets should be hosted and determine the essential ODPs to be provided both for driving models and evaluating/benchmarking.

To support rapid and scalable assessment and benchmarking of LSM results, a Land Model Testbed (LMT) system is being developed through a pilot

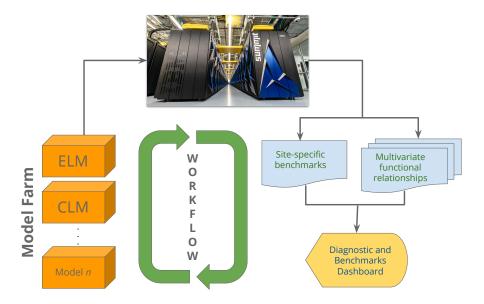


Fig. 4. A Land Model Testbed (LMT) workflow for running and evaluating large numbers of ensemble simulations for multiple LSMs on the Summit supercomputer system and dynamically provisioned cloud resources is being developed at ORNL. Site-specific benchmarks for EC super-sites and new functional relationship metrics are being incorporated into ILAMB, and a dynamic user interface is being developed to give users better control over how model-data comparison results are displayed through an interactive dashboard.

project at ORNL (Fig. 4). Aimed at delivering a workflow for very large ensemble simulations, the LMT provides software infrastructure for running multiple models on the Summit supercomputer system and dynamically provisioned cloud computing resources. New site-specific benchmarks for EC super-sites and new functional relationship metrics are being incorporated into ILAMB to support assessment of large ensembles and PPE simulations. An interactive dashboard is being designed to give users control over how benchmarking results and graphical diagnostics are displayed. Interfaces are also being developed around ILAMB for activation (executing an analysis) and linking to diagnostic results following the evolving Coordinated Model Evaluation Capabilities (CMEC) standards. CMEC interfaces will further enable connections to NOAA's Model Diagnostics Task Force that promotes development of process-oriented diagnostics for climate and weather forecasting models (Maloney et al., 2019). These improvements are key to informing parameterization improvements to address long-standing model biases and to delivering credible projection results for assessing climate change impacts and vulnerabilities for stakeholders and policy-makers (Eyring et al., 2019).

The LMT, combined with NEON's near-real time SAE ODPs, offers a truly scalable approach for rapidly conducting ecological forecasts on HPC systems and evaluating model performance as new measurements are made. We envision integrating the multi-scale observations from NEON's distributed edge computing systems with multiple LSMs running in the LMT framework on centralized HPC systems and distributed cloud computing resources. This data-model integration approach will advance ecological research and improve mechanistic understanding of Earth system processes important for environmental sustainability.

3 Roadmap to Scientific Understanding

The roadmap to extracting scientific understanding through data-model integration is contingent on multiple working groups working toward common underlying goals of maximizing our predictive capabilities, minimizing uncertainty associated with our predictions, and advancing our forecast accuracy with near-real-time data. Near-real-time data cyber-infrastructure is on the verge of being realized for multiple flux tower networks, and is opening new pathways to near-term ESM benchmarking, parameter optimization, and data-fusion techniques.

The 2019 RUBISCO-AmeriFlux Workshop (Hawkins et al., 2020) planned roadmap lays the foundation for the bottom-up scaling approaches to produce scale-aware ODPs and ingest them into the ILAMB benchmarking framework (Fig. 5). For the extensive bottom-up approach initial data processing is complete, and the manuscript by Chu et al. (2020) introduces the results and newly available spatial attributes to the community at large. Our planned goal for 2020 is to produce a shortlist of homogeneous sites for initial model benchmarking, with additional milestones through 2021 (Fig. 5). For the intensive bottom-up approach, the group is working on integrating the ERF-VCV data sets into IL-

AMB. At this time, the group has successfully ingested the NEON NetCDF file format into ILAMB, and is compiling the Metzger et al. (2019a) 30 min flux grids into these files. Planned goals for 2020 include regional ILAMB evaluations and site-level validations to design performance scores, with additional milestones through 2023 (Fig. 5). We further envision a hybrid "simplified high-res mapping" bottom-up approach to reduce ERF-VCV data requirements for use at all AmeriFlux sites, which is currently ahead of schedule.

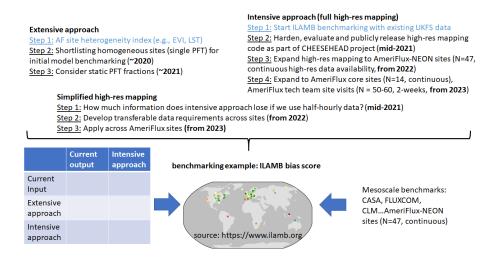


Fig. 5. Status and roadmap of the bottom-up scaling approaches. Blue font indicates areas of currently active work.

The bottom-up approaches are complemented by the top-down syntheses of aircraft campaign data from ACT-America, an array of terrestrial ecosystem models, posterior flux estimates from atmospheric inverse flux estimates and AmeriFlux observations. The expected outcome is spatially and temporally comprehensive evaluation of the performance of these ecosystem models and inversion posteriors. This evaluation will provide insight into the process limitations of these models and the existing seasonal, regional biases in the inversion systems. The improved understanding will be used to improve the prior flux estimates used in atmospheric inversions, and to improve the process representation in regional to continental scale simulations of terrestrial carbon fluxes.

Through the convergence of high throughput computational frameworks processing EC data and applying machine learning algorithms to develop scale-aware ODPs with multiple instances of ESMs running on HPC, we can make substantial strides to our understanding of Earth systems processes across spatiotemporal scales that have previously restricted such studies. The advancement of ecosystem understanding is not confined to the described work though. The development of the Waggle, an open sensor platform for edge computing, by the Array of

Things (AoT) opens the door to enhanced distributed data collection, advanced reactive measurements, and manipulative studies (Beckman et al., 2016). NEON has the observational infrastructure, such as sufficient power and network connectivity at tower sites and advanced command and control capabilities, to utilize such compute infrastructure in the future.

Acknowledgements

The National Ecological Observatory Network is a project sponsored by the National Science Foundation and managed under cooperative agreement by Battelle. Some of this material is based upon work supported by the National Science Foundation (Grant DBI-0752017). We acknowledge contributions for some of this material from participants of NSF-sponsored joint NCAR and NEON workshop, Predicting life in the Earth system – linking the geosciences and ecology, and the continued efforts in post-workshop working groups. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. Portions of this research were sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory and used resources of the Oak Ridge Leadership Computing Facility (OLCF) at Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DEAC0500OR22725. Additional support was provided by the Reducing Uncertainties in Biogeochemical Interactions through Synthesis and Computation Science Focus Area (RUBISCO SFA), which is sponsored by the Regional and Global Model Analysis (RGMA) activity of the Earth & Environmental System Modeling (EESM) Program in the Earth and Environmental Systems Sciences Division (EESSD) of the Office of Biological and Environmental Research (BER) in the U.S. Department of Energy Office of Science. Some contributions to this research were supported by NASAs Earth Science Division (Grant NNX15AG76G). We acknowledge contributions for some of this material from all participants in the RUBISCO-AmeriFlux Working Group, which is supported by the RUBISCO SFA.

Bibliography

- Abramowitz G (2005) Towards a benchmark for land surface models. Geophys Res Lett 32(22):L22702, doi:10.1029/2005GL024419
- Abramowitz G (2012) Towards a public, standardized, diagnostic benchmarking system for land surface models. Geosci Model Dev 5(3):819–827, doi: 10.5194/gmd-5-819-2012
- Anav A, Friedlingstein P, Kidston M, Bopp L, Ciais P, Cox P, Jones C, Jung M, Myneni R, Zhu Z (2013) Evaluating the land and ocean components of the global carbon cycle in the CMIP5 Earth system models. J Clim 26(18):6801–6843, doi:10.1175/JCLI-D-12-00417.1
- Andrews A, Kofler J, Trudeau M, Williams J, Neff D, Masarie K, Chao D, Kitzis D, Novelli P, Zhao C, et al. (2014) CO₂, CO, and CH₄ measurements from tall towers in the NOAA Earth System Research Laboratory's Global Greenhouse Gas Reference Network: Instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts. Atmos Meas Tech 7(2):647, doi:10.5194/amt-7-647-2014
- Arora VK, Boer GJ, Friedlingstein P, Eby M, Jones CD, Christian JR, Bonan G, Bopp L, Brovkin V, Cadule P, Hajima T, Ilyina T, Lindsay K, Tjiputra JF, Wu T (2013) Carbon-concentration and carbon-climate feedbacks in CMIP5 Earth system models. J Clim 26(15):5289–5314, doi:10.1175/JCLI-D-12-00494.1
- Aubinet M, Vesala T, Papale D (2012) Eddy covariance: A practical guide to measurement and data analysis. Springer Science & Business Media
- Baier BC, Sweeney C, Choi Y, Davis KJ, DiGangi JP, Feng S, Fried A, Halliday H, Higgs J, Lauvaux T, et al. (2020) Multispecies assessment of factors influencing regional and enhancements during the Winter 2017 ACT-America Campaign. J Geophys Res Atmos 125(2):e2019JD031339, doi: 10.1029/2019JD031339
- Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Paw KT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82(11):2415–2434, doi:10.1175/1520-0477(2001)082%3C2415:FANTTS%3E2.3.CO;2
- Barkley ZR, Davis KJ, Feng S, Balashov N, Fried A, DiGangi J, Choi Y, Halliday HS (2019) Forward modeling and optimization of methane emissions in the south central United States using aircraft transects across frontal boundaries. Geophys Res Lett 46(22):13564–13573, doi:10.1029/2019GL084495
- Bastrikov V, MacBean N, Bacour C, Santaren D, Kuppel S, Peylin P (2018) Land surface model parameter optimisation using in situ flux data: Comparison of gradient-based versus random search algorithms (a case study using

- ORCHIDEE v
1.9.5.2). Geosci Model Dev 11(12):4739–4754, doi:10.5194/gmd-11-4739-2018
- Battle M, Bender ML, Tans PP, White JWC, Ellis JT, Conway T, Francey RJ (2000) Global carbon sinks and their variability inferred from atmospheric O_2 and $\delta 13C$. Science 287(5462):2467-2470, doi:10.1126/science.287.5462.2467
- Beckman P, Sankaran R, Catlett C, Ferrier N, Jacob R, Papka M (2016) Waggle: An open sensor platform for edge computing. In: 2016 IEEE SENSORS, IEEE, pp 1–3, doi:10.1109/ICSENS.2016.7808975
- Best MJ, Abramowitz G, Johnson HR, Pitman AJ, Balsamo G, Boone A, Cuntz M, Decharme B, Dirmeyer PA, Dong J, Ek M, Guo Z, Haverd V, van den Hurk BJJ, Nearing GS, Pak B, Peters-Lidard C, Santanello Jr JA, Stevens L, Vuichard N (2015) The plumbing of land surface models: Benchmarking model performance. J Hydrometeor 16(3):1425–1442, doi:10.1175/JHM-D-14-0158.1
- Blyth E, Clark DB, Ellis R, Huntingford C, Los S, Pryor M, Best M, Sitch S (2011) A comprehensive set of benchmark tests for a land surface model of simultaneous fluxes of water and carbon at both the global and seasonal scale. Geosci Model Dev 4(2):255–269, doi:10.5194/gmd-4-255-2011
- Bonan GB (2016) Ecological Climatology: Concepts and Applications, third edition edn. Cambridge University Press, 32 Avenue of the Americas, New York, NY 10013-2473, USA, doi:10.1017/CBO9781107339200
- Bonan GB (2019) Climate Change and Terrestrial Ecosystem Modeling. Cambridge University Press, One Liberty Plaza, 20th Floor, New York, NY 10006, USA, doi:10.1017/9781107339217
- Bonan GB, Doney SC (2018) Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models. Science 359(6375):eaam8328, doi:10.1126/science.aam8328
- Butterworth BJ, Desai AR, Metzger S, Townshed PA, Schwartz MD, Petty GW, Mauder M, Vogelmann H, Andresen CG, Augustine TJ, Bertram TH, Brown WO, Buban M, Clearly P, Durden DJ, Iglinksi T, Lee TR, et al. (2020) Connecting land-atmosphere interaction to surface heteorogeniety in CHEESE-HEAD 2019. (in preparation)
- Cadule P, Friedlingstein P, Bopp L, Sitch S, Jones CD, Ciais P, Piao SL, Peylin P (2010) Benchmarking coupled climate-carbon models against long-term atmospheric $\rm CO_2$ measurements. Global Biogeochem Cycles 24(2):GB2016, doi: $10.1029/2009\rm GB003556$
- Chen B, Coops NC, Fu D, Margolis HA, Amiro BD, Barr AG, Black TA, Arain MA, Bourque CPA, Flanagan LB, et al. (2011) Assessing eddy-covariance flux tower location bias across the fluxnet-canada research network based on remote sensing and footprint modelling. Agr Forest Meteorol 151(1):87–100, doi:10.1016/j.agrformet.2010.09.005
- Chen Z, Liu J, Henze DK, Huntzinger DN, Wells KC, Miller SM (2020) Linking global terrestrial $\rm CO_2$ fluxes and environmental drivers using OCO-2 and a geostatistical inverse model. Atmos Chem Phys Discuss 2020:1–24, doi: $10.5194/\rm acp-2020-285$

- Chu H, Luo X, Ouyang Z, Chan S, Dengel S, Biraud SC, Torn MS, Metzger S, Kumar J (2020) Footprint representativeness of eddy-covariance flux measurements across AmeriFlux sites. (in preparation)
- Clark JS, Carpenter SR, Barber M, Collins S, Dobson A, Foley JA, Lodge DM, Pascual M, Pielke R, Pizer W, Pringle C, Reid WV, Rose KA, Sala O, Schlesinger WH, Wall DH, Wear D (2001) Ecological forecasts: An emerging imperative. Science 293(5530):657–660, doi:10.1126/science.293.5530.657
- Collier N, Hoffman FM, Lawrence DM, Keppel-Aleks G, Koven CD, Riley WJ, Mu M, Randerson JT (2018) The International Land Model Benchmarking (ILAMB) system: Design, theory, and implementation. J Adv Model Earth Sy 10(11):2731–2754, doi:10.1029/2018MS001354
- Cui W, Chui TFM (2019) Temporal and spatial variations of energy balance closure across FLUXNET research sites. Agr Forest Meteorol 271:12–21, doi: 10.1016/j.agrformet.2019.02.026
- Davis KJ, Obland MD, Lin B, Lauvaux T, O'Dell C, Meadows B, Browell EV, Crawford JH, DiGangi JP, Sweeney C, McGill MJ, Dobler J, Barrick JD, Nehrir AR (2019) ACT-America: L3 merged in situ atmospheric trace gases and flask data, Eastern USA. doi:10.3334/ORNLDAAC/1593
- Dietze MC, LeBauer DS, Kooper R (2013) On improving the communication between models and data. Plant Cell Environ 36(9):1575–1585, doi: 10.1111/pce.12043
- Dietze MC, Serbin SP, Davidson C, Desai AR, Feng X, Kelly R, Kooper R, LeBauer D, Mantooth J, McHenry K, Wang D (2014) A quantitative assessment of a terrestrial biosphere model's data needs across North American biomes. J Geophys Res Biogeosci 119(3):286–300, doi:10.1002/2013JG002392
- Dietze MC, Fox A, Beck-Johnson LM, Betancourt JL, Hooten MB, Jarnevich CS, Keitt TH, Kenney MA, Laney CM, Larsen LG, Loescher HW, Lunch CK, Pijanowski BC, Randerson JT, Read EK, Tredennick AT, Vargas R, Weathers KC, White EP (2018) Iterative near-term ecological forecasting: Needs, opportunities, and challenges. Proc Nat Acad Sci 115(7):1424–1432, doi:10.1073/pnas.1710231115
- Eyring V, Cox PM, Flato GM, Gleckler PJ, Abramowitz G, Caldwell P, Collins WD, Gier BK, Hall AD, Hoffman FM, Hurtt GC, Jahn A, Jones CD, Klein SA, Krasting J, Kwiatkowski L, Lorenz R, Maloney E, Meehl GA, Pendergrass A, Pincus R, Ruane AC, Russell JL, Sanderson BM, Santer BD, Sherwood SC, Simpson IR, Stouffer RJ, Williamson MS (2019) Taking climate model evaluation to the next level. Nat Clim Change 9(2):102–110, doi:10.1038/s41558-018-0355-y
- Fer I, Kelly R, Moorcroft PR, Richardson AD, Cowdery EM, Dietze MC (2018) Linking big models to big data: efficient ecosystem model calibration through Bayesian model emulation. Biogeosci 15(19):5801–5830, doi:10.5194/bg-15-5801-2018
- Fischer EM, Lawrence DM, Sanderson BM (2011) Quantifying uncertainties in projections of extremes—A perturbed land surface parameter experiment. Clim Dvn 37(7):1381–1398, doi:10.1007/s00382-010-0915-y

- Flato GM (2011) Earth system models: An overview. WIREs Clim Change 2(6):783–800, doi:10.1002/wcc.148
- Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309(5734):570–574, doi: 10.1126/science.1111772
- Fox A, Williams M, Richardson AD, Cameron D, Gove JH, Quaife T, Ricciuto D, Reichstein M, Tomelleri E, Trudinger CM, et al. (2009) The REFLEX project: Comparing different algorithms and implementations for the inversion of a terrestrial ecosystem model against eddy covariance data. Agr Forest Meteorol 149(10):1597–1615, doi:10.1016/j.agrformet.2009.05.002
- Fox AM, Hoar TJ, Anderson JL, Arellano AF, Smith WK, Litvak ME, MacBean N, Schimel DS, Moore DJP (2018) Evaluation of a data assimilation system for land surface models using CLM4.5. J Adv Model Earth Sy 10(10):2471–2494, doi:10.1029/2018MS001362
- Friedlingstein P, Bopp L, Ciais P, Dufresne JL, Fairhead L, LeTreut H, Monfray P, Orr J (2001) Positive feedback between future climate change and the carbon cycle. Geophys Res Lett 28(8):1543–1546, doi:10.1029/2000GL012015
- Friedlingstein P, Cox PM, Betts RA, Bopp L, von Bloh W, Brovkin V, Doney SC, Eby M, Fung I, Govindasamy B, John J, Jones CD, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Thompson S, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate–carbon cycle feedback analysis: Results from the C⁴MIP model intercomparison. J Clim 19(14):3373–3353, doi:10.1175/JCLI3800.1
- Fu D, Chen B, Zhang H, Wang J, Black TA, Amiro BD, Bohrer G, Bolstad P, Coulter R, Rahman AF, et al. (2014) Estimating landscape net ecosystem exchange at high spatial—temporal resolution based on Landsat data, an improved upscaling model framework, and eddy covariance flux measurements. Remote Sens Environ 141:90–104, doi:10.1016/j.rse.2013.10.029
- Griebel A, Metzen D, Pendall E, Burba G, Metzger S (2020) Generating spatially robust carbon budgets from flux tower observations. Geophys Res Lett 47(3):e2019GL085942, doi:10.1029/2019GL085942
- Gurney KR, Law RM, Denning AS, Rayner PJ, Baker D, Bousquet P, Bruhwiler L, Chen YH, Ciais P, Fan S, et al. (2003) TransCom 3 CO₂ inversion intercomparison: 1. Annual mean control results and sensitivity to transport and prior flux information. Tellus B 55(2):555–579, doi:10.3402/tellusb.v55i2.16728
- Hawkins LR, Kumar J, Luo X, Sihi D, Zhou S (2020) Measuring, monitoring, and modeling ecosystem cycling. Eos Trans AGU 101, doi:10.1029/2020EO147717
- Hoffman FM, Koven CD, Keppel-Aleks G, Lawrence DM, Riley WJ, Randerson JT, Ahlström A, Abramowitz G, Baldocchi DD, Best MJ, Bond-Lamberty B, De Kauwe MG, Denning AS, Desai AR, Eyring V, Fisher JB, Fisher RA, Gleckler PJ, Huang M, Hugelius G, Jain AK, Kiang NY, Kim H, Koster RD, Kumar SV, Li H, Luo Y, Mao J, McDowell NG, Mishra U, Moorcroft PR, Pau GSH, Ricciuto DM, Schaefer K, Schwalm CR, Serbin SP, Shevliakova E,

- Slater AG, Tang J, Williams M, Xia J, Xu C, Joseph R, Koch D (2017) International Land Model Benchmarking (ILAMB) 2016 workshop report. Tech. Rep. DOE/SC-0186, U.S. Department of Energy, Office of Science, Germantown, Maryland, USA, doi:10.2172/1330803
- Houweling S, Bergamaschi P, Chevallier F, Heimann M, Kaminski T, Krol M, Michalak AM, Patra PK (2017) Global inverse modeling of CH₄ sources and sinks: An overview of methods. Atmos Chem Phys 17(1):235–256, doi: 10.5194/acp-17-235-2017
- Kattge J. Díaz S. Lavorel S. Prentice IC. Leadley P. Bönisch G. Garnier E. Westoby M, Reich PB, Wright IJ, Cornelissen JHC, Violle C, Harrison SP, van Bodegom PM, Reichstein M, Enquist BJ, Soudzilovskaia NA, Ackerly DD, Anand M, Atkin O, Bahn M, Baker TR, Baldocchi D, Bekker R, Blanco CC, Blonder B, Bond WJ, Bradstock R, Bunker DE, Casanoves F, Cavender-Bares J, Chambers JQ, Chapin III FS, Chave J, Coomes D, Cornwell WK, Craine JM, Dobrin BH, Duarte L, Durka W, Elser J, Esser G, Estiarte M, Fagan WF, Fang J, Fernández-Méndez F, Fidelis A, Finegan B, Flores O, Ford H, Frank D, Freschet GT, Fyllas NM, Gallagher RV, Green WA, Gutierrez AG, Hickler T, Higgins SI, Hodgson JG, Jalili A, Jansen S, Joly CA, Kerkhoff AJ, Kirkup D, Kitajima K, Kleyer M, Klotz S, Knops JMH, Kramer K, Kühn I, Kurokawa H, Laughlin D, Lee TD, Leishman M, Lens F, Lenz T, Lewis SL, Lloyd J, Llusià J, Louault F, Ma S, Mahecha MD, Manning P, Massad T, Medlyn BE, Messier J, Moles AT, Müller SC, Nadrowski K, Naeem S, Niinemets U, Nöllert S, Nüske A, Ogaya R, Oleksyn J, Onipchenko VG, Onoda Y, Ordoñez J, Overbeck G, Ozinga WA, Patiño S, Paula S, Pausas JG, Peñuelas J, Phillips OL, Pillar V, Poorter H, Poorter L, Poschlod P, Prinzing A, Proulx R, Rammig A, Reinsch S, Reu B, Sack L, Salgado-Negret B, Sardans J, Shiodera S, Shipley B, Siefert A, Sosinski E, Soussana JF, Swaine E, Swenson N, Thompson K, Thornton P, Waldram M, Weiher E, White M, White S, Wright SJ, Yguel B, Zaehle S, Zanne AE, Wirth C (2011) TRY — A global database of plant traits. Glob Change Biol 17(9):2905–2935, doi:10.1111/j.1365-2486.2011.02451.x
- Koven CD, Hugelius G, Lawrence DM, Wieder WR (2017) Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat Clim Change 7(11):817–822, doi:10.1038/nclimate3421
- Launiainen S, Katul GG, Kolari P, Lindroth A, Lohila A, Aurela M, Varlagin A, Grelle A, Vesala T (2016) Do the energy fluxes and surface conductance of boreal coniferous forests in Europe scale with leaf area? Glob Change Biol 22(12):4096–4113, doi:10.1111/gcb.13497
- LeBauer DS, Wang D, Richter KT, Davidson CC, Dietze MC (2013) Facilitating feedbacks between field measurements and ecosystem models. Ecol Monogr 83(2):133–154, doi:10.1890/12-0137.1
- Li J, Duan Q, Wang YP, Gong W, Gan Y, Wang C (2018) Parameter optimization for carbon and water fluxes in two global land surface models based on surrogate modelling. Int J Climatol 38(S1):e1016-e1031, doi:10.1002/joc.5428
- Liu S, Xu Z, Song L, Zhao Q, Ge Y, Xu T, Ma Y, Zhu Z, Jia Z, Zhang F (2016) Upscaling evapotranspiration measurements from multi-site to the satellite

- pixel scale over heterogeneous land surfaces. Agr Forest Meteorol 230:97–113, doi:10.1016/j.agrformet.2016.04.008
- Lu D, Ricciuto D, Stoyanov M, Gu L (2018) Calibration of the E3SM land model using surrogate-based global optimization. J Adv Model Earth Sy 10(6):1337–1356, doi:10.1002/2017MS001134
- Luo Y, Ogle K, Tucker C, Fei S, Gao C, LaDeau S, Clark JS, Schimel DS (2011) Ecological forecasting and data assimilation in a data-rich era. Ecol Appl 21(5):1429–1442, doi:10.1890/09-1275.1
- Maloney ED, Gettelman A, Ming Y, Neelin JD, Barrie D, Mariotti A, Chen CC, Coleman DRB, Kuo YH, Singh B, Annamalai H, Berg A, Booth JF, Camargo SJ, Dai A, Gonzalez A, Hafner J, Jiang X, Jing X, Kim D, Kumar A, Moon Y, Naud CM, Sobel AH, Suzuki K, Wang F, Wang J, Wing AA, Xu X, Zhao M (2019) Process-oriented evaluation of climate and weather forecasting models. Bull Am Meteorol Soc 100(9):1665–1686, doi:10.1175/BAMS-D-18-0042.1
- Mauder M, Foken T, Cuxart J (2020) Surface-energy-balance closure over land: A review. Boundary-Layer Meteorol doi:10.1007/s10546-020-00529-6
- Metzger S (2018) Surface-atmosphere exchange in a box: Making the control volume a suitable representation for in-situ observations. Agr Forest Meteorol 255:68–80, doi:10.1016/j.agrformet.2017.08.037
- Metzger S, Junkermann W, Mauder M, Butterbach-Bahl K, Trancóny Widemann B, Neidl F, Schäfer K, Wieneke S, Zheng X, Schmid HP, et al. (2013a) Spatially explicit regionalization of airborne flux measurements using environmental response functions. Biogeosci 10(4):2193–2217, doi:10.5194/bg-10-2193-2013
- Metzger S, Ayres E, Durden D, Florian C, Lee R, Lunch C, Luo H, Pingintha-Durden N, Roberti JA, SanClements M, et al. (2019a) From NEON field sites to data portal: A community resource for surface—atmosphere research comes online. Bull Am Meteorol Soc 100(11):2305–2325, doi:10.1175/BAMS-D-17-0307.1
- Metzger S, Ayres E, Durden D, Florian C, Lee R, Lunch C, Luo H, Pingintha-Durden N, Roberti JA, SanClements M, et al. (2019b) Synthesized observations and processes for plot- to landscape-scale research. NCAR and NEON Town Hall TH13M, 2019 American Geophysical Union (AGU) Annual Fall Meeting, San Francisco, CA, USA
- Metzger S, et al. (2013b) Spatio-temporal rectification of tower-based eddy-covariance flux measurements for consistently informing process-based models. 2013 American Geophysical Union (AGU) Annual Fall Meeting, San Francisco, CA, USA
- Miles NL, Richardson SJ, Davis KJ, Lauvaux T, Andrews AE, West TO, Bandaru V, Crosson ER (2012) Large amplitude spatial and temporal gradients in atmospheric boundary layer co2mole fractions detected with a tower-based network in the u.s. upper midwest. Journal of Geophysical Research: Biogeosciences 117(G1), doi:10.1029/2011JG001781, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JG001781, https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2011JG001781

- Miller SM, Miller CE, Commane R, Chang RYW, Dinardo SJ, Henderson JM, Karion A, Lindaas J, Melton JR, Miller JB, et al. (2016) A multiyear estimate of methane fluxes in Alaska from CARVE atmospheric observations. Global Biogeochem Cycles 30(10):1441–1453, doi:10.1002/2016GB005419
- Moore DJP, Hu J, Sacks WJ, Schimel DS, Monson RK (2008) Estimating transpiration and the sensitivity of carbon uptake to water availability in a subalpine forest using a simple ecosystem process model informed by measured net CO₂ and H₂O fluxes. Agr Forest Meteorol 148(10):1467–1477, doi: 10.1016/j.agrformet.2008.04.013
- Novick KA, Biederman J, Desai A, Litvak M, Moore DJ, Scott R, Torn M (2018) The AmeriFlux network: A coalition of the willing. Agr Forest Meteorol 249:444–456, doi:10.1016/j.agrformet.2017.10.009
- Pacala SW, Hurtt GC, Baker D, Peylin P, Houghton RA, Birdsey RA, Heath L, Sundquist ET, Stallard R, Ciais P, et al. (2001) Consistent land-and atmosphere-based US carbon sink estimates. Science 292(5525):2316–2320, doi:10.1126/science.1057320
- Pal S, Davis KJ, Lauvaux T, Browell EV, Gaudet BJ, Stauffer DR, Obland MD, Choi Y, DiGangi JP, Feng S, et al. (2020) Observations of greenhouse gas changes across summer frontal boundaries in the Eastern United States. J Geophys Res Atmos 125(5):e2019JD030526, doi:10.1029/2019JD030526
- Piao S, Sitch S, Ciais P, Friedlingstein P, Peylin P, Wang X, Ahlström A, Anav A, Canadell JG, Cong N, Huntingford C, Jung M, Levis S, Levy PE, Li J, Lin X, Lomas MR, Lu M, Luo Y, Ma Y, Myneni RB, Poulter B, Sun Z, Wang T, Viovy N, Zaehle S, Zeng N (2013) Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO₂ trends. Glob Change Biol 19(7):2117–2132, doi:10.1111/gcb.12187
- Prihodko L, Denning AS, Hanan NP, Baker I, Davis K (2008) Sensitivity, uncertainty and time dependence of parameters in a complex land surface model. Agr Forest Meteorol 148(2):268–287, doi:10.1016/j.agrformet.2007.08.006
- Quaife T, Lewis P, De Kauwe M, Williams M, Law BE, Disney M, Bowyer P (2008) Assimilating canopy reflectance data into an ecosystem model with an Ensemble Kalman Filter. Remote Sens Environ 112(4):1347–1364, doi: 10.1016/j.rse.2007.05.020
- Ran Y, Li X, Sun R, Kljun N, Zhang L, Wang X, Zhu G (2016) Spatial representativeness and uncertainty of eddy covariance carbon flux measurements for upscaling net ecosystem productivity to the grid scale. Agr Forest Meteorol 230:114–127, doi:10.1016/j.agrformet.2016.05.008
- Randall DA, Bitz CM, Danabasoglu G, Denning AS, Gent PR, Gettelman A, Griffies SM, Lynch P, Morrison H, Pincus R, Thuburn J (2018) 100 years of Earth system model development. Meteor Monogr 59:12.1–12.66, doi: 10.1175/AMSMONOGRAPHS-D-18-0018.1
- Randerson JT, Hoffman FM, Thornton PE, Mahowald NM, Lindsay K, Lee YH, Nevison CD, Doney SC, Bonan G, Stöckli R, Covey C, Running SW, Fung IY (2009) Systematic assessment of terrestrial biogeochemistry in coupled climate—carbon models. Glob Change Biol 15(9):2462–2484, doi: 10.1111/j.1365-2486.2009.01912.x

- Raupach MR, Rayner PJ, Barrett DJ, DeFries RS, Heimann M, Ojima DS, Quegan S, Schmullius CC (2005) Model—data synthesis in terrestrial carbon observation: Methods, data requirements and data uncertainty specifications. Glob Change Biol 11(3):378–397, doi:10.1111/j.1365-2486.2005.00917.x
- Ricciuto D, Sargsyan Κ, Thornton Ρ (2018)The Impact of Parametric Uncertainties on Biogeochemistry in the E3SMModel. Journal Modeling Earth Land of Advances inSystems doi:10.1002/2017MS000962, https://agupubs. 10(2):297-319, URL onlinelibrary.wiley.com/doi/abs/10.1002/2017MS000962, _eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2017MS000962
- Ricciuto DM, Davis KJ, Keller K (2008) A Bayesian calibration of a simple carbon cycle model: The role of observations in estimating and reducing uncertainty. Global Biogeochem Cycles 22(2), doi:10.1029/2006GB002908
- Ricciuto DM, King AW, Dragoni D, Post WM (2011) Parameter and prediction uncertainty in an optimized terrestrial carbon cycle model: Effects of constraining variables and data record length. J Geophys Res Biogeosci 116(G1), doi:10.1029/2010JG001400
- Riley WJ, Shen C (2014) Characterizing coarse-resolution watershed soil moisture heterogeneity using fine-scale simulations. Hydrol Earth Syst Sci 18(7):2463–2483, doi:10.5194/hess-18-2463-2014
- Sanderson BM, Shell KM, Ingram W (2010) Climate feedbacks determined using radiative kernels in a multi-thousand member ensemble of AOGCMs. Clim Dyn 35(7):1219–1236, doi:10.1007/s00382-009-0661-1
- Schaefer K, Schwalm CR, Williams C, Arain MA, Barr A, Chen JM, Davis KJ, Dimitrov D, Hilton TW, Hollinger DY, et al. (2012) A model-data comparison of gross primary productivity: Results from the North American Carbon Program site synthesis. J Geophys Res Biogeosci 117(G3), doi: 10.1029/2012JG001960
- Schimel DS, VEMAP Participants, Braswell BH (1997) Continental scale variability in ecosystem processes: Models, data, and the role of disturbance. Ecol Monogr 67(2):251–271, doi:10.1890/0012-9615(1997)067[0251:CSVIEP]2.0.CO:2
- Schwalm CR, Williams CA, Schaefer K, Anderson R, Arain MA, Baker I, Barr A, Black TA, Chen G, Chen JM, et al. (2010) A model-data intercomparison of CO₂ exchange across North America: Results from the North American Carbon Program site synthesis. J Geophys Res Biogeosci 115(G3), doi: 10.1029/2009JG001229
- Stöckli R, Lawrence DM, Niu GY, Oleson KW, Thornton PE, Yang ZL, Bonan GB, Denning AS, Running SW (2008) Use of FLUXNET in the Community Land Model development. J Geophys Res Biogeosci 113(G1), doi: 10.1029/2007JG000562
- Stoy PC, Mauder M, Foken T, Marcolla B, Boegh E, Ibrom A, Arain MA, Arneth A, Aurela M, Bernhofer C, et al. (2013) A data-driven analysis of energy balance closure across FLUXNET research sites: The role of landscape scale heterogeneity. Agr Forest Meteorol 171:137–152, doi: 10.1016/j.agrformet.2012.11.004

- Sweeney C, Karion A, Wolter S, Newberger T, Guenther D, Higgs JA, Andrews AE, Lang PM, Neff D, Dlugokencky E, Miller JB, Montzka SA, Miller BR, Masarie KA, Biraud SC, Novelli PC, Crotwell M, Crotwell AM, Thoning K, Tans PP (2015) Seasonal climatology of co2 across north america from aircraft measurements in the noaa/esrl global greenhouse gas reference network. Journal of Geophysical Research: Atmospheres 120(10):5155–5190, doi:10.1002/2014JD022591, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014JD022591, https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2014JD022591
- Tans PP, Fung IY, Takahashi T (1990) Observational contrains on the global atmospheric CO_2 budget. Science 247(4949):1431-1438, doi: 10.1126/science.247.4949.1431
- Wang YQ, Xiong YJ, Qiu GY, Zhang QT (2016) Is scale really a challenge in evapotranspiration estimation? A multi-scale study in the Heihe oasis using thermal remote sensing and the three-temperature model. Agr Forest Meteorol 230:128–141, doi:10.1016/j.agrformet.2016.03.012
- Williams M, Richardson AD, Reichstein M, Stoy PC, Peylin P, Verbeeck H, Carvalhais N, Jung M, Hollinger DY, Kattge J, Leuning R, Luo Y, Tomelleri E, Trudinger CM, Wang YP (2009) Improving land surface models with FLUXNET data. Biogeosci 6(7):1341–1359, doi:10.5194/bg-6-1341-2009
- Xu K, Metzger S, Desai AR (2017) Upscaling tower-observed turbulent exchange at fine spatio-temporal resolution using environmental response functions. Agr Forest Meteorol 232:10–22, doi:10.1016/j.agrformet.2016.07.019
- Xu K, Sühring M, Metzger S, Durden D, Desai AR (2020) Can data mining help eddy covariance see the landscape? A large-eddy simulation study. Boundary-Layer Meteorol 176(1):85–103, doi:10.1007/s10546-020-00513-0
- Zobitz JM, Desai AR, Moore DJP, Chadwick MA (2011) A primer for data assimilation with ecological models using Markov Chain Monte Carlo (MCMC). Oecologia 167(3):599, doi:10.1007/s00442-011-2107-9