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An exact description for collisionless plasmas in the contin-
uum limit is provided by the Vlasov equation1,2. This kinetic 
description of plasmas is required to understand many fun-

damental plasma energization phenomena3–10, especially the explo-
sive energy conversion process of magnetic reconnection known to 
operate ubiquitously within plasmas throughout the Universe11–17. 
The literature contains an extensive amount of analytical advances 
concerning the long-standing problem of finding general equilib-
rium solutions to the Vlasov–Maxwell system18,19. Harris20 presented 
an exact solution to the Vlasov equation that is widely utilized to ini-
tialize kinetic simulations of symmetric magnetic reconnection21–25. 
Despite the idealizations employed, remarkably, the Harris sheet 
model agrees well with observations taken from laboratory reconnec-
tion experiments26. More complexity is required for the asymmetric 
current sheet configuration, where plasma parameters such as the 
density, temperature and magnetic field strength vary across the layer, 
which is typical of the reconnection environment at Earth’s dayside 
magnetopause. Although not an exact kinetic equilibrium solution, 
a common alternative approach extends the Harris sheet’s analytic 
form to initialize force-balanced asymmetric simulation set-ups27–29.

A class of exact solutions to the Vlasov equation has been used 
to develop a simplified (time-stationary, charge-neutral) model of 
the magnetopause30. More generalized classes of Vlasov–Maxwell 
solutions exist for the case of sheared magnetic fields in tangential 
equilibria, where quantities vary only along one dimension, and the 
magnetic field and bulk velocity are perpendicular to the gradient 
direction31. Recent investigations present methods to obtain exact 

Vlasov equilibria for arbitrary asymmetric current layers, where the 
profiles for the density, temperature, current density and magnetic 
fields can be specified as input32,33. One equilibrium solution was 
constructed from a combination of four shifted Maxwellian distri-
butions34. Even in the simplest cases of these tangential equilibria, 
when treated kinetically, the pressure tensor can become strongly 
non-gyrotropic as soon as the gradient scale lengths begin to 
approach the Larmor radius35. Event-specific equilibrium solutions 
to the Vlasov equation can be determined from spacecraft measure-
ments by fitting the locally observed distribution function to a pre-
scribed analytic form involving a sum of isotropic and crescent-like 
components36. Reduced Vlasov simulations (for example, ref. 37) 
have qualitatively reproduced Magnetospheric Multiscale (MMS) 
spacecraft observations of electron distributions and parallel elec-
tric fields at electron spatial scales during asymmetric reconnection 
with sharp density and temperature gradients38. The global-hybrid 
code ‘Vlasiator’39 offers the ability to study how the inclusion of 
kinetic effects influences even large-scale magnetospheric dynami-
cal processes40,41. As demonstrated by these studies’ successful 
implementation of analytical and numerical solutions to the Vlasov 
equation, kinetic theory is applicable from the smallest to the largest 
scales of the magnetospheric plasma system.

The studies mentioned above have greatly facilitated data-model 
comparisons between kinetic Vlasov simulations and satel-
lite observations. In particular, discussion is often focused on 
multi-spacecraft measurements of the electron distribution func-
tion fe and terms appearing in the generalized Ohm’s law42–46, such 
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as the electron pressure divergence ∇ ⋅ Pe, known to play a crucial 
role in governing the dynamics of the electron diffusion region in 
both symmetric and asymmetric reconnection configurations47–49. 
Nevertheless, aside from the present paper and an initial investi-
gation50, to our knowledge no direct spacecraft or laboratory mea-
surements of terms in the Vlasov equation have been reported thus 
far. Because of the sufficiently high-resolution instrumentation 
on board the MMS four-spacecraft tetrahedron, both spatial and 
velocity-space variations in fe are now observable. The Fast Plasma 
Investigation (FPI)51, composed of a suite of particle spectrometers 
on MMS, can successfully resolve spatial gradients of the distribu-
tion ∇fe. This enables direct computation of the spatial gradient 
term in the electron Vlasov equation, v ⋅ ∇fe, which can be used to 
determine how electron populations in velocity-space cooperate to 
sustain ∇ ⋅ Pe within electron-scale structures50.

In this Article, we explore these kinetic origins of ∇ ⋅ Pe by char-
acterizing the MMS measurements of ∇fe observed in the vicinity of 
magnetic reconnection operating at Earth’s magnetopause. The dis-
covered structures in ∇fe are compared to a simplified model, which 
enables both qualitative and quantitative validation of the MMS 
gradient computations, and provides an intuitive physical interpre-
tation of the ∇fe signatures. The model is constructed by taking the 
gradient of a drifting Maxwellian distribution, which yields

∇fe =
[
∇ne
ne +

(
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v2th

)
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v2
∥
+(v⊥1−Ue⊥1)

2+v2
⊥2

v2th
−

3
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)
∇Te
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where me, ne, Ue⊥1 and Te represent the electron mass, density, bulk 
velocity in the ⊥1 direction, and temperature, respectively, and 
vth =

√

2Te/me  is the thermal speed (see Methods for more details). 
The field-aligned coordinate directions are defined as follows: ∥ is 
parallel to the magnetic field, ⊥1 is along the −(Ue × B) × B direction 
(approximately the E × B direction), and ⊥2 is along the −Ue × B direc-
tion (roughly aligned with E and ∇ne for the events considered). ∇fe 
denotes the vector quantity (∂fe/∂x∥, ∂fe/∂x⊥1, ∂fe/∂x⊥2), but for nota-
tional convenience we refer to a component of this vector via sub-
script on the ∇ operator, for example, ∇⊥2fe ≡ (∇fe)⊥2 = ∂fe/∂x⊥2. 
The same techniques for plotting velocity-space slices of the scalar 
distribution function fe can be used to visualize each of these scalar 
components ∇∥fe, ∇⊥1fe and ∇⊥2fe. The results of this Article focus 
on the ∇⊥2fe component because the events chosen for this Article 
exhibit gradients oriented predominantly along the ⊥2 direction. 
Thus, we utilize the approximations ∇fe ≈ ∇⊥2fe and v ⋅ ∇fe ≈ v⊥2∇⊥2fe. 
Note that the velocity-space coordinate v is not to be confused 
with the bulk velocity, Ue ≡

1
ne
∫
vfed3v. Throughout the manu-

script all temperatures are assumed to be in units of energy (eV), so 
Boltzmann’s constant k is not explicitly written.

Allowing ne, Ue⊥1 and Te to exhibit a spatial dependence, our 
model in equation (1) enables direct assessment of how ∇ne, ∇Ue⊥1 
and ∇Te affect the velocity-space structure of ∇fe. The density gra-
dient ∇ne has the simplest effect, modifying ∇fe/fe uniformly in 
velocity space. The bulk velocity gradient ∇Ue⊥1 gives ∇fe/fe a linear 
dependence on v⊥1. Finally, the temperature gradient ∇Te introduces 
the most complexity to ∇fe/fe, resulting in a quadratic dependence 
on the velocity-space coordinates and a uniform shift. Predictions 
from the model are illustrated in Fig. 1, which features visualiza-
tions of the modelled ∇⊥2fe and v⊥2∇⊥2fe velocity-space structures in 
the v⊥1–v⊥2 plane with corresponding one-dimensional (1D) cuts for 
each gradient case (see Methods for additional discussion).

MMS measurements of ∇fe at the magnetopause
Here we present detailed MMS observations of ∇fe and v ⋅ ∇fe, which 
we compare to the Maxwellian model to guide our interpretation of 
the kinetic velocity-space features observed within ∇ ⋅ Pe structures  

at the magnetopause. Presented first are examples of current lay-
ers exhibiting intervals of isolated ∇ne, ∇Ue⊥1 and ∇Te, followed by 
an example current layer with each of these gradients simultane-
ously present. For each event, the magnitude of ∂fe/∂t at the 30-ms 
cadence of the dual electron spectrometers (DES) is approximately 
two orders of magnitude smaller than the v ⋅ ∇fe and F ⋅ ∇vfe terms 
throughout velocity space. The implication is that kinetic bal-
ance of the Vlasov equation is achieved mainly by these spatial 
and velocity-space gradient terms (Methods). Figures 2 to 5 are 
arranged identically: for each event, panels a–f show an overview 
of several relevant bulk quantities with a vertical time bar indicat-
ing the time at which the distribution slices and cuts featured in 
panels g–l are taken. Panels d and e use the full temperature tensor, 
so that (∇ · Te)i =

∑
j∂Te,ij/∂xj and (Te · ∇ne)i =

∑
jTe,ij(∂ne/∂xj). 

Additionally, panel j shows the full scalar product: v ⋅ ∇fe = vx(∂fe/∂x)  
+ vy(∂fe/∂y) + vz(∂fe/∂z).

The ∇ne case. The first case we consider is ∇ ⋅ Pe ≈ Te ⋅ ∇ne, which 
is the simplest situation to understand kinetically. When there is 
only a density gradient (∇ne ≠ 0, ∇Ue⊥1 ≈ 0, ∇Te ≈ 0), equation (1) 
simplifies to ∇fe/fe = ∇ne/ne. Figure 2 exhibits a ∇ne event occurring 
on 22 October 2015 at 6:03:54.639 universal time (ut) during the 
first of two reported magnetopause crossings52. The structures of 
∇⊥2fe and v ⋅ ∇fe detected by MMS are shown in Fig. 2g,j, respec-
tively. The Gaussian-like ∇fe shape and bipolar v ⋅ ∇fe structure in 
the v⊥2 direction are both qualitatively and quantitatively consistent 
with expectations based on the Maxwellian model (Fig. 2h,k) con-
structed using the measured ne, Ue⊥1 and Te observed at this time.

The ∇⊥2fe > 0 signature in Fig. 2g–i intuitively means that the 
phase-space density increases when moving spatially in the direc-
tion of the density gradient ∇ne. Dynamically, the bipolar structure 
of v ⋅ ∇fe results because roughly half of the electrons with v⊥2 > 0 
(v⊥2 < 0) are moving in the direction of increasing (decreasing) 
density (Fig. 1a–d). Thus, for the Vlasov equation to be satisfied, 
there must exist a net force that operates to decrease (increase) 
the phase-space density for v⊥2 > 0 (v⊥2 < 0). This is precisely the 
effect of the Lorentz force term F ⋅ ∇vfe. Geometrically, the gradient 
term ∇vfe is a vector quantity pointing in the direction of increas-
ing phase-space density towards the peak of the distribution. When 
dotted with the vector force F, the resulting F ⋅ ∇vfe must be opposite 
to v ⋅ ∇fe so that F ⋅ ∇vfe > 0 (F ⋅ ∇vfe < 0) for v⊥2 < 0 (v⊥2 > 0) to balance 
the velocity-space structure observed in Fig. 2j. For a Maxwellian, 
terms proportional to ∂fe/∂v⊥2 ∝ −v⊥2fe are capable of effecting this 
balance because ∂fe/∂v⊥2 > 0 (∂fe/∂v⊥2 < 0) for v⊥2 < 0 (v⊥2 > 0). In the 
case of a non-drifting Maxwellian (Ue⊥1 = 0), the magnetic force term 
vanishes because the dot product (v × B) ⋅ ∇vfe = 0, since rotating a 
gyrotropic distribution about the magnetic-field direction does not 
alter the phase-space density (equation (16) in the Methods). For 
the more general case of a drifting Maxwellian (Ue⊥1 ≠ 0), there is a 
net contribution from the (v × B) ⋅ ∇vfe term:

−

eB
me

(
v⊥2

∂fe
∂v⊥1

− v⊥1
∂fe

∂v⊥2

)
=

eB
Te ( v⊥2(v⊥1 − Ue⊥1)− v⊥1v⊥2 ) fe

= −v⊥2
(

eUe⊥1B
Te

)
fe

(2)
Thus, even though the dynamical nature of the electric force −eE 
and velocity-dependent magnetic force −ev × B differs substantially, 
the net effect of these forces on the velocity-space ensemble is simi-
lar: when dotted with ∇vfe, the terms E⊥2∂fe/∂v⊥2 and −(Ue⊥1B)∂fe/∂v⊥2 
produce bipolar velocity-space structures that can balance the v ⋅ ∇fe 
structure associated with ∇ne.

The ∇Ue case. Figure 3 shows an event exhibiting a gradient in 
the bulk velocity ∇Ue. There is a bipolar ∇ ⋅ Pe signature occurring 
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within roughly 0.3 s of 18:19:23.8 ut on 1 October 2016. Spatial gra-
dients are particularly well-resolved because the average spacecraft 
separation was 6.42 km at this time, with only 4.88 km separating 
MMS 2 and MMS 3. The density and temperature gradients were 
relatively small compared to the other events discussed in this study. 
As a result, the maximum ∇ ⋅ Pe for this event is only ~2 pPa km−1 
(Fig. 3e). At the time of maximum ∣∇Ue∣, contributions from both 
∇ne and ∇Te vanish. Nevertheless, there is a strong spatial gradi-
ent in the bulk electron velocity at this time, which is manifest in 
the ∇fe distribution observed by MMS (Fig. 3g). This prominent 
bipolar ∇⊥2fe signature along the v⊥1 direction and its corresponding 

quadrupolar v ⋅ ∇fe structure (Fig. 3j) are consistent with the model 
results in the case of a non-zero ∇Ue⊥1 (compare to Fig. 3h,k).

Although ∇Ue⊥1 notably alters the observed kinetic structure 
of ∇fe, the net ∇ ⋅ Pe signature is independent of ∇Ue because Pe is 
independent of Ue, thus ∇Ue does not appear in the definition of 
the pressure divergence: ∇ ⋅ Pe = Te ⋅ ∇ne + ne∇ ⋅ Te. Considering the 
structure of the v ⋅ ∇fe signature in Fig. 1g,h, the velocity-weighted 
integrand v⊥2(v ⋅ ∇fe) retains its quadrupolar symmetry and thus, 
upon integration, the net contribution to (∇ · Pe)⊥2 will be zero 
because each positive (red) region of the v ⋅ ∇fe structure in veloc-
ity space will cancel with a neighbouring negative (blue) region  
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Fig. 1 | Model predictions of ∇fe and v ⋅ ∇fe structures for various plasma gradients. a–p, Velocity-space structures in the spatial gradient terms of the 
Vlasov equation predicted to be the kinetic signatures of plasma gradients in density ∇ne, bulk velocity ∇Ue⊥1 and temperature ∇Te. The model distributions 
illustrate how these gradient structures fundamentally develop between two spatially separated Maxwellian distributions f1 = f(x1, v) and f2 = f(x2, v). 
Moving spatially from f1 to f2, phase-space density increases (red) or decreases (blue) according to the sign of ∇⊥2fe shown in the first column (a,e,i,m). 
The sets of red and blue arrows in the second column (b,f,j,n) indicate how the subtraction (f2 − f1) generates these ∇⊥2fe structures. The third (c,g,k,o) 
and fourth (d,h,l,p) columns show the resulting velocity-space structures as they manifest in the spatial gradient term v ⋅ ∇fe when multiplying ∇⊥2fe by v⊥2, 
which is representative of the gradient ∇fe structure as experienced by a kinetic electron moving either towards or away from the gradient. a–p, ∇⊥2fe and 
v⊥2∇⊥2fe structures associated with a density gradient ∇ne (a–d), bulk velocity gradient ∇Ue⊥1 (e–h), temperature gradient ∇Te (i–l) and a combination of 
these gradients (m–p). a,e,i,m, 2D v⊥1–v⊥2 slices of ∇⊥2fe. b,f,j,n, 1D cuts of f1 (solid black), f2 (dashed black) and ∇⊥2fe (green). c,g,k,o, 2D v⊥1–v⊥2 slices of 
v⊥2∇⊥2fe. d,h,l,p, 1D cuts of ∇⊥2fe (black) and v⊥2∇⊥2fe (green).
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(equation (9) in the Methods). This cancellation does not happen 
for ∇fe in the ∇ne case (Fig. 2j), because there the second multiplica-
tion by v⊥2 in the velocity-weighted term v⊥2(v ⋅ ∇fe) flips the sign 
of the negative v ⋅ ∇fe in the v⊥2 < 0 region, resulting in a positive 
contribution to ∇ ⋅ Pe throughout velocity space.

Unlike the case of a density gradient, here the Maxwellian distri-
bution cannot satisfy the steady-state Vlasov equation in the case of 
a ∇⊥2Ue⊥1 bulk velocity gradient. For this case, equation (1) simpli-
fies to ∇fe/fe = 2(v⊥1 − Ue⊥1)∇Ue⊥1/v2th. Thus, the Vlasov equa-
tion becomes
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Fig. 2 | MMS observations of unipolar ∇⊥2fe and bipolar v ⋅ ∇fe for a density gradient ∇ne. MMS observations and model predictions of the unipolar 
electron phase-space density gradient ∇⊥2fe and bipolar v ⋅ ∇fe distribution within a magnetopause current layer containing primarily a density gradient 
∇ne. a, Magnetic field magnitude ∣B∣ (black) and components Bx (blue), By (green) and Bz (red) from MMS 1 in geocentric solar ecliptic (GSE) coordinates. 
b–d, Measurements of the electron density ne (b), bulk velocity Ue⊥1 (c) and temperature Te (d) from all four MMS spacecraft (MMS 1, 2, 3 and 4 in black, 
red, green and blue, respectively) with corresponding gradient components (∇ne)⊥2 (b, aqua), (∇Ue⊥1)⊥2 (c, magenta) and (∇ · Te)⊥2 (d, orange) 
included in each panel (the right axis displays units for the gradient quantities). e, Density gradient (Te · ∇ne)⊥2 (aqua) and temperature gradient 
(ne∇ · Te)⊥2 (orange) terms contributing to the ⊥2 component of the electron pressure divergence (∇ · Pe)⊥2 (black). f, Four-spacecraft averages of the 
⊥2 components of the electric-field terms 〈E⊥2〉 (black), 〈Ue⊥1B〉 (magenta) and the parallel electric field 〈E∥〉 (purple). g–l, MMS measurements of ∇⊥2fe (g) 
and v ⋅ ∇fe (j) at 6:03:54.639 ut (indicated by the vertical dashed line in a–f), and the corresponding Maxwellian model distributions of ∇⊥2fe (h) and v ⋅ ∇fe 
(k) computed using the average ne, Ue⊥1 and Te at this time. The absence of electron counts near ∣v∣ ≲ 2,000 km s−1 in the MMS distributions (g,j) is due to 
the subtraction of low-energy photoelectron contamination55. i,l, 1D cuts for the MMS (black diamonds) and model (green) distributions of ∇⊥2fe along 
v⊥1 (i) and v ⋅ ∇fe along v⊥2 (l) for quantitative comparison. The colour scales specify both the 2D distribution colour range and the 1D cut range for that 
row. Error bars for the MMS data (indicated by grey bars with light yellow background) show the uncertainties in the gradient distribution measurements 
computed using a Monte Carlo resampling technique based on the standard deviations σfe provided for the four spacecraft phase-space density fe data56. 
The dashed grey lines show the plot origin at (0, 0).
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where it is apparent that the quadrupolar velocity dependence 
v⊥2(v⊥1 − U⊥1) cannot be balanced by the velocity-space gradient 
term (only proportional to v⊥2) when fe is assumed to be Maxwellian.
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an electron phase-space density gradient ∇⊥2fe with a bipolar structure along the v⊥1 direction and resulting quadrupolar v ⋅ ∇fe distribution within a 
magnetopause current layer exhibiting a bulk velocity gradient ∇Ue. a, Magnetic field magnitude ∣B∣ (black) and components Bx (blue), By (green) and Bz 
(red) from MMS 1 in GSE coordinates. b–d, Measurements of the electron density ne (b), bulk velocity Ue⊥1 (c) and temperature Te (d) from all four MMS 
spacecraft (MMS 1, 2, 3 and 4 in black, red, green and blue, respectively) with corresponding gradient components (∇ne)⊥2 (b, aqua), (∇Ue⊥1)⊥2  
(c, magenta) and (∇ · Te)⊥2 (d, orange) included in each panel (the right axis displays units for the gradient quantities). e, Density gradient (Te · ∇ne)⊥2 
(aqua) and temperature gradient (ne∇ · Te)⊥2 (orange) terms contributing to the ⊥2-component of the electron pressure divergence (∇ · Pe)⊥2 (black). 
f, Four-spacecraft averages of the ⊥2 components of the electric-field terms 〈E⊥2〉 (black), 〈Ue⊥1B〉 (magenta) and the parallel electric field 〈E∥〉 (purple). 
g–l, MMS measurements of ∇⊥2fe (g) and v ⋅ ∇fe (j) at 18:19:23.790 ut (indicated by the vertical dashed line in the panels above), and the corresponding 
Maxwellian model distributions of ∇⊥2fe (h) and v ⋅ ∇fe (k) computed using the average ne, Ue⊥1 and Te at this time. The absence of electron counts near 
∣v∣ ≲ 2,000 km s−1 in the MMS distributions (g,j) is due to the subtraction of low-energy photoelectron contamination55. i,l, 1D cuts for the MMS (black 
diamonds) and model (green) distributions of ∇⊥2fe along v⊥1 (i) and v ⋅ ∇fe along v⊥2 (l) for quantitative comparison. The colour scales specify both the 
2D distribution colour range and the 1D cut range for that row. Error bars for the MMS data (indicated by grey bars with light yellow background) show 
the uncertainties in the gradient distribution measurements computed using a Monte Carlo resampling technique based on the standard deviations σfe 
provided for the four spacecraft phase-space density fe data56. The dashed grey lines show the plot origin at (0, 0).
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The ∇Te case. On 22 October 2015 during the second of two 
reported magnetopause crossings52, there is an interval near 6:05:21 
ut where ∇ ⋅ Pe ≈ ne∇ ⋅ Te (Fig. 4). MMS observes a ring-structured 
∇⊥2fe (Fig. 4g), which results in a tripolar 1D cut (Fig. 4i), with 

∇⊥2fe < 0 for velocities satisfying (v2⊥1 + v2⊥2) < v20 (inner blue nega-
tive region), while ∇⊥2fe > 0 for (v2⊥1 + v2⊥2) > v20 (outer red positive 
region), where v0 specifies the radius in this slice of velocity space 
for which ∇⊥2fe = 0. From the model ∇fe in equation (1), considering  
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the slice with v∥ = 0, no bulk velocity shift (Ue⊥1 = 0), and setting 
both the ∇ne and ∇Ue⊥1 terms to zero, we can solve for v0, which 
comes out to be slightly larger than the local thermal speed:

∇fe
fe

=

(
v20
v2th

−

3
2

)
∇Te
Te

= 0 → v0 =
√

3Te
me

= vth
√

3
2 ≈ 1.2 vth

(5)

The reason for this ring structure in ∇fe can be explained 
intuitively by noting a Maxwellian’s temperature dependence: 
fe ∝ T−3/2

e exp(−mev2/2Te). Increasing the temperature there-
fore affects the velocity distribution in two ways, by increasing its 
spread (that is, heating) and decreasing the distribution’s maximum 
at its centre so that the total density of the distribution remains 
unaffected. Thus, increasing the distribution’s spread results in the 
∇⊥2fe > 0 positive (red) ring region of velocity space, while deplet-
ing the distribution’s maximum results in the negative ∇⊥2fe < 0 
(blue) core (Fig. 1i,j). This structure indicates that phase-space 
density decreases (increases) for ∣v∣ ≲ vth (∣v∣ ≳ vth) when moving 
spatially in the +⊥2 direction. Consequently, the dynamic measure 
of v ⋅ ∇fe ≈ v⊥2∇⊥2fe becomes quadrupolar along the v⊥2 direction  
(Fig. 1k,l). MMS observations of this structure in v ⋅ ∇fe (Fig. 4j) 
agree well with the Maxwellian model (Fig. 4k). There is a slight 
tilt of the quadrupolar structure in the MMS distribution (Fig. 4j) 
resulting from a non-zero ⊥1 gradient term ∇⊥1fe, although the domi-
nant gradient contribution is still provided by ∇⊥2fe. The meaning of 
this multi-component v ⋅ ∇fe structure becomes apparent when we  
consider each half of velocity space corresponding to the sign of v⊥2. 
First considering subthermal electrons with ∣v∣ < vth, those that move 
in the direction of increasing (decreasing) temperature encounter 
decreased (increased) phase-space density because T−3/2

e  decreases 
(increases) as Te increases (decreases). The situation is reversed for 
superthermal electrons with ∣v∣ > vth due to the exp(−mev2/2Te)  
dependence: electrons moving towards (away from) the gradient 
with v⊥2 > 0 (v⊥2 < 0) encounter a hotter (colder) distribution and 
thus enter a region of higher (lower) phase-space density.

As with the ∇Ue case, a Maxwellian distribution cannot satisfy 
the steady-state Vlasov equation in the ∇Te case. This becomes 
apparent after inserting the appropriate form of v ⋅ ∇fe into the 
Vlasov equation and simplifying:

(
v2
v2th

−

3
2

)

∇⊥2Te + e (E⊥2 − Ue⊥1B) = 0 (6)

Thus, (E⊥2 − Ue⊥1B) cannot be chosen to make this equation true for 
all v, because this force term is independent of the velocity-space 
coordinates. The velocity-space derivative of a Maxwellian yields 
at most terms of order v, which cannot account for the addi-
tional v2 dependence appearing due to the ∇Te term. The inabil-
ity of a Maxwellian to provide kinetic equilibrium in the case of a 
temperature gradient is consistent with the MMS observations of 
non-Maxwellian populations, such as the electron crescent distri-
butions that were reported in this ∇Te interval52 and in the event 
addressed in the next section50.

Combination of ∇ne, ∇Ue and ∇Te gradients. The ∇fe struc-
ture associated with the thin current sheet event occurring on 23 
December 2016 reported previously50 results from a combination 
of ∇ne, ∇Ue⊥1 and ∇Te gradient effects cooperating within the layer 
(Fig. 5). At the time of maximum ∇ ⋅ Pe, the temperature divergence 
term (ne∇ · Te)⊥2 surpasses the density gradient term (Te · ∇ne)⊥2 
(Fig. 5e) and thus ∇fe acquires a ring structure. Slightly afterwards, 
∇Ue⊥1 also reaches its maximum (Fig. 5c) near 2:53:10.311 ut, the 
time at which MMS observed the ∇fe and v ⋅ ∇fe structures shown in 
Fig. 5g,j. These velocity-space features qualitatively agree with the 
corresponding model distributions shown in Fig. 5h,k. The bipolar 

crescent structure in ∇⊥2fe and asymmetric skewed quadrupole dis-
tribution of v ⋅ ∇fe result mainly from the coexisting bulk velocity 
and temperature gradients. In this case, the density gradient affects 
the magnitude of ∇fe, but does not visibly alter its structure.

The difference in magnitude between the MMS distributions 
and model distributions probably results because the velocity dis-
tributions fe at this time are non-Maxwellian, and the current layer 
is noticeably smaller than the spacecraft separation (Fig. 5c), which 
introduces uncertainty into the accuracy of the gradient computa-
tion. Owing to asymmetries in the non-gyrotropic crescent distribu-
tion50, the off-diagonal components of the pressure tensor are small 
yet finite (roughly 5% of the diagonal components), which may also 
contribute to the quantitative difference between the modelled and 
measured v ⋅ ∇fe at this time. Nevertheless, the qualitative agree-
ment of the Maxwellian model, which reproduces the predominant 
skewed and quadrupolar velocity-space features, still offers useful 
insight into how the non-zero ∇ ⋅ Pe results from the behaviour of 
electrons within this thin current layer. Each of the four regions 
of v ⋅ ∇fe (Fig. 5j,k) contribute to ∇ ⋅ Pe. When multipyling by the 
additional factor of v⊥2, the two regions in v ⋅ ∇fe for v⊥2 < 0 reverse 
their signs in the velocity-weighted integrand v⊥2(v ⋅ ∇fe). Thus, the 
two outer crescent regions of velocity space contribute positively 
to ∇ ⋅ Pe, while the inner lower-velocity regions contribute nega-
tively. Because of the velocity weighting, the higher-velocity cres-
cent regions dominate the integration for this case, resulting in the 
observed (∇ · Pe)⊥2 > 0 (Fig. 5e).

Outlook
The qualitative and often quantitative agreement between the MMS 
measurements of ∇fe and the Maxwellian model gives confidence 
to our kinetic interpretation of these observations and indicates the 
accuracy of the MMS multi-spacecraft phase-space density gradi-
ent measurements. Although we focus on the steady-state Vlasov 
equation requiring that v ⋅ ∇fe and (F/me) ⋅ ∇vfe balance through-
out velocity space, we note that ∂fe/∂t may become significant with 
increased temporal and velocity-space resolution (even higher than 
is provided by the DES), which is important for non-equilibrium 
events and the application to wave–particle interactions when the 
relevant timescales are much less than 30 ms (that is, when the wave 
frequency is much greater than ~100 Hz). Further work is needed 
to compute the velocity-space gradient ∇vfe term using MMS mea-
surements to observationally verify its ability to balance the types 
of spatial gradient v ⋅ ∇fe structure reported here. Provided that 
(F/me) ⋅ ∇vfe could be sufficiently resolved by MMS and future space-
craft missions, these results point towards an approach for inferring 
local spatial gradients, and consequently moments such as the pres-
sure divergence, directly from single spacecraft ∇vfe vector measure-
ments for both steady-state and temporally evolving systems.

The MMS measurements of bulk plasma gradients and their 
effect on the velocity-space structure of ∇fe reported here may 
also provide observational constraints useful to both analytic and 
numerical methods of solving the Vlasov–Maxwell system in the 
presence of velocity and temperature gradients53,54. Although 
our Maxwellian gradient model in equation (1) does not satisfy 
the Vlasov equation exactly for these cases, the qualitative agree-
ment between our model and the MMS measurements of the 
v ⋅ ∇fe structures throughout velocity space nevertheless suggests a 
natural way for future studies to improve our model: if the local 
distribution fe were instead modelled as a superposition of two 
Maxwellians, fe,1 and fe,2, constructed from the plasma parameters 
taken on either side of the gradient layer, the spatial gradient term 
v ⋅ ∇fe would be largely preserved (that is, consistent with the gradi-
ent structures illustrated in Fig. 1) while also allowing for a more 
self-consistent non-Maxwellian velocity-space structure to develop 
in the (F/me) ⋅ ∇vfe term. This suggested improvement, fe = fe,1 + fe,2, is 
reminiscent of the exact Vlasov–Maxwell equilibria for asymmetric  
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current sheets, which require a combination of four drifting 
Maxwellians34. Comparing v ⋅ ∇fe measured by MMS to the mod-
elled v ⋅ ∇f0 (where f0 is a drifting Maxwellian constructed using the 
locally observed moments) in this fashion enables us to gain insight 

into the higher-order non-gyrotropic corrections to f0 that would be 
needed to satisfy the full Vlasov equation.

The methodology and characterization of ∇fe reported here 
may be applied to more complicated electron diffusion region 
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and Bz (red) from MMS 1 in GSE coordinates. b–d, Measurements of the electron density ne (b), bulk velocity Ue⊥1 (c) and temperature Te (d) from all four 
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g–l, MMS measurements of ∇⊥2fe (g) and v ⋅ ∇fe (j) at 2:53:10.311 ut (indicated by the vertical dashed line in the panels above) and the corresponding 
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events, such as those reported previously13,15, provided that the 
four-spacecraft gradient approximation is valid for the time interval 
of interest. In particular, our approach may also be used to character-
ize the velocity-space structure of the off-diagonal contribution to 
the pressure divergence via the following integral relationship (equa-
tion (9) in the Methods) when the inertial term is sufficiently small:

me

∫
vi
(

vj
∂fe
∂xj

)

d3v = ∂Pe,ij
∂xj

(7)

Thus, the quantity vivj∂fe/∂xj is of particular interest to future stud-
ies seeking to identify which populations of electrons in velocity 
space produce a net off-diagonal contribution to the electron pres-
sure divergence. Our results are relevant for understanding kineti-
cally how the electron pressure divergence ∇ ⋅ Pe operates in velocity 
space to self-consistently sustain the reconnection electric field 
within the electron diffusion region of magnetic reconnection, as 
well as other electron-scale dynamics associated with fundamental 
energization mechanisms throughout Earth’s magnetosphere.
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Methods
Computing phase-space density gradients with FPI. For this study, we consider 
the Vlasov equation specifying the dynamical evolution of electron phase-space 
density:

dfe
dt =

∂fe
∂t + v · ∇fe −

e
me

(E + v × B) · ∇vfe = 0 (8)

Deriving the electron momentum equation from the first moment of equation (8), the 
electron pressure divergence ∇ ⋅ Pe originates from the spatial gradient term v ⋅ ∇fe, as 
shown by the following integral connection between the kinetic and bulk quantities57:

me

∫

v(v · ∇fe)d3v = ∇ · Pe + ∇ · (meneUeUe) (9)

For the electron-scale current layers considered in this study, the inertial 
term ∇ ⋅ (meneUeUe) in equation (9) is typically much smaller than ∇ ⋅ Pe 
(ref. 50). Commonly observed magnetosheath values for the electron density 
(ne ≈ 10 cm−3) and temperature (Te ≈ 70 eV) with moderate gradients in each 
quantity (∇ne ≈ 1 cm−3 km−1 and ∇Te ≈ 1 eV km−1) result in pressure gradients 
of the order of ~1–10 pPa km−1. However, for typical bulk velocities on the 
order of 100–1,000 km s−1 with a gradient ∇Ue ≈ 10 (km s−1) km−1, the range of 
values for the inertial term is one to two orders of magnitude smaller, roughly 
0.01–0.1 pPa km−1. If the electron flows and spatial gradients are strong enough 
(for example, Ue ≈ 1,000 km s−1 combined with a sharp bulk velocity gradient 
∇Ue ≈ 100 (km s−1) km−1), then the magnitude of the inertial term can begin 
to approach 1.0 pPa km−1. Consequently, because ∇ ⋅ Pe usually dominates 
∇ ⋅ (meneUeUe), the computation of ∇fe as a function of v gives a direct measure 
quantifying how electron populations in velocity space kinetically contribute to the 
net pressure gradient. We note that, if the inertial term were to surpass the pressure 
divergence (for example, in electron diffusion regions or separatrices), then ∇fe 
would still offer an important kinetic perspective into the electron populations that 
support ∇ ⋅ (meneUeUe).

To compute ∇fe and v ⋅ ∇fe, we utilize a recently developed technique50. The 
method extends the usual multi-spacecraft technique for computing linear 
spatial gradients of bulk quantities, for example, as in ref. 58, to the velocity-space 
measurements obtained by FPI’s DES. The computation is performed in geocentric 
solar ecliptic (GSE) coordinates before rotating to local field-aligned coordinates 
(x∥, x⊥1, x⊥2), and we linearly interpolate the DES skymaps in time and azimuth to 
ensure the same portion of velocity space is being compared between spacecraft. 
This computation of ∇fe assumes that the linear, four-spacecraft gradient is a valid 
approximation of the true gradient, which requires that the spatial gradient length 
scale be sufficiently large compared to the inter-spacecraft separations. Typically, 
this assessment is performed by comparing the characteristic length scale of the 
system to the local thermal gyroradius, rth = mvth/eB. Although this approach is 
valid in an average sense, the ∇fe measurements are computed throughout velocity 
space, so that the relevant spatial scale may be considered in a velocity-dependent 
fashion: r(v) = mv/eB. Consequently, for events with an average gradient length 
scale that is comparable to the spacecraft separation, the finite difference 
estimation of ∇fe may be less accurate for lower-energy electrons with v < vth 
(which have gyroradii that may be smaller than the average spacecraft separation), 
whereas ∇fe will become more accurate for higher-energy electrons with v > vth. 
We also note an application of drift-kinetic theory reported recently as an alternate 
way of computing gradients of plasma properties from observed non-gyrotropic 
features of the distribution function59.

Maxwellian model for ∇fe. The ∇fe model is derived from the drifting Maxwellian 
distribution given by

fe = ne
( me

2πTe

)3/2
exp

[

−

me

2Te

(

v2
∥
+ (v⊥1 − Ue⊥1)

2
+ v2

⊥2

)

]

(10)

We allow the plasma to drift in the v⊥1 direction with an electron bulk velocity 
Ue⊥1 arising mainly from the E × B drift (UE × B) and diamagnetic drift (U∗,e) terms: 
Ue⊥1 ≈ UE×B + U∗,e =

(

E + ∇·Pe
ene

)

× B/B2. With this velocity Ue⊥1,  
equation (10) is an approximate solution to the Vlasov equation for events when 
the gradient length scale is larger than the spacecraft separation60. Although it is 
well known that a drifting Maxwellian distribution cannot, in general, provide 
an exact solution to the Vlasov equation for the more complicated cases of bulk 
velocity or temperature gradients considered in this Article, useful insight may 
nevertheless be obtained from this model for ∇fe, as discussed in the main text. 
Dividing equation (1) by fe, the normalized Maxwellian gradient distribution ∇fe/fe 
exhibits a quadratic dependence on the velocity-space coordinates:

∇fe
fe

= av2 + bv′ + c (11)

a =

( 1
v2th

)

∇Te

Te
, b =

( 2
v2th

)

∇Ue⊥1, c =
∇ne
ne

−

3
2
∇Te

Te
(12)

where we let v′ = v⊥1 − Ue⊥1 and v2 = (v2
∥
+ v′2 + v2

⊥2) to highlight the 
quadratic form of equation (11).

Focusing on the ⊥1–⊥2 dependence of ∇fe, we consider only velocity-space 
slices of ∇fe in the perpendicular v⊥1–v⊥2 plane centred at the parallel bulk velocity 
(v∥ = Ue∥). Thus, for simplicity, Ue∥ has been neglected in equation (10) because 
(v∥ − Ue∥) = 0 for the slices considered, although in general the spatial variation of 
Ue∥ would become important when considering arbitrarily oriented ∇fe slices. For 
completeness, here we note that for a model Maxwellian shifted by a general bulk 
velocity Ue(x), the gradient equation (1) would have the following form:

∇fe =
[

∇ne
ne

+

( 2(v − Ue) · ∇Ue

v2th

)

+

(

(v − Ue)
2

v2th
−

3
2

)

∇Te

Te

]

fe (13)

The model ∇fe and v ⋅ ∇fe structures in Fig. 1 are best understood by 
considering two Maxwellians, f1 and f2, spatially separated by an amount 
Δx = x2 − x1 along the ⊥2 direction. Provided that Δx is sufficiently small compared 
to the scale length of the gradient, then ∇⊥2fe ≈ (f2 − f1)/Δx is a valid approximation. 
Figure 1a–d corresponds to the case when (∇ne)⊥2 > 0, with both ∇Ue⊥1 and ∇Te 
equal to 0. The solid and dashed lines in Fig. 1b represent f1 and f2, respectively. 
The red arrow pointing from f1 to f2 in Fig. 1b indicates the positive increase in 
phase-space density experienced when moving into the density gradient (going 
from x1 to x2). Multiplication of ∇⊥2fe by v⊥2 results in the bipolar structure of 
v⊥2∇⊥2fe along v⊥2 (Fig. 1c,d). Figure 1e–h corresponds to (∇Ue⊥1)⊥2 < 0, which 
is chosen to compare with the MMS observations discussed in the main text. For 
this case, the bulk velocity gradient (∇Ue⊥1)⊥2 < 0 requires that f2 be shifted 
to the left of f1 so that ∇⊥2fe acquires a bipolar structure along the v⊥1 direction 
(Fig. 1f). Consequently, multiplication by v⊥2 results in a symmetric, quadrupolar 
velocity-space structure in v⊥2∇⊥2fe (Fig. 1g). In Fig. 1i–l, the temperature 
gradient (∇Te)⊥2 > 0 results in a ring structure in the 2D slice (Fig. 1i), a 
tripolar 1D cut of ∇⊥2fe (Fig. 1j) and a quadrupolar structure v⊥2∇⊥2fe along v⊥2 
(Fig. 1k,l). These ∇⊥2fe structures associated with ∇Te are due to the Maxwellian’s 
temperature dependence, which is discussed in the main text. For the situation 
shown in Fig. 1m–p, each of the gradients ∇ne, ∇Ue⊥1 and ∇Te contributes to the 
resulting structure of ∇⊥2fe and v⊥2∇⊥2fe. The result is a bipolar crescent structure 
in ∇⊥2fe (Fig. 1m) and an asymmetric, skewed quadrupole structure in v⊥2∇⊥2fe 
(Fig. 1o). This more complicated visual structure is produced mainly from the 
(∇Ue⊥1)⊥2 > 0 and (∇ · Te)⊥2 > 0 gradients, which operate together to generate 
the shifted ring and asymmetric quadrupole features.

MMS event selection. The ideal choice of events for this study comprises those that 
isolate the effects of the electron density ∇ne, bulk velocity ∇Ue and temperature ∇Te 
gradients, so the corresponding ∇fe structures may be considered independently 
for each case. We focus on events for which the gradient is mostly aligned with the 
⊥2 direction. This is a common gradient orientation for electron-scale currents 
whenever the electrons decouple from the bulk ion motion and move at roughly 
the E × B velocity, which results in the current density J directed along the negative 
⊥̂1 direction. Consequently, from the force balance, J × B = ∇ ⋅ P, the gradient 
direction points roughly along the (−⊥̂1) × (∥̂) = ⊥̂2 direction50,61. Because the 
gradients sustaining the current layers reported here were predominantly directed 
along the ⊥2 direction, our focus on the ⊥2 component of the gradient distribution 
∇⊥2fe and corresponding approximation v ⋅ ∇fe ≈ v⊥2∇⊥2fe accounts for the majority 
of the kinetic, velocity-space structures observed by MMS. For more complicated 
current layers with inherently 2D or 3D pressure gradient structures oriented along 
more than just one of the field-aligned coordinate directions, the other gradient 
distributions ∇⊥1fe and ∇∥fe would become important.

Suitable intervals where the ∇ne and ∇Te effects can be studied separately are 
selected from a reported magnetopause reconnection event exhibiting filamentary 
electron currents on 22 October 2015 around 6:05 ut (ref. 52). The thin current 
sheet encountered by MMS on 1 October 2016 near 18:19:24 ut serves as a 
prime example of the effect of ∇Ue, and is particularly useful for resolving spatial 
gradients because of the remarkably close spacecraft separation at this time, which 
was less than 5 km for MMS 2 and MMS 3 (the average spacecraft separation was 
~6.4 km). In addition, we consider one of the recently analysed thin electron-scale 
current sheets with a thickness on the order of a few electron skin depths50 as 
an example of how a combination of ∇ne, ∇Ue and ∇Te gradients influences the 
structure of ∇fe. The gradient length scale for all of the events in this study is on 
the order of 1 to 10 thermal electron gyroradii, and the peak electron bulk velocity 
ranges from 25% to 30% of the local electron thermal velocity for the three events 
exhibiting ∇Ue or ∇Te gradients.

For these magnetopause events, the relevant electron velocities are on the 
order of several times the thermal speed: v ≈ 10,000 km s−1. Thus, the average 
electron is travelling so fast through the local spatial gradients that explicit time 
variations of the velocity distribution would not be able to contribute significantly 
to the electron dynamics. For example, if we compare a particular variation of 
Δfe detected in a time interval Δt = 30 ms to an equivalent Δfe variation measured 
between spacecraft separated by Δx ≈ 10 km for a thermal electron, we find

|∂fe/∂t|
|v · ∇fe|

≈

(Δfe/Δt)
vth(Δfe/Δx) =

(Δx/Δt)
vth

≈

(10 km)/(0.03 s)
(10,000 km s−1)

≈ 0.033 (14)
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Similarly, for an (F/me) ⋅ ∇vfe measurement taken between adjacent velocity-space 
bins with Δv ≈ 1,000 km s−1 (which is the velocity separation of the DES energy 
targets near 200 eV, the energy roughly corresponding to the thermal velocity) and 
a typical force due to an electric field on the order of E ≈ 10 mV m−1, we have

|∂fe/∂t|
|(F/me)·∇v fe| ≈

(Δfe/Δt)
(eE/me)(Δfe/Δv) =

(Δv/Δt)
(eE/me)

≈

(1,000 km s−1)/(0.03 s)
(1.8×106 km s−2)

≈ 0.019
(15)

If we had used ∣F∣ ≈ e(vthB) instead of eE ≈ eUeB (where Ue ≈ 1,000 km s−1), then 
the ratio in equation (15) would be almost another order of magnitude smaller. 
Thus, explicit time variations in ∂fe/∂t taking place during a 30-ms interval can 
be reasonably neglected compared to the spatial and velocity-space variations 
observed by MMS throughout most of velocity space. In this steady-state limit 
(∂fe/∂t = 0), the Vlasov equation in field-aligned coordinates becomes

v⊥2∇⊥2fe −
eE⊥2
me

∂fe
∂v⊥2

−

eB
me

(

v⊥2
∂fe
∂v⊥1

− v⊥1
∂fe
∂v⊥2

)

= 0 (16)

Here, we assume that E∥ is sufficiently small compared to E⊥ so that the term 
E∥∂fe/∂v∥ can be neglected. Additionally, E⊥1 ≈ 0 in these field-aligned coordinates, 
because the ⊥1 direction is roughly along the E × B direction (perpendicular to E).

Data availability
All MMS data are available to the public via https://lasp.colorado.edu/mms/sdc/
public/.

Code availability
The code used to plot the MMS gradient distributions will be made available upon 
reasonable request.

References
 57. Gurnett, D. A. & Bhattacharjee, A. Introduction to Plasma Physics: With Space 

and Laboratory Applications (Cambridge Univ. Press, 2005).
 58. Harvey, C. C. in Analysis Methods for Multi-Spacecraft Data ISSI Scientific 

Reports Series (eds Paschmann, G. & Daly, P. W.) 307–322 (ISSI/ESA, 1998).
 59. Wetherton, B. A., Egedal, J., Montag, P., Le, A. & Daughton, W. A 

drift-kinetic method for obtaining gradients in plasma properties from 
single-point distribution function data. J. Geophys. Res. Space Phys. 125, 
e2020JA027965 (2020).

 60. Hazeltine, R. D. & Meiss, J. D. Plasma Confinement (Addison-Wesley, 1992).

 61. Graham, D. B. et al. Electron currents and heating in the ion diffusion region 
of asymmetric reconnection. Geophys. Res. Lett. 43, 4691–4700 (2016).

Acknowledgements
We especially thank the MMS instrument teams for their dedication and commitment 
to providing unprecedented, high-quality datasets. J.R.S. thanks L. Morrison for helpful 
discussions regarding the intricacies of phase space. This research was supported 
in part by NASA grants to the Fast Plasma Investigation, FIELDS team and Theory 
and Modeling programme of the MMS mission. J.R.S. was supported by NASA 
grants 80NSSC19K1092 and 80NSSC21K0732. S.W. was supported by NASA grant 
80NSSC18K1369 and DOE grant DE-SC0020058. P.A.C. was supported by NASA grants 
NNX16AG76G and 80NSSC19M0146, NSF grants AGS-1602769 and PHY-1804428 and 
DOE grant DE-SC0020294. R.E.D. was supported by NASA grant 80NSSC19K0254. 
V.M.U. was supported by NASA grant NNG11PL10A.

Author contributions
J.R.S. performed the MMS multi-spacecraft data analysis, developed the analytical model 
for comparison to the MMS observations and prepared the manuscript. D.J.G. and 
J.C.D. assisted with interpretation of the plasma distribution and gradient structures, 
the use of MMS FPI data, and the preparation of the text and figures. B.L.G. supported 
the project at both the institutional and mission levels, and helped to ensure the overall 
quality of the MMS and FPI data. S.W., N.B. and L.-J.C. aided in the interpretation of 
the kinetic velocity distribution measurements in the context of magnetopause magnetic 
reconnection observations. P.A.C., S.J.S., R.E.D. and C.S. offered careful critiques of 
the scientific results, figures and conclusions of the manuscript, and provided useful 
feedback regarding contextual and relevant literature related to this research. V.M.U. 
and W.R.P. provided insightful feedback and discussion regarding the data-model 
comparisons and concerning the overall conclusions and future implications of this 
research. A.F.V., J.N. and L.A.A. assisted with the overall interpretation of the results. 
D.E.d.S. offered technical support and data analysis tools that aided in the identification 
of the MMS events presented in the manuscript. R.B.T. assisted with the interpretation of 
the electric-field data in comparison to the particle measurements.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.R.S.

Peer review information Nature Physics thanks Jan Egedal and the other, anonymous, 
reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

NATURE PhySiCS | www.nature.com/naturephysics

https://lasp.colorado.edu/mms/sdc/public/
https://lasp.colorado.edu/mms/sdc/public/
http://www.nature.com/reprints
http://www.nature.com/naturephysics

	Structures in the terms of the Vlasov equation observed at Earth’s magnetopause
	MMS measurements of ∇fe at the magnetopause
	The ∇ne case. 
	The ∇Ue case. 
	The ∇Te case. 
	Combination of ∇ne, ∇Ue and ∇Te gradients. 

	Outlook
	Online content
	Fig. 1 Model predictions of ∇fe and v ⋅ ∇fe structures for various plasma gradients.
	Fig. 2 MMS observations of unipolar ∇⊥2fe and bipolar v ⋅ ∇fe for a density gradient ∇ne.
	Fig. 3 MMS observations of bipolar ∇⊥2fe and quadrupolar v ⋅ ∇fe for a velocity gradient ∇Ue.
	Fig. 4 MMS observations of ring-shaped ∇⊥2fe and v ⋅ ∇fe for a temperature gradient ∇Te.
	Fig. 5 MMS observations of crescent-shaped ∇⊥2fe and v ⋅ ∇fe for a combination of gradients.


