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Abstract. The National Ecological Observatory Network (NEON) is a
continental-scale observatory with sites across the US collecting stan-
dardized ecological observations that will operate for multiple decades.
To maximize the utility of NEON data, we envision edge computing sys-
tems that gather, calibrate, aggregate, and ingest measurements in an
integrated fashion. Edge systems will employ machine learning meth-
ods to cross-calibrate, gap-fill and provision data in near-real time to
the NEON Data Portal and to High Performance Computing (HPC)
systems, running ensembles of Earth system models (ESMs) that as-
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similate the data. For the first time gridded EC data products and re-
sponse functions promise to offset pervasive observational biases through
evaluating, benchmarking, optimizing parameters, and training new ma-
chine learning parameterizations within ESMs all at the same model-grid
scale. Leveraging open-source software for EC data analysis, we are al-
ready building software infrastructure for integration of near-real time
data streams into the International Land Model Benchmarking (ILAMB)
package for use by the wider research community. We will present a per-
spective on the design and integration of end-to-end infrastructure for
data acquisition, edge computing, HPC simulation, analysis, and valida-
tion, where Artificial Intelligence (AI) approaches are used throughout
the distributed workflow to improve accuracy and computational perfor-
mance.

Keywords: data-model integration, eddy-covariance, environmental ob-
servatory, National Ecological Observatory Network (NEON), edge com-
puting systems, high performance computing, Earth system models, land
surface models, model benchmarking, International Land Model Bench-
marking (ILAMB)

1 Introduction

Advanced computational resources and new algorithmic developments have ex-
tended our environmental understanding over the past few decades. Now, an
unprecedented volume of standardized observational data products (ODPs) are
being realized through the National Ecological Observatory Network (NEON).
NEON collects environmental and biological data with in situ sensors, observa-
tional sampling, and aerial overflights. Core components of NEON infrastructure
are 47 tower sites, where eddy-covariance (EC) sensors are used to determine the
surface—atmosphere exchange of momentum, heat, water, and carbon dioxide to
assess interactions at the soil-vegetation—atmosphere interface. This continental-
scale data set, having numerous contextual observations available in near-real
time, affords new data-model integration opportunities to leverage such observa-
tions for new scientific understanding and to potentially enable viable ecological
forecasting capabilities. This paper explores several ways that continued de-
velopment of data-model integration, through new measurements, synthesized
ODPs, and access to near-real-time data, contributes to improved scientific un-
derstanding of ecosystem processes and advances efforts to constrain uncertainty
in Earth system models (ESMs) and subsequent benchmarking. First, we pro-
vide a background for the potential of data-model integration, the state of ESMs
and benchmarking, and the growth of network-scale observations. Next, we dis-
cuss our vision for integrating network observations to improve model predictive
capabilities, minimize prediction uncertainties, and advance forecast accuracy
with scale-aware ODPs and near-real time data. Lastly, the roadmap to accom-
plishing our stated goals is outlined with considerations of emerging technologies
that have the potential to broaden our goals.
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1.1 Improving Scientific Understanding through Data-model
Integration

Data-model integration is quickly becoming a fundamental component in efforts
to evaluate and enhance our capabilities to simulate Earth system processes
(Fer et al., 2018). Data-model integration improvements can be realized through
improved parameterization of initial conditions, data assimilation techniques to
inform model states or parameters during simulations, and comprehensive bench-
marking of model structure and evaluation against observations (Dietze et al.,
2014; Zobitz et al., 2011). Network-scale observations of ecosystem functions,
such as surface-atmosphere exchange (SAE) of energy, water vapor, and trace
gases, have historically (Stockli et al., 2008) and continue to lead to novel ad-
vances in model performance (Fer et al., 2018).

Improved Model Optimization and Benchmarking.

Additional Conteztual Observations. Optimized model parameterization or con-
straints via data assimilation typically targets periods or conditions when model
uncertainty is greatest. Enhanced access to numerous contextual observations
can inform underlying model processes or elucidate missing information. Data as-
similation constrains model predictions by comparing model output with ODPs,
determining probabilistic differences, and advancing ensemble members with in-
formed posteriors. The improved availability of repeated and interoperable in-
situ, reanalysis, and remote sensing data with quantified uncertainty for weight-
ing in assimilation and model benchmark scoring is expected to facilitate tuning
process representations in ESMs and inform data providers of ODP requirements
that are still unmet (Hoffman et al., 2017; Collier et al., 2018).

Resolving Scale Mismatch between Simulations and Observations. Terrestrial
ecosystem processes are widely recognized to be heterogeneous at spatial scales
well below those resolved by most ESMs resulting in a spatial representativeness
uncertainty when evaluating/informing models with single point observations
(e.g., Riley and Shen, 2014). Scaling has been shown to be non-linear with veg-
etation cover (e.g., Launiainen et al., 2016) and sensitive to resolution, scaling
method, and the magnitude of heterogeneity (Wang et al., 2016; Liu et al., 2016).
SAE observations based on the eddy-covariance (EC) flux technique (e.g., Aubi-
net et al., 2012) are one example of a process-scale benchmark for assessing the
performance of ESMs (e.g., Fox et al., 2009; Williams et al., 2009; Schwalm et al.,
2010; Schaefer et al., 2012) that suffers from such scale mismatch. Using site-
based EC measurements for model benchmarking is thus complicated by biases
arising from unmet assumptions on the observations. These include the limited
and varying spatial representativeness of the observations at model grid scale
(e.g., Chen et al., 2011; Griebel et al., 2020), and the observations violating the
conservation of energy (e.g., Mauder et al., 2020). Both of these biases increase
with spatial heterogeneity, which complicates regional-scale model benchmark-
ing and improvement (e.g., Metzger, 2018; Xu et al., 2020). Therefore, spatial
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scaling of site-based flux observations to ESM grid scales using multi-scale obser-
vations is needed to reduce uncertainties in flux estimates and constrain model
benchmarking.

From Hindcasting to Forecasting. Ecosystem models are key to synthesizing
process understanding, examining simulated ecosystem functioning against ob-
servations at local to regional scales, and can provide the scientific basis for field
measurement campaigns (Dietze et al., 2014). The Predictive Ecosystem Ana-
lyzer (PEcAn) framework is a powerful ecoinformatics framework that utilizes
Bayesian data assimilation techniques to inform models with ODPs. As such,
PEcAn is a prime example of the synergistic improvements realized through
data-model integration for both model parameterization and observational data
requirements to reduce uncertainty (Kattge et al., 2011; Dietze et al., 2013;
LeBauer et al., 2013). Access to low latency, repeated, and interoperable ODPs
with quantified uncertainty is facilitating a movement to near-term ecological
forecasting. These forecasts are envisioned to inform land-use decision makers
with the most accurate predictions of ecosystem function via iterative model
assessment and improvement through comparison with near-real-time data (Di-
etze et al., 2018). Similar model evaluation and benchmarking of ESMs can be
realized; however, this approach likely involves a large number of perturbed pa-
rameter ensembles (PPE) of models or machine learning-based surrogate models
running on high performance computing (HPC) systems.

1.2 Earth System Models and Benchmarking

Earth system models (ESMs) are designed to simulate the coupled multiscale,
multiphysics processes associated with interactive dynamics, physics, chemistry,
and biology across the land, ocean, sea ice, land ice, and atmosphere that drive
the Earth’s climate system (Randall et al., 2018). Originally conceived as models
of physics and dynamics, focused primarily on atmosphere and ocean processes,
early global climate models evolved into ESMs with the inclusion of terrestrial
and marine ecosystem processes, atmospheric chemistry, and human system in-
teractions (Flato, 2011; Bonan and Doney, 2018). Research with these coupled
ESMs has demonstrated that the carbon cycle responds to climate but also that
large nonlinear climate feedbacks are produced by the biosphere (Friedlingstein
et al., 2001, 2006; Arora et al., 2013). Terrestrial ecosystems in ESMs are rep-
resented by a variety of vegetation types, an amount of leaf area, functioning of
stomata in leaves, and carbon and nutrient pools that interact with energy and
water cycles (Bonan, 2016). Relatively simplistic representations of vegetation
and soil processes in land surface models (LSMs), typically contained within
coupled ESMs, capture the mean state behavior of plants and soils over large
spatial scales on annual time scales. However, process understanding limits the
ability to reduce errors and biases when compared with observational data at
local scales (Schimel et al., 1997).

Forecasting ecosystem responses to environmental forcing is important for re-
source management and understanding impacts of rapid climate change or land
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use change (Clark et al., 2001; Foley et al., 2005; Luo et al., 2011). While long-
term EC flux measurements help to constrain energy, water, and carbon cycles
for individual biomes (Baldocchi et al., 2001), more rapid integration of these
data with models—employing data assimilation and benchmarking tools for un-
certainty quantification, parameter optimization, and structural optimization—
will improve understanding of these processes and lead to more mechanistic rep-
resentations in models and more accurate ecosystem forecasts (Williams et al.,
2009; Raupach et al., 2005).

LSMs rely on a collection of process representations, called parameterizations,
embodied in numerical algorithms that employ many often-uncertain parameters
to approximate the evolution of carbon, water, and energy in the natural world
(Bonan, 2019). Data assimilation methods are commonly used to calibrate and
evaluate model accuracy and parameter uncertainty (Luo et al., 2011). Raupach
et al. (2005) presented methods for assimilating diverse data and separating ob-
servational from model errors to produce more accurate forecasts of the global
carbon cycle. These methods have been applied across scales, from global in-
versions (e.g., Ricciuto et al., 2008) to individual tree stands (e.g., Moore et al.,
2008; Ricciuto et al., 2011), with a variety of approaches, including Kalman filters
or ensemble Kalman filters (e.g., Quaife et al., 2008), other maximum likelihood
techniques, and least squares optimization methods (e.g., Prihodko et al., 2008).
Sophisticated data assimilation packages that ingest EC flux measurements are
now being coupled directly to complex forward land surface models for use on
HPC systems (Fox et al., 2018; Bastrikov et al., 2018). Perturbed physics ensem-
bles (also called perturbed parameter ensembles) or PPEs employ thousands of
ensemble simulations to develop an understanding of the sensitivity or impor-
tance of individual parameters or to quantify the impacts of their uncertainties
on feedbacks, extremes, or model skill (Sanderson et al., 2010; Fischer et al.,
2011). Conducting large numbers of ensemble simulations to search for optimal
parameter combinations for complex ESMs has become so computationally in-
tensive that in some cases surrogate models are being developed and used in
place of running LSMs directly (Li et al., 2018; Lu et al., 2018). For example,
Ricciuto et al. (2018) analyzed the sensitivity of five key carbon variables to 68
model parameters in the US Department of Energy’s (DOE’s) Energy Exascale
Earth System Model (E3SM) land model using a global sensitivity analysis on
96 FLUXNET sites. Lu et al. (2018) further optimized 8 of 68 parameters of the
E3SM land model using surrogate-based global optimization. Executing these
direct or surrogate simulations is one part of the challenge; evaluating model
results in a systematic fashion is another.

Systematic evaluation of model results, through comparison with observa-
tional data, is important for quantifying model fidelity (Randerson et al., 2009).
As ESMs become more complex, routine assessment of model performance must
be performed for verification of new parameterizations, evaluation of impacts
on other model components, and validation of simulations under changing envi-
ronmental conditions. The land modeling community has developed a variety of
evaluation approaches for terrestrial carbon cycle models (Cadule et al., 2010;
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Blyth et al., 2011; Abramowitz, 2012; Anav et al., 2013; Piao et al., 2013). Some
benchmarking approaches are based on an expected, pre-defined level of perfor-
mance (Abramowitz, 2005; Best et al., 2015), but most systematic benchmarking
strategies produce a skill score based on a direct model-data comparison. Lack
of standardized evaluation metrics and methods have limited adoption of model
benchmarking and use of a wide diversity of observational data sets.

The International Land Model Benchmarking (ILAMB) project was orga-
nized to engage the research community in the development of standardized and
internationally accepted benchmarks for land model performance. The ILAMB
community aims to strengthen linkages among experimental, remote sensing, and
climate modeling communities in the design of new model tests and new mea-
surement programs, and supports the design and development of open source
benchmarking tools through international workshops and working group activ-
ities (Hoffman et al., 2017). With support primarily from the US Department
of Energy, community ILAMB activities have resulted in creation of an ILAMB
benchmarking software package for evaluation of LSMs that incorporate biogeo-
chemical cycles (Hoffman et al., 2017; Collier et al., 2018). The ILAMB package
produces graphical and tabular diagnostics across a range of biogeochemistry,
hydrology, radiation and energy, and forcing variables. It scores multi-model per-
formance for period mean, bias, root-mean-square error (RMSE), spatial distri-
bution, interannual coefficient of variation, seasonal cycle, and long-term trend.
The design philosophy and details of its implementation and methodology are
described by Collier et al. (2018). Efforts are underway to directly link ILAMB
to PEcAn for more rapid assessment of site-level simulations over diurnal time
scales. Being an open source and extensible package with a scalable design, so
that it can run on the largest HPC systems, makes it a good choice for evalu-
ating the results of ensemble simulations aimed at parameter optimization and
uncertainty assessment.

1.3 Network-scale Observations

Network-scale flux tower observations—such as those available from FLUXNET
(Baldocchi et al., 2001), AmeriFlux (Novick et al., 2018), ICOS, TERN, or
NEON (Metzger et al., 2019a)—are revolutionizing ecosystem science by pro-
viding observations that cover large spatial areas across a broad variety of eco-
climatic zones. The proliferation of standardized and interoperable flux network
ODPs through cross-network collaboration and integration strengthens the abil-
ity of observations to explain measured environmental variability. For instance,
NEON provides data to AmeriFlux, which along with ICOS and TERN, feed into
FLUXNET. However, limitations exist on standardized measurements across
networks, and substantial latency can be incurred for fully quality controlled
data sets with quantified uncertainties.

NEON is a continental-scale observatory with sites across the US that will
operate for multiple decades. NEON produces data products, software, and ser-
vices to facilitate research on the impacts of climate change, land-use change,
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and invasive species. NEON collects environmental and biological data with in-
situ sensors, biometric observations, and aerial overflights. One of NEON’s core
components is its 47 tower sites, where EC sensors are used to determine the
SAE of momentum, heat, water, and carbon dioxide to assess interactions at
the soil-vegetation—atmosphere interface. These data are streamed from tower
sites to a central NEON headquarters facility. There, calibration coefficients are
applied, quality assurance and quality control are performed, and additional pro-
cessing algorithms are applied to derive higher level data products. The resulting
ODPs are served on the NEON data portal, currently with about a one month
latency. The latency of biometric and airborne remote sensing data varies by
ODP. One unique aspect of NEON ODPs is the standardization of sensor in-
frastructure, biometric protocols and algorithms for processing. This standard-
ization and ubiquitous availability of “contextual” observations with respect to
SAE processes, position NEON ODPs as a perfect test suite for ESM hypothesis
testing and benchmarking.

2 Visions to Improve Model Performance with
Network-scale Observations

2.1 Scale-aware Observational Data Products for ESM Evaluation

Improved understanding of model-data interfaces enables maximizing the useful-
ness of ODPs for ESM improvement. For data-model integration, we commonly
rely on half-hourly intervals as the lowest common timestep denominator. That
is, we expect both ODPs and models to capture in half-hourly slices the dynamics
emerging from environmental processes at a much broader range of scales. From
the observational perspective, inconsistencies arise when we interpret continuous,
nonlinear environmental processes and non-symmetrical observation techniques
through discrete data processing and analytics that assume linearity and Gaus-
sianity. Resultant half-hourly ODPs may be biased on the order of several 10%
due to space/time ambiguity associated with scaling (Xu et al., 2017), violation
of energy conservation (Mauder et al., 2020), etc.: our models might perform
better or worse than we think because we already know that our current ODP
reference is off. Here we explore how we could rectify the situation by creating
half-hourly ODPs that capture environmental processes at scales consistent with
expectations for data-model integration.

A Complementary Benchmarking Framework. To resolve the scale mis-
match between simulations and observations, participants of the DOE-funded
2019 RUBISCO-AmeriFlux Working Group Meeting (Hawkins et al., 2020) con-
ceived a scale-aware benchmarking framework that complements top-down ODP
constraints with bottom-up ODP process information across DOC, DOE, NASA
and NSF projects (Fig. 1). The proposed approach will enable consistent regional-
scale evaluations of carbon, water, and energy cycles in ESMs. At the center of
the framework is the ILAMB package, which facilitates benchmarking ESMs in
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a modular fashion. The NCAR-NEON Community Land Model (CLM5) imple-
mentation is one example of an enhanced ESM module for use with ILAMB.
Participants of the NSF-funded 2019 NCAR-NEON Workshop conceived an im-
plementation of CLM5 that leverages an unprecedented range of contextual ob-
servations to constrain model uncertainty. In the past e.g. plot-based biometric
observations, high-resolution airborne remote sensing, gas phase and water phase
isotopes, replicate soil properties, as well as aquatic properties in adjacent lakes
and streams have not been uniformly available at the flux tower network scale.
With the advent of NEON these contextual observations are routinely available
alongside traditional flux tower data from all 47 NEON terrestrial field sites,
in standardized format via the NEON Data Portal and Application Program-
ming Interface (API; Metzger et al., 2019a). A particular science focus of the
NCAR-NEON CLMS5 implementation is error characterization, including model
structure, parameters, initial conditions, meteorological forcing, and observa-
tional error.

Large-scale observations of the atmospheric composition and its variation
across time and space provide a first principal constraint on the benchmarking
framework (e.g., Tans et al., 1990; Gurney et al., 2003; Battle et al., 2000; Pacala
et al., 2001). The strength of this top-down ODP constraint is that it provides
a direct measure of atmospheric stocks, though attribution to surface processes
remains challenging (e.g., Houweling et al., 2017). These top-down constraints
are available from tall towers (e.g., Miles et al., 2012; Andrews et al., 2014),
airborne (e.g., Sweeney et al., 2015; Miller et al., 2016; Barkley et al., 2019) and
spaceborne observations (e.g., Chen et al., 2020). One example is NASA’s At-
mospheric Carbon and Transport (ACT) - America campaign, which measured
atmospheric carbon concentrations, trace gases and meteorological conditions
via aircraft in five campaigns spanning all four seasons from 2016-2019 (Davis
et al., 2019). ACT-America’s airborne measurements are temporally sparse, but
spatially extensive, covering four seasons and major ecoregions of the central
and eastern United States. These flights are designed to provide regional-scale,
seasonal constraints on carbon exchange rates by mapping out carbon and re-
lated trace gases (Baier et al., 2020) within synoptic weather systems (Pal et al.,
2020), complementing the temporally-rich but relatively spatially sparse tower
observations and spatially comprehensive column averaged space-borne observa-
tions.

Network-scale flux tower observations such as available from FLUXNET
(Baldocchi et al., 2001), AmeriFlux (Novick et al., 2018) or NEON (Metzger
et al., 2019a) provide the second principal constraint on the benchmarking frame-
work. The strength of this bottom-up constraint is that SAE observations provide
a direct and independent benchmark for assessing the process-scale performance
of ESMs, though scale mismatch and surface energy imbalance remain chal-
lenging. Here, we seek to improve model benchmarking with flux tower data
through two synergistic bottom-up approaches, an “extensive” and an “inten-
sive” approach. The extensive bottom-up approach annotates AmeriFlux data
with spatial attributes (e.g., land cover, vegetation indices, etc.; Chu et al.,
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2020). Thanks to comparatively weak data requirements this approach is read-
ily applied to 200+ AmeriFlux sites. Site spatial representativeness can now be
assessed by comparing spatial attributes in the flux surface source area vs. the
target domain, such as a model grid cell. This approach facilitates shortlisting
spatially representative sites (e.g., sites with similar plant functional type and
vegetation characteristics between the flux source area and target domain) for
initial model benchmarking, and improved model representation of compound
ecosystems. The extensive approach also serves as a prior to identify and priori-
tize the sites where the intensive approach is deemed necessary, which we explore
in more detail in the following section.

Bottom-up processes Extensive benchmarking Top-down constraints

Extensive
AmeriFlux spatial
attributes, heterogeneity
indices etc.

e N Ve N

) www.ilamb.org ACT America
International Land Model « Atmospheric mole
Benchmarking Project fractions
. 4 4
Intensive )
CHEESEHEAD/NEON
AmeriFlux sites incl. —
mesoscale fluxes, ~10m ( NCAR-NEON CLM )
resolution flux maps  / Community Land Model
with extensive contextual
data

Fig. 1. Scale-aware benchmarking framework that complements bottom-up process
information with top-down constraints across DOC, DOE, NASA and NSF projects.
Presented during the AGU 2020 Fall Meeting NCAR-NEON Town Hall (Metzger et al.,
2019b)

Scale-equivalent Observational Benchmarks. In contrast to the shortlist-
ing employed in the extensive bottom-up approach, the intensive bottom-up
approach aims to fully utilize the variability inherent to changing flux tower
sample characteristics. The aim here is to develop scale-aware ODPs from point
and line observations for improved model benchmarking at equivalent space and
time resolutions. This is achieved by fully incorporating the source area dynam-
ics in source area-to-target-area upscaling (Fu et al., 2014; Metzger et al., 2013a;
Ran et al., 2016; Xu et al., 2017). These approaches show great merits in pro-
viding space-time explicit flux ODPs that model predictions could be readily
benchmarked against at designated grid cells. Furthermore, the Environmental
Response Function (ERF) Virtual Control Volume (VCV) spatio-temporal data
assimilation system shows promise to also close the surface energy imbalance fre-
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quently observed at flux towers (Metzger, 2018; Xu et al., 2020), which to date
hamstrings data synthesis and model-data fusion with a pervasive bias (e.g., Cui
and Chui, 2019; Mauder et al., 2020; Stoy et al., 2013).

While ERF promises complete data utilization it has comparatively strong
data requirements. This includes EC high-frequency data, which are currently
limited to AmeriFlux Core (N = 14) and NEON (N = 47) sites, and Ameri-
Flux Tech Team site visits (N = 40-50). Specifically, surface and meteorological
controls on the fluxes change at minute timescales through transience of source
areas, the passing of clouds, etc. Thus, performing ERF analyses at minute-
and decameter-resolution allows separating meteorological and surface controls
on the fluxes in unprecedented clarity: spectral averaging and source attribu-
tion of high-frequency data combined with machine learning connect fluxes to
meteorological and surface properties, and ultimately transfer the joint infor-
mation to the model grid scale. The utilization of high-frequency wavelet flux
calculations produces response variable observation with large sample sizes and
high signal-to-noise ratio. Thus, providing ample data for the boosted regres-
sion trees technique to extract the key driver-response relationships (Metzger
et al., 2013a). Results include half-hourly flux maps and propagated uncertain-
ties, alongside estimates of the spatial mean and land-cover specific fluxes and
their variation across space (Fig. 2). Figure 2 illustrates the mapped projection
of turbulent sensible heat flux, the transfer of heat inducing a change in tempera-
ture, throughout the day across a 30 km x 30 km grid centered on the AmeriFlux
Park Falls tall tower site. The derived spatially attributed fluxes from ERF are
observed to transition from negative to positive as the surface warms during the
day, with clear hot- and cold-spots observable due to the landscapes heterogen-
uous ecosystem. By including mesoscale motions in a continuous, fixed-frame
representation of all hot- and cold-spots within a model grid cell ERF-VCV re-
duces advective errors by at least one order of magnitude, which effectively closes
the surface energy balance (Xu et al., 2020). Where ESMs do not explicitly rep-
resent site heterogeneity, we integrate flux maps to probability density functions
and from there to statistical measures of location and dispersion (Metzger, 2018).
We will add these to the ILAMB database of regional simulations to design new,
probability-based model benchmarking metrics/scores, and inform the weighting
of observations in the data assimilation, uncertainty quantification, and site-level
validation processes.

The flux maps are accompanied by a set of non-linear response functions,
jointly extracted from ground, airborne, and spaceborne data (Fig. 3). These
will serve as benchmarks for diagnosing calibrated models and attributing re-
mote sensing data to surface processes. Ultimately, they allow designing new
benchmarking metrics/scores based on ERF-observed vs. ESM-modeled driver-
response relationships/surfaces (e.g., Koven et al., 2017).

The promise of scale-aware model benchmarking is that we can better ascribe
differences between models and observations to process, parameter, driver, and
random error (Dietze, 2017), to which we might otherwise falsely attribute scale-
related differences. In short: to what extent can we better evaluate or benchmark
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Fig. 2. Flux source area variations over time at the AmeriFlux Park Falls tall tower
at 122 m measurement height, modified after (Metzger et al., 2013b). The transient
source areas are superimposed over the fixed-frame ERF-derived grids of turbulent
sensible heat flux. Reprinted from Agricultural and Forest Meteorology, Volume 255,
Stefan Metzger, Surface-atmosphere exchange in a box: Making the control volume a
suitable representation for in-situ observations, Pages 68-80, Copyright (2018), with
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Sensible heat flux [W m2]

Latent heat flux [W m™?)

Fig. 3. Multi-dimensional flux response functions at the AmeriFlux Park Falls tall
tower at 122 m measurement height, modified after (Metzger et al., 2013b).
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models with flux data when we consider a flux product that fully matches the
scale of the model output and considers the mixing of spatial and temporal
variability that occurs at many flux tower sites? The approach outlined here
provides a framework to partition observational uncertainty into scale-related
and instrument-related components. Benchmarking or data assimilation is not
possible without proper characterization of uncertainty in both observation and
model. A systematic approach is essential to make forward progress. A systematic
application of a scale-aware benchmark also allows for identification of “ideal”
sites or a complementary suite of measurements necessary for an observational
site to be considered a high-quality benchmark.

To this last point, recent field experiments have exploited the “super-site”
concept to better evaluate the mix of measurement types, extent, and frequency
to develop a robust scale-aware benchmark. For example, the Chequamegon
Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Ex-
tensive Array of Detectors 2019 (CHEESEHEAD19) field project deployed a
quasi-random extensive set of EC flux towers within a “model grid”, coupled
with a range of airborne and ground based sampling of surface and atmospheric
properties and expansive collection of satellite remote sensing imagery (Butter-
worth et al., 2020). Campaigns like this or the proposed NCAR-NEON super-site
project provide a window into the capability of scale-aware benchmarks. They
provide a framework for future experimental design of long-term super-sites or
identification of core observables necessary to develop scale-aware benchmarks
at other sites.

Similarly, nesting sub-grid models within global gridded ESMs provides an-
other opportunity to incorporate scale dependencies within the model. The
NOAA Climate Process Team (CPT) Coupling of Land and Atmospheric Sub-
grid Parameterizations (CLASP) is evaluating how large eddy simulations (LES)
and parameterizations can be used to enhance representation of subgrid pro-
cesses in a model. Such approaches further enhance the value of a scale-aware
benchmark.

These experiments and developments thus provide a testbed for evolving the
scale-aware benchmark approach. With these, we can start to ask: how much
can we relax the high frequency and high resolution data requirements of the
ERF approach and still reliably estimate grid-resolved fluxes and uncertainty?
How does varying combinations of EC, concentration gradient, tower-mounted
imaging, and new sensing techniques expand the reach of the methods into dif-
ferent trace gas fluxes or with higher accuracy? Can ERF also be used to map
and predict state variables like biomass, leaf area, canopy chemistry, near-surface
temperatures, and other sources of subgrid variability that facilitate space-time
consistent ESM inputs and outputs? What are new ways to benchmark mod-
els once a space and time resolved benchmark or subgrid model is available?
Is the information value of the benchmark limited to the single “grid-cell” of
the land-surface model or is the spatial/temporal correlation structure useful
for propagating the benchmark to other locations? A number of open research
questions and exciting directions are currently foreseen, such as space/time gap-
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filling and partitioning to resolve issues inherent to current approaches, including
confounding space/time transience with biophysical processes.

To summarize, ERF-derived ODPs fully match the scale of ESM inputs and
outputs, and comply with previously unmet observational assumptions. The re-
sults are half-hourly flux maps of a model subgrid domain that facilitate consis-
tent integration among multi-scale observations and models at flux tower sites.
Individual flux pixels even provide a direct link to plot-scale surface observa-
tions, such as soil plots and biometric observations. Furthermore, in-situ re-
sponse function benchmarks improve model diagnosis and remote sensing data
interpretation. These scale-aware properties promise unequalled realism for in-
tegrating observations and models through overcoming long-standing differences
in perception across disciplines.

2.2 Near-real time Data Accessibility for ESM and Benchmarking

SAE ODPs for evaluating ESM are currently either available from individ-
ual sites in near-real-time, or from many networked sites with latencies on
the order of 6 months to 1 year. Due to its central collection and processing
structure NEON has the opportunity to push the boundaries of near-real-time
data availability to facilitate ecological forecasting, data assimilation into ESMs,
and ESM benchmarking. Currently, the vast majority of NEON’s 53 terres-
trial instrumented systems (TIS) data products are available with a 1-month
latency via the NEON data portal (https://data.neonscience.org/) and API
(https://data.neonscience.org/data-api/) due to a monthly publication cycle.
However, NEON SAE processing pipeline improvements are in development to
reduce data latency to 1-5 days. To our knowledge, this would be the largest
EC tower data set provided in near-real-time globally.

A pilot project envisioned from the aforementioned NCAR-NEON workshop
developed a workflow to grab NEON data from the API, perform some quality
assurance and quality control, gap-fill data, partition fluxes, and package data
in a netCDF data format that is ingestible by CLM5, ILAMB, and PEcAn.
The workflow is being hosted on Github (https://github.com/NEONScience/
NCAR-NEON), has been containerized (https://quay.io/repository/ddurden/
ncar-neon-ddurden), and is deployable via command line for integration with job
schedulers or workflow managers. The NEON data pipeline is transitioning to a
microservices-based Pachyderm architecture (https://www.pachyderm.com/), a
version control system for data that preserves data provenance. In the Pachy-
derm pipeline, any new commit to data, metadata, or processing code triggers
the reprocessing of downstream derived products. Integration of ODP genera-
tion for model-data fusion into this architecture promises near-real time data
access with full provenance. Work with the scientific community still remains
to address where community modeling and benchmarking data sets should be
hosted and determine the essential ODPs to be provided both for driving models
and evaluating/benchmarking.

To support rapid and scalable assessment and benchmarking of LSM re-
sults, a Land Model Testbed (LMT) system is being developed through a pilot
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Fig. 4. A Land Model Testbed (LMT) workflow for running and evaluating large num-
bers of ensemble simulations for multiple LSMs on the Summit supercomputer system
and dynamically provisioned cloud resources is being developed at ORNL. Site-specific
benchmarks for EC super-sites and new functional relationship metrics are being in-
corporated into ILAMB, and a dynamic user interface is being developed to give users
better control over how model-data comparison results are displayed through an inter-
active dashboard.
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project at ORNL (Fig. 4). Aimed at delivering a workflow for very large ensem-
ble simulations, the LMT provides software infrastructure for running multiple
models on the Summit supercomputer system and dynamically provisioned cloud
computing resources. New site-specific benchmarks for EC super-sites and new
functional relationship metrics are being incorporated into ILAMB to support
assessment of large ensembles and PPE simulations. An interactive dashboard is
being designed to give users control over how benchmarking results and graphi-
cal diagnostics are displayed. Interfaces are also being developed around ILAMB
for activation (executing an analysis) and linking to diagnostic results following
the evolving Coordinated Model Evaluation Capabilities (CMEC) standards.
CMEC interfaces will further enable connections to NOAA’s Model Diagnostics
Task Force that promotes development of process-oriented diagnostics for climate
and weather forecasting models (Maloney et al., 2019). These improvements are
key to informing parameterization improvements to address long-standing model
biases and to delivering credible projection results for assessing climate change
impacts and vulnerabilities for stakeholders and policy-makers (Eyring et al.,
2019).

The LMT, combined with NEON’s near-real time SAE ODPs, offers a truly
scalable approach for rapidly conducting ecological forecasts on HPC systems
and evaluating model performance as new measurements are made. We envision
integrating the multi-scale observations from NEON’s distributed edge comput-
ing systems with multiple LSMs running in the LMT framework on centralized
HPC systems and distributed cloud computing resources. This data-model in-
tegration approach will advance ecological research and improve mechanistic
understanding of Earth system processes important for environmental sustain-
ability.

3 Roadmap to Scientific Understanding

The roadmap to extracting scientific understanding through data-model inte-
gration is contingent on multiple working groups working toward common un-
derlying goals of maximizing our predictive capabilities, minimizing uncertainty
associated with our predictions, and advancing our forecast accuracy with near-
real-time data. Near-real-time data cyber-infrastructure is on the verge of being
realized for multiple flux tower networks, and is opening new pathways to near-
term ESM benchmarking, parameter optimization, and data-fusion techniques.

The 2019 RUBISCO-AmeriFlux Workshop (Hawkins et al., 2020) planned
roadmap lays the foundation for the bottom-up scaling approaches to produce
scale-aware ODPs and ingest them into the ILAMB benchmarking framework
(Fig. 5). For the extensive bottom-up approach initial data processing is com-
plete, and the manuscript by Chu et al. (2020) introduces the results and newly
available spatial attributes to the community at large. Our planned goal for 2020
is to produce a shortlist of homogeneous sites for initial model benchmarking,
with additional milestones through 2021 (Fig. 5). For the intensive bottom-up
approach, the group is working on integrating the ERF-VCV data sets into IL-
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AMB. At this time, the group has successfully ingested the NEON NetCDF file
format into ILAMB, and is compiling the Metzger et al. (2019a) 30 min flux grids
into these files. Planned goals for 2020 include regional ILAMB evaluations and
site-level validations to design performance scores, with additional milestones
through 2023 (Fig. 5). We further envision a hybrid “simplified high-res map-
ping” bottom-up approach to reduce ERF-VCV data requirements for use at all
AmeriFlux sites, which is currently ahead of schedule.

Intensive approach (full high-res mapping)

Step 1: Start ILAMB benchmarking with existing UKFS data

Step 1: AF site heterogeneity index (e.g., EVI, LST) Step 2: Harden, evaluate and publicly release high-res mapping
Step 2: Shortlisting homogeneoussites (single PFT) for code as part of CHEESEHEAD project (mid-2021)

initial model benchmarking (~2020) Step 3: Expand high-res mapping to AmeriFlux-NEON sites (N=47,
continuous high-res data availability, from 2022)

Step 4: Expand to AmeriFlux core sites (N=14, continuous),
AmeriFlux tech team site visits (N = 50-60, 2-weeks, from 2023)

Extensive approach

Step 3: Consider static PFT fractions (~2021)

Simplified high-res mapping
Step 1: How much information does intensive approach lose if we use half-hourly data? (mid-2021)
Step 2: Develop transferable data requirements across sites (from 2022)

\ Step 3: Apply across AmeriFluxsites (from 2023) ]
Current | Intensive
output approach benchmarkingexample: ILAMB bias score
Current
Input Mesoscale benchmarks:
Extensive CASA, FLUXCOM,
approach CLM...AmeriFlux-NEON
) sites (N=47, continuous)
Intensive
approach source: https://www.ilamb.org

Fig. 5. Status and roadmap of the bottom-up scaling approaches. Blue font indicates
areas of currently active work.

The bottom-up approaches are complemented by the top-down syntheses
of aircraft campaign data from ACT-America, an array of terrestrial ecosys-
tem models, posterior flux estimates from atmospheric inverse flux estimates
and AmeriFlux observations. The expected outcome is spatially and temporally
comprehensive evaluation of the performance of these ecosystem models and
inversion posteriors. This evaluation will provide insight into the process limita-
tions of these models and the existing seasonal, regional biases in the inversion
systems. The improved understanding will be used to improve the prior flux esti-
mates used in atmospheric inversions, and to improve the process representation
in regional to continental scale simulations of terrestrial carbon fluxes.

Through the convergence of high throughput computational frameworks pro-
cessing EC data and applying machine learning algorithms to develop scale-aware
ODPs with multiple instances of ESMs running on HPC, we can make substantial
strides to our understanding of Earth systems processes across spatiotemporal
scales that have previously restricted such studies. The advancement of ecosys-
tem understanding is not confined to the described work though. The develop-
ment of the Waggle, an open sensor platform for edge computing, by the Array of
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Things (AoT) opens the door to enhanced distributed data collection, advanced
reactive measurements, and manipulative studies (Beckman et al., 2016). NEON
has the observational infrastructure, such as sufficient power and network con-
nectivity at tower sites and advanced command and control capabilities, to utilize
such compute infrastructure in the future.
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