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ABSTRACT

By adding carefully crafted perturbations to input images, adver-
sarial examples (AEs) can be generated to mislead neural-network-
based image classifiers. Ly adversarial perturbations by Carlini and
Wagner (CW) are among the most effective but difficult-to-detect
attacks. While many countermeasures against AEs have been pro-
posed, detection of adaptive CW-Ly AEs is still an open question.
We find that, by randomly erasing some pixels in an Ly AE and then
restoring it with an inpainting technique, the AE, before and after
the steps, tends to have different classification results, while a be-
nign sample does not show this symptom. We thus propose a novel
AE detection technique, Erase-and-Restore (E&R), that exploits the
intriguing sensitivity of Ly attacks. Experiments conducted on two
popular image datasets, CIFAR-10 and ImageNet, show that the
proposed technique is able to detect over 98% of Ly AEs and has a
very low false positive rate on benign images. The detection tech-
nique exhibits high transferability: a detection system trained using
CW-Ly AEs can accurately detect AEs generated using another
Ly attack method. More importantly, our approach demonstrates
strong resilience to adaptive Ly attacks, filling a critical gap in AE
detection. Finally, we interpret the detection technique through
both visualization and quantification.
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(c) Restored image

(a) Original image (b) Corrupted image

Figure 1: Restoring lost parts of an image with inpainting.

1 INTRODUCTION

By adding deliberately crafted perturbations into an image, an at-
tacker is able to create an adversarial example (AE), which misleads
a neural-network-based classifier to output an incorrect prediction
result. Worse, the malicious perturbations in an AE are so subtle
that they are usually human-imperceptible. As neural networks
are increasingly deployed, AEs raise crucial security concerns espe-
cially in many vision-related applications.

The term adversarial example can be formally defined as follows.
For a pre-trained DNN f, let x be an original image. An adversarial
example x%4?, derived from x, can guide the model f to make an
incorrect prediction. Moreover, to hide the adversarial perturba-
tion, the generation of x2dv g equivalent to solve the following
constrained optimization problem:

min [|x%% - x|lp
xadu (1)
sty = f(x), y=f(x), andy # v

where y and y’ are respectively the prediction results of feeding x
and x99 to f.

To gauge such adversarial perturbations, L, norms are usually

used to quantitatively describe the discrepancy between x and x990,

According to the value of p in Equation 1, the mainstream AE
generation algorithms can be categorized into three families: Lo, Ly
and Lo attacks. Informally, Ly measures the number of modified
pixels, Ly the Euclidean distance between x and x???, and L, the
largest modification among all the modified pixels.

As suggested by Carlini and Wagner [7], defenders should con-
sider evaluating “a powerful attack” and particularly emphasized
Ly attacks (Section 9 in [7]). Other researchers also agree that Ly
attacks by Carlini and Wagner (CW) [7] “are among the most ef-
fective white-box attacks and should be used among the primary
attacks to evaluate potential defences”[41]. Although researchers
have proposed many AE detection methods [31, 37, 38, 52], recent
studies [5, 6, 26] show that the detection usually goes ineffective
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when facing adaptive CW-Ly AEs. Thus, how to accurately detect
adaptive Ly AEs is still an open question. We focus on tackling Ly
AEs in this work, and our goal is a technique that not only detects
L, AEs accurately but is also resilient to adaptive attacks.

We have two key insights. First, we observe that those deliber-
ately corrupted pixels exert a malicious influence altogether (e.g.,
through multiple rounds of optimizations during AE generation). It
implies that a destruction of the completeness of the influence by
the perturbed pixels can cause a failure of the attack. Second, while
destruction may also harm the classification accuracy for benign
samples, there exist very effective inpainting techniques [36, 48, 49]
in the image processing area that can help restore a partially cor-
rupted image. For example, Figure 1(a) shows an original image, and
Figure 1(b) a corresponding corrupted image where many regions
are erased. After inpainting, as shown in Figure 1(c), the corrupted
image is well restored.

Thus, we hypothesize that if we randomly erase a portion of
pixels from an AE and then apply inpainting to it, the attack will
probably fail for two reasons. Discarding many small regions from
an AE will ruin the holistic adversarial influence formed by the ma-
liciously perturbed pixels. Second, the inpainting typically restores
the image in a benign way that does not preserve the malicious
influence. By contrast, if we apply the same “Erase-and-Restore”
(E&R) operations to a benign sample, the classification results, be-
fore and after the steps, tend to be similar, as inpainting by design
is to reverse deterioration of benign images.

Figure 2 illustrates our insights and observations using six color
images from CIFAR-10. A random mask (mask, for short) in our
work describes the locations of pixels that are randomly erased.
We randomly erase 5% of the pixels of each image. The AEs are
generated using the CW algorithm [7]. As shown in Figure 2(a),
the classification results of each AE, before and after the E&R op-
erations, are different. By contrast, as shown in Figure 2(b), the
classification results of each benign sample, before and after the
steps, are the same. Our large-scale experiments (Section 4) also
show consistent results.

We consider the sensitivity to E&R operations as an exploitable
characteristic of Ly AEs, and propose a novel AE detection tech-
nique: given an image, if the classification results before and after
E&R vary greatly, it is an AE; otherwise, a benign sample. We accord-
ingly implement an Ly AE detector, named TaEMIs. To improve the
detection accuracy, it is enhanced by applying E&R multiple times.
Specifically, given an image Iy, we randomly erase some pixels of Iy
each time to create a sequence of images {I1, Iz, - - , I,}. Next, an
inpainting technique is applied to them to obtain the restored im-
ages {I/, Iz’, .-+, I’} Finally, a classifier makes use of the prediction
results of Iy and the restored images to determine whether Iy is an
AE.

We have evaluated our system using the popular image datasets
CIFAR-10 and ImageNet. Two widely-discussed Ly AE generation
methods, CW [7] and DeepFool [40], are considered in the evalua-
tion. Our experiments show that the proposed detection technique
is very effective. Take the CW [7] attack as an example, on the
CIFAR-10 dataset, THEMIS can detect 100% AEs with a false positive
rate (FPR)=0, and on ImageNet, it can detect 99.3% AEs with FPR
= 2.7%. In addition, the detection technique demonstrates three
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notable characteristics. @ It is target-model agnostic: a detec-
tor trained using AEs targeting one neural network model can be
directly used to detect AEs targeting another. @ It has good trans-
ferability: a detector trained using AEs generated by one attack
method can be directly used to detect AEs by another. ® More im-
portantly, it shows high resilience to adaptive attacks. Finally,
we interpret the effectiveness of the detection technique through
both visualization and quantification.
The key contributions of our work include:

e We find an interesting characteristic of Ly AEs, whose clas-
sification results vary sharply when Erase-and-Restore op-
erations are applied; meanwhile, benign samples are not so
sensitive.

e We propose to exploit the characteristic for AE detection,
and employ the idea of sampling to enhance the detection.
By applying E&R for multiple times, richer features are gen-
erated to improve the detection accuracy.

e We implement the detection technique in THEMIS and eval-
uate it on two popular datasets, CIFAR-10 and ImageNet.
The experiment results show that THEMIS outperforms prior
techniques (such as NIC [33], LID [34], and Feature Squeez-
ing [52]), achieving not only the highest detection rate
but also the lowest false positive rate. We are to make
the source code, datasets, and models of this work publicly
available.!

o The detection technique is target-model agnostic and shows
high transferability across different Ly attack methods. Fur-
thermore, it demonstrates strong resilience to adaptive CW-
L, attacks, filling a critical gap in AE detection.

e We interpret the effectiveness of the detection technique in
multiple ways.

2 BACKGROUND AND THREAT MODEL
2.1 Attack Algorithms

Adversarial attacks can be categorized as either non-targeted or
targeted ones. The aim of a non-targeted attack is to make the
input be classified as any arbitrary class except the correct one.
By contrast, the aim of a targeted attack is a specific attacker-
desired incorrect result, which is more threatening. Next, we briefly
describe the two most popular Ly AE generation methods.

Carlini & Wagner Attacks Carlini and Wagner [7] designed a
group of targeted AE generation methods which are denoted as
CW attacks. According to the distance metrics adopted in an opti-
mization target, CW attacks can be divided into three types: Lo-,
Ly- and Leo-norm. In this paper, we mainly examine CW-Ly attacks,
which are the most difficult to detect [5, 26].

Due to a few creative designs, the CW attacks achieve perfor-
mance superior to other attack methods. The first and foremost
innovative design is using a logits-based objective function rather
than softmax-cross-entropy loss, which plays a key role in the
resilience improvement of the attack against defensive distilla-
tion [42]. Secondly, this algorithm maps the target variable to a
space of the inverse trigonometric function, so that the problem is
suitable to be solved by a modern optimizer, e.g. Adam [28]. Finally,

!https://github.com/quz105/Erase-and-Restore.
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Figure 2: Different impacts of “Erase-and-Restore” on AEs and benign samples.

a confidence-level parameter x is introduced; as k increases, the
model classifies the resulting AE as the attacker-desired label more
likely, giving the attacker flexibility to make a trade-off between
the degree of perturbations and misclassification probability.

DeepFool Moosavi et al. [40] developed the DeepFool attack that is
used to create non-targeted AEs. The algorithm utilizes an iterative
linearization of the classifier to generate Ly minimization-based
perturbations. To simplify the problem, the neural networks are
imagined to be linear, so that the decision boundaries are a set of
hyper-planes. Consequently, a polyhedron can be used to describe
the output space. Assuming that f is a binary differentiable classifier,
to mislead the decision of f near the current point x;, the minimal
perturbation is the orthogonal projection of x; onto the separating
hyper-plane. At each iteration the minimal perturbation of the
linearized classifier is computed as

st f(xi) + Vi) T8 =0 ()

arg min [|;l2

i

where §; is the perturbation imposed on x;. Note that neural net-
works are not actually linear, so the search is repeated until a
successful AE is found.

2.2 Threat Model

The adversary has full knowledge of the target model (including
both its architecture and parameters). He also knows the existence
and internal details of the detector, and is allowed to adapt attacks.
In adaptive attacks, the attacker tries to fool the image classifier
and the detector at the same time. We consider adaptive attacks
and evaluate the resilience of our detector to them in Section 6.

3 EXPERIMENTAL SETUP

Before presenting our defense scheme, we introduce the image
datasets and the corresponding target neural networks on which
we verify our key insights and evaluate the proposed approach.

Image datasets. We generate AEs using two popular datasets:
CIFAR-10 and ImageNet, both of which are widely used in im-
age classification tasks. In particular, for ImageNet, we adopt the
ILSVRC2012 samples to keep consistent with the prior state-of-the-
art AE detector [33].
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Target neural network models. (1) For CIFAR-10, we use two
neural networks as the target models: a 32-layered ResNet model [25]
(denoted as ResNet32), and a model structure described in [7] (de-
noted as Carlini). We train these two target neural network models
from scratch (the accuracies of the two models are 91.96% and
78.86%, comparable with those published in prior works [33, 52]).
(2) For ImageNet we re-use a 50-layered ResNet model [25] provided
in Keras [9] (denoted as ResNet50).

AE generation and data preparation. Like existing AE detection
works, only images that are correctly classified by the correspond-
ing target model are used to generate AEs in our experiments. To
generate targeted AEs, we designate the next class as the target
class, similar to many other AE detection works [33, 52, 55]. Only
AEs that can successfully fool the target models are used in the
evaluation. For ImageNet, we collect 30,000 legitimate images and
create 30,000 AEs: DeepFool and CW-L; generate 15,000 AEs each.
The number of CW-Ly AEs with each given confidence level (i.e..k=
0.0, 0.4, and 1.0) is the same, that is 5,000 for each sub-group. In
the dataset, 80% of instances are used for training and the remain-
ing 20% for testing, denoted as Dy-Train and Dr-Test, respec-
tively. Similarly, for CIFAR-10, based on the types of target model,
we have four dis-joint datasets, Dc-Carlini-Train, De-Carlini-
Test, Dc-ResNet-Train, and De-ResNet-Test. The former two
and the latter two datasets have the same size and data composi-
tion as Dy-Train and Dy-Test, respectively. All AEs are generated
using the opensource tool Foolbox [45].

Inpainting algorithm. The inpainting algorithm we choose in this
work is designed by Telea [49]. This inpainting algorithm needs to
solve an Eikonal equation, which is rarely differentiable everywhere.
Considering the inpainting algorithm is not fully differentiable, it
results in a non-negligible obstacle for adaptive attackers.

The experiments were performed on a computer running the
Ubuntu 18.04 operating system with a 64-bit 3.6 GHz Intel® Core(T™™)
i7 CPU, 16 GB RAM and a GeForce® GTX 1070 GPU.

4 THE PROPOSED APPROACH
4.1 Our Insights

Effects of erasing (or adding noises) alone. Due to the opti-
mization nature of AE generation methods like CW and DeepFool,
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Figure 3: Impacts of E&R on benign samples and AEs.

maliciously manipulated pixels in an AE are deliberately selected
and perturbed. Thus, each of the perturbed pixels plays a certain
role in the attack. By randomly erasing many pixels of an input
image, it is likely to corrupt some of the perturbed pixels or their
surrounding pixels in an AE, rendering the attack ineffective.

In the case of benign samples, however, the erasing operation,
which is equivalent to introducing random noises to images, will
significantly degrade the accuracy of the classifier. The close corre-
lation between the image quality and the accuracy of image classifi-
cation has been widely studied in previous works [12, 15, 16]. They
mention that neural networks are susceptible to random noise
distortions. For example, Costa et al. [12] point out that “noises
can hinder classification performance considerably and make classes
harder to separate

Combining erasing and inpainting. We thus propose to apply
inpainting after the erasing operation. Inpainting is a category
of techniques for restoring damaged regions of images. Given an
erased region, an inpainting technique infers and recovers its origi-
nal pixels. Our insight is that, while inpainting works very well for
recovering benign samples, its recovering effect is usually not what
the AE attacker desires, as the maliciously perturbed regions, once
erased, can hardly be recovered to the attacker-intended values.

We further design experiments to verify the two insights in
Section 4.2.

4.2 Verifying Our Insights

From CIFAR-10, we randomly select 1,000 images that can be cor-
rectly classified by ResNet32. As shown in Figure 3(a), after randomly
erasing 50~150 (around 5%~15%) of the pixels in each image, with-
out inpainting, the classification accuracy significantly degrades
from 100% to the range from 24.2% (when erasing 15%) to 35.9%
(when erasing 5%), which verifies that erasing alone harms the
classification accuracy for benign images significantly. By contrast,
with inpainting applied, the classification accuracy recovers to
90.5%~96.6%.

Besides, for each benign image we use the CW algorithm to
generate three AEs with three different confidence levels (x = 0.0,
0.4, and 1.0, respectively). All the AEs successfully fool the ResNet32
model. As shown in Figure 3(b), after randomly erasing 50~150
(around 5%~15%) of the pixels in each AE and then restoring them
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using inpainting, the success rate of attacks dramatically decreases
from the original 100% to the range 3.1%~7.1%.

Similar results can be observed on the ImageNet dataset as well.
(1) Specifically, we randomly select 1,000 images from ImageNet
that can be correctly classified by the ResNet50 model. For example,
after erasing and restoring 5% of the pixels in each image, the
classification accuracy stays at 96.3%. (2) On the other hand, when
we apply the same erasing and restoring operations to the 1,000
AEs generated from these benign images, the success rate of attacks
decreases from 100% to around 4.1%.

Therefore, it can be concluded that E&R has very small impacts
on benign samples, but large impacts on AEs, demonstrating a
noticeable contrast.

4.3 Approach Details

Based on our insights, we propose a novel AE detection technique,
named E&R, that exploits the sensitivity of AEs to E&R operations,
and implement it in a system, called THEMIS, as shown in Figure 4.
(1) Given an input image Iy, we randomly erase A pixels of it to
create a deteriorated image I. Employing the idea of sampling, this
step is repeated for n times to obtain a sequence of deteriorated
images {I1,I2, - - - ,In}. The intuition behind it is that even if an
AE “luckily” evades the detection once, it is very unlikely for it to
hide itself throughout the multiple samples. (2) Next, an inpainting
technique is leveraged to produce a corresponding sequence of
restored images {I], I, - -, I }. (3) Finally, we feed both the input
image Iy and {1/, IZ’, .-+, I’} into a neural-network classifier, and
collect all the classification results.

Given an image in CIFAR-10, its classification result is a vector €
R (since there are 10 classes in the dataset). We simply concatenate
all the classification-result vectors for both Iy and {I/, IZ’, -, I} to

obtain a feature vector € R19X("*1) for training the AE classifier.
Given an image from the ImageNet, its classification result is a
vector € R1000 (since there are 1,000 classes in the dataset). Thus,
the number of features to be fed to our classifier is 1000 X (n + 1),
which is too large. To make the training of our classifier more
feasible, Principal Component Analysis (PCA) is performed on
the classification results of Iy and {I{,IZ’, -++,I!'}, to reduce the
dimensionality to a lower value d. Unless otherwise specified, we
set d to 10 (1% of the original dimensionality) to keep consistent
with CIFAR-10. Note that the number of principal components
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Table 1: Performance of THEMIs. After THEMIS is trained using training datasets that contain benign samples, CW and Deep-
Fool AEs, the detecion rate and FPR (the rate of benign samples misclassified as AEs) are measured using testing sets.

Target . Detection Rate: CW-L; Detection Rate:
D 1 fi FP
ataset Model Classifier R k=0.0 k=0.4 k=1.0 DeepFool
.. SVM 0.6% 100% 100% 100% 99.4%
Carlini
CIFAR-10 AdaBoost | 0.0% 100% 100% 100% 98.3%
ResNet32 SVM 2.8% 99.4% 99.6% 99.6% 99.8%
AdaBoost | 0.9% 99.4% 99.2% 99.4% 99.8%
SVM 3.5% 97.9% 98.4% 98.7% 93.7%
I Net | ResNet50
magelvet | Reste AdaBoost | 2.7% | 98.9% 99.2% 99.3% 95.0%
should be less than both the number of features and the number of
samples, when solving PCA based on the truncated SVD (singular 10— 1.0~
value decomposition). In our case, the number of samples is n + 1; 2os 2os
c 0. © 0.
we thus let n = 11 (we discuss the impact of n’s values with detailed < <
experimental results in Section 5.3). We concatenate the vectors 206 206
of principal components for both Iy and {I}, I, - - - , I} to obtain a 804 804
feature vector for training our classifier. v v
The value of the parameter A (number of pixels to be erased) is {= 0.29| — Telea Inpaint, AUC = 99.54% | = 0.21| — Telea Inpaint, AUC = 99.89%
set to 10% of the pixels in an input image. We adopt this value for 0.0l Median Filter, AUC = 91.64% 0.0l Median Filter, AUC = 93.72%

two reasons. (1) As shown in Figure 3, when 10% of the pixels are
erased and restored, it harms the success rate of AEs most heavily,
without degrading the classification accuracy for benign samples
significantly. (2) The inpainting algorithm we adopt performs very
well when the portion of corrupted pixels in an image is less than
15% [49].

It is worth mentioning that A = 10% leads to an enormous ran-
domness pool. Take an image in CIFAR-10 as an example, the size
of which is 32x32: with A1=100 (= 10% of the pixels), the number of
unique masks is around 7.7x1014, It is thus very unlikely for an
adaptive attacker to correctly predict which masks will be used by
our detector.

We train our AE classifier using two supervised learning tech-
niques: AdaBoost [20] and SVM [11].

5 EVALUATION

We evaluate the detection performance of the proposed scheme
against Ly attacks in terms of detection rate and false positive rate
(FPR). The detection rate is defined as the ratio of the number of
successfully detected AEs to the total number of AEs. FPR refers to
the fraction of benign samples that are misclassified as AEs.

5.1 Detection Performance

Weuse Dr-Train, De-Carlini-Train,and Deo-ResNet-Train (see
Section 3) to train our detectors and evaluate them based on the
corresponding testing sets.

44

0.0 02 04 06 08 1.0 1.0

False Positive Rate

0.0 0.2 04 06 0.8
False Positive Rate

(a) SVM (b) AdaBoost

Figure 5: ROC curves.

CW-L; attacks. As shown in Table 1, the proposed technique
achieves very high detection rates (up to 100% on CIFAR-10, and
99.3% on ImageNet) with low FPR values. The results are stable
across different target models, confidence levels, and classification
methods.

In addition to SVM and Adaboost, we also train a fully connected
neural network as the AE classifier, and obtain very similar results.
It shows that it does not affect the performance by using a more
sophisticated classifier. It also indicates that the effect of E&R does
not depend on a specific classifier type.

DeepFool attacks. For another leading Ly AE generation algorithm—
DeepFool (see Section 2.1), we observe very similar results as CW-Ls.
Table 1 shows that our detector achieves very high detection rates
(up to 99.8% on CIFAR-10, and 95.0% on ImageNet) with low FPR
values.

Comparison with baseline. To illustrate the the benefits of the
Telea inpainting algorithm used in our detector, we compare it
with a baseline method, which uses a median filter to recover the
damaged pixels. In particular, the window size of our median filter is
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Table 2: Comparison with other AE detectors (DR: Detection Rate). We use the same attack settings as used in prior work [33,

52].
Dataset CIFAR-10 ImageNet
Detector Tuaemis | NIC FS LID || Tuemis | NIC FS LID
FPR 0.6% 4.2% | 5.6% | 4.9% 2.7% 14.6% | 8.3% | 14.5%
DR: CW-L, || 100% | 96% | 100% | 86% || 98.9% | 96% | 92% | 78%
DR: DFool || 99.4% | 91% | 77% | 84% || 95.0% | 92% | 79% | 83%

3x3, which is also adopted by Feature Squeezing [52]. Without loss
of of generality, the datasets we use are D-ResNet-Train and Dc-
ResNet-Test. We replace the Telea inpainting with the median filter
in our implementation to build a baseline detector. Figure 5 shows
the comparison result using ROC (receiver operating characteristic)
curves of the different detectors. As shown in Figure 5(a), when
SVM is used as the classifier, the AUC value declines from 99.54% to
91.64%. Similarly, as shown in Figure 5(b), when AdaBoost is used,
the AUC value correspondingly declines from 99.89% to 93.72%.
Thus, a high-quality inpainting method is closely related to the
final performance of our AE detector.

Comparison with prior work. As summarized in Table 2, we
compare THEMIS with some state-of-the-art AE detectors—NIC [33],
LID [34], and Feature Squeezing [52]. For CW-L; attack, their ex-
periments only examine x = 0.0, which is the default setting, so
we also list the results under x = 0.0 in Table 2 (see Table 1 for the
results of our detector under other k values). We take NIC as an
example here. With respect to CIFAR-10, NIC obtains the detec-
tion rate 96% (see Table I in [33]), while our system achieves the
detection rate 100%. With respect to ImageNet, the detection rate
of NIC is 96% (see Table I in [33]), while our detection rate is 98.9%.
In terms of DeepFool, THEMIS also outperforms other AE detectors.
When considering CIFAR-10, our system obtains the detection rate
99.4%, while NIC [33] obtains the detection rate 91.0% (see Table I
in [33]). Similarly, when considering ImageNet, THEMIS can achieve
the detection rate 95.0%, that is superior to NIC, the detection rate
of which is 92%.

More importantly, from the angle of FPR, the performance of
THEMIS is significantly better than other detectors. For example,
when considering CIFAR-10, the FPR of NIC is 4.2%, while ours
is 0.6%. Moreover, when considering ImageNet, the FPR of NIC is
14.6%, while ours is only 2.7%. It is worth noting that the distribution
of adversarial and benign images is not balanced in practice—most
inputs should be benign. Thus, FPR is a very important metric to
evaluate the model performance: a lower FPR indicates that the
system makes fewer mistakes for benign images. THEMIS is able to
keep both a high detection rate and a very low FPR.

5.2 Notable Characteristics

Target-model agnostic. We are interested in finding out whether
a detector trained using AEs targeting one model can be directly
used to detect AEs targeting another—that is, whether it is target-
model agnostic. We thus train our system using CW-Ly AEs in
Dc-Carlini-Train, and test it using CW-Ly AEs in Dc-ResNet-
Test.
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Table 3: Target-model agnostic property of THEMIS.

Target Model Classifier Detection Rate

(Train — Test) k=0.0 | k=0.4 | k=1.0
SVM 100% | 100% | 100%

lini 2
Carlini—ResNet32 | g g oost || 97.9% | 97.9% | 98.2%
SVM 99.9% | 99.9% | 99.8%

2 lini
ResNet32— Carlinl 1 R oost [ 99.7% [ 99.8% | 99.6%

As Table 3 shows, the detection rate is as high as 100%. We then
train the system using CW-Ly AEs in Dc-ResNet-Train, and test
it using CW-Ly AEs in Dc-Carlini-Test; the detection rate is as
high as 99.9%.

Therefore, this experiment not only confirms that THEMIS is
target-model agnostic, but also demonstrates that THEMmIS has low
risk of overfitting.

Transferability. We are also interested in the transferability of
our detector—whether THEMIS trained on one type of AEs can
be directly applied to detect another type of AEs that are unseen
during training. To verify it, we train THEMIS using CW-Ly AEs
in Dc-Carlini-Train, without loss of generality. Then, we test
the trained system using DeepFool AEs in Dc-ResNet-Test and
Dc-Carlini-Test , and our system can achieve detection rates
97.1% and 96.2%, respectively. Thus, we can conclude the proposed
technique has very good transferability, that is, it keeps effective in
handling unseen AE generation methods.

Explanation. The two notable properties of THEMIS—target-model
agnostic and good transferability—can be attributed to the unique
advantage of the proposed approach: benign samples and AEs show
distinct sensitivities to the E&R operations, which do not depend
on the target model and the attack method.

5.3 Value Selection for the Parameter n.

We use n = 11 in the previous experiments. Here, we investigate
the impacts of different values of n on the detector’s performance.
The CW-Ly AEs in D¢-Carlini-Train, De-ResNet-Train, and
PDr-Train are used in this experiment. For CIFAR-10, which has
only 10 classes (thus no PCA is needed), varying the value of n has
little impacts. However, for ImageNet, the value of n has noticeable
impacts: when n increases, the AE detection rate increases and FPR
decreases (see Table 4 and Table 5 for more details). The reason is
that by increasing n, more principal components can be extracted
(see Section 4). However, when n > 11, the performance improve-
ment is negligible, probably because the extra principal components
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Figure 6: Success ratio of adaptive AEs.

Table 4: Impacts of different values of n (CIFAR-10).

Target Detection Rate
lassifi FP
Model | Classifier R =200 [ x=04 | x=10
. SVM 0.4% | 100% | 100% | 100%
Carlini
Adaboost 0.0% | 100% 100% | 99.9% »
SVM 3.6% | 99.6% | 99.6% | 99.6% | ©
ResNet32
Adaboost | 0.9% | 99.2% | 99.1% | 98.5%
N SVM 0.4% | 100% | 100% | 100%
Carlini
Adaboost | 0.0% | 100% | 99.9% | 99.9% 5
SVM 33% | 99.6% | 99.6% | 99.6% | ©
ResNet32
Adaboost | 0.7% | 99.2% | 99.1% | 99.0%
N SVM 0.4% | 100% | 100% | 100%
Carlini
Adaboost | 0.0% | 100% | 100% | 99.8% A
SVM 2.9% | 99.6% | 99.7% | 99.7% | ©
ResNet32
Adaboost | 0.9% | 99.3% | 99.1% | 98.9%
N SVM 0.4% | 100% | 100% | 100%
Carlini
Adaboost | 0.0% | 100% | 100% | 99.8% B
ResNet32 SVM 3.0% | 99.7% | 99.7% | 99.7% | ©
Adaboost | 0.7% | 99.3% | 99.3% | 99.1%
N SVM 0.4% | 100% | 100% | 100%
Carlini
Adaboost | 0.0% | 99.8% | 99.9% | 99.7% | x>
7
ResNet32 SVM 2.8% | 99.6% | 99.7% | 99.7% | <
Adaboost | 0.8% | 99.0% | 99.2% | 98.9%

Table 5: Impacts of different values of n (ImageNet).

Target . Detection Rate
Mogel Classifier | FPR 50— 0 T x=10
SVM 9.8% | 95.4% | 95.1% | 95.5% o
Adaboost | 6.6% | 93.1% | 91.4% | 93.8% | ©
SVM 47% | 95.5% | 95.8% | 97.3% P
Adaboost | 2.8% | 96.5% | 97.6% | 97.2% | ©
SVM 3.6% | 97.6% | 98.1% | 98.2% A
ResNetS0 g boost | 21% | 97.9% | 98.6% | 98.6% |
SVM 3.5% | 97.6% | 98.0% | 98.3% B
Adaboost | 2.0% | 98.0% | 98.4% | 98.8% |
SVM 3.2% | 97.6% | 98.1% | 985% | >
Adaboost | 1.4% | 98.4% | 98.5% | 98.9% | ¢

do not provide useful features for AE detection. Therefore, we adopt
n=11
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5.4 Efficiency of THEMIS

We investigate the efficiency of the proposed technique on Ima-
geNet because large-sized images consume more processing time.
For a single image, ResNet50 needs approximately 1.076 seconds for
classification. Since parallel computing is supported by GPU, given
a relatively small number of images as inputs (e.g., n = 11), it takes
similar time to generate the classification vectors for them. Apart
from this, to detect AE, our method brings additional 1.01 seconds
by average. In detail, it consumes 0.264 seconds for the inpainting,
0.744 seconds for the PCA-based dimension reduction, and 0.002
seconds for the final prediction (taking SVM as an example). In
short, our detector causes a small delay.

6 RESILIENCE TO ADAPTIVE ATTACKS

In an adaptive attack threat model, an adversary knows the exis-
tence and internal details of our detector and adapts the attacks
to bypass the detection. We thus seek to study the resilience of
THEMIS to adaptive attacks.

An AE detector can be categorized as either differentiable or non-
differentiable. Several previous works propose defense mechanisms
that apply differentiable transformations to an image before detec-
tion or classification [21, 22, 38, 50]. But attackers can circumvent
these differentiable defenses by “differentiating through them”—i.e.,
by taking the gradient of a class probability regarding input pix-
els through both the CNN and the transformation [5, 26, 43]. This
strategy, however, is inapplicable to bypassing THEMIs. Due to the
random-erasing and inpainting-based restoring, our approach is
not only non-differentiable but involves tremendous randomness.

To bypass non-differentiable defences, Backward Pass Differen-
tiable Approximation (BPDA) is proposed [2]. To handle defenses
that employ randomized transformation to the input (like ours), it
applies Expectation over Transformation [3] to compute the gradi-
ent over the expected transformation to the input. However, in our
approach the erased pixels are randomly selected among all the im-
age pixels, and there are around 7.7x10'*? unique masks (even for
a small image; see Section 4.3); thus, it is infeasible to calculate the
expected transformation. Moreover, THEMIS is not only randomized
but also non-differentiable; in this case, it is unknown how to apply
BPDA to bypassing THEMIS.



Session 1A: ML and Security (1)

Adaptive AE generation. He et al. [26] describe a representative
adaptive attack method against non-differentiable defences, where
an attacker tries to circumvent the defensive approach by (a) con-
sidering intermediate distorted images during optimization and (b)
exploring multiple diverse optimization paths.

Inspired by [26], we design similar adaptive attacks to examine
the resilience of our approach. To that end, we modify the code
of the CW algorithm [7], in order to adaptively generate AEs that
can bypass our detector. Specifically, after each iteration in an
optimization procedure, an intermediate distorted image is obtained.
We then check whether it can bypass our detector. For each image,
we repeat the optimization procedure for up to T times to explore
different optimization paths (for this purpose, we set a randomly
initialized state at the beginning of each optimization procedure).
As shown in Figure 6, we set T = 150, corresponding to around
450 seconds on average on our machine. In comparison, the two
works [50] and [26] use around 75 and 180 seconds to generate
adaptive AEs for each image, respectively.

Given that adaptive CW AE generation is quite time-consuming,
without loss of generality, this experiment is conducted on 500 im-
ages randomly selected from CIFAR-10. During the AE generation,
we let ¥ = 0.0, which means that the resulting AE is classified as
the target class. As « increases, the model classifies the resulting
AE as the attacker-desired label more likely. As a larger value of k
imposes an extra constraint to attackers and lowers the chance of
successful adaptive attacks, we only consider x = 0.0.

Resilience results. We adopt the SVM-based detector that achieves
a detection rate of 100% (Table 1): no AEs can fool it without adaptive
attacks. Figure shows that only 4.2% (that is, 21 AEs) of adaptive AEs
can bypass our detector. By contrast, similar adaptive attacks [26]
can bypass feature squeezing based AE detection [52] at a success
rate of 100%; as another example, [50] can merely achieve a de-
tection rate of 70% under adaptive CW attacks. More importantly,
the first 50 times of the optimization path exploration attain the
success rate of 3.4%, while the following 100 times only increase
the success rate by 0.8%. It shows that the effect of adaptive attacks
grows very slowly as the attacker doubles his time. We thus can
conclude that our detection technique is not only resilient to adap-
tive attacks based on differentiation, but also to adaptive attacks
through exploration of many optimization paths. Thus, THEMIS,
highly resilient to adaptive CW-L; attacks, fills a critical gap in AE
detection.

7 INTERPRETIBILITY

Background. To make the final prediction, most neural-network-
based image classifiers implement a softmax function at the last

layer
Zi

e
softmax(z); = 5 o

N

j=1 (3)
fori=1,---,Kandz = (21, - ,zK) e RK

which maps an input vector z consisting K real numbers to a proba-
bility mass function over predicted output classes. The input vector
of a softmax function is also called logit. Given a benign image
whose logit is z, the goal of an attacker is to perturb the image to
get a new logit z’ such that argmax;(z’) # argmax;(z).
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Figure 7: Illustration of how E&R works.

Table 6: Clusters splitting result.

Attacks Metrics | FPR | TPR
WD | 0.5% | 78.4%

CW-L, KL 0.0% | 96.1%
WD | 1.1% | 85.7%

DeepFool —r—— 57 T803%

Interpretation Using Classification Results. Let f(x) be the
output of the softmax layer of a neural network f when feeding
the input x. Let T(x) be the output of processing x with E&R op-
erations. If x is benign, since it is not sensitive to E&R operations,
the probability mass functions f(x) and f(T(x)) are similar. By
contrast, if x is an AE, f(x) is significantly different from f(T'(x)),
since AEs are very sensitive to E&R operations. In short, if the
sensitivity distinction between AEs and benign samples is true, the
divergence (or distance) between f(x) and f(T(x)) should reflect
whether x is malicious or benign. We then adopt two widely used
metrics, Wasserstein distance (WD for short) [51] and Kullback-
Leibler divergence (KL for short) [29].

As shown in Figure 7, we depict benign and adversarial examples
by green circles and blue squares, respectively. The arrows with
dotted line represent E&R operations. We consider the changes
caused by E&R operations on benign images and AEs (depicted by
green and blue arrows with dotted line, respectively) should fall into
different probability distributions. To visualize this, we randomly
select 1,000 image pairs consisting of AEs and benign instances
from Dr-Test. After feeding them (with and without applying E&R
operations) into the image classification model, we collect the out-
put of the softmax layer. Then, we measure the difference between
f(x) and f(T(x)). To be consistent with the design of THEMIS,
we apply E&R operations 10 times for each image and calculate
an arithmetic mean of the 10 measurements. The visualization of
samples is shown in Figure 8, which confirms our proposition; that
is, the changes caused by E&R operations on benign images and
AEs fall into different clusters.

Next, we quantitatively analyse to what extent the distance/
divergence measurement can help discriminate an AE that is across
the decision boundary. In detail, we use an optimal threshold based
on the ROC (receiver operating characteristic) curve, to split AEs
and benign images distributions. Table 6 presents the FPR and TPR
(i.e., Detection Rate defined in Section 5). Note that the results are
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Figure 8: Visualization of the changes caused by E&R on benign samples and AEs.

only for illustrating that E&R imposes different impacts on AEs and
benign samples in terms of probability mass function changes, and
do not represent the detection performance of THEMIS (see Section 5
for its detection performance). Here, we only use one dimensional
feature (i.e., the Wasserstein distance or KL divergence) to split
two clusters, information loss inevitably degrades the splitting
performance, which is mitigated by the design of THEMIs.

Interpretation through Visualization of Feature Vectors. The
feature vectors due to 1,000 randomly selected benign samples
from the ImageNet dataset and the corresponding 1,000 AEs are
visualized in Figure 9. For the visualization purpose, it shows only
three principal components of the pre-processed feature vectors
(see Figure 4). We have two observations. (1) While the feature
vectors of benign samples, before and after the E&R operations,
are close (Figure 9(a)), those of AEs form two clusters far apart
(Figure 9(b)). (2) PCA is effective in preserving features that help
distinguish benign samples from AEs.

8 RELATED WORK

Countermeasures against AE attacks can be roughly divided into
two categories. The first category aims to eliminate the influences
of AEs by either rectifying them or fortifying the target neural
network itself. The second category is AE detectors (including our
work), the goal of which is to predict whether an input is adversarial,
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so that the target neural network can reject those inputs. Given the
large body of research on AFEs, this is not intended to be exhaustive.

8.1 Adversarial Influences Elimination

To improve the robustness of neural networks, adversarial training
augments the training set with the label-corrected AEs [35, 54].
Buckman et al. [4] propose using thermometer-encoded inputs to
assist adversarial training. Alternatively, Shield [13] enhances a
model by re-training it with multiple levels of compressed images
using JPEG, a commonly used image compression technique.
Another strategy is to pre-process the inputs before feeding
them to neural networks. For instance, the pixel deflection and a
wavelet-based denoiser are combined to rectify AEs [43]. Liao et
al. [32] propose higher-level guided denoisers aiming to remove
the adversarial noise from inputs. Some other methods adopt JPEG
compression techniques [23, 44] to filter out the information re-
dundancy, which otherwise provides living space for adversarial
perturbations. However, their accuracies under adaptive attacks are
lack of adequate evaluations. CIIDefence [24] proposes to use image
inpainting with wavelet based denoising to rectify the classification
result. However, its inpainting mask is guided by class activation
maps, which can be predicted and exploited by an adaptive attacker.
Both MagNet [37] and [8] essentially take the path of removing
noises/enhancing images, rather than the Erase-and-Restore path
proposed in this work. REMIX [8] applies inpainting to rectifying
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Figure 9: Visualization of feature vectors. The coordinate axes respectively represent three largest principal components.

Table 7: Performance of integrating THEMIs with an existing
detector [55].

Detection Rate
Classifier | FPR
assthier CW-Lo | JSMA | CW-L, | DeepFool
SVM 3.4% | 988% | 99.6% | 97.2% | 98.0%
AdaBoost || 1.5% | 988% | 99.6% | 96.4% | 97.2%

classification results, with an rectifying accuracy 86% on CIFAR-10.
It uses autoencoder as the inpainter. Autoencoders are typically
data-specific, which means that it is only effective on images similar
to what they have been trained on. It did not study the resilient to
adaptive attacks and did not provide interpretation either.

Unlike all these works, the purpose of our work is for highly
accurate attack detection, e.g., an accuracy of over 98% on CIFAR-10
and ImageNet. It does not have dependency on high similarity be-
tween training data and testing data. It is target-model agnostic: a
detector trained using AEs targeting one model can be directly used
to detect AEs targeting another. Moreover, our work provides inter-
pretation why the detection method works, and carefully examines
its resilience to adaptive attacks.

8.2 Adversarial Examples Detection

Li et al. [31] extract PCA features after inner convolutional layers
of the DNN, and then use a cascade classifier to detect AEs. Metzen
et al. [38] train a CNN-based auxiliary network. This light-weight
sub-network works with the target model to detect AEs. Some
techniques apply pre-processors on input images and use prediction
mismatch strategy to detect AEs. For example, Meng et al. [37]
train an auto-encoder as the image filter. If the predictions of an
original image and the corresponding processed one fail to match,
the input is adversarial. Similarly, Xu et al. [52] propose feature
squeezing to detect AEs by comparing the prediction for the original
input with that for the squeezed one. However, adaptive attacks
have successfully circumvented all of the aforementioned detection
methods [5, 6, 26]. Finally, Tian et al. [50] leverage image rotation
and shifting as pre-processors to construct a detector. Although
these operations can produce certain randomness to counter some
adaptive attacks, their randomness pool is very limited. It only has
45 possible transformations. As a result, their method can merely
achieve a detection rate of 70% under adaptive attacks [50].
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Zeng et al. [53] proposes a novel AE detection method inspired
by multiversion programming, which first uses multiple off-the-
shelf audio recognition systems to classify the same audio input and
then compares the classification results to detect AEs. Their insight
is the extraordinary difficulty of generating highly transferable
audio AEs, which is not the case for image AEs. We also make use
of multiple classification results, which, however, is based on the
idea of sampling (i.e., applying E&R multiple times) to enhance the
detection accuracy.

Inpainting has been used in our prior AE detection work [55],
but it was applied in a different way. Specifically, [55] focuses on de-
tecting Ly attacks by inpainting salient noises, as Ly attacks usually
cause large-amplitude perturbations due to minimizing the number
of modified pixels.

The AE detection idea that intentionally and randomly “damages”
(i.e., erases) some pixels of an image and then uses an inpainting
algorithm is not only novel and effective, but can also be interpreted
and keep resilient to adaptive attacks. Unlike other very complex
methods, our method is extremely simple and easy to apply. As
discussed in Section 9, although it only handles Ly attacks, it can
easily work as a plugin or complement to enhance an existing attack
detection system.

9 DISCUSSION AND FUTURE WORK

While our work focuses on detecting Ly AEs, it is easy to combine
our approach with other detectors that show strengths in detecting
other types of AEs to build a comprehensive hybrid detector. A
simplest integration is that an input is detected as an AE if any of
the integrated detectors reports so. To illustrate this, as an example,
we integrate THEMIS with our detection system [55] specialized in
detecting Lg attacks to build a more comprehensive detector. Table 7
shows the performance of this hybrid detector.

The proposed erasing and restoring approach works by destruc-
tion of the carefully perturbed pixels. Attackers thus may consider
minimizing the number of perturbed pixels, like in Ly AEs, to evade
our detection. However, the prior work points out that Ly AE gen-
eration results in large amplitudes of altered pixels, which can be
exploited to locate and restore most of the maliciously perturbed
pixels [55]. Therefore, for the purpose of AE generation, making a
trade-off between the number of altered pixels and their resulting
amplitudes is a direction worth exploration.

Another possible adaptive attack is to limit the perturbations
in a restricted area that the defender is not aware of. Most prior
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works [30, 39, 47] that limit perturbed pixels to a given sub-region
use Lo-norm. We notice that some recent works [14, 17] that only
perturb pixels in a limited region also use Ly-norm to achieve better
invisibility. However, their modified regions or even pixels are
predictable, which can be exploited by an AE detector. Therefore,
how to limit the Ly perturbation to an arbitrary sub-region is still
an open question. A future task is to investigate the effectiveness
of E&R once such Ly perturbations are available.

This work focuses on attacks launched against digital images; we
notice that physical attacks [18, 19] are attracting more and more
interests from the research community. In particular, patch-based
AEs, which are widely used in physical attacks, are not in the scope
of this work. However, it is interesting to study the effectiveness of
E&R on physical attacks [19]. We leave this as our future work.

Finally, some recent studies on certified robustness have attracted
much interest from the research community. For example, Cohen
et al. [10] present a certified robustness guarantee in Ly norm for
the smoothed classifier that is obtained by using Gaussian noise.
Furthermore, Jia et al. [27] derive a tight robustness in Ly norm for
top-k predictions when using randomized smoothing with Gaussian
noise. Some related works [1, 46] also show that inpainting has a
side effect of denoising by smoothing the interpolated pixels. Our
E&R approach can be considered as an alternative to randomized
smoothing. Thus, it is interesting to analyze the certified accuracy
of our E&R method. We plan to explore this in our future work.

10 CONCLUSION

Our finding has revealed that Ly AEs are sensitive to the Erase-
and-Restore operations, while benign samples are not. Exploiting
the sensitivity distinction, we have proposed a novel and effective
AE detection approach E&R. It outperforms other state-of-the-art
approaches in terms of both detection rates and false positive rates.
In addition, our detector is target-model agnostic, keeps effective
across different Ly attack methods (i.e., good transferability across
attack methods), and is resilient to adaptive attacks. Furthermore,
we have interpreted the detection technique from both qualitative
and quantitative angles to provide deeper understanding of the
technique. Unlike many other detection methods that are complex
and thus difficult to construct and train, this method is very simple
to build and easy to apply in practice.
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