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A B S T R A C T

Surface-atmosphere fluxes are known to vary at multiple time scales, but uncertainty is high as to how fluxes
change spatially within regions. With an increase in the number of eddy covariance towers, we are now able to
examine the geospatial coherence of ecosystem fluxes, using time-series correlation. Eighteen sites from
Michigan and Wisconsin were used in this study, ranging from 100 m to 600 km apart. Surface-atmosphere
fluxes from a six-month period were used to quantify spatial coherence on a pair-wise basis. Using geospatial
statistics, carbon and sensible heat (H) fluxes were found to be 95% correlated directly outside of their flux
footprint and 56% correlated up to a distance of ~35 km. Latent (LE) and momentum (τ) fluxes were less
correlated, 83% directly outside of their flux footprint and 40% at a distance of ~130 km albeit, at a much larger
spatial distance than for the carbon and sensible heat fluxes. All fluxes showed strong spectral resonance at diel
and seasonal timescales, with 1-, 2- and 3-month periods being common modes of variability among H, LE, and τ
fluxes. Results based on Empirical Orthogonal Function show distinct transitions of net ecosystem exchange from
fall to winter before photosynthesis or respiration while H and τ do not exhibit coherent trends. This work
demonstrates the potential of quantifying geospatial coherence of surface-atmosphere fluxes in the Midwestern
United States, with the ability to predict fluxes beyond the spatial limit of a single flux tower footprint.
Ultimately, expanding the flux measurements to larger scales would allow better spatial scaling of terrestrial
surface-atmosphere fluxes between tower footprint and modeling or remote sensing scales.

1. Introduction

Interactions between the land surface and the atmosphere have
substantial implications for regional and global climate and changes.
Land cover changes impact mass and energy exchanges between the
surface and the atmosphere, particularly the water, greenhouse gas and
energy at local to regional scales (Bounoua et al., 2002). Accurate
parametrization of land-surface models to explicitly represent mass and
energy exchange processes remains a challenge (Bonan, 1995;
Xiao et al., 2014; Xiao et al., 2011). To this end, accurate surface-at-
mosphere flux observations are crucial to constrain these exchange
processes in order to reduce the source of uncertainty in land-surface
models.

Developing networks of surface-atmosphere flux observations, while
critical, is costly and challenging. Instrumentation for direct

observations using eddy covariance (EC) and mesoscale networks cost
at least $45,000 per site (Billesbach et al., 2004) and often require a
high degree of technical knowledge/skills to operate. Remotely sensed
products and models need observational data for ground truthing and
model parametrization (Wu et al., 2010; Xiao et al., 2014) e justifying
the need for surface-atmosphere flux observations (Baldocchi, 2014).
However, the footprints of surface-atmosphere flux observations are
spatially small, requiring an array of stations to adequately cover
biomes in a range of geographical locations and climates to quantify
landscape and regional fluxes. For example, an 82-m tall tower over a
forest with roughness length varying from 0.1 m to 0.4 m has only a 1-
km radius ground-area footprint (Barcza et al., 2009). These issues pose
a challenge of upscaling surface-atmosphere fluxes which have been an
active research area for decades (Baldocchi, 2014; Baldocchi et al.,
1991; Xiao et al., 2014; Desai et al., 2008).
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Previous scaling methods have focused on scaling from flux ob-
servations (1 km scale) to satellite pixel scales (1-10 km scale for
medium resolutions) or model grid scales (10-100 km) (Liu et al.,
2016). Over the last four decades, there have been a number of multi-
site field campaigns that compared ground-based EC observations to
remote sensing estimation methods and model simulations. Among
these field campaigns are: the First ISLSCP (International Satellite Land
Surface Climatology Project) Field Experiment (FIFE;
Sellers et al. (1988)), the Northern Hemisphere Climate Processes Land-
Surface Experiment (NOPEX; Halldin et al. (1999)), and the Lindenberg
Inhomogeneous Terrain-Fluxes between Atmosphere and Surface: a
Long-term Study (LITFASS-98; Beyrich et al. (2002)), HiWater MUSO-
EXE (Liu et al., 2016; Ran et al., 2016) and LITFASS-2003; Beyrich and
Mengelkamp (2006). These field campaigns have used a number of
scaling methods, including arithmetic averages (Shuttleworth et al.,
1989), area weighted methods (Beyrich et al., 2006), numerical models
(Heinemann and Kerschgens, 2005), and geospatial analysis (i.e., spa-
tial statistics, modeling). With one of the most spatially dense multisite
field campaigns, Ge et al. (2015) and Liu et al. (2016) used flux ob-
servations from 17 EC sites within a 5.5 km by 5.5 km study area to
upscale between multiple surface-atmosphere flux methods using
geospatial Kriging. However, we seek to extend the spatial scales far-
ther than 5.5 km, and explicitly test the spatial coherence of fluxes as a
function of distance, in order to ultimately upscale fluxes from single
footprint to regional scale.

The concept of spatial coherence across a landscape is well studied
in terrestrial ecosystem studies (Cleland et al., 2007; Badeck et al.,
2004), but has rarely been applied to research on land-surface fluxes.
Desai (2010) shows a spatial coherence of interannual variability from
carbon fluxes and phenological drivers and concludes that models op-
erating at 100 km grid scales could extrapolate climate-phenological
relationships to model interannual carbon cycling. Coherent behavior
of surface-atmosphere fluxes was found between sites with similar
surface-atmosphere fluxes, with time-varying similarities of aero-
dynamic canopy height founds between forested and grassland sites
(Chu et al., 2018). More explicitly focused on surface-atmosphere
fluxes, Hollinger et al. (2004) examined coherence between two towers
~775 m apart and found the annual sums of net carbon fluxes to be
within 6% of each other, and model parameters derived from ob-
servations were not significantly different, showing that for modeling
purposes, the two sites were identical. Following these studies, we
hypothesize surface-atmosphere fluxes to be spatially coherent to each
other, but with an unknown coherence at scales between 1 and 100 km.

In order to extrapolate observations beyond the footprint of a single
EC tower to the landscape, first data from multi-sites was used to test
for similarity across increasing spatial distances. Here, we use six
months of surface-atmosphere flux data from two clusters of flux sites
and eighteen sites. We seek to answer the following research questions:
1) Is there a geospatial relationship between signal coherence of sur-
face-atmosphere fluxes? 2) To what spatial extent does a single co-
herence exist for surface-atmosphere fluxes? and 3) Do these fluxes
have common frequencies of variability?

2. Methods

2.1. Study sites and data collection

Eddy covariance data between July 1st and December 31st, 2018
from eighteen sites (Table 1), five from Wisconsin (WI) and thirteen
from Michigan (MI), were used (Fig. 1). The sites from Wisconsin in-
cluded a wetland, an agricultural site, and three forest sites; and the
sites from Michigan included a wetland, a grassland, eight agricultural
sites, a forest, and two urban sites (Table 1). While many of the sites are
long-term study sites, six of the sites were instrumented in 2018, and
the six-month study period was chosen to maximize the number of
active sites. The sites have a variety of instrumentation setups; site-

intercomparisons were performed during an initial QA/QC step, parti-
cularly for the six newly instrumented sites in Michigan. Due to data
normalization (see below), differences from instrumentation are not
expected to add error to the results. The distances between the eighteen
sites vary from 10 km to 600 km apart. The time-series surface-atmo-
sphere flux observations used in this study are 30-min net ecosystem
exchange (NEE) of carbon, latent heat (LE), sensible heat (H), eco-
system respiration (Reco), gross primary production (GPP), and mo-
mentum fluxes (τ). All flux time-series were normalized to be between 0
and 1 in order to detect common frequencies between land-cover types
(Greene et al., 2019). τ was quantified using 30-minute air density (ρ)
and friction velocity (u*).

= u· *2 (1)

Surface-atmosphere flux data was processed using a combination of
eddy4R (Metzger et al., 2017), EddyPro (Biosciences, 2017) and TK3
Eddy-Covariance Software Package (Mauder and Foken, 2015;
Berger et al., 2001) for Wisconsin sites, and a combination of EdiRe
(Clement, 1999) and EddyPro for the Michigan sites. NEE from all sites
was partitioned into GPP and Reco using REddyProc (Wutzler et al.,
2018). Data from one of the Wisconsin sites (Park Falls) was collected
hourly, so data were rescaled to 30-minute. Outliers at± 3 scaled
median absolute deviations from the median were removed for all
fluxes. Non-gap-filled data were used for analysis in this work, with
gap-filled data from REddyProc analyzed only to quantify the impact of
gap-filling on results and are shown only in Table 2.

2.2. Analytical processes

In order to quantify inter-site coherence of surface-atmosphere
fluxes, time-series correlation coefficients were calculated between
each site-pair – a total of 153 site-pairs for each of the six surface-at-
mosphere fluxes. Then, the spatial distance in km between each site-
pair was calculated. This coherence correlation coefficient of each site-
pair was plotted as a function of that site-pairs’ geospatial distance, i.e.
known as a geostatistical semivariogram diagram. A spherical model
was used to quantify the nugget (the intrinsic coherence at zero dis-
tance), sill (the minimum average coherence value), and range (the
spatial distance where coherence is no longer a function of distance) for
each of the six surface-atmosphere fluxes.

Empirical Orthogonal Function (EOF) methods, also known as
geographically weighted Principal Component Analysis, were used to
decompose the time-series data into orthogonal base functions to
quantify common spectral frequencies of spatiotemporal covariation
with the larger flux data. With 6 months of data included in this study,
frequencies out to ~10 months are quantified, which is well below the
Nyquist (or folding) frequency for the data. Due to computational
limits, EOFs were calculated independently for the WI and MI clusters,
with all data gaps set to zero (Greene et al., 2019). Spatial arrays for
both clusters were created with 0.01° latitude and longitude precision,
between 41° and 43° N latitude, and 87° and 83° W longitude for Mi-
chigan and 44° and 47° N latitude, and 89° and 91° W longitude for
Wisconsin. Data was then detrended in time, and the top three modes of
variability, as well as their variance percentage for each mode, for each
surface-atmosphere flux were computed following the methods of
Greene et al. (2019). Anomaly and frequency plots were created on the
principal component variables. All analysis was performed in MATLAB
R2019a.

3. Results

3.1. Spatial coherence in fluxes

Coherence of NEE directly outside of the footprint of the average
site was 92% (Table 2, Fig. 2). Coherence decreased steadily with dis-
tance to 58% at a spatial range of 42 km (Table 2, Fig. 2) and on
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average remained constant at farther spatial distances, with clusters of
site-pairs showing coherence clustering at distances >400 km. Initial
results revealed that average coherence between urban and vegetated
sites was low (~10%), while the urban-urban coherence pair was close
to 100%. Consequently, both urban sites were removed from further
analysis as they exhibited fundamentally different time-series char-
acteristics compared to vegetated sites.

Surface-atmosphere fluxes of NEE, GPP, Reco, and H showed similar
low average range value of 37 km (Fig. 2, Table 2). NEE, GPP, and Reco

showed similar sill values of 0.61, while H, LE and τ showed similar
lower average value of 0.40. With the exception of τ, all fluxes dis-
played nugget values of > 0.90. Data analysis between gap-filled and
non-gap-filled data is shown in Table 2 to quantify the impact of gap-
filling. Results from gap-filled data were similar, with model fits
showing large differences in spatial ranges for NEE and LE only. The
range for NEE and LE decreased from 42 km to 21 km, and from 130 km
to 29 km, respectively, when gap-filled data instead of non-gap-filled
were used. Gap-filling did not significantly impact sill or nugget values.

Semivariogram model fits are shown for all surface-atmosphere
fluxes for both all distances per each flux (Fig. 3) as well as for the first
150 km (Fig. 4). Over this range, it becomes apparent how dissimilar τ
fluxes are to the other surface-atmosphere fluxes, with a higher range
and lower nugget and sill values. LE displays a higher range, but similar
nugget and sill values to the other land-surface fluxes; the carbon fluxes
are, by and large, most similar among each other. Overall, coherence
between fluxes are high (>80%) within ~10 km, and fluxes between
site-pairs are strongly connected to the spatial distance between the
sites.

3.2. Temporal variability in fluxes

For both clusters of sites, the 1st EOF mode of variability was the
dominant mode that explains 78% of the variance (Table 3). Variance in
the first mode for τ fluxes was the lowest, but still averaged ~60%. WI
sites had lower variance explained in the first mode. The 2nd and 3rd

modes of variability correlated to 15% and 7% of the variance, re-
spectively, with τ variance being the highest.

Spectral frequencies for the first principal component for both
clusters are shown in Fig. 5. As analysis was done on 30-minute data, a
diel frequency is the dominant signal in all flux signals except in Reco.
For the majority of fluxes the first harmonic of a diel frequency at 12-
hours is also observed, which this frequency is strongest in H, LE and τ,
and present in NEE and GPP. Fig. 5 subplots (b,d,f,h,j,k) show the same
spectral frequencies, rescaled from 2-day to 6-month frequencies. Here,
when the diel and harmonic frequencies are removed from the signal,
the dominant frequencies for all fluxes occur at around 6-months and
capture the seasonal pattern from summer into winter. NEE and GPP
have limited component frequencies in-between diel and 6-months,
while Reco shows small components at around 2 weeks and 1 month. H,
LE and τ fluxes have a much higher relative amount of signal in-be-
tween diel and 6-month frequencies, with H having a higher amount of
contribution at 2-week than 6-months. The differences between MI and
WI clusters are small, once data is rescaled, although the number of WI
samples were fewer.

We show the first mode of detrended surface-atmosphere flux var-
iance plotted in Fig. 6 for MI and WI time-series. One clear pattern that
emerged was a strong linear temporal trend in GPP and LE in the

Table 1
Site information for 18 eddy covariance sites included in this study. Wisconsin (WI) data server (https://flux.aos.wisc.edu/data).

Site information

Site (Ameriflux site code) Land-cover type Cluster Data availability DOY, DOI Latitude
Longitude

Lost Creek (US-Los) Wetland Wisconsin 182-365, 10.17190/AMF/1246071 46.0827°N
89.9792°W

Park Falls (US-PFa) Tall-Tower Wisconsin 182-365, 10.17190/AMF/1246090 45.9459°N
90.2723°W

Sylvania (US-Syv) Forest Wisconsin 182-365, 10.17190/AMF/1246106 46.242°N
89.3477°W

Willow Creek (US-WCr) Forest Wisconsin 182-365, 10.17190/AMF/1246111 45.8059°N
90.0799°W

Central Sands (US-CS1) Agriculture Wisconsin 182-365, 10.17190/AMF/1617710 44.103051°N
89.537855°W

KBS T1 (US-KM3) Agriculture Michigan 182-365 42.446250°N
85.310436°W

KBS T2 (US-KM2) Agriculture Michigan 182-365, 10.17190/AMF/1647440 42.444040°N
85.309752°W

KBS T3 (US-KM1) Agriculture Michigan 182-365, 10.17190/AMF/1647439 42.437620°N
85.328620°W

KBS T4 (US-KL1) Agriculture Michigan 182-365 42.484740°N
85.442162°W

KBS T5 (US-KL2) Agriculture Michigan 182-365, 10.17190/AMF/1644212 42.476670°N
85.446792°W

KBS T6 (US-KL3) Agriculture Michigan 182-365, 10.17190/AMF/1647438 42.473500°N
85.447470°W

KBS T7 (US-KM4) Grassland Michigan 182-365, 10.17190/AMF/1634882 42.442350°N
85.330190°W

Kellogg Forest (US-KEF) Forest Michigan 198-365 42.365961°N
85.352615°W

Allegan (US-ALG) Wetland Michigan 189-365 42.66888°N
86.022909°W

Jackson 1 Agriculture Michigan 182-300 42.25803°N
84.842792°W

Jackson 2 (US-JCK) Agriculture Michigan 182-365 42.214287°N
84.853891°W

Battle Creek, MI (US-BC) Urban Michigan 182-365 42.322809°N
85.187125°W

East Lansing, MI (US-MSU) Urban Michigan 182-317 42.729345°N
84.473669°W
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transition from summer to winter. This linear trend is present but less
strong in NEE and Reco as well. Within this subset of fluxes, NEE shows
the earliest temporal switch between positive and negative solutions to
the EOF, followed temporally by GPP and then both LE and Reco. As
noted in the spectral frequencies (Fig. 5), Reco had a limited diel fre-
quency component. Here, that is shown as smaller amount of daily
variance in the EOFs. Variance in τ, and to a smaller extent in H, is
without a temporal trend throughout the entire time-series.

Finally, in order to show the geospatial coherence, the semivario-
gram range results from carbon, H, LE and τ fluxes are presented in
Fig. 7. Distances are shown without quantifying areas of overlap be-
tween >2 sites, which would be a factor in the middle of both field site
clusters.

4. Discussion

The first objective of this work was to determine if surface-atmo-
sphere fluxes are coherent between sites. Strong coherence would

Fig. 1. Location of 18 flux towers in Michigan (MI) and Wisconsin (WI), coded by land-cover type.

Table 2
Data analysis between gap-filled and non-gap-filled spherical fit semivariogram
results (range, sill and nugget) for NEE, GPP, Reco, H, LE, τ fluxes.

Non gap-filled fluxes Gap-filled fluxes

Range (km) Sill Nugget Range (km) Sill Nugget

NEE 42.10 0.58 0.92 21.32 0.46 0.85
GPP 33.62 0.62 0.98 38.22 0.72 0.96
Reco 30.47 0.62 0.92 31.65 0.60 0.92
H 41.50 0.40 0.97 31.43 0.58 0.87
LE 130.94 0.44 0.90 29.43 0.57 0.90
τ 129.36 0.36 0.76 115.27 0.36 0.76

Fig. 2. Spherical fit semivariogram results and site-pair data for NEE fluxes
from all possible site-pairs, with site-pairs that include an urban site shown but
separate from semivariogram fit.

J. Poe, et al. Agricultural and Forest Meteorology 295 (2020) 108188

4



suggest ecosystem processes have similarities in time and space while
weaker coherence would suggest greater fine scale spatial variations in
fluxes and the processes that control fluxes, making extrapolation more
difficult and uncertain. Using eighteen sites, we showed there is a
strong coherence between terrestrial ecosystems at range of 100 - 600
km. Similar results were shown by Hollinger et al. (2004) who used two

forest sites 775 m apart, but our work suggests that these patterns
translate across ecosystem types. Using aerodynamic canopy height
derived from surface-atmosphere fluxes, Chu et al. (2018) found co-
herence behavior in 69 forested and 23 grassland sites, showing large-
scale and time-varying behaviors between similar land cover types.
However, we have found few studies in the literature that directly

Fig. 3. Spherical fit semivariogram results and site-pair data for NEE, GPP, Reco, H, LE, τ fluxes from vegetated site-pairs.
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quantify the coherence of surface-atmosphere flux.
Notably, within the procedure of quantifying coherence, data from

each site was normalized in order to access the temporal correlation so
that two sites with a large expected difference in flux magnitude on
daily or seasonal time-scales could still be highly coherent.
Reed et al. (2018b) showed that non-flux information can be drawn
from the time-series characteristics of energy fluxes, such as degree of
an ongoing disturbance or long-term water table depth variations. The
information within the time-series is lost when observations are
summed or averaged over time. Related to this issue, normalizing time-
series data in this fashion removes majority of inter-site biases due to
instrumental or processing difference. Data in this work has a diverse

set of sensors and processing procedures but few, if any, errors from
those differences carry over into these results. In our study, amplitude
information from the time-series is lost during normalization. Yet it
should be noted that while sites are shown to behave in a coherent
fashion at large geospatial scales, the absolute magnitude of fluxes
could still be different. Time-series variation is critical for specifying
spatial scale of surface-atmosphere upscaling or specifying auto-
correlation and geostatistical relationships necessary for deriving
sources and sinks from atmospheric tracer-transport inversion
(Michalak et al., 2004).

Notably, there existed a clear bifurcation in coherence and behavior
between urban and vegetated sites. Within urban sites, long term

Fig. 4. Spherical fit semivariogram results for NEE, GPP, Reco, H, LE, τ fluxes shown for distances up to150 km.

Table 3
Percent (%) of variability for highest three Empirical Orthogonal Function (EOF) modes for all surface-atmosphere fluxes, shown for both Michigan and Wisconsin
clusters.

Flux NEE GPP Reco H LE τ Average

Cluster MI WI MI WI MI WI MI WI MI WI MI WI

1st EOF 79.3 82.0 87.4 84.3 79.2 60.8 95.4 78.5 95.9 71.9 63.7 55.0 77.8
2nd EOF 18.1 12.6 8.4 11.4 13.4 27.3 2.6 12.4 2.8 15.6 27.8 24.9 14.8
3rd EOF 2.7 5.5 4.2 4.3 7.4 11.8 2.0 9.0 1.4 12.5 8.5 20.1 7.4
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records have shown flux differences between urban and vegetation
sectors of a single flux footprint (Vesala et al., 2008), highlighting the
differences between vegetation and non-vegetation land-surface types.
Velasco and Roth (2010) found a strong signal from vehicular traffic
within urban sites, while daytime carbon fluxes were connected to the
spatial extent of vegetation at suburban sites. In general, urban and
vegetated sites are shown here and throughout literature to have di-
vergent characteristics implying a difference set of land-surface pro-
cesses that control and regulate fluxes.

Similarly, we have not included open-water fluxes in these results
due to the differences in controlling time-scales of water-column fluxes.
Reed et al. (2018a) showed lake-atmosphere fluxes to have a significant

2-week and 1-month frequency component, as well as a reduced diurnal
signal. In this study, we included two wetland sites because they have
similar time-series modes of variability, but we do not suggest terres-
trial fluxes could be used to estimate fluxes from open-water. This is
evident in Fig. 7 where open water areas are masked.

Our results might not apply to model parameters (e.g., maximum
photosynthesis rates or phenological data) over similar geospatial
scales. Hollinger et al. (2004) using a pair of forested sites <1 km apart
and found model parameters not vary from one to another site. How-
ever, at larger geospatial scales with multiple plant functional types,
Xiao et al. (2011) found parameters from a single site are not re-
presentative of the plant functional type at regional scales. Parameters

Fig. 5. Spectral coherence power [flux 30-minutes−1] shown as a function of frequency for NEE (a,b), GPP (c,d), Reco (e,f), H (g,h), LE (i,g), and τ (k,l) fluxes.
Spectral power shown both for the entire frequency range (a,c,e,g,i,k) and only from 2-day frequencies and higher (b,d,f,h,g,l). Data from MI cluster (green) and WI
cluster (dashed, red) both shown. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) .
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and estimates are improved when using multi-sites with similar plant
functional types. In sum, the lack of extrapolating from one to another
site on a larger geospatial scale could lead to high levels of uncertainties
in regional flux estimates (Xiao et al., 2011) in addressing the issue of

how fluxes and flux based parameters can be estimated accurately is an
ongoing area of research, particularly at what spatial scales results from
one site can be applied to another site.

Once we address if surface-atmosphere fluxes can be spatially

Fig. 6. Time-series of EOF functions [unitless] for NEE (a,b), GPP (c,d), Reco (e,f), H (g,h), LE (i,g), and τ (k,l) fluxes, from MI (a,c,e,g,I,k) and WI (b,d,f,h,g,l) clusters
over the six-month study period. Both positive (yellow) and negative (purple) orthogonal solutions shown. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.).
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coherent among multiple sites, the follow-up question of what range
fluxes can be coherent can be answered. With two of the highest density
clusters of flux sites, we are able to show for the first time that there is a
relationship between fluxes across the landscape at scales of ~100 km.
We show that directly outside of flux footprints, fluxes are highly co-
herent, up to 95%. Flux coherence decreases down to 56-40% co-
herence at distances of >100 km, where coherence is relatively stable
across the study region.

At small spatial scales, flux coherence has been studied in the lit-
erature. Using a single forested site-pair ~775 m apart,
Hollinger et al. (2004) found a strong signal coherence between air
temperature, solar radiation and carbon fluxes. Radiation had high
inter-site coherence (>0.95 coherence) at periods below ~4 hours,
with air temperature and NEE having similarly high coherence at per-
iods of below ~3 hours, showing that over <1 km, fluxes are strongly
coherent for multiple hours. With a spatially dense field campaign,
Ge et al. (2015) and Liu et al. (2016) used area-to-area regression
Kriging from 17 field sites to upscale EC measurement to measurement
scales on the order of large aperture scintillometer observations. With
study region of 5.5 km by 5.5 km, Ge et al. (2015) reported variogram
derived ranges of ~3 km. This is a smaller distance than what we found,
potentially due to a smaller number of land-cover types, with 14 of 17
of Ge et al. (2015) being corn sites, where 8 of our sites were agri-
cultural land-cover, but with 4 different crop types. Based on the same
field campaign, Li et al. (2018) scaled evapotranspiration observations
to the scale of MODIS pixels using six different scaling approaches, and
concluded that for moderately heterogeneous surfaces, Kriging methods
similar to methods in this work produced the best scaling results.

Through spectral analysis, we show common frequencies of varia-
bility for the land-surface fluxes used in this study. It is not surprising

that over the 6-month study period, diel patterns dominate the spectral
signal. This is the frequency that matches primarily that of solar ra-
diation, which in turn drives environmental temperatures, GPP and
heat flux signals (Ouyang et al., 2014). Using wavelet analysis from two
forested sites, Stoy et al. (2005) found strong diel signals for radiation,
temperature, and NEE. However, there are secondary harmonic signals
present at higher frequencies as well since surface-atmosphere fluxes
are not perfect sine waves with equally negative magnitudes at night
relative to daytime fluxes (Boland, 1995; Robinson and Treitel, 2000).
Typical ecosystem fluxes are approximately constant at night, either
near zero for H and LE, or positive for NEE (with partitioned GPP and
Reco fluxes near zero as well) (Campbell and Norman, 2012). In order to
match the harmonic-sine wave observations, the EOF analysis found
high amounts of common variability at the 2nd and 3rd harmonics of the
diel frequency, i.e. 12-hours and 6-hours. In short, surface-atmosphere
fluxes are dominated by diel patterns, and any other mode of variability
at higher frequencies builds on top of the diel signal.

The EOF frequencies from ecosystem respiration have a very weak
diel signal, coupled with the strongest seasonal pattern. While this
could be influenced by the respiration partitioning model used here and
its inputs, this is similar to Stoy et al. (2005) who found ecosystem
respiration to be sensitive to the drivers that act on weekly and monthly
time scales. Environmental temperature at short time-scales explained
respiration variability, but energy transfer through ecosystem needs to
account for energy storage (Meyers and Hollinger, 2004), time lags
(Reed et al., 2018b), and variable heat capacity (Ochsner et al., 2007).
EOF's frequencies are derived from the observational land-surface flux
time-series themselves, and it is important to note the respiration driver
time-series of environmental temperature or moisture availability were
not a part of the EOF input. The resulting respiration frequencies were

Fig. 7. Site map of vegetated field sites in Michigan (MI) and Wisconsin (WI). Spatial zone of coherence for carbon cycling and H fluxes shown in tan, for LE and τ
fluxes shown in green. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
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derived only from the respiration observations.
At frequency of >24 hours, modes of variability show divergent

behavior between fluxes. The non-carbon fluxes (H, LE, τ) showed
significant signal strength between sub-weekly and sub-seasonal time-
scales, with H having a ~10-day frequency signal and LE having a ~1
month and ~4 month signals that are stronger than their seasonal
signals. At these time-scales, ecological responses to environmental
changes often dominate flux variability. Richardson et al. (2007) found
that at increasing larger time-scales – days to months to years – var-
iation in environmental drivers matter less as ecosystems response to
changing conditions becomes increasingly important. At annual scale,
40% of the variance in modeled NEE was from environmental forcing,
and 55% from biotic response variation to this forcing. Similarly,
Katul et al. (2001) found canopy physiology and structure dynamics at
monthly time-scales to be the connection between surface-atmosphere
fluxes and environmental drivers. This pattern is also seen in results
from Fig. 6, where carbon (NEE and GPP) and LE fluxes show a seasonal
trend within their EOF time-series. We interpret this pattern as the
impact of monthly-to-seasonal scale changes in biological responses to
environmental drivers, here noted across large geospatial scales be-
tween the MI and WI site clusters. Using species-specific models, phe-
nology can be scaled from local to regional spatial scales with a high
degree of accuracy (Chuine et al., 2000; Cleland et al., 2007). Here, we
suggest surface-atmosphere fluxes can be scaled regionally following
similar principles.

5. Conclusions

While several studies have utilized spatially dense clusters of sur-
face-atmosphere flux observations, this work is the first to explicitly
quantify the extent and magnitude of coherent behavior of surface
fluxes. By quantifying this coherence, we demonstrate that the degree
to which ecosystems outside of the footprint of a single flux tower be-
have similar to observations within the footprint. Our spatial coherence
is for re-scaled flux data; however, our findings show that surface-at-
mosphere fluxes are coherent when land-cover differences are nor-
malized. This suggests that fluxes from one ecosystem potentially can
be used to estimate fluxes from similar ecosystems. If differences be-
tween ecosystem or land-cover type are quantified, fluxes from a single
site can be scaled across the entire landscape.

Scaling EC surface-atmosphere fluxes became an active area of re-
search as soon as the observational technique became widely adopted.
The fundamental mismatches between flux footprint scales and remote
sensing or modeling pixels can be directly addressed if observational
fluxes are to be extrapolated beyond the flux footprint. Ultimately, a
single surface-atmosphere flux observational record could be scaled
beyond the observation's footprint to the entire landscape, fundamen-
tally increasing the power of flux observations and transforming how
flux data is scaled up.
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