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Abstract

Understanding how pre-literate children’s language abilities and neural function relate to future 

reading ability is important for identifying children who may be at-risk for reading problems. Pre-

literate children are already proficient users of spoken language and their developing brain 

networks for language become highly overlapping with brain networks that emerge during literacy 

acquisition. In the present longitudinal study, we examined language abilities, and neural 

activation and connectivity within the language network in pre-literate children (mean age = 4.2 

years). We tested how language abilities, brain activation, and connectivity predict children’s 

reading abilities 1 year later (mean age = 5.2 years). At Time 1, children (n = 37) participated in a 

functional near infrared spectroscopy (fNIRS) experiment of speech processing (listening to words 

and pseudowords) and completed a standardized battery of language and cognitive assessments. At 

Time 2, children (n = 28) completed standardized reading assessments. Using psychophysiological 

interaction (PPI) analyses, we observed significant connectivity between the left IFG and right 

STG in pre-literate children, which was modulated by task (i.e., listening to words). Neural 

activation in left IFG and STG and increased task-modulated connectivity between the left IFG 

and right STG was predictive of multiple reading outcomes. Increased connectivity was associated 

later with increased reading ability.
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1 | INTRODUC TION

Learning to read is an acquired skill that depends on many linguistic and cognitive abilities 

and begins to develop with instruction around the time that children first enter school (age 

five to six in the US). Understanding how pre-literate children’s language abilities and 

underlying brain networks relate to future reading ability is important because it allows us to 

better understand the foundation of literacy in the brain, but also, it is important for 

identifying pre-literate children who may be at-risk for reading problems. Previous research 

has shown that brain activation during reading and language processing tasks in young 

readers in related to reading ability as children develop and become more skilled readers 

(Preston et al., 2016; Pugh, Mencl, Jenner, et al., 2000; Pugh, Mencl, Jenner, Katz, et al., 

2001; Pugh, Mencl, Jenner, Lee, et al., 2001; Saygin et al., 2013; Schlaggar & McCandliss, 

2007; Turkeltaub et al., 2003; Yu et al., 2018). Young children who have yet to begin reading 

instruction are already proficient users of spoken language, however, it is not yet clear 

exactly how the existing language processing capacity of the brain becomes integrated into a 

functional reading network. During reading development, children’s brain networks for 

language will overlap with those that are critical for literacy acquisition. In the present study, 

we examined language abilities, neural activation, and functional connectivity within the 

language network of pre-literate children who were between the ages of 3.5 and 5.5 years. 

We tested how language ability, neural activation, and connectivity in pre-readers predict 

reading ability 1 year later once children begin learning to read. To the best of our 

knowledge, this study represents one of the first investigations of how children’s language 

abilities, brain activation, and brain connectivity, relates to reading ability a year later, during 

the earliest stages of literacy development.

Developmental changes in neural language and reading circuits occur as children transition 

from being early/emergent readers to more skilled and fluent readers. Young children’s 

language abilities across the domains of phonological awareness and vocabulary knowledge 

are strongly predictive of later reading success (Goswami & Bryant, 1990; Wagner & 

Torgesen, 1987). Children with better phonological awareness (the awareness of and ability 

to manipulate the phonemes of their native language), who perform better on tasks such as 

identifying syllables or phonemes in a word, are more likely to become better readers (Foy 

& Mann, 2006; Goswami & Bryant, 1990; Hulme, 2002; Hulme et al., 2005; Wagner & 

Torgesen, 1987). The ability to store phonological information in short-term memory 

(phonological memory), is also predictive of reading (Alloway et al., 2004; Baddeley, 1987; 

Chein & Schneider, 2005; McCallum et al., 2006). Although phonological processing has 

received much research focus for reading, fast, automatic item retrieval and naming are also 

key components of skilled and fluent reading (Wolf & Bowers, 1999). Rapid Automatized 

Naming (RAN), which measures a child’s speed and accuracy in naming familiar stimuli 

such as digits, letters, or colors (Denckla & Rudel, 1974), contributes to fluent word reading, 

alongside phonological processing (Wolf & Bowers, 1999).

Tight connections among text (orthography), sound (i.e., phonology), and meaning (e.g., 

vocabulary) are essential to skilled reading (Boukrina & Graves, 2013; Graves et al., 2010; 

Harm & Seidenberg, 2004; Hoffman et al., 2015; Perfetti & Hart, 2002; Perfetti et al., 2006; 

Rueckl, 2016). Processing visual (orthographic) information and accessing corresponding 
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phonological and semantic representations is supported by dedicated brain regions in the left 

hemisphere that overlap with brain regions for language processing. The reading network 

consists of occipitotemporal, temporoparietal, and anterior frontal areas. Orthographic 

processing is relayed to the occipitotemporal region, including a portion of the left fusiform 

gyrus, and often referred to as the “visual word form area”; VWFA, Brodmann’s area (BA) 

37 (McCandliss et al., 2003; Pugh, Mencl, Jenner, et al., 2000; Schlaggar & McCandliss, 

2007). Visual input to the VWFA extends to the temporoparietal system (inferior parietal 

lobule); to the angular gyrus which is involved in lexical-semantic processing (Seghier et al., 

2010), and to the supramarginal gyrus in converting orthography into phonology 

(Bookheimer et al., 1995; Moore & Price, 1999). Language architecture such as the superior 

temporal gyrus (STG, BA 21/22/42) is associated with phonological processing (e.g., Petitto 

et al., 2000; Zatorre & Belin, 2001). The left inferior frontal gyrus (LIFG), which includes 

pars opercularis and pars triangularis (Broca’s area, BA 44 and 45), and pars orbitalis (BA 

47), is involved in syntax, morphology, semantics (anterior LIFG), and articulatory 

phonology (posterior LIFG), including the search and retrieval of information about the 

meanings of words (Bookheimer, 2002; Caplan, 2001; Price, 2000, 2010, 2012; Sabb et al., 

2007).

As children learn to read, a relatively greater reliance on direct orthographic-to-semantic 

coding, rather than orthographic-to-phonological-to-semantic coding, becomes increasingly 

important (Berends & Reitsma, 2006; Hoover & Gough, 1990; Snowling, 2004) though 

there is also good evidence that sublexical phonology continues to play a key role even as 

lexical semantic processing increases (see Harm & Seidenberg, 2004; Lukatela & Turvey, 

1994; van Orden, 1987). This relative shift in the weighting from phonologically mediated 

processing to direct orthographic-semantic processing over reading development is 

associated with a shift in the recruitment of the left STG (classically associated with 

phonological processing) to recruitment of the left IFG (classically associated with lexical 

access) (Jasińska & Petitto, 2014; Turkeltaub et al., 2003), and may reflect children’s 

intensive experience with literacy instruction over their years in primary school, in addition 

to the developmental changes these structures undergo as part of brain maturation. In 

addition, young readers rely on a left temporoparietal–inferior frontal phonological decoding 

circuit for reading; early reading is characterized by activation in this left temporo-parietal 

cortex, also referred to as the dorsal reading circuit (Pugh, Mencl, Jenner, Lee, et al., 2001). 

Over time, this left temporo-parietal network connects to the left IFG to support processing 

of phonological and lexico-semantic information. Learning to read is accompanied by 

increased left-lateralized activation in the left inferotemporal “word form area” (Pugh, 

Mencl, Jenner, Katz, et al., 2001), left inferior frontal (associated with lexical access) and 

middle temporal cortices (Turkeltaub et al., 2003), and disengagement of the right 

inferotemporal cortex (Pugh, Mencl, Jenner, et al., 2000; Pugh, Mencl, Jenner, Katz, et al., 

2001; Pugh, Mencl, Jenner, Lee, et al., 2001; Turkeltaub et al., 2003); these developmental 

processes occur as a function of literacy instruction and overall maturational changes in the 

brain.

Recent research suggests that as children become more skilled readers, and printed language 

processing is increasingly integrated with the left-hemisphere language network (Dehaene et 

al., 2015; Dehaene et al., 2010; Preston et al., 2016). For example, Preston et al. (2016) 
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followed a sample of 68 children for 2 years from the ages of 8.5–10.5 who completed 

behavioral assessments of language and reading, and participated in an fMRI task designed 

to elicit activation for spoken and written language. Children who showed greater left-

hemisphere print-speech co-activation, that is, greater neural activation in the same regions 

for processing both printed and spoken language, showed greater reading skill 2 years later. 

Importantly, this co-activation for print and speech was predictive of future reading above 

and beyond brain activation for print alone, and key behavioral predictors such as 

phonological awareness (Preston et al., 2016).

Children who are poor readers or dyslexics show reduced activation in the left hemisphere 

language and reading network, and corresponding increased activation in the right 

hemisphere and frontal regions (Pugh, Mencl, Jenner, et al., 2000; Pugh, Mencl, Jenner, 

Katz, et al., 2001; Pugh, Mencl, Jenner, Lee, et al., 2001; Pugh, Mencl, Shaywitz, et al., 

2000; Sandak et al., 2004; Shaywitz et al., 1996, 1998, 2002, 2003, 2004, 2007). Patterns of 

neural activation predict reading outcomes in dyslexic children. For example, Hoeft et al. 

(2011) followed a sample of 25 individuals with dyslexia (mean age 14 years) and 25 control 

individuals (mean age 11 years) and observed that activation in the right inferior frontal 

region at the onset of the study predicted reading skill 2.5 years later. However, the 

predictive relationship between right inferior frontal activation and subsequent reading skill 

was limited to the dyslexic cohort. McNorgan et al. (2011) followed 26 typically developing 

children between the ages of 9 and 15 years and observed that brain activation during a word 

rhyming task was related to future pseudoword reading ability. Critically, this predictive 

relationship was age dependent: activation associated with phonological decoding (left IFG) 

was predictive of reading in younger children (9–11 years), whereas activation associated in 

orthographic processing (e.g., visual word form area; left fusiform gyrus) was predictive of 

reading in older children (13–15 years). Such a pattern is consistent with the early role that 

phonological processing has in reading, followed by a later shift to great direct processing 

between orthography and semantic access.

Beyond activation in the brain’s language and reading circuitry, functional connectivity in 

the emerging reading circuitry informs how connections within this distributed network are 

related to developmental changes in reading ability. Previous research finds that increased 

connectivity between regions in the reading circuit is associated with better reading 

performance (Finn et al., 2014; Pugh, Mencl, Shaywitz, et al., 2000; Wang et al., 2013). For 

example, 9-year old children with dyslexia show reduced connectivity in the visual word 

form area compared with typically developing children (Finn et al., 2014), and adolescents 

and adults with dyslexia showed poorer connectivity between the angular gyrus and reading-

related regions in the temporal and occipital cortices (Pugh, Mencl, Shaywitz, et al., 2000). 

These functional connectivity findings also correspond to observations about anatomical 

connectivity in younger children, suggesting that reduced functional connectivity may have a 

structural basis (Saygin et al., 2013). White matter volume and integrity in the left arcuate 

fasciculus, which connects anterior and posterior language regions in the brain, is smaller 

and weaker in kindergarteners who are at risk of dyslexia due to poor phonological 

awareness skills (Saygin et al., 2013). However, these results were based on populations 

with or at-risk for reading disorders, rather than healthy typical development. In a study of 

healthy 10-year-old children, increased functional connectivity between regions associated 
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with semantic processing was predictive of improvement in behavioral performance on a 

semantic judgment task 2 years later (Lee et al., 2016). Importantly, functional connectivity 

in the semantic network predicted behavioral performance above and beyond the variance 

explained by the amount of activation alone (Lee et al., 2016). Recently, graph theoretical 

approaches have also been applied to examining task-related (i.e., reading) connectivity 

(Wang et al., 2013). Wang et al. (2013) studied the relation between individual differences in 

children’s reading skill and large-scale patterns of connectivity across hubs corresponding to 

regions that comprise the reading circuit and areas associated with aspects of higher 

cognition. Children between the ages of 9 and 15 (mean age 11.92 years) who demonstrated 

better reading performance showed greater short-range functional synchrony in hub regions 

known to be critically important to reading, and greater long-range connectivity between 

networks (Wang et al., 2013). Increased long-range frontal to temporal reading task-related 

connectivity is thought to support higher cognitive engagement, and indeed, the pattern of 

increased long-range connectivity is generally observed over development (Fair et al., 2007, 

2009).

More recent work by Yu et al. (2018) showed that functional connectivity patterns of 5-year-

olds was predictive of reading outcomes. Yu et al. (2018) compared patterns of brain 

activation and functional connectivity during a fMRI phonological processing task with 

reading scores when children first entered kindergarten (pre-readers), 1 year later at the end 

of kindergarten (beginning readers), and 3 years later (emergent readers). Pre-readers 

showed greater activation in the left inferior parietal cortex and precuneus compared with 

emergent readers. Neural pathways between left inferior parietal cortex and other key 

reading regions, left inferior frontal gyrus, left occipitotemporal cortex, and the right angular 

gyrus, showed increased connectivity over time. Specifically, increased connectivity was 

observed in children whose phonological abilities increased most over the course of reading 

development. The strength of the connection between the left inferior parietal cortex and the 

left occipitotemporal cortex at pre-reading stages significantly predicted reading skills at 

emergent reading stages (Yu et al., 2018).

There are well-described changes in activation across regions that form the reading network: 

increased engagement of the left hemisphere with corresponding disengagement of the right 

hemisphere, increased activation in the left inferior frontal cortex and the visual word form 

area, as well as the co-activation for both spoken and written language. Furthermore, studies 

of functional connectivity of the reading circuit (and regions implicated in higher cognition) 

indicate that increased connectivity within this increasingly specialized reading network and 

long-range connectivity with other cognitive hubs is associated with better reading 

performance. Imaging studies of reading, in both typically developing children and children 

with dyslexia, mainly focus on older children who are already readers. Comparatively less is 

known about how the pre-literate brain’s emerging language and reading network relates to a 

child’s future reading ability (but see Yu et al., 2018). The developmental relation between 

activation and connectivity in the classic reading network, and later reading skill during 

early stages of reading development remains understudied. The functional organization of 

the brain before a child learns to read (or begins formal literacy instruction) can inform how 

that child will learn to read and whether she will encounter difficulties.
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In the present study, we directly addressed the extent with which task-related activation and 

connectivity were predictive of future reading ability in a sample of preliterate children who 

were just beginning to learn to read. Previous work, chiefly Yu et al. (2018), has shown that 

5-year-old pre-readers’ connectivity between left inferior parietal cortex and other hubs in 

the reading network predicted later reading skill. Our study extends this line of research to a 

younger group of pre-readers. Our young sample (3.5–5.5 years of age) allowed us to 

examine whether the neurodevelopmental patterns observed for older children would be 

present even before children acquired formal experience with literacy, and critically, during a 

time in development when the brain’s language network is still developing. Children 

participated in a functional near infrared spectroscopy (fNIRS) neuroimaging paradigm that 

involved listening to speech.

While undergoing fNIRS neuroimaging, children completed a passive spoken language task 

where blocks of real words and pseudowords were aurally presented, as well as standardized 

assessments of language abilities. Words and pseudowords differentially activate neural 

regions; this difference is hypothesized to reflect greater effort associated with the search 

and retrieval of meaning in word-like forms (nonwords) compared with real words (Heim et 

al., 2005; Mechelli et al., 2003; Philipose et al., 2007). For instance, the inferior frontal 

gyrus and inferior parietal lobule has shown greater activation for nonwords compared to 

words (Bookheimer et al., 1995; Graves et al., 2010; Heim et al., 2005; Herbster et al., 1997; 

Mechelli et al., 2003; Shaywitz et al., 2002).

One year later, at the end of the first grade, children were re-assessed on the same behavioral 

language measures as well as additional reading measures. This design allowed us to 

examine how behavioral indices of language skill, and neural activation and connectivity 

underlying spoken language processing, related to future reading outcomes. Specifically, we 

examined both neural activation patterns using general linear model (GLM)-based analyses 

and task-related connectivity using psychophysiological interaction (PPI) analyses. Standard 

GLM analysis can reveal functionally segregated brain areas that change their activity in 

response to task conditions (e.g., listening to words or pseudowords, or baseline condition 

consisting of fixation). On the other hand, PPI is a measure of functional connectivity that 

provides complementary information about how these brain areas are functionally integrated 

(Friston, 2011; O’Reilly et al., 2012), and has been applied to study language processing 

(Kireev et al., 2015; La et al., 2016), and recently with fNIRS data (Hirsch et al., 2017). PPI 

does not permit inferences about casual relations between activation in separate brain 

regions, but rather PPI can test the interactions between different brain regions during 

language processing in different psychological conditions (i.e., task—words, pseudowords; 

rest). Using both approaches, we examined, first, the extent with which activation in left 

hemisphere language areas (and their right hemisphere homologues) during language 

processing in preliterate children, and secondly, whether task-modulated connectivity 

between regions in the classic language and reading circuitry, was predictive of future 

reading ability. Understanding how functional neural segregation (specific brain regions that 

support reading functions) and integration (emergence of reading networks across those 

brain regions) of pre-literacy language processing relates to future learning outcomes can 

shed new light on the mechanisms by which a neural circuitry for reading forms and 

integrates with the existing speech network. Critically, this reading network forms in 
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response to intensive reading practice (e.g., daily formal literacy instruction in the 

classroom). Although activation in regions that support literacy is well-documented, 

complex cognition (i.e., learning to read) is an emergent property of the integration of 

specific brain regions, rather than regional activation. The regions that make up the reading 

network undergo specialization for reading through their increasing integration with other 

brain structures. Here we examine the pre-reading network prior to experience-driven (i.e., 

reading instruction) neural specialization. This allows us an even earlier insight into the role 

of inter-regional connectivity in shaping a specialized cognitive system.

2 | METHOD

2.1 | Participants

Thirty-seven participants participated in near-infrared spectroscopy (NIRS) neuroimaging 

and behavioral assessments in the laboratory across multi-day visits. Of these 37 

participants, 28 returned a year later to complete additional behavioral assessments. Time 1 

participants (n = 37) were between the ages of 3.4 and 5.4 (M = 4.2, SD = 0.5), and had not 

yet started formal literacy instruction at school, termed pre-literacy. Time 2 participants (n = 

28) were between the ages of 4.4 and 6.4 (M = 5.3, SD = 0.6) and were in the earliest stages 

of learning to read, termed emergent literacy. See Table 1 for participant details. Participants 

were recruited in preschool or during the first quarter of kindergarten to ensure that they 

have not yet been exposed to formal literacy education. Only native English speakers who 

were learning to read in English in school were included in the study. Parents of children 

reported home literacy exposure (on a likert scale from 1 to 10; 10 being highest), the 

number of times per week parents read to their child, and the total number of book in the 

house (on a likert scale from 1 to 5; 5 being highest). Overall, most parents rated high home 

literacy exposure (M = 8.82; SD = 0.46; range 7–9); reading to their children (M = 2.88/

week, SD = 0.48, range 1–3), and having books at home (M = 4.61; SD = 0.92; range 1–5). 

Children who had a formal diagnosis of cognitive delay or developmental disorders, such as 

autism spectrum disorder or Down’s syndrome, did not meet the eligibility criteria for the 

needs of this study.

2.1.1 | Socioeconomic status—Children came from a range of socioeconomic (SES) 

backgrounds. We collected parental reports of total family income, parental education, and 

parental occupation status as an index of socioeconomic status. SES was coded as a 

composite score based on total family income level (1—lowest, 5—highest), mother’s 

highest educational attainment (1—lowest, 7—highest), and father’s highest educational 

attainment (1—lowest, 7—highest) for a total possible score out of 19 (M = 16.4, SD = 2.3).

2.2 | Behavioral assessment

Behavioral testing sessions assessed children’s speech, language, reading, and cognitive 

abilities. Standardized assessments included the Comprehensive Test of Phonological 

Processing Second Edition (CTOPP-2; Wagner et al., 2009, 2013), the Peabody Picture 

Vocabulary Test Fourth Edition (Dunn et al., 2007), and the Woodcock-Johnson III Tests of 

Achievement (WJ-III; Woodcock et al., 2001). Children’s verbal and performance 

intelligence quotient (IQ) was measured using the Wechsler Abbreviated Scale of 
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Intelligence (WASI-II; Wechsler, 2011) or the Wechsler Preschool and Primary Scale of 

Intelligence, Fourth Edition, for children under the age of six (WPPSI-IV; Wechsler, 2012). 

The CTOPP-2 was used to assess reading-related phonological processing skills in English 

(Wagner et al., 2013). The PPVT-4 was used to assess receptive vocabulary skills in the 

English language (Dunn et al., 2007). The Woodcock-Johnson Tests of Achievement—

Edition III was used to assess children’s reading abilities, including decoding in letter-word 

identification, “word attack” pseudoword reading, and passage comprehension; this 

assessment was administered at Time 2 only. All assessments were widely used norm-

referenced tests that meet stringent standards of reliability and are valid measures of 

phonological processing, receptive vocabulary, and reading respectively.

2.3 | Neuroimaging task and procedure

Before starting the task, participants were given instructions to listen to the words played 

through headphones on their head and look at a fixation cross that appeared in the middle of 

the monitor. We used a block design to present 22 auditory blocks (11 real words and 11 

pseudo-words). Blocks were presented in random order. Blocks consisted of one word or 

nonword trials that repeated six times with an inter-stimulus interval of 100 ms. Each block 

was 7 seconds in length. Rest periods between blocks were 13 seconds (see Figure 1).

Short video clip showing animals (Animal Planet) was presented between blocks for 5 

seconds to help keep young children engaged. These short clips were shown immediately 

after rest periods and just prior to a new block start. The entire experiment, including set-up, 

lasted approximately 45 minutes. PsychoPy software (Peirce, 2007, 2008) was used to 

present stimuli. Stimuli in each of the word and nonword conditions consisted of only 

consonant-vowel-consonant (CVC) words with equal representation of short vowels, long 

vowels, and diphthongs. Nonwords were matched to real words for length, orthographic 

neighborhood densities, phonological neighborhood densities, and summed bigram 

frequencies, see Table 2.

2.4 | fNIRS data acquisition

Children’s hemodynamic response was measured with a Shimadzu Lab NIRS Near Infrared 

Spectroscopy system with 39 optodes (58 channels), acquiring data at 15.385 Hz. fNIRS is 

exceptionally wellsuited to studying young children and infants because of its participant-

friendly set-up (Jasińska et al., 2017; Jasińska & Petitto, 2014; Petitto et al., 2012; 

Quaresima et al., 2012; Quaresima & Ferrari, 2016; Shalinsky et al., 2009). Like fMRI, 

fNIRS measures the brain’s hemodynamic response, but the fNIRS measurements are 

completed while a child is comfortably seated in a chair. fNIRS is less susceptible to 

movement artifacts, and the experiment does not require mock scanning trials. Overall, these 

advantages permit neuroimaging studies with younger cohort of participants that may not 

tolerate fMRI well.

The lasers were factory set to 780, 805, and 830 nm. The 20 lasers and 19 detectors were 

segregated into alternating grid placement (see Figure 2).

Once the participant was comfortably seated, a cap was placed on the participant’s head. 

Positioning of the array was accomplished using the 10–20 system (Jasper, 1958) to 
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maximally overlay the key regions of interest (for additional details, including 

neuroanatomical fMRI-fNIRS co-registration procedures to establish neuroanatomical 

precision of probe placements (Jasińska & Petitto, 2013, 2014; Kovelman, Baker, et al., 

2008; Kovelman, Shalinsky, et al., 2008; Kovelman et al., 2009; Petitto et al., 2012; 

Shalinsky et al., 2009). The depth of recording in the cortex is approximately 3 cm. Prior to 

recording, every channel was tested for optimal signal to noise ratio using Lab NIRS fNIRS 

inbuilt software.

2.5 | Data analysis

2.5.1 | fNIRS data preprocessing—Data were analyzed using a Matlab-based NIRS-

SPM Version 4 (Jang et al., 2009; Ye et al., 2009), which uses the neuroimaging suite 

SPM12. Using the modified Beer–Lambert equation, NIRS-SPM converts optical density 

values into concentration changes in oxygenated and deoxygenated hemoglobin response 

(HbO and HbR, respectively). Changes in HbO and HbR concentrations were filtered with a 

HRF filter and decomposed using a Wavelet-Minimum Description Length (MDL) 

detrending algorithm in order to remove global trends resulting from breathing, blood 

pressure variation, vasomotion, or participant movement artifacts and improve the signal-to-

noise ratio (Jang et al., 2009). We filtered out step functions that were identified in each time 

series. This allowed us to correct for motion artifacts as well as drift in signal related to 

respiration.

2.5.2 | Spatial registration—NIRS channels were registered to MNI space with the 

Haskins Pediatric Brain Atlas (Molfese et al., 2015) in NIRS-SPM’s standalone registration 

function (Singh et al., 2005) by using a three-dimensional digitizer (Polhemus Corp.). 

Registration was done individually for each child. The spatial registration function yielded 

MNI coordinates represented by each channel with corresponding labels for anatomical 

regions, including Brodmann labels, maximally located at each channel position. 

Specifically, the function provides a coverage percentage for a given anatomical region at 

each channel. This information was used in the selection of specific channels for region of 

interest (ROI) definition where coverage percentage was above 70%; specifically, channel 34 

for Wernicke’s area (STG, Supramarginal gyrus, and Angular gyrus), and channels 27 and 

38 for Broca’s area (see Figure 2).

2.5.3 | Time 1 statistical parametric mapping (SPM)—We used a general linear 

model-based analysis approach that allows for the creation of activation maps with super-

resolution localization. Models for HbO and HbR contain experimental regressors convolved 

with the corresponding hemodynamic response function with time derivatives. NIRS-SPM 

creates the models for HbO and HbR with opposing polarity so that a significant model fit 

for HbO indicates increased concentration and for HbR decreased concentration. Group 

activation maps include Sun’s tube formula correction (Sun, 1993; Sun & Loader, 1994). 

Sun’s tube formula and Lipschitz–Killing curvature-based expected Euler characteristics are 

applied for p-value corrections (Li et al., 2012). Group activation maps were generated 

comparing word and nonword conditions relative to baseline, where baseline is defined as 

the 13-second interblock interval consisting of 7 seconds of fixation followed by 5 seconds 

of video. Individual subject GLM beta weights in channels corresponding to left STG, right 
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STG, and left IFG were extracted for use in additional analyses detailed below. HbR results 

are less susceptible to noise and more reliable in test–retest as compared to HbO and 

therefore these more conservative results are reported below (Dravida et al., 2018).

2.5.4 | Time 1 psychophysiological interactions—Psychophysiological 

interactions (PPI) analysis assesses task-dependent increases in functional connectivity 

between two regions; specifically PPI analysis can address how activation within a seed ROI 

is correlated with task-dependent activation in another region. PPIs allow us to examine the 

contribution of one ROI to another with regard to the experimental condition. PPI analysis is 

based on the general linear model (GLM) in which the main effects for task is removed from 

the neural signal in the ROI, and subsequent residual signals, and the interaction between 

activation in the seed ROI and voxels in other regions are entered into the model. PPI 

analysis has been implemented largely with fMRI, PET, and EEG (Friston, 1994, 2011; 

Friston et al., 1997), and recently for fNIRS (Hirsch et al., 2017). Here similar to Hirsch et 

al. (2017), PPI analysis is applied to functional near-infrared spectroscopy data.

Standard GLM analysis was conducted to model the contribution of predictors (i.e., onset 

and offset of experimental stimuli) to the time-course of each channel, as described above in 

SPM. To estimate the neural signal from the hemodynamic response, the first eigen-variate 

time-course data of the voxels within the seed ROI were deconvolved. We performed PPI 

analyses independently on two seeds: a seed ROI of left IFG and left STG. These are key 

regions in the left hemisphere language and reading circuit. The PPI analyses consisted of 

(1) a vector corresponding to the experimental factor, (2) the deconvolved neural signal in 

the ROI, and (3) the interaction term generated from the element-by-element product of the 

mean-centered time-course neural signal data in each region. A contrast vector where the 

interaction term is weighted 1 and all other regressors are weighted 0 assigns the main 

effects of the experimental task and physiological correlations as covariates of no interest. 

This contrast accounts for voxels which may exhibit non-task-specific correlations with the 

seed ROI due to shared anatomical connectivity or subcortical inputs. Group maps were 

generated comparing the activation to the word versus nonword task relative to baseline as 

modulated by activation in the seed ROI.

2.5.5 | Time 2 reading ability—We examined whether behavioral and neural variables 

at Time 1 were predictors of children’s reading abilities at Time 2. Time 1 behavioral 

variables were age, socioeconomic status, IQ, letter knowledge, phonological awareness, 

phonological memory, rapid naming, and picture vocabulary. We selected the Time 1 neural 

variables based on the results of SPM and PPI analyses described above. Time 1 variables 

were HbR beta weights from our SPM GLM analysis, as well as mean PPI values 

corresponding to left IFG-to-right STG, left IFG-to-left STG, and left STG-to-right STG. 

PPI values for this analysis were selected based on the a priori ROI selection of “classic” left 

hemisphere language regions: left IFG, left STG, as well as regions which showed 

significant patterns of activation during language processing as revealed by GLM analyses. 

The dependent Time 2 variables indicating reading ability were letter-word decoding, “word 

attack” pseudoword reading, and passage comprehension from the Woodcock Johnson Test 

of Achievement.
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We conducted forward and backward stepwise regression, an optimal approach compared 

with forward- or backward-only regression (Halinski & Feldt, 1970), to identify optimal 

models that predict Time 2 reading outcomes from Time 1 behavioral and neural variables. 

We used the stepAIC function of the MASS package (Venables et al., 2002) in R software 

(The R Core Team, 2016). This function selects optimal models based on comparisons of the 

Akaike information criterion (AIC) per model (Akaike, 1973). ANOVA analyses are 

performed on each model’s AIK value to identify the optimal multiple regression model. 

Three models were analyzed, each for letter-word decoding, “word attack” pseudoword 

reading, and passage comprehension. The three tasks constitute a comprehensive measure of 

early reading ability. Given that three separate models, for each outcome variable, were 

evaluated, we adopted Bonferroni correction and results that met p < 0.017 were interpreted.

3 | RESULTS

3.1 | Neural activation patterns at time 1

Greater HbR activation was observed for both words and nonwords compared with baseline 

in the left and right STG. We also observed a main effect of word type (word, nonword). 

Greater HbR signals were observed for words compared with nonwords in the left IFG and 

the right inferior parietal lobule (IPL). We also observed greater HbR activation for 

nonwords compared with words in the right middle temporal gyrus (MTG). Figure 3 shows 

activation for speech compared with baseline in the left and right hemispheres, of HbO and 

HbR time series. Figure 4 shows group contrasts maps between words and nonwords and 

average activation for each word type and baseline conditions by region. Please see Table 3 

for details.

3.2 | Psychophysiological interaction between word type and neural activation patterns at 

time 1

The left IFG seed showed significant task-modulated connectivity with the right STG (peak 

t(35) = 2.592, p = 0.05; see Figure 5). That is, functional connectivity between the left IFG 

and right STG was differed while participants listened to words versus nonword stimuli. We 

did not observe significant PPI connectivity between our left STG ROI seed and any other 

left or right hemisphere region.

3.3 | Brain-behavior results

Histograms of children’s Time 1 and Time 2 language and reading scores are shown in 

Figure 6.

3.3.1 | Letter-word decoding—Children’s letter-word decoding ability at Time 2 was 

significantly predicted by phonological awareness at Time 1. Letter-word decoding at Time 

2 was also marginally predicted by phonological memory, connectivity (LIFG-RSTG PPI), 

and bilateral STG connectivity (LSTG-RSTG PPI) at Time 1.

3.3.2 | Pseudoword reading—Children’s pseudoword reading ability at Time 2 was 

significantly predicted by IQ, phonological awareness, LIFG activation, and connectivity 
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(LSTG-RSTG PPI) at Time 1. Pseudoword reading at Time 2 was also marginally predicted 

by right STG activation and connectivity (LIFG-LSTG, LIFG-RSTG PPI) at Time 1.

3.3.3 | Passage comprehension—Children’s passage comprehension ability at Time 

2 was significantly predicted by phonological awareness and connectivity (LSTG-RSTG, 

LIFG-RSTG PPI) at Time 1, and marginally predicted by phonological memory at Time 1.

In summary, phonological awareness at Time 1 was a significant predictor of all Time 2 

reading abilities. Increased phonological awareness scores were associated with increased 

reading scores. Beyond the proportion of variance in reading ability accounted for by 

language ability at Time 1, neural activation in left IFG also accounted for additional 

variance. Most notably, Time 1 connectivity during our word and nonword speech task (as 

compared to baseline) between left IFG and right STG and between left STG and right STG 

significantly accounted for children’s reading abilities at Time 2 beyond behavior (namely, 

phonological awareness, phonological memory) and neural activation. Increased 

connectivity was associated with increased reading ability. See Table 4 for detailed statistical 

values.

4 | DISCUSSION

We examined pre-literacy language abilities, neural activation, and connectivity in language 

networks in young children between the ages of 3.5 and 5.5 who had not yet begun formal 

literacy instruction. Specifically, we measured the extent with which activation in left 

hemisphere network for language processing and task-modulated connectivity between 

regions in this network was predictive of future reading ability. In combination with 

behavioral assessments of language and literacy, neural activation and task-related 

connectivity analyses were used to understand how functional neural segregation (specific 

brain regions that support reading functions) and integration (emergence of reading networks 

across those brain regions) of pre-literacy language processing relate to future reading 

outcomes.

The children in our study showed canonical neural responses for processing spoken 

language: greater activation was observed for both words and nonwords compared to 

baseline in bilateral STG. With respect to connectivity, activation in the right STG was 

related to activation in the left IFG depending on whether children are listening to speech 

versus baseline conditions. Bilateral STG supports speech processing at all ages, but there 

are divisions between the left and right hemispheres’ contributions to speech processing 

(Zatorre & Belin, 2001). For example, the right hemisphere has a preference for processing 

spectral change information over long integration time windows, whereas the left 

hemisphere has a preferences for integrating rapid spectral changes, which may be 

modulated by task demands (Boemio et al., 2005). The connectivity between the left IFG 

and right STG in particular may reflect the different computations of the right hemisphere 

during speech processing (Brechmann & Scheich, 2005). Moreover, as language skills 

improve, the right hemispheres’ role in language processing may be downregulated as left 

hemisphere engagement increases, that is, increased left lateralization over development 

(Holland et al., 2007; Spironelli & Angrilli, 2009), and also becomes increasingly more 
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specialized for processing written language. Over reading development, greater 

temporoparietal cortex activation is observed early on, when reading is more dependent on 

phonologically mediated print to meaning pathways. We observed speech-related 

modulation between activation in right hemisphere temporoparietal cortex, which is 

associated with early stages of reading development, and activation in left hemisphere 

inferior frontal cortex, which is associated;with the later processing of print and speech.

Moreover, we observed neural sensitivity to lexicality (words versus nonwords) in the left 

IFG, right IPL, and right MTG. The left IFG is classically associated with language, 

including phonological and morphological processing, syntax, and lexical access. Over the 

course of reading development, left IFG engagement increases which may correspond to a 

relatively greater reliance on direct orthographic-to-semantic coding that is a hallmark of 

skilled reading, rather than orthographic-to-phonological-to-semantic coding which 

characterizes emergent reading stages (Berends & Reitsma, 2006; Hoover & Gough, 1990; 

Jasińska & Petitto, 2014; Snowling, 2004; Turkeltaub et al., 2003). Moreover, word and 

nonwords exploit differences in reading processing related to the conversion of graphemes 

(i.e., letters) to phonemes (i.e., sounds) and reading processing related to the lexical access 

of semantic content. The activation of the right IPL for nonwords versus words for pre-

readers in our study differs from Yu et al.’s (2018) findings where decreased left IPL 

activation was observed over development from the pre-reading to emergent reading stages, 

and increased connectivity between the left IPL and left IFG, posterior occipitotemporal 

cortex, and right angular was associated with phonological processing. Yu et al., 

hypothesized that decreased activation in this region known to have a role in letter-sound 

mapping might reflect a more fine-tuned specialized mechanism, specifically in response to 

extensive literacy instruction in the classroom that targets letter-sound mapping. In the 

present study, we examined younger children before they experience formal literacy 

instruction; children who have not yet had the critical exposure to prompt this neural 

specialization. Indeed, observed activation in the right hemisphere in this study, rather than 

the left, may reflect more immature lateralization processes which occur concurrently with 

experience-based neural specialization. Furthermore, the differences between Yu et al.’s 

(2018) finding and the present study may reflect the different developmental stages that were 

investigated in each study. Yu et al., (2018) examined pre-readers who were 5 years old 

(4.6–6.2 years), whereas the current study examined pre-readers who were 4 years old 

(between 3.4 and 5.4 years). Between 4 and 5 years of age, children’s brains continue to 

undergo maturation. Over childhood, cortical thickness gradually declines, cortical white 

matter volume, and fractional anisotropy (FA) increase—changes that reflect the increasing 

organization of white matter tracts myelination, and functional networks continue to 

specialize, particularly in response to experience (Gilmore et al., 2018). Pre-readers who are 

not yet receiving formal literacy instruction at school are nonetheless gaining exposure with 

language and informal literacy, given the strong reciprocal associations between language 

and literacy, this experience would support children’s phonological processing skills and 

may be reflected in the downregulation of the IPL among older pre-readers (Yu et al., 2018). 

Although the findings of this study are not directly comparable to Yu et al. (2018), given that 

Yu et al. (2018) examined longitudinal changes in brain activation among an older cohort of 

children, and the present study examined brain activation and connectivity in younger 
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children in relation to later behavioral outcomes, both studies converged on the relevance of 

connectivity for future reading outcomes, as discussed further below.

Language abilities at Time 1 (phonological awareness, phonological memory) significantly 

predicted reading skills at Time 2, including letter-word decoding, pseudoword reading, and 

passage comprehension. Neural activation patterns in the left IFG at Time 1 also predicted 

reading outcomes, specifically passage comprehension. Decoding and pseudoword reading 

is thought to be predominantly supported by phonological processing and grapheme-to-

phoneme mapping, whereas passage comprehension requires the recruitment of multiple 

level of linguistic knowledge, including syntax and semantics. The observation that 

activation of the left IFG, which is associated with these linguistic faculties, is related to 

higher level reading ability (i.e., passage comprehension) is in line with previous reports 

(Ryherd et al., 2018).

Most importantly, task-modulated connectivity between the left IFG and right STG, and 

between left and right STG was predictive of reading outcomes. Increased connectivity was 

associated with increased reading ability. This finding suggests that specialized cognitive 

abilities such as reading may develop as a product of earlier connectivity between regions 

that are key to language processing. Crucially, given that we were able to examine this 

“precursor to reading” network before formal literacy exposure, our findings may suggest 

that experience (i.e., literacy instruction) may drive the specialization of this existing 

network.

Moreover, beyond the proportion of variance in reading ability accounted for by language 

ability at Time 1, neural activation in left IFG also accounted for additional variance. 

Notably, the predictive value of connectivity was beyond that of Time 1 behavior and neural 

activation alone. To be sure, significant predictive value was added by collecting both 

behavioral and neural measures in this sample of young, preliterate children. fNIRS’ ease of 

use with young children, as compared to fMRI, permitted insights into earlier stages of 

development at an age where fMRI can often be a challenge.

4.1 | Limitations and future directions

There are also limitations of this study to consider. The study sample consisted of only 

monolingual English-speaking children and the extent with which our findings extend to 

other orthographies, languages, and bilingual/biliterate children requires further 

investigation. Another limitation of the current study is the small sample size, and the 

reduced Time 2 sample (n = 28) from Time 1 (n = 39); interpreting the results should remain 

cautious. Moreover, while we define pre-readers (Time 1 sample) as children who have not 

yet begun formal literacy instruction (i.e., at school), children may have more informal 

experience with reading prior to starting school (e.g., parents read to children). Indeed, the 

parents do report informal literacy exposure. There is a need to acquire more detailed 

information concerning pre-reading activities, particularly as these are likely to vary across 

families, and sample from a more diverse range of families with more varied literacy 

exposure at home.
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Future work will expand on the current findings by following neurodevelopmental changes 

for reading in children for a longer period spanning critical years for literacy development, 

including neuroimaging at multiple time points. More specifically, the current study 

examined brain activation and connectivity of 3.5- to 5-year-old pre-readers at one time 

point, and related work (i.e., Yu et al., 2018) examined longitudinal changes in brain 

activation and connectivity of 5-year-old pre-readers. However, the results of this study 

suggest that neurodevelopmental changes and children’s language experience between 4 and 

5 years of age are relevant to understanding a child’s future reading outcomes. Future work 

should examine the development of pre-readers at multiple time points (i.e., age four, age 

five) in relation to later outcomes.

5 | CONCLUSION

Functional connectivity in the emerging reading circuitry is related to developmental 

changes in reading ability. Previous research with older children who are already reading has 

shown that increased connectivity between regions in the reading circuit corresponds to 

increased reading performance (Finn et al., 2014; Pugh, Mencl, Shaywitz, et al., 2000; Wang 

et al., 2013). However, the mechanisms by which connectivity relates to reading ability 

remain unclear from studies of children have already begun reading and have accumulated 

years of practice. Increased connectivity may be driven by the vast number of hours a typical 

school-aged child will spend practicing reading. Our findings provide a novel perspective 

given that the children studied here were as young as three and a half at the time of 

participation, and therefore their neural activation and connectivity patterns to spoken input 

could not have yet been shaped by years of exposure to literacy.

Our findings also have important practical considerations: while language skills are highly 

predictive of future reading ability, patterns of neural connectivity can additionally explain 

individual differences in reading abilities of school-aged children. Such insights into the 

brain basis of emergent healthy/typical reading can be used to understand children who are 

struggling to learn to read, and inform policies that can target child reading outcomes even 

earlier in development, before a child has begun to learn to read.
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Research Highlights

• Neural activation for language in 4-year-olds is important for reading 1 year 

later

• Connectivity in the left IFG and right STG is modulated by speech in 4-year-

olds

• Functional connectivity in pre-literate children predicts future reading ability
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FIGURE 1. 

Task design
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FIGURE 2. 

Placement of fNIRS optodes and channel mapping to cortex. 39 probes with 58 channels
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FIGURE 3. 

Greater HbR activation for speech compared with baseline condition in left STG and right 

STG. Averaged timeseries of HbO and HbR during speech conditions are shown. Onset of 

block is at time 0 and indicated by grey bar
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FIGURE 4. 

Greater HbR activation for words compared with nonwords in left IFG and right inferior 

parietal lobule (IPL). Greater HbR activation for nonwords versus words in right middle 

temporal gyrus (MTG). Plots of average activation values and standard errors in each region 

are shown by condition (word, nonword, baseline)
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FIGURE 5. 

Significant psychophysiological interaction between seed ROI of left IFG (shown in blue) to 

right STG modulated by task

Jasińska et al. Page 27

Dev Sci. Author manuscript; available in PMC 2021 June 08.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



FIGURE 6. 

Histogram of behavioral scores on language and reading assessments. Standard assessment 

scores are shown
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TABLE 1

Participant characteristics at time 1 and time 2. Mean standard score values and standard deviations are noted.

Measure Time 1 Time 2

N 37 28

Age 4.2 (0.5) 5.2 (0.6)

Gender (Male:Female) 22:13 16:13

IQ 114 (10) –

Letter Knowledge (TOEPL) 115 (16) –

Phono. Awareness (CTOPP) 31 (7) 36 (7)

Phono. Memory (CTOPP) 9 (3) 12 (3)

Rapid Naming (CTOPP) 15 (8) 20 (6)

Picture Vocabulary (PPVT) 122 (14) 120 (11)

Letter-Word Decoding (WJ) – 117 (16)

“Word Attack” Pseudoword Reading (WJ) – 121 (15)

Passage Comprehension (WJ) – 108 (13)
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TABLE 2

Stimuli characteristics.

Condition Log frequency, M (SD) Number of phonemes, M (SD) Orthographic neighborhood, M (SD) Phonological neighborhood, M (SD) Summed bigram frequencies, M (SD)

Word 2.33 (0.61) 3.19 (0.40) 21.18 (9.23) 35.64 (11.66) 4,503.36 (2,314.34)

Nonword N.A. 3.09 (0.30) 13.64 (5.37) 14.27 (5.44) 4,600.09 (2,569.51)
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TABLE 3

Significant differences in neural activation for each word type. Neural region and corresponding Brodmann Area and MNI coordinates are listed. t 

statistics and p values for each contrast.

Contrast Region Brodmann Area X Y Z t value p value

Speech >Baseline L. STG 22/42 −69.3 −34.6 10.4 2.01 0.05

Speech >Baseline R. STG 22/42 71.7 −27.2 7.4 2.46 0.05

Words >Nonwords L. IFG 46 −54.1 33.4 13.0 1.90 0.05

Words >Nonwords R. IPL 40 69.0 −35.3 35.7 2.57 0.05

Nonwords >Words R. MTG, R. ITG 21 69.7 −8.0 −19.0 2.04 0.05

STG, superior temporal gyrus; IFG, inferior frontal gyrus; IPL, inferior parietal lobule; MTG, middle temporal gyrus; ITG, inferior temporal gyrus.
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TABLE 4

Models of Letter Word Decoding, Pseudoword Reading, and Passage Comprehension at Time 2. Final models are the result of forward and backward 

stepwise regression. Adjusted R2 are shown for each model. Beta coefficients are standardized. Two tailed results are reported, significant results (p < 

0.017; Bonferroni corrected) are noted in bold.

Predictor

Letter word decoding “Word Attack” pseudoword reading Passage comprehension

Initial model: R2 = 0.700 Final model: R2 = 0.748 Initial model: R2 = 0.688 Final model: R2 = 0.757 Initial model: R2 = 0.566 Final model: R2 = 0.683

F(14,12) = 5.28, p = 0.003)
F(10,16) = 8.70, p < 
0.0001) F(14,12) = 5.10, p = 0.006)

F(7,19) = 12.55, p < 
0.0001) F(14,12) = 3.43, p = 0.002)

F(7,19) = 9.02, p < 
0.0001)

β t p β t p β t p β t p β t p β t p

Demographic

 Age at Time 
2

−0.056 1.665 0.122 0.212 1.847 0.083 0.123 0.847 0.414 – – – 0.154 0.901 0.385 0.161 1.254 0.225

 IQ 0.112 0.586 0.569 – – – −0.176 −0.906 0.383 −0.284 −2.795 0.012 −0.285 −1.243 0.238 −0.198 −1.527 0.143

 SES −0.121 −0.709 0.492 – – – −0.138 −0.793 0.443 – – – 0.077 0.373 0.715 – – –

Language 
ability

 Letter 
knowledge

0.265 1.130 0.280 0.258 1.633 0.122 −0.091 −0.381 0.710 – – – −0.029 −0.104 0.919 – – –

 Phono. 
awareness

0.710 3.210 0.007 0.659 4.295 0.001 0.889 3.964 0.002 0.722 6.349 < .001 0.570 2.155 0.052 0.642 5.072 < .001

 Phono. 
memory

−0.254 −1.647 0.125 −0.236 −2.050 0.057 −0.171 −1.097 0.294 – – – −0.250 −1.356 0.200 −0.280 −2.129 0.047

 Rapid 
Naming

−0.094 −0.760 0.462 – – – −0.035 −0.281 0.783 – – – −0.036 −0.247 0.809 – – –

 Picture 
vocabulary

−0.266 −1.087 0.298 −0.231 −1.607 0.128 0.089 0.358 0.726 – – – 0.056 0.190 0.852 – – –

Brain 
activation

 LSTG 
activation

−0.056 −0.321 0.754 – – – −0.123 −0.691 0.503 – – – −0.045 −0.216 0.833 – – –

 RSTG 
activation

−0.204 −1.226 0.244 −0.184 −1.321 0.205 −0.278 −1.645 0.126 −0.235 −1.796 0.088 −0.209 −1.050 0.315 – – –

 LIFG 
activation

−0.173 −1.031 0.323 −0.191 −1.492 0.155 −0.420 −2.472 0.029 −0.333 −3.236 0.004 −0.207 −1.031 0.323 −0.155 −1.301 0.209

Connectivity

 LIFG-
LSTG PPI

0.200 1.109 0.289 0.217 1.576 0.135 0.312 2.215 0.047 0.252 2.026 0.057 0.095 0.442 0.666 – – –
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Predictor

Letter word decoding “Word Attack” pseudoword reading Passage comprehension

Initial model: R2 = 0.700 Final model: R2 = 0.748 Initial model: R2 = 0.688 Final model: R2 = 0.757 Initial model: R2 = 0.566 Final model: R2 = 0.683

F(14,12) = 5.28, p = 0.003)
F(10,16) = 8.70, p < 
0.0001) F(14,12) = 5.10, p = 0.006)

F(7,19) = 12.55, p < 
0.0001) F(14,12) = 3.43, p = 0.002)

F(7,19) = 9.02, p < 
0.0001)

β t p β t p β t p β t p β t p β t p

 LSTG-
RSTG PPI

0.237 1.539 0.150 0.232 1.816 0.088 0.165 0.905 0.383 0.322 2.604 0.017 0.484 2.624 0.022 0.384 3.265 0.004

 LIFG-
RSTG PPI

0.276 1.987 0.070 0.239 2.125 0.050 0.361 2.310 0.040 0.253 2.481 0.023 0.469 2.821 0.015 0.478 4.004 0.001
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