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On the problem of scoring genes for evidence of changes in the distri-
bution of single-cell expression, we introduce an empirical Bayesian mix-
ture approach and evaluate its operating characteristics in a range of numeri-
cal experiments. The proposed approach leverages cell-subtype structure re-
vealed in cluster analysis in order to boost gene-level information on expres-
sion changes. Cell clustering informs gene-level analysis through a specially-
constructed prior distribution over pairs of multinomial probability vectors;
this prior meshes with available model-based tools that score patterns of dif-
ferential expression over multiple subtypes. We derive an explicit formula for
the posterior probability that a gene has the same distribution in two cellular
conditions, allowing for a gene-specific mixture over subtypes in each con-
dition. Advantage is gained by the compositional structure of the model not
only in which a host of gene-specific mixture components are allowed but
also in which the mixing proportions are constrained at the whole cell level.
This structure leads to a novel form of information sharing through which the
cell-clustering results support gene-level scoring of differential distribution.
The result, according to our numerical experiments, is improved sensitivity
compared to several standard approaches for detecting distributional expres-
sion changes.

1. Introduction. The ability to measure genome-wide gene expression at single-cell res-
olution has accelerated the pace of biological discovery. Overcoming data analysis challenges
caused by the scale and unique variation properties of single-cell data will surely fuel further
advances in immunology (Papalexi and Satija (2017)), developmental biology (Marioni and
Arendt (2017)), cancer (Navin (2015)) and other areas (Nawy (2013)). Computational tools
and statistical methodologies created for data of lower resolution (e.g., bulk RNA-seq) or
lower dimension (e.g., flow cytometry) guide our response to the data-science demands of
new measurement platforms, but they remain inadequate for efficient knowledge discovery
in this rapidly advancing domain (Bacher and Kendziorski (2016)).

An important feature of single-cell studies that could be leveraged better statistically is
the fact that cells populate distinct, identifiable subtypes determined by lineage history, epi-
genetic state, the activity of various transcriptional programs or other distinguishing factors.
Extensive research on clustering cells has produced tools for identifying subtypes, includ-
ing SC3 (Kiselev et al. (2017)), CIDR (Lin, Troup and Ho (2017)) and ZIFA (Pierson and
Yau (2015)). We hypothesize that such subtype information may be usefully utilized in other
inference procedures in order to improve their operating characteristics.

Assessing the magnitude and statistical significance of changes in gene expression asso-
ciated with changes in cellular condition has been a central statistical problem in genomics.
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New tools specific to the single-cell RNA-seq data structure, including MAST (Finak et al.
(2015)), scDD (Korthauer et al. (2016)), and D3E (Delmans and Hemberg (2016)) have been
deployed to address this problem. These tools respond to scRNA-seq characteristics, such as
high prevalence of zero counts and gene-level multimodality, but they do not fully exploit
cellular-subtype information and, therefore, may be underpowered in some settings. The
proposed method, which uses negative binomial mixtures to measure changes in a gene’s
marginal sampling distribution, acquires sensitivity to a variety of distributional effects by
how it integrates gene-level data with subtype information. From input data the associated
R package scDDboost1 prioritizes genes with a local false-discovery rate against the null
hypothesis of no condition effect on the marginal sampling distribution. The complement of
this rate is an empirical Bayesian posterior probability of differential distribution (DD). By
incorporating transciptomic information on cell subtypes, scDDboost leverages useful and
previously untapped information on each gene’s expression sampling distribution.

Through the compositional model underlying scDDboost, subtypes inferred by cluster-
ing inform the analysis of gene-level expression. The proposed methodology merges two lines
of computation after cell clustering: one concerns patterns of differential expression among
the cellular subtypes, and here we take advantage of the powerful EBseq method for de-
tecting patterns in negative-binomially-distributed expression data (Leng et al. (2013)). The
second concerns the counts of cells in various subtypes; for this we propose a double Dirichlet
mixture distribution to model the pair of multinomial probability vectors for subtype counts
in two experimental conditions. Further elements are developed on the selection of the num-
ber of subtypes and on accounting for uncertainty in the cluster output, in order to provide
an end-to-end solution to the differential distribution problem. We note that modularity in the
necessary elements provides some methodological advantages. For example, improvements
in clustering may be used in place of the default clustering without altering the form of down-
stream analysis. Also, by avoiding Markov chain Monte Carlo, scDDboost computations
are relatively inexpensive for a Bayesian procedure.

To set the context by way of example, Figure 1 highlights the ability of scDDboost to
sense subtype composition changes and thus detect subtle gene expression changes between
conditions. The three panels on the left compare expression from 91 human stem cells known
to be in the G1 phase of the cell cycle, as well as from 76 such cells known to be in the G2/M
phase (Leng et al. (2015)) in three genes (BIRC5, HMMR and CKAP2), which we happen
to know from prior studies have differential activity between G1 and G2/M (Li and Altieri
(1999), Sohr and Engeland (2008), Dominguez et al. (2016)). Several standard statistical
tools applied to the data behind Figure 1 do not find the observed differences in any of these
genes to be statistically significant when controlling the false discovery rate (FDR) at 5%, but
scDDboost does include these genes on its 5% FDR list. Considering prior studies, these
subtle distributional changes are probably not false discoveries. The right panel in Figure 1
shows these three among many other genes also known to be involved in cell-cycle regulation
but not identified by standard tools as altered between G1 and G2/M at the 5% FDR level. The
color panel provides insight into why scDDboost has identified these genes. For this data
set, six cellular subtypes were identified in the first step of scDDboost (colors red, blue,
green and orange are visible). These subtypes have changed in their proportions between G1
and G2/M; there is a lower proportion of red cells and a greater proportion of orange cells
in G2/M, for example. These proportion shifts, which are inferred from genome-wide data,
stabilize gene-specific statistics that measure changes between conditions in the mixture dis-
tribution of expression and, thereby, increase power. We note that scDDboost agrees with
other statistical tools on very strong differential-distribution signals (not shown), but it has

1http://github.com/wiscstatman/scDDboost/

http://github.com/wiscstatman/scDDboost/
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FIG. 1. Genes involved in cell cycle that are identified by scDDboost, but not standard approaches, as differen-
tially distributed between cell-cycle phases G1 and G2/M in human embryonic stem cells (GSE64016). Density
estimates on the left show expression data (log2 scale) of three genes identified by scDDboost at 5% FDR but not
similarly identified by MAST, scDD or DESeq2. Prior studies have shown that the expression of BIRC5, CKAP2
and HMMR is dependent on the phase of cell cycle, suggesting that these subtle shifts are not false positives.
Heatmap (right) shows these three genes among 137 other cell-cycle genes (GO:0007049) identified exclusively
by scDDboost, with expression from low (blue) to high (red). Cells (columns) are clustered by their genome-wide
expression profiles into distinct cellular subtypes, as indicated by the color panel.

the potential to increase power for subtle signals owing to its unique approach to leveraging
cell subtype information.

Numerical experiments on both synthetic and published scRNA-seq data bear out the in-
cidental finding in Figure 1 that scDDboost has sensitivity for detecting subtle distribution
changes. In these experiments we take advantage of splatter for generating synthetic
data (Zappia, Phipson and Oshlack (2017)) as well as the compendium of scRNA-seq data
available through conquer (Soneson and Robinson (2018)). Additional numerical experi-
ments show a relationship between scDDboost findings and more mechanistic attempts to
parameterize transcriptional activation (Delmans and Hemberg (2016)). Finally, we establish
first-order asymptotic results for the methodology.

On manuscript organization we present the modeling and methodology elements in Sec-
tion 2, numerical experiments in Section 3, asymptotic analysis in Section 4 and a discussion
in Section 5. We relegate some details to an Appendix and many others to the Supplementary
Material (Ma et al. (2021)).

2. Modeling.

2.1. Data structure, sampling model and parameters. In modeling scRNA-seq data we
imagine that each cell c falls into one of K > 1 classes, which we think of as subtypes or
subpopulations of cells. For notation, zc = k means that cell c is of subtype k, with the vector
z = (zc) recording the states of all sampled cells. Knowledge of this class structure prior to
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measurement is not required, as it will be inferred as necessary from available genomic data.
We expect that cells arise from multiple experimental conditions, such as by treatment-control
status or some other factors measured at the cell level, but we present our development for
the special case of two conditions. Notationally, y = (yc) records the experimental condition,
say yc = 1 or yc = 2. Let’s say condition j measures nj = ∑

c 1[yc = j ] cells, and, in total,
we have n = n1 + n2 cells in the analysis. The examples in Section 3 involve hundreds to
thousands of cells. Further, let

(1) t
j
k = t

j
k (y, z) = ∑

c

1[yc = j, zc = k]

denote the number of cells of subtype k in condition j , and Xg,c denote the normalized
expression of gene g in cell c. This is one entry in a typically large genes-by-cells data
matrix X. Thus, the data structure entails an expression matrix X, a treatment label vector y

and a vector z of latent subtype labels.
We treat subtype counts in the two conditions, t1 = (t1

1 , t1
2 , . . . , t1

K) and t2 = (t2
1 , t2

2 , . . . ,

t2
K), as independent multinomial vectors, reflecting the experimental design. Explicitly,

(2) t1|y ∼ MultinomialK(n1, φ) and t2|y ∼ MultinomialK(n2,ψ)

for probability vectors φ = (φ1, φ2, . . . , φK) and ψ = (ψ1,ψ2, . . . ,ψK) that characterize the
populations of cells from which the n observed cells are sampled. This follows from the more
basic sampling model: P(zc = k|yc = 1) = φk and P(zc = k|yc = 2) = ψk .

Our working hypothesis, referred to as the compositional model, is that any differences in
the distribution of expression Xg,c between yc = 1 and yc = 2 (i.e., any condition effects)
are attributable to differences between the conditions in the underlying composition of cell
types, that is, owing to φ �= ψ . We suppose that cells of any given subtype k will present data
according to a distribution reflecting technical and biological variation specific to that class
of cells, regardless of the condition yc of the cell. Some care is needed in this, as an overly
broad cell subtype (e.g., epithelial cells) could have further subtypes that show differential
response to some treatment, for example, and so cellular condition (treatment) would then
affect the distribution of expression data within the subtype which is contrary to our working
hypothesis. Were that the case, we could have refined the subtype definition to allow a greater
number of population classes K in order to mitigate the problem of within-subtype hetero-
geneity. A risk in this approach is that K could approach n, as if every cell were its own
subtype. We find, however, that data sets often encountered do not display this theoretical
phenomenon when using a broad class of within-subtype expression distributions. Subtypes
are considered such that cellular condition affects their composition but not the sampling
distribution of expression within a subtype.

Within the compositional model, let fg,k denote the sampling distribution of expression
measurement Xg,c assuming that cell c is from subtype k. Then, for the two cellular con-
ditions and at some expression level x, the marginal distributions over subtypes are finite
mixtures,

f 1
g (x) =

K∑
k=1

φkfg,k(x) and f 2
g (x) =

K∑
k=1

ψkfg,k(x).

In other words, Xg,c|[yc = j ] ∼ f
j
g and Xg,c|[zc = k, yc = j ] ∼ fg,k .

We say that gene g is differentially distributed, denoted DDg and indicated by f 1
g �= f 2

g ,
if f 1

g (x) �= f 2
g (x) for some x, and, otherwise, it is equivalently distributed (EDg). Motivated

by findings from bulk RNA-seq data analysis, we further set each fg,k to have a a negative-
binomial form with mean μg,k and shape parameter σg , as in (Leng et al. (2013), Anders
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and Huber (2010), Love, Huber and Anders (2014) and Chen et al. (2018)). This choice is
effective in our numerical experiments though it is not critical to the modeling formulation.
The use of mixtures per gene has proven useful in related model-based approaches (e.g.,
Finak et al. (2015), McDavid et al. (2014), Huang et al. (2018)).

We seek methodology to prioritize genes for evidence of DDg . Interestingly, even if we
have evidence for condition effects on the subtype frequencies, it does not follow that a
given gene will have f 1

g �= f 2
g . That depends on whether or not the subtypes show the right

pattern of differential expression at g, using the standard terminology from bulk RNA-seq.
For example, if two subtypes have different frequencies between the two conditions (φ1 �= ψ1
and φ2 �= ψ2) but the same aggregate frequency (φ1 +φ2 = ψ1 +ψ2) and also, if components
are equivalent, fg,1 = fg,2, then, other things being equal, marginals f 1

g = f 2
g , even though

φ �= ψ . Details confirming such equality are exemplified further in Supplementary Material
Section 2.1, Ma et al. (2021). The fact is so central that we emphasize:

KEY ISSUE. A gene that does not distinguish two subtypes will also not distinguish
the cellular conditions if those subtypes appear in the same aggregate frequency in the two
conditions, regardless of changes in the individual subtype frequencies.

We formalize this issue in order that our methodology has the necessary functionality. To
do so, first consider the parameter space � = {θ = (φ,ψ,μ,σ)}, where φ = (φ1, φ2, . . . , φK)

and ψ = (ψ1,ψ2, . . . ,ψK) are as before, where μ = {μg,k} holds all the subtype-and-gene-
specific expected values and where σ = {σg} holds all the gene-specific negative-binomial
shape parameters. Critical to our construction are special subsets of � corresponding to
partitions of the K cell subtypes. A single partition, π , is a set of mutually exclusive and
exhaustive blocks, b, where each block is a subset of {1,2, . . . ,K}, and we write π = {b}.
Of course, the set � containing all partitions π of {1,2, . . . ,K} has cardinality that grows
rapidly with K . We carry along an example involving K = 7 cell types and one three-block
partition taken from the set of 877 possible partitions of {1,2, . . . ,7} (Figure 2).

For any partition π = {b}, consider aggregate subtype frequencies

	b = ∑
k∈b

φk and 
b = ∑
k∈b

ψk,

and extend the notation, allowing vectors 	π = {	b : b ∈ π}, and similarly for 
π . Recall
the partial ordering of partitions based on refinement, and note that as long as π is not the
most refined partition (every cell type is in its own block), then the mapping from (φ,ψ) to
(	π,
π) is many-to-one. Further, define sets

(3) Aπ = {θ ∈ � : 	b = 
b ∀b ∈ π}

FIG. 2. Proportions of K = 7 cellular subtypes in two different conditions. Aggregated proportions of subtypes
3 and 4, subtypes 2, 5 and 6 and subtypes 1 and 7 remain same across conditions, while individual subtype
frequencies change. Depending on the changes in average expression among subtypes, these frequency changes
may or may not induce changes between two conditions in the marginal distribution of some gene’s expression.
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and

(4) Mg,π = {
θ ∈ � : μg,k = μg,k′ ⇐⇒ k, k′ ∈ b, b ∈ π

}
.

Under Aπ there are constraints on cell subtype frequencies; under Mg,π there is equivalence
in the gene-level distribution of expression between certain subtypes. These sets are precisely
the structures needed to address differential distribution DDg (and its complement, equivalent
distribution, EDg) at a given gene g.

THEOREM 1. Let Cg,π = Aπ ∩ Mg,π . For partitions π1 �= π2, Cg,π1 ∩ Cg,π2 = ∅. Fur-
ther, at any gene g, equivalent distribution is

EDg = ⋃
π∈�

Cg,π .

With additional probability structure on the parameter space, we immediately obtain from
Theorem 1 a formula for local false discovery rates,

(5) 1 − P(DDg|X,y) = P(EDg|X,y) = ∑
π∈�

P(Aπ ∩ Mg,π |X,y).

Local false discovery rates are important empirical Bayesian statistics in large-scale testing
(Efron (2007); Muralidharan (2010); Newton et al. (2004)). For example, the conditional
false discovery rate of a list of genes is the arithmetic mean of the associated local false
discovery rates. The partition representation guides the construction of a prior distribution
(Section 2.3) and a model-based method (Section 2.2) for scoring differential distribution.
Setting the stage, Figure 3 shows the dependency structure of the proposed compositional
model and the partition-reliant prior specification.

Key to computing the gene-specific local false discovery rate P(EDg|X,y) is evaluating
probabilities P(Aπ ∩ Mg,π |X,y). The dependence structure (Figure 3) implies a useful re-
duction of this quantity, at least conditionally upon subtype labels z = (zc). For each subtype
partition π and gene g,

THEOREM 2. P(Aπ ∩ Mg,π |X,y, z) = P(Aπ |y, z)P (Mg,π |X,z).

In what follows we develop the modeling and computational elements necessary to effi-
ciently evaluate inference summaries (5) taking advantage of Theorems 1 and 2. Roughly,
the methodological idea is that subtype labels z have relatively low uncertainty and may
be estimated from genome-wide clustering of cells in the absence of condition information

FIG. 3. Directed acyclic graph structure of the compositional model and partition-reliant prior. The plate on
the right side indicates i.i.d. copies over cells c, conditionally on mixing proportions and mixing components.
Observed data are indicated in rectangles/squares, and unobserved variables are in circles/ovals.
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y (up to an arbitrary label permutation). We handle the modest uncertainty in z through a
computationally efficient randomized clustering scheme. Theorem 2 indicates that our com-
putational task then separates into two parts given z. On one hand, cell subtype frequencies
combine with condition labels to give P(Aπ |y, z). Then, gene-level data locally drive the
posterior probabilities P(Mg,π |X,z) that measure differential expression between subtypes.
Essentially, the model provides a specific form of information sharing between genes that
leverages the compositional structure of single-cell data in order to sharpen our assessments
of between-condition expression changes.

2.2. Method structure and clustering. To infer subtypes, we leverage the extensive re-
search on how to cluster cells using scRNA-seq data: for example, SC3 (Kiselev et al. (2017)),
CIDR (Lin, Troup and Ho (2017)) and ZIFA (Pierson and Yau (2015)). We propose distance-
based clustering on the full set of profiles in a way that is blind to the condition label vector
y in order to have as many cells as possible to inform the subtype structure. We investi-
gated several clustering schemes in numerical experiments and allow flexibility in this choice
within the SCDDBOOST software. Associating clusters with subtype labels ẑc estimates the
actual subtypes zc and prepares us to use Theorems 1 and 2 in order to compute separate pos-
terior probabilities P(Aπ |y, ẑ) and P(Mg,π |X, ẑ) that are necessary for scoring differential
distribution. The first probability concerns patterns of cell counts over subtypes in the two
conditions and has a convenient closed form within the double-Dirichlet model (Section 2.3).
The second probability concerns patterns of changes in expected expression levels among
subtypes, and this is also conveniently computed for negative-binomial counts using EBSeq
(Leng et al. (2013)). Algorithm 1 summarizes how these elements combine to get the poste-
rior probability of differential distribution per gene, conditional on an estimate of the subtype
labels.

We invoke K-medoids (Kaufman and Rousseeuw (1987)) as the default clustering method
in scDDboost, and customize the cell-cell distance by integrating two measures. The first
assembles gene-level information by cluster-based-similarity partitioning (Strehl and Ghosh
(2003)). Separately at each gene, modal clustering (Dahl (2009) and in the Supplementary
Material Section 2.2, Ma et al. (2021)) partitions the cells, and then we define dissimilar-
ity between cells as the Manhattan distance between gene-specific partition labels. A second
measure defines dissimilarity by one minus the Pearson correlation between cells, which
is computationally inexpensive, less sensitive to outliers than Euclidean distance and effec-
tive at detecting cellular clusters in scRNA-seq (Kim et al. (2019)). The default clustering
in scDDboost combines these two measures by weighted average, with wC = σP

σC+σP
and

Algorithm 1 SCDDBOOST-CORE

Input:
GENES by CELLS expression data matrix X = (Xg,c)

cell condition labels y = (yc)

cell subtype labels (estimated) ẑ = (ẑc)

Output: posterior probabilities of differential distribution from estimated subtypes:
1: procedure SCDDBOOST-CORE(X,y, ẑ)
2: number of cell subtypes K = length(unique(ẑ))
3: subtype differential expression: ∀g,π compute P(Mg,π |X, ẑ) using EBSeq
4: cell frequency changes: ∀π compute P(Aπ |y, ẑ) using Double Dirichlet model
5: posterior probability: ∀g, P (EDg|X,y, ẑ) ← ∑

π P (Mg,π |X, ẑ)P (Aπ |y, ẑ)

6: return ∀g, P (DDg|X,y, ẑ) = 1 − P(EDg|X,y, ẑ)

7: end procedure
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wP = 1 − wC , where wC , σC , wP , σP are the weights and standard deviations of cluster-
based distance and Pearson-correlation distance, respectively. The software allows other dis-
tances, such as provided by SC3, which we use in some numerical experiments; in any case,
the final distance matrix is denoted D = (di,j ).

Any clustering method entails classification errors, and so ẑc �= zc for some cells. To
mitigate the effects of this uncertainty, scDDboost averages output probabilities from
SCDDBOOST-CORE over randomized clusterings ẑ∗. These are not uniformly random
but rather are generated by applying K-medoids to a randomized distance matrix D∗ =
(di,j /wi,j ), where wi,j are nonnegative weights wi,j = (ei + ej ), where (ei) are indepen-
dent and identically Gamma distributed deviates with shape â/2 and rate â and where â

is estimated from D. (Thus, wi,j is Gamma(â, â) and has unit mean.) The distribution of
clusterings induced by this simple computational scheme approximates a Bayesian posterior
analysis, as we argue in the Appendix where we also present pseudo-code for the resulting
scDDboost Algorithm 2. Averaging over results from randomized clusterings gives addi-
tional stability to the posterior probability statistics (Supplementary Figure S10).

Computations become more intensive the larger is the number K of cell subtypes. Ver-
sion 1.0 of scDDboost is restricted to K ≤ 9; we consider further computational strategies
in Section 5. Inferentially, taking K to be too large may inflate the false positive rate (Sup-
plementary Figure S11). The approach taken in scDDboost is to set K using the validity
score (Ray and Turi (2000)) which measures changes in within-cluster sum of squares as we
increase K . Our implementation, in Supplementary Material Section 2.2, Ma et al. (2021),
shows good operating characteristics in simulation.

2.3. P(Aπ |y, z). We introduce the double Dirichlet mixture (DDM), which is the
partition-reliant prior p(φ,ψ) indicated in Figure 3, in order to derive an explicit formula
for P(Aπ |y, z). We lose no generality here by defining Aπ = {(φ,ψ) : 	b = 
b ∀b ∈ π}
rather than as a subset of the full parameter space, as in (3). Each Aπ is closed and convex
subset of the product space holding all possible pairs of length-K probability vectors.

We propose a spike-slab-style mixture prior with the following form:

(6) p(φ,ψ) = ∑
π∈�

ωπpπ(φ,ψ).

Each mixture component pπ(φ,ψ) has support Aπ ; the mixing proportions ωπ are posi-
tive constants summing to one. To specify component pπ , notice that on Aπ there is a 1-1
correspondence between pairs (φ,ψ) and parameter states,

(7)
{
(φ̃b, ψ̃b,	b),∀b ∈ π

}
,

where

φ̃b = φb

	b

, ψ̃b = ψb


b

and 	b = ∑
k∈b

φk = ∑
k∈b

ψk = 
b.

For example, φ̃b is a vector of conditional probabilities for each subtype, given that a cell
from the first condition is one of the subtypes in b.

We introduce hyperparameters α1
k , α

2
k > 0 for each subtype k and set βb = ∑

k∈b(α
1
k +α2

k )

for any possible block b. Extending notation, let α
j
b be the vector of α

j
k for k ∈ b, βπ be the

vector of βb for b ∈ π , φb and ψb be vectors of φk and ψk , respectively, for k ∈ b, and 	π

and 
π be the vectors of 	b and 
b for b ∈ π . The proposed double-Dirichlet component
pπ is determined in the transformed scale by assuming 
π = 	π and further,

	π ∼ DirichetN(π)[βπ ],
φ̃b ∼ DirichletN(b)

[
α1

b

] ∀b ∈ π,(8)

ψ̃b ∼ DirichletN(b)

[
α2

b

] ∀b ∈ π,
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where N(π) is the number of blocks in π and N(b) is the number of subtypes in b and
where all random vectors in (8) are mutually independent. Mixing over π as in (6), we write
(φ,ψ) ∼ DDM[ω = (ωπ),α1 = (α1

k ), α
2 = (α2

k )].
We record some properties of the component distributions pπ .

PROPERTY 1. In pπ(φ,ψ), ψ and φ are dependent, unless π is the null partition in
which all subtypes constitute a single block.

PROPERTY 2. With k ∈ b, marginal means are

Eπ(φk) = α1
k∑

k′∈b α1
k′

βb∑
b′∈π βb′

and Eπ(ψk) = α2
k∑

k′∈b α2
k′

βb∑
b′∈π βb′

.

Recall from (1) the vectors t1 and t2 holding counts of cells in each subtype in each
condition, computed from y and z. Relative to a block b ∈ π , let t

j
b = ∑

k∈b t
j
k , for cell

conditions j = 1,2, and, let t
j
π be the vector of these counts over b ∈ π . The following

properties refer to marginal distributions in which (φ,ψ) have been integrated out of the
joint distribution involving (2) and the component pπ .

PROPERTY 3. t1 and t2 are conditionally independent, given y, t1
π and t2

π .

PROPERTY 4. For j = 1,2,

pπ

(
tj |tjπ , y

) = ∏
b∈π

{[
�(t

j
b + 1)∏

k∈b �(t
j
k + 1)

][
�(

∑
k∈b α

j
k )∏

k∈b �(α
j
k )

][ ∏
k∈b �(α

j
k + t

j
k )

�(t
j
b + ∑

k∈b α
j
k ))

]}
.

PROPERTY 5.

pπ

(
t1
π , t2

π |y) =
[

�(n1 + 1)�(n2 + 1)∏
b∈π �(t1

b + 1)�(t2
b + 1)

][
�(

∑
b∈π βb)∏

b∈π �(βb)

][ ∏
b∈π �(βb + t1

b + t2
b )

�(n1 + n2 + ∑
b∈π βb)

]
.

Let’s look at some special cases to dissect this result.
Case 1. If π has a single block equal to the entire set of cell types {1,2, . . . ,K}, then

t
j
b = nj for both j = 1,2, and Property 5 reduces, correctly, to pπ(t1

π , t2
π |y) = 1. Further,

pπ

(
tj |tjπ , y

) =
[

�(nj + 1)

�(nj + ∑K
k=1 α

j
k )

][
�(

∑K
k=1 α

j
k )∏K

k=1 �(α
j
k )

][
K∏

k=1

�(α
j
k + t

j
k )

�(t
j
k + 1)

]

which is the well-known Dirichlet-multinomial predictive distribution for counts tj (Wagner
and Taudes (1986)). For example, taking α

j
k = 1 for all types k, we get the uniform distribu-

tion

pπ

(
tj |tjπ , y

) = �(nj + 1)�(K)

�(nj + K)
.

Case 2. At the opposite extreme, π has one block b for each class k, so φ = ψ . Then,
pπ(tj |tjπ , y) = 1, and, further, writing b = k,

pπ

(
t1
π , t2

π |y) =
[

�(n1 + 1)�(n2 + 1)∏K
k=1 �(t1

k + 1)�(t2
k + 1)

][
�(

∑K
k=1 βk)∏K

k=1 �(βk)

][∏K
k=1 �(βk + t1

k + t2
k )

�(n1 + n2 + βk)

]
,

which corresponds to Dirichlet-multinomial predictive distribution for counts t1 + t2 since
t1 and t2 are identical distributed given (φ,ψ) in this case. These properties are useful in
establishing
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THEOREM 3. DDM is conjugate to multinomial sampling of t1 and t2,

(φ,ψ)|y, z ∼ DDM
[
ωpost = (

ωpost
π

)
, α1 + t1, α2 + t2]

,

where

(9) ωpost
π ∝ pπ

(
t1|t1

π , y
)
pπ

(
t2|t2

π , y
)
pπ

(
t1
π , t2

π |y)
ωπ.

The target probability P(Aπ |y, z) is an integral of the posterior distribution in Theorem 3.
To evaluate it, we need to contend with the fact that sets {Aπ : π ∈ �} are not disjoint. Rele-
vant overlaps have to do with partition refinement. Recall that a partition πr is a refinement
of a partition πc if, for any b ∈ πc, there exists s ⊂ πr such that

⋃
b′∈s b′ = b. We say πc

coarsens πr when πr refines πc. Any partition both refines and coarsens itself as a triv-
ial case. Generally, refinements increase the number of blocks. If subtype frequency vectors
(φ,ψ) satisfy the constraints in Aπr , then they also satisfy the constraints of any πc that
coarsens πr ; that is, Aπr ⊂ Aπc . Refinements reduce the dimension of allowable parameter
states. For the double-Dirichlet component distributions Pπ , we find

PROPERTY 6. For two partitions π̃ and π , Pπ̃ (Aπ |y, z) = 1[π̃ refines π ].

This supports the main finding of this section,

(10) P(Aπ |y, z) = ∑
π̃∈�

ω
post
π̃

1[π̃ refines π ].

2.4. P(Mg,π |X,z). We leverage well-established modeling techniques for transcript
analysis, including (Leng et al. (2013), Newton and Kendziorski (2003) and Jensen et al.
(2009)) which characterize equivalent or differential expression in terms of shared or inde-
pendently drawn mean effects. Let Xg,b denote the subvector of expression values at gene g

over cells c with zc = k for which subtype k is part of block b of partition π . Conditioning
on subtype labels z = (zc), we assume that under Mg,π :

1. Between blocks: subvectors {Xg,b : b ∈ π} are mutually independent;
2. Within blocks: for cells mapping to block b, observations Xg,c are i.i.d;
3. Mean effects: for each block b, there is a univariate mean, μg,b, shared by cells mapping

to that block; a priori these means are i.i.d. between blocks.

These assumptions imply a useful factorization marginally to latent means,

(11) P(Xg|Mg,π , z) = ∏
b∈π

f (Xg,b),

where f is a customized density kernel. In our case we use EBseq from (Leng et al.
(2013)): the sampling distribution of Xg,c is negative binomial, and f becomes a partic-
ular compound multivariate negative binomial formed from integrating uncertainty in the
block-specific means (see Supplementary Material Section 2.2, Ma et al. (2021)). Through
its gene-level mixing model, EBseq also gives estimates of {P(Mg,π |z)}: the proportions of
genes governed by any of the different patterns π of equivalent/differential expression among
subtypes. With these estimates and (11) we compute by Bayes’s rule,

P(Mg,π |X,z) ∝ P(Mg,π |z) ∏
b∈π

f (Xg,b).

The proportionality is resolved by calculating over all partitions π .
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3. Numerical experiments.

3.1. Synthetic data. We used splatter (v. 1.2.0) to generate synthetic scRNA-seq data
for which the DD status of genes is known (Zappia, Phipson and Oshlack (2017)), thereby al-
lowing us to measure operating characteristics of scDDboost in a controlled setting. Splat-
ter is a generative system for simulating realistic single-cell RNA-seq data. It accounts for
biological and technical sources of variation and is calibrated from a number of published
data sets. Our hypothetical two-condition comparison involved n = 400 cells and 17,421
genes and mixing over various numbers K of distinct subtypes. To reflect common variation
patterns, we adopted default settings of the primary parameters in splatter and focused our
experiments on four settings of splatter’s location and scale parameters (θ, γ ) which encode
distributional shifts between subtypes. We entertained 12 scenarios encoding four distribu-
tional shift settings for each of three different values for the number K of subtypes, with
composition parameters φ and ψ selected to account for various mixing possibilities. Ten
replicate data sets were simulated on each scenario. These 12 scenarios, encoded by K/θ/γ ,
span states with rather strong signals, like 3/ − 0.1/1 to quite weak signals, like 15/0.1/0.4.
Supplementary Figures S6 and S7 provide a view of the global separation between the sub-
types and the degree of difficulty of the inference task. We note that the mechanistic sampling
model induced by splatter is distinct from the descriptive model underlying scDDboost. We
choose it to reflect anticipated technical and biological sources of variation. Further details
are in Supplementary Material Section 3.1, Ma et al. (2021).

Figures 4 and 5 summarize the true positive rate and false discovery rate of scDDboost
compared to three other methodologies: MAST (v. 1.4.0), scDD (v. 1.2.0) and DESeq2 (v.
1.18.1). scDDboost exhibits very good operating characteristics in this study, as it controls
the FDR in all cases while also delivering a relatively high rate of true positives in all cases.
The beneficial sampling properties are not limited to the 5% FDR threshold, as indicated by
receiver operator characteristic curves (Supplementary Figure S9).

3.2. Empirical study. We applied scDDboost to a collection of previously published
data sets that are recorded at conquer (Soneson and Robinson (2018)). Though not knowing
the truly DD genes, we can examine how scDDboost output compares to output from
several standard methods. We selected 12 data sets from conquer representing different

FIG. 4. True positive rate (vertical) of four DD detection methods in 12 synthetic-data settings (horizontal).
Settings are labeled for K/θ/γ and ranked by scDDboost values. Each method is targeting a 5% false discovery
rate (FDR). The plot shows average rates over replicate simulated data in each setting.
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FIG. 5. False discovery rate (vertical) of methods in the synthetic-data settings (horizontal, same order) from
Figure 4. FDR is approximated from the 12 replicate data sets in each scenario using the known generative
hypothesis states.

species and experimental settings and involving hundreds to thousands of cells. Appendix
Table A1 provides details. Figure 6 compares methods in terms of the size of the reported list
of DD genes at the 5% FDR target level. We see a consistently high yield of scDDboost
among the evaluated methods. For reference, one of these data sets (GSE64016) happens to
be the data behind Figure 1, where we know from other information that some of the uniquely
identified genes are likely not to be false positives.

To check that the increased discovery rate of scDDboost is not associated with an in-
creased rate of false calls, we applied it to a series of random splits of single-condition data
sets (Appendix Table A2). Figure 7 confirms a very low call rate in cases where no changes
in distribution are expected.

We conjecture that scDDboost gains power through its novel approach to borrowing
strength across genes, that is, that the genomic data are providing information about cell sub-
types and mixing proportions, leaving gene-level data to guide gene-specific mixture compo-
nents. One way to drill into this idea is to consider how many genes have similar expression
characteristics to a given gene. By virtue of the EBseq analysis inside scDDboost, we may

FIG. 6. Proportion of DD genes at 5% FDR threshold with respect to total number of genes identified by each
method. Data sets are ordered by scDDboost list size.
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FIG. 7. False positive counts at 5% FDR threshold by several methods on five random splits of nine single-con-
dition data sets from Appendix Table A2.

assign each gene to a set of related genes that all have the same highest-probability pattern of
equality/inequality of means across the subtypes. Say π̂g = argmaxπ P (Mg,π |ẑ,X). In Fig-
ure 8 we show that, compared to DD genes commonly identified by multiple methods (blue),
the set sizes for genes uniquely identified by scDDboost (red) tend to be larger. Essentially,
the proposed methodology boosts weak DD evidence when a gene’s pattern of differential
expression among cell subtypes matches a large number of other genes.

3.3. Bursting. Transcriptional bursting is a fundamental property of genes, wherein tran-
scription is either negligible or attains a certain probability of activation (Raj and van Oude-
naarden (2008)). D3E (Delmans and Hemberg (2016)) is a computationally intensive method
for DE gene analysis rooted in modeling the bursting process. It considers transcripts as in the
stationary distribution from an experimentally validated stochastic process of single-cell gene
expression (Peccoud and Ycart (1995)). Three mechanistic parameters (rate of promoter ac-
tivation, rate of promoter inactivation and the conditional rate of transcription given an active
promoter) characterize the model which allows distributional changes between conditions

FIG. 8. Genes are grouped by their pattern of differential expression across subtypes as inferred by the EBseq
computation within scDDboost for three example datasets. Cumulative distribution functions of the log-scale size
statistic for all genes identified by scDDboost are plotted; red is the subset uniquely identified by scDDboost; blue
are those also identified by the comparison methods (MAST, scDD, or DESeq2). Sets of similarly-patterned genes
tend to be larger (horizontal axis, log size) for genes uniquely identified by scDDboost (red) compared to other
DD genes (blue), at 5% FDR.
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FIG. 9. Absolute values of log fold changes of bursting parameters tend to be larger for 1758 genes uniquely
identified by scDDboost (red) compared to 2983 genes (blue) that are identified at 5% FDR by scDDboost and
other methods: MAST, scDD, and DESeq2.

without changes in mean expression level. For genes identified as DD by scDDboost in
dataset GSE71585, either uniquely or in common with comparison methods MAST, scDD
and DESeq2, Figure 9 shows changes of these bursting parameters. Interestingly, genes
uniquely identified by scDDboost are associated with more significant changes between
estimated bursting parameters than genes that all methods identify. This finding and similar
findings on other data sets (not shown) provide some evidence that scDDboost is able to
detect biologically meaningful changes in the expression distribution.

3.4. Time complexity. Run time complexity of scDDboost is dominated by the cost of
clustering cells and of running EBSeq to measure differences between subtypes. Recall the
notation that n for number of cells, G for number of genes and K for number of subtypes.
Our distance-based clustering of n cells measuring G genes requires on the order of G × n2

operations (see Supplementary Material Section 2.2, Ma et al. (2021)). Further, EBSeq uses
summed counts within each subtype for each gene to compute its density kernel, and there are
Bell(K) differential patterns to compute, where Bell counts the partitions of K . We impose
the computational limit K ≤ 9 in scDDboost (v. 1.0). In a typical case involving 20,000
genes and 200 cells, using 50 of randomized distances, scDDboost is relatively efficient
for K ≤ 6 requiring less than 15 CPU minutes on, for example, a quad-core 2.2 GHz Intel
Core i7 with 16 Gb of RAM. The same data might require 20 to 40 CPU hours when K = 9.
In Section 5 we mention some opportunities to improve this speed.

3.5. Diagnostics. As implemented, scDDboost uses a particular distance matrix to in-
form subtypes and computes probabilities in a model for which expression is a mixture of
constant-shape negative binomials. To check the effect of these assumptions, we consider a
variety of diagnostic calculations using the data sets presented in Sections 3.1 and 3.2. We
first point out that model misspecification may have a limited impact on Type-I error rates, as
evidenced by the permutation study (Figure 7) and also the synthetic-data study (Figure 5),
which does not encode the same modeling assumptions as scDDboost.

To check the within-subtype negative binomial (NB) assumption, we deployed a bootstrap
goodness-of-fit test in three data sets (Yin and Ma (2013)). Fewer than 1.5% of genes show
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evidence against a within subtype NB assumption at a 5% FDR. Further, for most of these
non-NB genes the inference drawn by scDDboost is the same as that drawn by various
other methods (Supplementary Table S3) and where there are differences the scDDboost
call is plausible (Supplementary Figure S12). Among the genes identified by scDDboost
at 5% FDR in the stem-cell example (recall Figure 1), just six of them fail the NB test, and
two of these are uniquely called by scDDboost; further, one of the two genes is cell-cycle
related.

The constant-shape assumption is less well supported empirically, according to a likeli-
hood-ratio test that we developed (Supplementary Figure S13). More than 15% of genes show
evidence against constant shape in the examples considered, though inference on differential
distribution is only mildly affected (Supplementary Table S4, Figure S14). We have similar
findings in the splatter-generated synthetic data. Even with evident model misspecification,
Figure 10 shows that the marginal fit by scDDboost is reasonably accurate in the stem-cell
example.

FIG. 10. Empirical CDF for observed data (green) compared to expression levels simulated from the fitted
NB mixture (pink) for data set GSE64016. The top six panels are genes randomly selected from those genes
being identified as DD by scDDboost and not violating constant shape assumption; the last three genes are
randomly sampled from genes that fail the test of constant NB shape parameter. Each thin pink curve is from one
of the randomized distances; the thicker pink curve represents pointwise averaging over 10 randomized distance
matrices. Note, horizontal scales differ among the panels, and cells are pooled from the two conditions.
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Choice of distance function. We propose distance-based clustering to convey subtype in-
formation (Section 2.2), and one may ask how sensitive are findings to the choice of distance
function. The randomization scheme mitigates variation associated with the specific partition
of cells, but the choice of distance function does affect the computed probabilities. To check
this, we repeated the numerical experiments in Section 3 using the SC3 distance in place of
the default. Importantly, Type I error rates remain in control, as evidenced by the simulation
study and the negative-control permutatation study (Supplementary Figure S15). There can
be substantial differences in yeild at a given FDR control level (Supplementary Table S5).

4. Asymptotics of the double Dirichlet mixture. Summary statistics P(Aπ |y, z), from
Section 2.3, are amenable to a first-order asymptotic analysis that provides further insight into
DDM model behavior. The fact that support sets Aπ for component distributions pπ(φ,ψ)

are not disjoint becomes an important issue. Consider distinct partitions π1 and π2 of subtypes
{1,2, . . . ,K}, and recall that N(π) counts the number of blocks in partition π . In case π2
refines π1, then N(π1) < N(π2), and we also know that Aπ2 ⊂ Aπ1 , since refinement imposes
additional constraints on the pair (φ,ψ) of probability vectors. If the data-generating state
(φ,ψ) ∈ Aπ2 , one might ask how posterior probability mass tends to be allocated among
the other mixture components whose support sets also contain this state. The question is
addressed by the following.

THEOREM 4. Let π1 and π2 denote two partitions for which N(π1) < N(π2) and Aπ1 ∩
Aπ2 is nonempty. Let (φ,ψ) ∈ Aπ1 ∩ Aπ2 denote the data generating state for subtype labels
z1, z2, . . . , zn given i.i.d. Bernoulli condition labels y1, y2, . . . , yn, and recall the posterior
mixing proportions ω

post
π from equation (9) with hyperparameters α

j
i ≥ 1 for i = 1, . . . ,K ,

j = 1,2. Then,

ω
post
π1

ω
post
π2

−→a.s. 0 as n −→ ∞.

Essentially, mixing mass is transferred to components associated with the most refined
partition consistent with a given parameter state. To be precise, let H(φ,ψ) = {π : (φ,ψ) ∈
Aπ } record all the partitions associated with one state. Typically, there is a most refined
partition, π∗ = π∗(φ,ψ) such that

(12) Aπ∗ = ⋂
π∈H(φ,ψ)

Aπ .

This always happens when K ≤ 3. In Supplementary Material Section 4, Ma et al. (2021),
we characterize the exceptional set of states where (12) does not hold. Notably, if (12) does
hold for state (φ,ψ), then, for any π ∈ H(φ,ψ), using Theorem 4 and (10), we have

P(Aπ |y1, . . . , yn; z1, . . . , zn) −→a.s. 1 as n −→ ∞.

This provides conditions under which we expect good performance for large numbers of
cells.

5. Concluding remarks. We have presented scDDboost, a tool for detecting differ-
entially distributed genes from scRNA-seq data, where transcripts are modeled as a mixture
of cellular subtypes. The methodology links established model-based techniques with novel
empirical Bayesian modeling and computational elements to provide a powerful detection
method showing comparatively good operating characteristics in simulation, empirical and
asymptotic studies.

In the software and numerical experiments we made specific choices, such as to use mix-
tures of negative binomial components per gene, and to use K-medoids clustering on partic-
ular cell-cell distances. These choices have evident advantages, but the model structure and
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theory developed in Section 2 carry through for other cases. Future experiments could study
other formulations within the same schema; for example there may be cell-cell distances that
better capture the intrinsic dimensionality of expression programs, including, perhaps dis-
tances based on diffusions (Haghverdi, Buettner and Theis (2015)) or the longest-leg path
distance (Little, Maggioni and Murphy (2017)). Future experiments could also further assess
operating characteristics when the number of cells is very large and the number of reads is
relatively small, as may arise with unique molecular identifiers (Chen et al. (2018)). Further,
assuming a compositional structure to drive model-based computations may not be restric-
tive, since it allows great flexibility in the form of each gene/condition-specific expression
distribution (as coded, they are finite mixtures of negative binomials).

EBSeq currently presents a computational bottleneck for scDDboost, since it searches
all partitions of K and encodes a hyperparameter estimation algorithm that scales poorly
with K . Several approximations present themselves that may redress the problem, since, in
the mixture model context, only patterns π corresponding to relatively probable expression-
change patterns over subtypes have a big impact on the final posterior inference Ma,
Kendziorski and Newton (2020). Even after resolving this bottleneck, there are advantages
to having K small compared to n. Numerical experiments show increased false discoveries
when K is overestimated. But accurate estimation with large K would not be expected to
provide much improved power, since that depends on accurate estimation of subtypes and
their frequencies which relies on K being relatively small compared to n.

APPENDIX

Proof of Theorem 1. If θ ∈ ⋃
π∈�[Aπ ∩Mg,π ], then there exists a partition π for which

θ ∈ Aπ and θ ∈ Mg,π . By construction

f 1
g (x) =

K∑
k=1

φkfg,k(x) = ∑
b∈π

∑
k∈b

φkfg,k(x) = ∑
b∈π

	bfg,k∗(b)(x),

where k∗(b) indexes any component in b, since all components in that block have the same
component distribution owing to constraint Mg,π . Continuing, using the constraint θ ∈ Aπ ,

f 1
g (x) = ∑

b∈π


bfg,k∗(b)(x) = f 2
g (x) ∀x.

That is, θ ∈ EDg .
If θ ∈ EDg , then f 1

g (x) = f 2
g (x) for all x. Noting that both are mixtures over the same set

of components {fg,k}, let {hg,l : l = 1,2, . . . ,L} be the set of distinct components over this
set, and so

f 1
g (x) =

k∑
k=1

φkfg,k(x) =
L∑

l=1

cg,l(φ)hg,l(x) =
L∑

l=1

cg,l(ψ)hg,l(x) = f 2
g (x),

where

(13) cg,l(φ) =
K∑

k=1

φk1[fg,k = hg,l], cg,l(ψ) =
K∑

k=1

ψk1[fg,k = hg,l].

Finite mixtures of distinct negative binomial components are identifiable (Proposition 5 from
Yakowitz and Spragins (1968)), and so the equality of f 1

g and f 2
g implies cg,l(φ) = cg,l(ψ)

for all l = 1,2, . . . ,L. Identifying the partition blocks bl = {k : fg,k = hg,l} and the partition
π̃ = {bl}, we find θ ∈ Aπ̃ ∩ Mg,π̃ . The accumulated probabilities in (13) correspond to 	π̃

and 
π̃ which are equal on Aπ̃ .

Randomizing distances for approximate posterior inference. One way to frame the
subtype problem is to suppose that subtype labels z = (zi) satisfy z = f (�), where � = (δi,j )
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is a n × n matrix holding true, unobservable distances, such as δi,j between cells i and j and
that f is some assignment function, like the one induced by the K-medoids algorithm. Then,
posterior uncertainty in z would follow directly from posterior uncertainty in �. On one
hand, we could proceed via formal Bayesian analysis, say under a simple conjugate prior in
which 1/δi,j ∼ Gamma(a0, d0), for hyperparameters a0 and d0 and in which the observed
distance di,j |δi,j ∼ Gamma(a1, a1/δi,j ). This would assure that δi,j is the expectation of
di,j , with shape parameter a1 affecting variation of measured distances about their expected
values. Not accounting for any constraints imposed by both D and � being distance matrices,
we would have the posterior distribution 1/δi,j |D ∼ Gamma(a0 + a1, d0 + a1di,j ). For any
threshold c > 0, we would find

(14) P(δi,j ≤ c|D) = P

(
U ≥ d0 + a1di,j

c(a0 + a1)

)
,

where U ∼ Gamma(a0 + a1, a0 + a1).
Alternatively, we could form randomized distances d∗

i,j = di,j /wi,j , where wi,j is the
analyst-supplied random weight distributed as Gamma(â, â), as in Section 2.2. Notice that

P
(
d∗
i,j ≤ c|D) = P(wi,j > di,j /c|D)

which is also an upper tail probability for a unit-mean Gamma deviate with shape and rate
equal to â. Comparing to (14), by setting â to equal a0 + a1, and if a0 and d0 are relatively
small, we find

P
(
d∗
i,j ≤ c|D) ≈ P(δi,j ≤ c|D).

In other words, the randomized distance procedure is providing approximate posterior draws
of the underlying distance matrix. In spite of limitations of this procedure for full Bayesian
inference, it provides an elementary scheme to account for uncertainty in subtype allocations.
Numerical experiments in the Supplementary Material make comparisons to a full, Dirichlet-
process-based, posterior analysis.

Pseudo-code.

Algorithm 2 SCDDBOOST

Input:
GENES by CELLS expression data matrix X = (Xg,c)

cell condition labels y = (yc)

number of cell subtypes K

number of randomized clusterings nr

Output: posterior probabilities of differential distribution
procedure SCDDBOOST(X,y,K,nr )

2: distance matrix: D = dist(X) ← pairwise distances between cells (columns of X)
hyperparameters (a0, a1, d0) ← hyper(D). Set â = a0 + a1.

4: repeat
Gamma noise vector: e, with components ∼ Gamma(â/2, â)

6: randomized distance matrix: D∗ ← D/(e1T + 1eT )

ẑ∗ ← K−medoids(D∗)
8: P ∗ ← SCDDBOOST-CORE(X,y, ẑ∗)

until nr randomized distance matrices
10: return ∀genesg, P (DDg|X,y) = 1

nr

∑
D∗ P ∗

g

end procedure
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Empirical datasets.

APPENDIX TABLE A1
Data sets used for the empirical study of scDDboost

Data set Conditions # cells Organism Ref

GSE94383 0 min unstim vs 75 min stim 186, 145 human Lane et al. (2017)
GSE48968-GPL13112 BMDC (2h LPS stimulation) vs

6h LPS
96, 96 mouse Shalek et al. (2014)

GSE52529 T0 vs T72 69, 74 human Trapnell et al. (2014)
GSE74596 NKT1 vs NTK2 46, 68 mouse Engel et al. (2016)
EMTAB2805 G1 vs G2M 96, 96 mouse Buettner et al. (2015)
GSE71585-GPL13112 Gad2tdTpositive vs

Cux2tdTnegative
80, 140 mouse Tasic et al. (2016)

GSE64016 G1 vs G2 91,76 human Leng et al. (2015)
GSE79102 patient1 vs patient2 51, 89 human Kiselev et al. (2017)
GSE45719 16-cell stage blastomere vs mid

blastocyst cell
50, 60 mouse Deng et al. (2014)

GSE63818 Primordial Germ Cells, develop-
mental stage: 7 week gestation
vs Somatic Cells, developmental
stage: 7 week gestation

40, 26 mouse Guo et al. (2015)

GSE75748 DEC vs EC 64, 64 human Chu et al. (2016)
GSE84465 neoplastic cells vs

non-neoplastic cells
1000, 1000 human Darmanis et al. (2017)

APPENDIX TABLE A2
Single-condition data sets used in the random-splitting experiment

Data set Condition # cells

GSE63818null 7 week gestation 40
GSE75748null DEC 64
GSE94383null T0 186
GSE48968-GPL13112null BMDC (2h LPS stimulation) 96
GSE74596null NKT1 46
EMTAB2805null G1 96
GSE71585-GPL13112null Gad2tdTpositive 80
GSE64016null G1 91
GSE79102null patient1 51
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SUPPLEMENTARY MATERIAL

Supplementary material (DOI: 10.1214/20-AOAS1423SUPPA; .zip). Additional mathe-
matical and computational results.

R package (DOI: 10.1214/20-AOAS1423SUPPB; .zip). scDDboost version 2.0.

Code and data (DOI: 10.1214/20-AOAS1423SUPPC; .zip). Source code required for fig-
ures and tables.
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