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Abstract

We study multifrequency Hebbian plasticity by analyzing phenomenological models of weakly connected neural networks.

We start with an analysis of a model for single-frequency networks previously shown to learn and memorize phase differences

between component oscillators. We then study a model for gradient frequency neural networks (GrFNNs) which extends

the single-frequency model by introducing frequency detuning and nonlinear coupling terms for multifrequency interactions.

Our analysis focuses on models of two coupled oscillators and examines the dynamics of steady-state behaviors in multiple

parameter regimes available to the models. We find that the model for two distinct frequencies shares essential dynamical

properties with the single-frequency model and that Hebbian learning results in stronger connections for simple frequency

ratios than for complex ratios. We then compare the analysis of the two-frequency model with numerical simulations of the

GrFNN model and show that Hebbian plasticity in the latter is locally dominated by a nonlinear resonance captured by the

two-frequency model.
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1 Introduction

Hebbian learning is a widely accepted principle of synaptic

plasticity which attributes strengthening of synaptic effica-

cies to correlated activation of pre- and post-synaptic neurons

(Hebb 1949; Caporale and Dan 2008). While various math-

ematical formulations of the Hebb rule have been studied

(Gerstner and Kistler 2002; Shouval 2007), here we inves-

tigate Hebbian plasticity in networks of neural oscillators

(Maslennikov and Nekorkin 2017). Previous work showed

that adaptive networks, in which the states of oscillatory

elements (nodes) and the coupling weights between them

(links) interact and co-evolve, exhibit collective dynamical

effects, such as self-assembled multiclusters (Aoki and Aoy-

agi 2011), chimera states (Kasatkin et al. 2017), emergence of
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modular topology (Assenza et al. 2011) and transient switch-

ing dynamics (Maslennikov and Nekorkin 2015). However,

previous models have mainly accounted for synchroniza-

tion in 1:1 frequency ratio while multifrequency learning

between distinct but resonant frequencies (e.g., harmonics

and integer ratios) has not received much attention, despite

its implications for auditory processing (Humphries et al.

2010) and cross-frequency coupling (Hyafil et al. 2015). In

this paper, we study a model of multifrequency adaptive net-

work (Large et al. 2010; Large 2010), which is an extension

of a model of single-frequency Hebbian learning (Hoppen-

steadt and Izhikevich 1996a, b).

Hoppensteadt and Izhikevich (1996a, 1997) derived a

generic model for weakly connected neural networks near a

multiple Andronov–Hopf bifurcation (Andronov et al. 1971;

Guckenheimer and Holmes 1983) when all oscillators have

equal or ǫ-close natural frequencies,

z′
i = bi zi + di zi |zi |2 +

n
∑

j �=i

ci j z j , i = 1, . . . , n

where ′ = d/dτ , τ = ǫt is ‘slow’ time, ǫ > 0 represents

the strength of synaptic connections in the original weakly

connected system, and z, b, d and c are complex numbers.

They called it a canonical model which they defined to be
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a simple mathematical model that can be derived using nor-

mal form theory from a family of biophysically more detailed

models that share certain dynamic properties (Hoppensteadt

and Izhikevich 2001). For example, they showed that weakly

connected Wilson–Cowan-type models (Wilson and Cowan

1972), when each of them is near an Andronov–Hopf bifur-

cation, can be transformed to the above canonical model via

a continuous change of variables (Hoppensteadt and Izhike-

vich 1996a, Theorem 1).

Hoppensteadt and Izhikevich (1996b, 1997) showed that

the canonical network can memorize the phase differences

between oscillators zi and z j in the phase of complex-valued

connection ci j if ci j evolves in time according to a Hebbian

learning rule of the form,

c′
i j = −γ ci j + ki j zi z̄ j , i �= j,

where γ and k are positive real numbers. They demonstrated

that a plastic network consisting of equal-frequency oscilla-

tors can serve as a model of associative memory and pattern

recognition (Hoppensteadt and Izhikevich 2000).

Large et al. (2010) extended the single-frequency network

of Hoppensteadt and Izhikevich into a gradient frequency

neural network (GrFNN), a network of neural oscilla-

tors tuned to a range of distinct frequencies. A canonical

model for GrFNNs consisting of oscillators poised near

an Andronov–Hopf bifurcation or a Bautin bifurcation

(Kuznetsov 2004) is given by

z′
i = zi

(

ai + bi |zi |2 +
ǫdi |zi |4

1 − ǫ|zi |2

)

+
n

∑

j �=i

ci j

z j

1 −
√

ǫz j

1

1 −
√

ǫ z̄i

,

where z, a, b, d and c are complex numbers. Unlike the

single-frequency model which describes only the interac-

tions between oscillators tuned to identical frequencies, the

GrFNN model includes a full expansion of higher-order

terms to capture nonlinear resonances between distinct fre-

quencies (e.g., harmonics and integer ratios).

Large (2010, 2011) proposed a Hebbian learning rule of

the form,

c′
i j = −γ ci j + ki j

zi

1 −
√

ǫzi

z̄ j

1 −
√

ǫ z̄ j

, i �= j,

which enables the GrFNN model to learn and remember the

frequency and phase relationships in multi-frequency sig-

nals. It has been shown that the GrFNN model can predict

and explain nonlinearities in auditory peripheral and neural

processing (Lerud et al. 2014, 2019), the universal struc-

tural properties found in musical cultures (Large 2010, 2011;

Large et al. 2016), and the perception and learning of musical

patterns (Large 2011; Large et al. 2015; Kim 2017; Tichko

and Large 2019).

In this paper, we study the dynamic properties of multifre-

quency Hebbian learning by analyzing the above canonical

models, which are mathematically simple and tractable. Our

analysis focuses on Hebbian learning in two coupled oscilla-

tors, which we use to examine numerical simulations of larger

networks. We start with an analysis of the single-frequency

model of Hoppensteadt and Izhikevich (Sects. 2.1, 2.2) since,

to our knowledge, no detailed analysis of the model was given

before. We extend the single-frequency model by stabiliz-

ing it for the entire range of parameters (Sect. 2.3) and by

introducing frequency detuning (Sect. 2.4). Next, we study

multifrequency learning by analyzing a model for two dis-

tinct frequencies (Sect. 3.1) and by extending it to a gradient

frequency network with arbitrary frequency relationships

(Sect. 3.3). We also study frequency scaling for networks

with logarithmically spaced frequencies (Sect. 3.2) and end

with a discussion of the findings (Sect. 4).

2 Analysis of single-frequency learning

We first study Hoppensteadt and Izhikevich’s canonical

model for single-frequency neural networks. As will be

shown, the single-frequency model shares many dynamical

properties with the multifrequency GrFNN model, but they

also exhibit distinct behaviors. Here we analyze the simplest

case of single-frequency network, namely two coupled equal-

frequency oscillators.

The dynamics of two weakly coupled equal-frequency

oscillators, each near an Andronov–Hopf bifurcation (or sim-

ply, a Hopf bifurcation), is described by the canonical model

(Hoppensteadt and Izhikevich 1996a, 1997),

{

ż1 = z1

(

α1 + iω − |z1|2
)

+ c12z2

ż2 = z2

(

α2 + iω − |z2|2
)

+ c21z1

, (1)

where zi ∈ C represents the state of the ith oscillator, ci j ∈ C

is the coupling coefficient from the jth to the ith oscillator,

αi ∈ R is the bifurcation parameter, ω ∈ R is the com-

mon natural frequency, and the roman i is the imaginary unit.

Since our goal is the analysis of the canonical model, not its

derivation using averaging theory, we use˙= d/dt instead of
′ = d/dτ for slow time τ . When uncoupled (i.e., ci j = 0),

the equations become the normal form of a Hopf bifurcation

(Murdock 2003), which is also known as the Stuart–Landau

equation (Stuart 1958). An autonomous oscillator exhibits

spontaneous limit-cycle oscillation if α > 0 or an equilib-

rium at zero if α ≤ 0.
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The complex-valued Hebbian learning rule (Hoppensteadt

and Izhikevich 1996b, 1997),

{

ċ12 = −γ c12 + κ12z1 z̄2

ċ21 = −γ c21 + κ21z2 z̄1
, (2)

allows the connection ci j to learn and memorize the phase

difference between the oscillators zi and z j , where γ > 0

is the decay rate, and κi j > 0 is the learning rate. For the

simplicity of analysis, we assume α1 = α2 = α and κ12 =
κ21 = κ , and notate

{

żi = zi

(

α + iω − |zi |2
)

+ ci j z j

ċi j = −γ ci j + κzi z̄ j
, (3)

where i, j = 1, 2, which is a shorthand for (i, j) = (1, 2)

for the equations for z1 and c12, and (i, j) = (2, 1) for the

equations for z2 and c21.

2.1 Neutral stability of connection phase

Let us bring the system to the polar coordinates using zi =
ri e

iφi and ci j = Ai j e
iθi j ,

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ṙi = αri − r3
i + Ai jr j cos(θi j + φ j − φi )

φ̇i = ω + Ai j r j

ri
sin(θi j + φ j − φi )

Ȧi j = −γ Ai j + κrir j cos(φi − φ j − θi j )

θ̇i j = κri r j

Ai j
sin(φi − φ j − θi j )

, (4)

where i, j = 1, 2. Since the angular variables appear only

as θi j − φi + φ j , we define ψi j = θi j − φi + φ j and call

them system phases. This turns the above eight-dimensional

system into a six-dimensional one,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ṙi = αri − r3
i + Ai jr j cos ψi j

Ȧi j = −γ Ai j + κrir j cos ψi j

ψ̇i j = −
(

κri r j

Ai j
+ Ai j r j

ri

)

sin ψi j + A j i ri

r j
sin ψ j i

, (5)

where i, j = 1, 2.

Equation (5) indicates that ψ̇i j = 0 when the system is in

a steady state. As will be shown below, an obvious solution is

ψ∗
12 = ψ∗

21 = 0 (the asterisk denotes a steady-state solution),

in which case θ̇i j = 0 and θ12 = −θ21 = φ1 − φ2 (see Eq. 4

and the definition of ψi j above). The solution only requires

that connection phases θ12 and θ21 match the relative phase

of the oscillators ±(φ1−φ2), without specifying steady-state

values of the connection phases or the relative phase (or phase

difference).

Figure 1 shows numerical simulations of the system start-

ing from five different randomly generated initial conditions.

Connection amplitudes Ai j and system phases ψi j con-

verge to identical steady-state values, respectively, indicating
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Fig. 1 Numerical simulations of coupled equal-frequency oscillators

(3) for five different initial conditions. Parameters used: α = 1, γ = 1,

κ = 0.5, and ω = 1
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Fig. 2 Perturbation of coupled equal-frequency oscillators (3). A per-

turbation is delivered to the first oscillator z1 at t = 10. See the caption

for Fig. 1 for parameters

the presence of an attractor. Connection phases θi j , on the

other hand, converge to different values, but the steady state

of each simulation satisfies the aforementioned condition

θ12 = −θ21 = φ1 − φ2. This suggests that plastic connec-

tion phases are neutrally stable, that is, they converge to a

value which is not attracting (Strogatz 1994). A simulation

of perturbation confirms this (Fig. 2). When the system is

perturbed, ψi j are pulled back to the attractor at zero while

θi j converge to new values (which are again symmetric to

each other), instead of being attracted back to the previous

steady-state values.1

The neutral stability of connection phases makes sense

given that the learning rule (2) allows plastic connections to

memorize the phase difference between the oscillators they

1 The amount of change in connection phases θi j after a perturbation

depends on connection amplitudes Ai j . Once the connections grow

strong enough compared to the magnitude of perturbation, and when

learning is slow (with small γ and κ), the plastic connections act like

fixed coupling and are not altered significantly by sporadic perturba-

tions of small amplitudes. Accordingly, the oscillators are attracted back

to the previous relative phase after a small perturbation. Thus, plastic

connections which are neutrally stable on a long timescale constitute an

attractor on a short timescale. For the purpose of demonstrating neutral

stability, the simulation shown in Fig. 2 used fast learning and a strong

perturbation.
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Fig. 3 Externally forced and mutually coupled equal-frequency oscil-

lators simulated with five different initial conditions. In addition to the

coupling terms in (3), each oscillator zi is driven by external forcing

Fi e
i(ωt+ϑi ) where F1 = F2 = 2, ϑ1 = π

2
and ϑ2 = 0. The initial

conditions and other parameter values are identical to those used for

Fig. 1

connect (Hoppensteadt and Izhikevich 1996b, 1997). When

the oscillators are not forced to have certain phase differ-

ences, as is the case for (3), the connection phases can have

arbitrary steady-state values because the oscillators are free

to have arbitrary phase differences (Fig. 1). However, when

certain phase differences are forced on the oscillators, for

instance, by external forcing, the connection phases are not

neutrally stable but are attracted to the forced phase differ-

ences. Fig. 3 shows that when the oscillators are forced to

have the phase difference φ1 − φ2 = π
2

, connection phases

θ12 and θ21 are attracted to π
2

and −π
2

, respectively.

2.2 Stability analysis

We study the single-frequency model (3) further by exam-

ining the existence and stability of steady-state solutions.

Below we discuss zero, asymmetric, and symmetric solu-

tions.

Stability of zero and asymmetric solution. First, it is obvious

that zi = ci j = 0 is a solution of (3) regardless of parameter

values. We find that the zero solution is stable for α < 0 and

unstable for α > 0, which can be shown by examining the

signs of ṙi and Ȧi j for small perturbations from zero (ψi j is

not defined at zero). Thus, zero is stable or attracting when

autonomous (uncoupled) oscillators have an equilibrium at

zero (α < 0), and it is unstable or repelling when they exhibit

spontaneous oscillations (α > 0). For α = 0, zero is stable

if γ > κ (strong forgetting), unstable if γ < κ (strong learn-

ing), and neutrally stable if γ = κ (along with other infinite

solutions, see below). We also find that asymmetric solutions

do not exist for (5). From the steady-state equations, we can

show A∗
12 = A∗

21 which leads to r∗
1 = r∗

2 .

Nonzero symmetric solution. When the oscillators and the

learning rules have identical parameters as we assume here, it

is likely that the system has symmetric solutions with r∗
1 = r∗

2
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Stabilized (8)

Stabilized (9)

Fully expanded (15)

Fig. 4 Symmetric steady-state oscillator amplitude r∗ as function of

learning rate κ for the original single-frequency model (3), two stabi-

lized models (8) and (9), and the fully expanded model (15). Parameters

used: α = 0.1, γ = −λ = 1, β = β1 = β2 = −1, and k = m = 1

and A∗
12 = A∗

21. Examining (5), we find that the symmetric

plane r1 = r2, A12 = A21, ψ12 = −ψ21 is an invariant

manifold because ṙ1 = ṙ2, Ȧ12 = Ȧ21, and ψ̇12 = −ψ̇21 on

any point on the plane. Once the system is on the symmetric

plane, it remains there indefinitely.

To examine the dynamics on the symmetric plane, we

substitute ri = r , Ai j = A and ψ12 = −ψ21 = ψ in (5) and

get

⎧

⎪

⎨

⎪

⎩

ṙ = αr − r3 + Ar cos ψ

Ȧ = −γ A + κr2 cos ψ

ψ̇ = −
(

κr2

A
+ 2A

)

sin ψ

. (6)

We obtain a nonzero symmetric solution by solving steady-

state equations ṙ = 0, Ȧ = 0, and ψ̇ = 0,

r∗ =
√

γα

γ − κ
, A∗ =

κα

γ − κ
, ψ∗ = 0. (7)

Since r and A are positive real numbers, the solution exists if

α > 0 and γ > κ , or if α < 0 and γ < κ . In either case, both

r∗ and A∗ diverge at γ = κ (Fig. 4). When α = 0, no nonzero

solution exists unless γ = κ for which infinite solutions

satisfying r∗2 = A∗ exist (including the zero solution as

discussed above). In the parameter regimes without nonzero

solutions, the system either decays to zero or diverges to

infinity depending on the stability of zero (see Table 1).

We can determine the linear stability of the nonzero sym-

metric solution (7) by evaluating the Jacobian matrix at the

solution (Arnold 1978; Strogatz 1994). By solving the char-

acteristic equation, we obtain the following eigenvalues of

the Jacobian matrix,

λ1 = −γ − 2A∗ < 0,

λ2,3 = −
(

2r∗2+γ
)

±
√

(2r∗2+γ )
2−8(γ−k)r∗2

2

123



Biological Cybernetics

= −
(

2r∗2+γ
)

±
√

(2r∗2−γ )
2+8kr∗2

2
.

Thus, if γ > κ (and α > 0), all three eigenvalues are neg-

ative, indicating the solution is a stable node (see Ai j and

ψi j approach fixed points monotonically in Fig. 1). In this

case, the nonzero solution is the only stable solution because

zero is not stable. If γ < κ (and α < 0), the Jacobian matrix

has two negative and one positive eigenvalues, indicating the

solution is a saddle point. The two-dimensional stable man-

ifold of this saddle point serves as a separatrix between the

stable zero and the divergence to infinity.

Table 1 summarizes the steady states of the original single-

frequency model for different regimes of parameters α, γ and

κ . In many parameter regimes, the original model does not

have a stable steady-state solution but diverges to infinity

unless it is precisely at zero. Below we discuss ways to sta-

bilize the model in all its parameter regimes, and we extend

it further by introducing frequency detuning.

2.3 Stabilization of learning dynamics

The nonzero steady-state solution of the single-frequency

model, given in (7), diverges at γ = κ (see Fig. 4) because

the input term Ar cos ψ in the oscillator amplitude equation

in (6) is, with A∗ growing linearly with r∗2, effectively of

the same order of r as the highest-order intrinsic term −r3.

We can prevent the system from diverging by adding higher-

order stabilizing terms in the oscillator equations and/or the

learning equations. Let us first consider adding a quintic term

to the oscillator equations (and making the cubic coefficient

β),

{

żi = zi

(

α + iω + β|zi |2 − |zi |4
)

+ ci j z j

ċi j = −γ ci j + κzi z̄ j
(8)

where i, j = 1, 2.2 Now, the oscillators can be near a double

limit cycle bifurcation when β > 0 (also known as saddle-

node or fold bifurcation of periodic orbits; Arnold 1988;

Kuznetsov 2004). For the interest of space, however, here

we limit our analysis to the parameter regimes around a Hopf

bifurcation by restricting β < 0.

By bringing the system to the polar coordinates and solv-

ing symmetric steady-state equations, we get

r∗ =

√

√

√

√

√

1

2

⎛

⎝β +
κ

γ
±

√

(

β +
κ

γ

)2

+ 4α

⎞

⎠,

2 We chose the quintic coefficient to be −1 because here we want to

examine the stabilization of amplitude dynamics without altering phase

dynamics. In fully expanded models (13) and (24), the quintic coeffi-

cient di = β2i + iδ2i has both amplitude (radial) and phase (azimuthal)

components.

A∗ =
κ

γ
r∗2, ψ∗ = 0.

Thus, unlike the original model (3), the stabilized model (8)

does not have a singularity (Fig. 4). For α > 0 (the super-

critical regime of a Hopf bifurcation), one positive real r∗

always exists, and a linear stability analysis indicates that it

is a stable node (see Fig. 5 where Ω = 0). For α = 0 (the

critical point), one positive r∗ exists if κ
γ

> −β (none oth-

erwise, see Fig. 6). For α < 0 (the subcritical regime), two

positive solutions exist if κ
γ

≥ −β +2
√

−α, which are a sta-

ble node and a saddle point (Fig. 7). (The stability analysis

shown in Figs. 5, 6 and 7 will be discussed more fully in the

next section.)

Alternatively, we can add a cubic damping term in the

learning rule to stabilize the system for all ranges of learning

parameters,

{

żi = zi

(

α + iω − |zi |2
)

+ ci j z j

ċi j = ci j

(

λ − |ci j |2
)

+ κzi z̄ j

, (9)

where we notate the linear coefficient in the learning rule as

λ ∈ R instead of −γ to emphasize that now it can be positive

or zero with the stabilizing cubic term added to the equation.

Thus, the addition of a cubic term not only stabilizes the

system (Fig. 4) but also introduces new parameter regimes

to the learning rule. In this paper, we limit our analysis to

the learning rule with only a linear damping term −γ ci j and

study the first stabilized model (8) further below. An analysis

of nonlinear learning regimes will be given elsewhere.3

2.4 Effects of frequency detuning

We extend the stabilized single-frequency model (8) by intro-

ducing frequency detuning (i.e., ω1 �= ω2),

{

żi = zi

(

α + iωi + β|zi |2 − |zi |4
)

+ ci j z j

ċi j = −γ ci j + κzi z̄ j
(10)

where i, j = 1, 2. As before, we convert the system to the

polar coordinates using zi = ri e
iφi , ci j = Ai j e

iθi j , define

ψi j = θi j − φi + φ j , and get

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ṙi = αri +βr3
i − r5

i + Ai jr j cos ψi j

Ȧi j = −γ Ai j+κrir j cos ψi j

ψ̇i j = −Ωi j −
(

κri r j

Ai j
+ Ai j r j

ri

)

sin ψi j + A j i ri

r j
sin ψ j i

,

(11)

where Ωi j = ωi −ω j is frequency detuning, and i, j = 1, 2.

Stability analysis. As with the original model (5), the sym-

metric plane r1 = r2, A12 = A21, ψ12 = −ψ21 is an invariant

3 See Large et al. (2016), Kim (2017), Tichko and Large (2019) for

nonlinear learning rules with fully expanded intrinsic terms.
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Table 1 Steady states of the

original single-frequency model

(3)

γ > κ γ = κ γ < κ

α < 0 0a 0 0, (saddle)b, ∞c

α = 0 0 Infinite solutions (0), ∞
α > 0 (0), node (0), ∞ (0), ∞
a Zero solution.
b Unstable solutions are in parentheses.
c Divergence to infinity

manifold. Here we focus on the dynamics on the symmetric

plane (numerical simulations suggest that no stable asym-

metric solution exists). Substituting ri = r , Ai j = A and

ψ12 = −ψ21 = ψ , we get

⎧

⎪

⎨

⎪

⎩

ṙ = αr + βr3 − r5 + Ar cos ψ

Ȧ = −γ A + κr2 cos ψ

ψ̇ = −Ω −
(

κr2

A
+ 2A

)

sin ψ

, (12)

where Ω = ω1 − ω2. Combining steady-state equations and

using sin2 ψ∗ + cos2 ψ∗ = 1, we obtain a sixth-order equa-

tion for r∗ (not shown due to its length), which we solve by

numerical root finding. We determine the linear stability of

each obtained nonzero solution (r∗, A∗, ψ∗) by evaluating

the Jacobian matrix at the solution.

Figures 5a, 6a, and 7a show the stability type of stable

nonzero symmetric solutions in the parameter space (Ω, κ)

for three different regimes of oscillator parameters: the super-

critical (α > 0), the critical (α = 0), and the subcritical

regime (α < 0) of a Hopf bifurcation [see Kim and Large

(2015, 2019) for the distinct characteristics of each regime].

Panels b and c of the figures show the steady-state values

of both stable and unstable solutions for select values of κ .

In all three regimes, both oscillator amplitude r∗ and con-

nection amplitude A∗ are maximum at Ω = 0, indicating

that neural networks with plastic connections resonate when

there is no frequency detuning, as do networks with fixed

coupling (Kim and Large 2015). In the supercritical regime

(Fig. 5a, c), at least one stable nonzero solution exists for the

entire range of Ω and κ , and two stable solutions exist for

intermediate |Ω| and large κ . As discussed in the previous

section (2.3), the region of (Ω, κ) with at least one stable

nonzero solution, often called an Arnold tongue, is lifted off

κ = 0 for the critical and subcritical regimes (α ≤ 0), with

the tongue tip at κ0 = γ (−β+2
√

−α) (Figs. 6a and 7a). This

is because autonomous (uncoupled) oscillators with α ≤ 0

have a sole attractor at zero, and a high learning rate κ is

needed to get them to develop nonzero connections. When

nonzero solution(s) exists, zero is stable only if the solution

with the smallest amplitude is a saddle point which acts as a

separatrix (e.g., the saddle points in Figs. 6c and 7b, but not

Fig. 5c). When no nonzero solution exists (the white regions

in Figs. 6a, 7a), zero is always stable.

Rotating connection phase. Equation (11) indicates that when

ω1 �= ω2 (i.e., Ω12 = −Ω21 �= 0), both steady-state

system phases ψ∗
12 and ψ∗

21 cannot be zero. Since θ̇i j =
− κri r j

Ai j
sin ψi j , nonzero ψ∗

i j means that connection phase θi j

is not constant over time but advances at a constant rate when

the system is in a steady state. Since ψ̇i j = θ̇i j − φ̇i + φ̇ j = 0

in a steady state, the frequency of oscillating connection θ̇i j

is equal to the difference of the oscillators’ instantaneous

frequencies φ̇i − φ̇ j . In other words, oscillating connections

compensate the instantaneous frequency difference of the

oscillators (see Fig. 8 for a simulation with frequency detun-

ing).4

Panels b and c of Figs. 5, 6 and 7 show that the steady-state

oscillation frequency of plastic connection θ̇∗
i j fall between 0

and Ωi j (the latter is indicated by a diagonal dashed line in

the figures; note θ̇∗
12 = −θ̇∗

21 for symmetric solutions). For

small frequency detuning |Ω|, plastic connections have large

amplitudes A∗ and slow (near zero) oscillating frequencies

θ̇∗
i j . In this case, the instantaneous frequencies of the oscilla-

tors are brought close to each other because the compensation

by plastic connections is small. For large frequency detun-

ing, connection frequencies are close to Ωi j if steady-state

solutions exist (see Fig. 5b, c) which means that oscillating

connections compensate most of the frequency detuning so

that the oscillators’ instantaneous frequencies are near their

natural frequencies. In this case, the connections have small

steady-state amplitudes because plastic connections can be

considered as oscillators tuned to the frequency of zero.5

They assume small amplitudes when forced to oscillate at a

nonzero frequency.

4 Note that the oscillation frequency of plastic connection θ̇i j =
− κri r j

Ai j
sin ψi j is proportional to κ . When learning is slow (with small

γ and κ), plastic connections oscillate at slow frequencies and behave

like fixed coupling on a short timescale. See footnote 2 for a related

discussion on the timescale of learning.

5 See Eq. (9), for example, where the intrinsic part of the learning equa-

tion takes a similar form as the oscillator equation, except the former

does not have any imaginary terms like iω, which can be interpreted

as the natural frequency being zero. Thus, plastic connections resonate

when the oscillators maintain a fixed phase difference (or phase-locked)

because that is when the input term κzi z̄ j is stationary.
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Fig. 5 Nonzero symmetric steady-state solutions of the stabilized

single-frequency model with frequency detuning (10) in the supercrit-

ical Hopf regime (α = 0.1, β = −1, γ = 1). a The stability type

of stable solutions in the (Ω, κ) parameter space. b Stability type and

steady-state values for κ = 1.5 and c for κ = 2.5. The horizontal dashed

lines in the plots of r∗ indicate the spontaneous amplitude of the oscil-

lators (i.e., the steady-state amplitude of an uncoupled oscillator). The

diagonal dashed lines in the plots of θ̇∗
12 indicate frequency detuning Ω
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Fig. 6 Nonzero symmetric steady-state solutions of the stabilized

single-frequency model (10) at the critical point of a Hopf bifurca-

tion (α = 0, β = −1, γ = 1). a The stability type of stable solutions.

b Stability type and steady-state values for κ = 1.3 and c for κ = 2.5.

A nonzero solution exists for Ω = 0 if κ > κ0 = −βγ . See the text

for details
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Fig. 7 Nonzero symmetric steady-state solutions of the stabilized

single-frequency model (10) in the subcritical Hopf regime (α = −0.1,

β = −1, γ = 1). a The stability type of stable solutions. b Stability

type and steady-state values for κ = 2.5. κ0 = γ (−β + 2
√

−α) is the

smallest κ for which a nonzero solution exists at Ω = 0

10 12 14 16 18 20

-0.5

0

0.5

R
e

a
l 
p

a
rt

10 12 14 16 18 20

Time (sec)

-0.1

0

0.1

R
e

a
l 
p

a
rt

Fig. 8 Numerical simulation of the stabilized model with frequency

detuning (10). In a steady state, the frequency of oscillating connections

matches the difference of the oscillators’ instantaneous frequencies.

Parameters used: α = 0.1, β = −1, ω1 = 2π (or 1 Hz), ω2 = 0.8×2π

(0.8 Hz), γ = 1 and κ = 1

3 Hebbian learning inmultifrequency
networks

Now we turn our attention to multifrequency learning. To

study Hebbian learning in multifrequency neural networks,

we first analyze a canonical model for two coupled oscillators

with distinct frequencies. We use the same analytic methods

used above for single-frequency models. As shown below,

many findings for single-frequency learning hold for multi-

frequency learning since the former is a particular instance

of the latter.

3.1 Two distinct frequencies

When two oscillators have distinct natural frequencies that

approximate an integer ratio k:m, where k, m ∈ N, the

dynamics of coupled oscillators can be described by
⎧

⎪

⎨

⎪

⎩

ż1 =z1

(

a1 + b1|z1|2 + ǫd1|z1|4
1−ǫ|z1|2

)

+ǫ
k+m−2

2 c12zk
2 z̄m−1

1

ż2 =z2

(

a2+b2|z2|2 + ǫd2|z2|4
1−ǫ|z2|2

)

+ ǫ
k+m−2

2 c21zm
1 z̄k−1

2

,

(13)

where ai = αi + iωi , bi = β1i + iδ1i , di = β2i + iδ2i , α,

ω, β, δ ∈ R, and ǫ > 0 is a small number representing the

strength of synaptic connections in the original weakly con-

nected system (Large et al. 2010; Kim and Large 2019).6 This

is a generalization of the models derived in Hoppensteadt and

Izhikevich (1997) for specific ratios (2:1 and 3:1) to a general

integer ratio k:m or a resonant relation of mω1 = kω2.

The coupling terms zk
2 z̄m−1

1 and zm
1 z̄k−1

2 are the lowest-

order resonant monomials for mω1 = kω2, which satisfy the

resonant conditions between the eigenvalues,

iω1 = kiω2 − (m − 1)iω1,

iω2 = miω1 − (k − 1)iω2.

The coupling terms are of order O(
√

ǫ
k+m−2

), indicating

the model for distinct frequencies is weakly connected com-

pared to the single-frequency model for which k = m = 1

(Hoppensteadt and Izhikevich 1997). Intrinsic terms are fully

expanded in the form of a geometric series (with the coeffi-

cient di ), instead of being truncated, to stabilize the system

for arbitrarily large k and m (β2i < 0 for stability). For the

6 Note that (13) has ǫ in the intrinsic higher-order terms (with the coeffi-

cient di ) as well as in the coupling terms (with ci j ). The original weakly

connected system is considered ǫ-perturbation of the uncoupled system,

from which the canonical model is derived using averaging theory (Hop-

pensteadt and Izhikevich 1996a). Here, to capture resonance between

distinct frequencies, the canonical model is expanded to include higher-

order perturbation terms (see Hoppensteadt and Izhikevich 1997, p.

172). Hence, both the higher-order intrinsic terms and the coupling

terms are expressed as powers of ǫ.
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convergence of the geometric series, oscillator amplitudes

are restricted to |zi | < 1√
ǫ

(Large et al. 2010).

We generalize the original single-frequency learning rule

(2) to a general resonant relation of mω1 = kω2 with

{

ċ12 = −γ c12 + ǫ
k+m−2

2 κ12zm
1 z̄k

2

ċ21 = −γ c21 + ǫ
k+m−2

2 κ21zk
2 z̄m

1

, (14)

which becomes (2) when k = m = 1. The coupling

terms zm
1 z̄k

2 and zk
2 z̄m

1 become stationary (to which plastic

connections resonate, see footnote 5) when z1 and z2 are

mode-locked in the frequency ratio k:m (i.e., when their rel-

ative phase mφ1 − kφ2 is constant over time).

For the simplicity of analysis, we assume that the oscilla-

tors have identical parameters except their natural frequen-

cies (e.g., αi = α) and that intrinsic frequencies do not

depend on amplitudes (i.e., δ1i = δ2i = 0). Also, for the

interest of space, we limit our analysis to the parameter

regimes around a Hopf bifurcation by restricting β1i < 0.

By rescaling zi → zi√
ǫ
, β1 → β1

ǫ
, β2 → β2

ǫ
, and κ → κ

ǫ

(thus, now |zi | < 1, see Fig. 4), we get

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ż1 = z1

(

α + iω1 + β1|z1|2 + β2|z1|4
1−|z1|2

)

+ c12zk
2 z̄m−1

1

ż2 = z2

(

α + iω2 + β1|z2|2 + β2|z2|4
1−|z2|2

)

+ c21zm
1 z̄k−1

2

ċ12 = −γ c12 + κzm
1 z̄k

2

ċ21 = −γ c21 + κzk
2 z̄m

1

.

(15)

Again, we transform the system to the polar coordinates using

zi = ri e
iφi and ci j = Ai j e

iθi j , define ψi j = θi j − mi jφi +
ki jφ j where (k12, m12) = (k, m) and (k21, m21) = (m, k),

and get

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ṙi = αri + β1r3
i + β2r5

i

1−r2
i

+ Ai jr
ki j

j r
mi j −1

i cos ψi j

Ȧi j = −γ Ai j + κr
mi j

i r
ki j

j cos ψi j

ψ̇i j = −Ωi j −
(

κr
mi j
i r

ki j
j

Ai j
+ mi j Ai jr

mi j −2

i r
ki j

j

)

sin ψi j

+ki j A j ir
mi j

i r
ki j −2

j sin ψ j i

,

(16)

whereΩi j = mi jωi −ki jω j (orΩ12 = −Ω21 = mω1−kω2).

Since the dynamics of the model are determined by system

phases ψi j , as is the case for the single-frequency models

discussed above, connection phases θi j converge to neutrally

stable steady-state values when Ωi j = 0 (while satisfying

θ∗
12 = −θ∗

21 = mφ1 − kφ2), and they rotate when Ωi j �= 0

(see Sects. 2.1, 2.4).

Symmetric solutions. The dynamics on the symmetric plane

ri = r , Ai j = A and ψ12 = −ψ21 = ψ are governed by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ṙ = αr + β1r3 + β2r5

1−r2 + Ar k+m−1 cos ψ

Ȧ = −γ A + κr k+m cos ψ

ψ̇ = −Ω −
(

κrk+m

A
+ (k + m)Ar k+m−2

)

sin ψ

, (17)

where Ω = mω1 − kω2. Again, we calculate nonzero sym-

metric steady-state solutions (r∗, A∗, ψ∗) by numerically

solving a polynomial equation in r∗ (of the order determined

by k + m) we obtain by combining steady-state equations

ṙ = 0, Ȧ = 0 and ψ̇ = 0. The linear stability of the solu-

tions is determined by evaluating the Jacobian matrix.

Steady-state solutions and their stability for multifre-

quency learning (k : m ratio) show similarities to single-

frequency learning (1:1 ratio), but there are notable differ-

ences. Let us take the 2:1 model (i.e., Eq. 15 with k = 2,

m = 1) as an example and compare it with what we found

above for the 1:1 single-frequency model. In the supercriti-

cal Hopf regime (α > 0), the 2:1 model with a large α has

a set of steady-state solutions that are topologically equiv-

alent to the 1:1 model shown in Fig. 5. However, for small

positive values of α, the 2:1 model shows a different set of

behaviors, with two stable solutions at Ω = 0 for interme-

diate values of κ (Fig. 9). In the critical and subcritical Hopf

regimes (α = 0 and α < 0, respectively), the 2:1 model has

the same set of solutions as the 1:1 model in the subcritical

Hopf regime (Fig. 7): a pair of nonzero solutions (a stable

node and a saddle point) exist for small |Ω| for κ greater than

a critical value κ0. Multifrequency models with k + m > 2

share the same set of steady-state solutions as the 2:1 model

examined here.

Relative strength of k:m learning. Although multifrequency

models with k + m > 2 show qualitatively identical behav-

iors, the strength of resonance varies with k and m. To

compare the strength of k:m learning, we perform a further

analysis at Ω = 0. Using ψ∗ = 0 at Ω = 0 and combining

steady-state equations ṙ = 0 and Ȧ = 0 from (17), we get

α + β1r∗2 +
β2r∗4

1 − r∗2
= −

κ

γ
r∗2(k+m−1).

Thus, defining X = r∗2, the steady-state solutions at Ω = 0

are the intersections of functions y1 and y2, defined as

⎧

⎨

⎩

y1 = α + β1 X + β2 X2

1−X

y2 = − κ
γ

X k+m−1
. (18)

Note that y1 depends only on oscillator parameters α, β1 and

β2, while y2 depends on learning parameters γ and κ and the

order of nonlinear resonance k + m.
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Fig. 9 Nonzero symmetric steady-state solutions of the two-frequency

(2:1) model (15) in the supercritical Hopf regime with small positive

α = 0.05 (β1 = β2 = −1, γ = 1). a The stability type of stable solu-

tions in the (Ω, κ) parameter space. b Stability type and steady-state

values for κ = 2, c κ = 5, and d for κ = 8

Figure 10a demonstrates that in the supercritical Hopf

regime (α > 0), y1 and y2 have an intersection at a higher

X = r∗2 when k+m is smaller (see Fig. 10b for a comparison

over a range of κ). This shows that low-order multifrequency

learning (i.e., learning of a simple frequency ratio with small

k and m) exhibits stronger resonance than high-order learn-

ing (a complex ratio with large k and m), which is consistent

with the previous finding for a periodically forced GrFNN

model (Kim and Large 2019). For the critical and subcritical

Hopf regimes (α ≤ 0), we compare κ0, the smallest κ with

nonzero stable solution (see Sect. 2.4), which we obtain by

solving y1 = y2 and y′
1 = y′

2 simultaneously because y1 and

y2 touch at a single point when κ = κ0. Figure 10c shows that

κ0 is higher for greater k+m, indicating that a higher learning

rate is required for high-order multifrequency learning.

3.2 Frequency scaling for logarithmic frequency
networks

Next, we consider the bandwidth of the coupled oscillators,

which we define as follows: Let Γ be the amount of frequency

detuning |Ω| for which r∗ is a half of the max value r∗
0 at

Ω = 0. Then, for fixed ω1, the range of ω2 for which r∗ ≥ r∗
0
2

is

mω1

k
−

Γ

k
≤ ω2 ≤

mω1

k
+

Γ

k
, (19)

since |Ω| = |mω1 − kω2| ≤ Γ . Thus, the full bandwidth 2Γ
k

is constant across frequencies, as long as other parameters

remain the same.
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Fig. 10 Comparison of two-frequency learning in the ratio k:m. a The

intersection of functions y1 and y2 in (18). Parameters: α = 1, β1 =
β2 = −1, γ = 1, κ = 5. b Symmetric steady-state oscillator amplitude

r∗ as a function of κ . The parameters are identical to those used in

Panel a. The dashed line indicates the spontaneous amplitude. c κ0, the

minimum κ required for nonzero solutions, as a function of α ≤ 0

(β1 = β2 = −1, γ = 1)

However, we previously showed that scaling oscillator

parameters by natural frequency makes the bandwidth grow

linearly with natural frequency, a behavior called “constant

Q” which is often desirable when natural frequencies are

equally spaced on a logarithmic scale as found in the tono-

topic organization in the auditory system (Humphries et al.

2010):
⎧

⎪

⎨

⎪

⎩

1
f1

ż1 = z1

(

α + 2π i + β1|z1|2 + β2|z1|4
1−|z1|2

)

+ c12zk
2 z̄m−1

1

1
f2

ż2 = z2

(

α + 2π i + β1|z2|2 + β2|z2|4
1−|z2|2

)

+ c21zm
1 z̄k−1

2

(20)

where 2π fi = ωi (Large et al. 2010; Kim and Large 2015,

2019).

We introduce a frequency-scaled version of the learning

rule,

⎧

⎨

⎩

1
fc

ċ12 = −γ c12 + κzm
1 z̄k

2

1
fc

ċ21 = −γ c21 + κzk
2 z̄m

1

, (21)

where

fc =
k f2 + m f1

k + m
(22)

is the internal division of f1 and f2 in the ratio k:m. Bring-

ing (20) and (21) to the polar coordinates, we show that the

frequency-scaled equation for symmetric system phase ψ ,

1

fc

ψ̇ = −
Ω

fc

−
(

κr k+m

A
+ (k + m)Ar k+m−2

)

sin ψ,

is identical to the unscaled equation (17) except the scal-

ing factor 1
fc

multiplied to the left-hand side and to Ω . This

means that when the unscaled bandwidth is |Ω| = Γ , the

bandwidth of the frequency-scaled model is

∣

∣

∣

Ω
fc

∣

∣

∣
= Γ . Thus,

with frequency scaling, r∗ ≥ r∗
0
2

when

1 −
2Γ

2π(k + m) + Γ
≤

kω2

mω1
≤ 1 +

2Γ

2π(k + m) − Γ
.

(23)

The bandwidth is now expressed as a ratio of natural fre-

quencies, and thus it grows with natural frequencies and is

constant on a logarithmic scale (Fig. 11a).

3.3 Gradient frequency neural networks

In order to capture the interaction between arbitrary fre-

quencies, the canonical model for GrFNNs with plastic

connections (Large et al. 2010; Large 2010, 2011),

⎧

⎪

⎪

⎨

⎪

⎪

⎩

żi = zi

(

ai + bi |zi |2 + di |zi |4
1−|zi |2

)

+
n

∑

j �=i

ci j
z j

1−z j

1
1−z̄i

ċi j = −γi j ci j + κi j
zi

1−zi

z̄ j

1−z̄ j
, i �= j

,

(24)

where ai = αi + iωi , bi = β1i + iδ1i , and di = β2i +
iδ2i , includes the monomials for all possible two-frequency

resonant relationships (i.e., all possible k:m),

z j

1 − z j

1

1 − z̄i

=
∞
∑

k=1

zk
j

∞
∑

m=1

z̄m−1
i ,

zi

1 − zi

z̄ j

1 − z̄ j

=
∞
∑

m=1

zm
i

∞
∑

k=1

z̄k
j
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(cf. Eq. 15). Depending on the oscillators’ instantaneous

(actual) frequencies (which could be different from natural

frequencies), a subset of the monomials become resonant

and affect the long-term dynamics of the model, while the

effects of other, nonresonant monomials are canceled out

over time (Arnold 1988; Guckenheimer and Holmes 1983).

(See Large et al. 2010; Kim and Large 2019, for discussions

on the GrFNN model).

For logarithmically spaced natural frequencies, we scale

the oscillator equation by natural frequency as shown above

(Sect. 3.2). Since the resonant relations between oscillators

are not specified in the GrFNN model, we use an approxi-

mated scaling factor for the learning rule,

fi j =
2 fi f j

fi + f j

≈
ki j f j + mi j fi

ki j + mi j

, (25)

assuming fi : f j ≈ ki j : mi j (cf. Eq. 22). Hence, the

frequency-scaled GrFNN model is given by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
fi

żi = zi

(

a′
i + bi |zi |2 + di |zi |4

1−|zi |2
)

+
n

∑

j �=i

ci j
z j

1−z j

1
1−z̄i

1
fi j

ċi j = −γi j ci j + κi j
zi

1−zi

z̄ j

1−z̄ j
, i �= j

,

(26)

where a′
i = αi + 2π i.

Figure 11a shows time-averaged connection amplitudes

from numerical simulations of the frequency-scaled GrFNN

model in the supercritical Hopf regime (see the figure cap-

tion for parameters). The diagonals of the connection matrix

(ci j ) with high amplitudes indicate resonances at simple

frequency ratios, such as 1:1 and 2:1 as marked in the fig-

ure (n.b. self-connections at the main diagonal ci i are not

included in the model, see Eq. 26). As predicted from the

analysis given above (Sect. 3.1), the peak amplitude of a res-

onance decreases with the order of resonance k +m, with the

strongest resonance at the ratio 1:1, followed by 2:1, 3:1, etc.

The bandwidth of a resonance also decreases with increas-

ing k +m, but the width of each resonance is constant across

logarithmically spaced frequencies due to frequency scal-

ing (Sect. 3.2). Without frequency scaling, the bandwidth

of a resonance decreases with logarithmic frequency (i.e.

the widths of bright-colored diagonals would get narrower

toward the upper right corner of the figure) because unscaled

bandwidths are constant in linear frequency.

Figure 11b compares the connection amplitudes for a

single source oscillator (1 Hz) with the analysis of the

two-frequency model (20, 21). The thick line in Fig. 11b

corresponds to the color-coded connection amplitudes at the

lower edge of Fig. 11a. Near each major resonance in the

GrFNN simulations (the thick line), the steady-state connec-

tion amplitude A∗ of the two-frequency, k:m model (the thin
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Fig. 11 Numerical simulations of the frequency-scaled GrFNN model

(26). a Time-averaged connection amplitudes from 10 simulations with

different random initial conditions. b Average connection amplitudes

for a source oscillator (1 Hz) obtained from the GrFNN simulations

shown in Panel a (thick line) compared with the analysis of the two-

frequency model (20, 21) for simple integer ratios (thin lines). The

natural frequencies fi of 601 oscillators are equally spaced on a loga-

rithmic scale, ranging from 1 Hz to 4 Hz. Parameters: αi = 2, β1i =
β2i = −1, δ1i = δ2i = 0, γi j = 0.5, κi j = 8.33×10−5 = 0.05/(n−1),

n = 601. See text for details

lines, plotted for k +m up to 9) fits well with the simulations.

The small peaks in the simulations (at 4:3, 5:3 and 7:2) are

significantly higher than the analysis due to the influence of

stronger resonances nearby. The good fit between the sim-

ulations and the analysis demonstrates that the lowest-order

resonant monomial for the ratio k:m dominates the dynamics

of the GrFNN model near that frequency ratio even though

the model includes an infinite series of monomials for other

frequency ratios.

Notice the dip in connection amplitude near the peak of

the 2:1 resonance (Fig. 11b). The local variability near res-
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onance peaks arises because the GrFNN model includes not

only the lowest-order resonant monomial for the ratio k:m but

also higher-order resonant monomials for the ratio pk : pm,

p ∈ N. Thus, an infinite number of resonant monomials con-

tribute to the local dynamics near k:m, and depending on their

phase relationships, their combined effects can make the res-

onance in the GrFNN model significantly stronger or weaker

than that of the two-frequency model which includes only

the lowest-order resonant monomial. We leave the detailed

analysis of this effect to future studies.

4 Discussion

In this paper, we studied Hebbian plasticity in oscillatory

neural networks which can learn phase relationships between

component oscillators with complex-valued coupling coeffi-

cients. We performed a dynamical systems analysis of three

coupled oscillator models: the original single-frequency

model of Hoppensteadt and Izhikevich (1996a, b, 1997), a

single-frequency model with frequency detuning and a sta-

bilizing high-order term, and a two-frequency model for

a general frequency ratio k:m. We found that the models

have different sets of steady-state solutions in three parame-

ter regimes around an Andronov–Hopf bifurcation. We also

found that plastic connections converge to neutrally stable

phases in the absence of external forcing and frequency

detuning and that they oscillate in the presence of frequency

detuning and compensate the difference in oscillators’ instan-

taneous frequencies. An analysis of the two-frequency model

showed that learning is stronger for simple frequency ratios

(small integers k and m) and that the minimum learning rate

required to achieve learning is smaller for simple ratios.

Finally, we compared the analysis of the two-frequency

model with numerical simulations of a GrFNN model and

showed that the dynamics of the GrFNN model near a

frequency ratio k:m is locally dominated by the resonant

monomials for that ratio.

The present work is, to our knowledge, the first to analyze

multifrequency Hebbian plasticity in oscillator networks.

The GrFNN model includes higher-order coupling terms to

capture nonlinear resonance and multifrequency learning,

whereas previous models of adaptive networks include only

coupling terms for 1:1 synchronization (see previous works

featuring Stuart–Landau oscillators for a direct compari-

son, e.g., Aoyagi 1995; Maslennikov and Nekorkin 2018).

The learning rules for complex-valued connection coeffi-

cients studied here are different from the learning rules

for real-valued weights in the previous studies in that the

former enable adaptive networks to learn and remember rel-

ative phases between oscillators in connection phases, while

the latter only strengthen or weaken the connections. The

dynamic behaviors of connection phase reported in this study,

such as neutral stability in the absence of external forcing,

and rotation in the presence of frequency detuning, are unique

to the complex-valued learning rules. We also presented a

detailed analysis of the original single-frequency model of

Hoppensteadt and Izhikevich (1996a, b, 1997) because no

such analysis has been given before and because single-

frequency learning is a special case of k:m learning which

shares essential dynamics with two-frequency learning. This

work also adds a new set of results to our previous studies

of the GrFNN model which analyzed phase locking (1:1)

and mode locking (k:m) to periodic external signal via fixed

coupling (Kim and Large 2015, 2019).

In this work, we limited the analysis of multifrequency

Hebbian learning to simple, tractable cases. We mostly ana-

lyzed two coupled oscillators as a simplest case of oscillator

networks. To carry the analysis further, we focused on the

cases where oscillators have identical parameters except nat-

ural frequencies. Although these are non-realistic cases for

the neural networks in the brain, they allow us to inves-

tigate the complex dynamics of multifrequency learning

using analytic methods. Our future work will address dis-

persion among non-frequency parameters in larger networks

(N ≫ 2), which would result in more complex dynamics

than the simple, degenerate cases analyzed here. Our mod-

eling efforts, however, have not been restricted to oscillators

with identical parameters. In one study (Lerud et al. 2019),

we modeled the cochlear dynamics in macaque monkeys by

fitting the parameters of individual oscillators in a two-layer

GrFNN model to the tuning-curve data from the auditory

nerves. Finally, for the interest of space, we did not present

the analysis for all parameter regimes available to the GrFNN

model (see Kim and Large 2015, for all regimes) and limited

our analysis to linear learning rules. An analysis of the oscil-

lator regimes near a double limit cycle bifurcation as well as

nonlinear learning rules will be given elsewhere.

Since the GrFNN model is a generic mathematical model

that is not bound to any particular timesales it can serve

as a model of both short-term and long-term plasticity by

controlling the magnitude of learning parameters γ and κ

which determines the rate of learning. The GrFNN model

has been employed to predict and explain the nature and

constraints of developmental changes in rhythm perception

(Tichko and Large 2019) and enculturation in musical tonal-

ity (Large et al. 2016) which typically span years or decades.

On the other hand, GrFNN models with short-term plastic-

ity have been studied as a neural mechanism for auditory

scene analysis (Bregman 1990) in which individual fre-

quencies originating from the same acoustic source form

a coherent pattern of synchronized oscillations, segregated

from frequencies from other sources (Large 2011). The pat-

tern formation in nonlinear multifrequency plastic networks

provides a novel method for processing and learning audio
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signals such as speech and music, an alternative to traditional

linear signal processing techniques (Kim 2017).

Hebbian plasticity in multifrequency systems studied in

this paper also provides a systems-level explanation for the

learning of coordinated movements. In an ongoing study,

we successfully modeled human data for the acquisition and

retention of polyrhythmic bimanual movements (Park et al.

2013). The model, which consists of two coupled oscilla-

tors with adaptive natural frequencies, includes two resonant

monomials with plastic coupling coefficients of their own.

One monomial is for the frequency ratio to be learned (e.g.,

a 3:1 ratio between hand movements), and the other is for

the default, 1:1 mode of bimanual coordination. Simula-

tions of the model replicated various aspects of learning and

retention in the human data, including wide individual dif-

ferences in the acquired relative phase between hands, which

were explained by the neutral stability of plastic connection

phases. We are also investigating the learning of particular

relative phases in bimanual coordination with canonical mod-

els (Zanone and Kelso 1992). Such modeling efforts will

benefit from the analysis given in this paper, which provides

a useful reference for understanding the dynamics of learn-

ing in oscillatory systems as well as for choosing adequate

parameters for given modeling goals.
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