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1 Introduction

Integrated Mechanistic Engineering Models and Macroe-
conomic Input-Output approach to Model Physical
Economy for Evaluating the Impact of transition to Cir-
cular Economy '

Venkata Sai Gargeya Vunnava ¢, Shweta Singh 2 1

Sustainable transition to low carbon and zero waste economy requires a macroscopic evaluation of
opportunities and impact of adopting emerging technologies in a region. However, a full assessment of
current physical flows and wastes is a tedious task, thus leading to lack of comprehensive assessment
before scale up and adoption of emerging technologies. Utilizing the mechanistic models developed
for engineering and biological systems with macroeconomic framework of Input-Output models, we
propose a novel integrated approach to fully map the physical economy, that automates the process
of mapping industrial flows and wastes in a region. The approach is demonstrated by mapping the
agro-based physical economy of the state of lllinois, USA by using mechanistic models for 10 agro-
based sectors, which have high impact on waste generation. Each model mechanistically simulates
the material transformation processes in the economic sector and provides the necessary material
flow information for physical economy mapping. The model for physical economy developed in the
form of a Physical Input-Output Table (PIOT) captures the interindustry physical interactions in the
region and waste flows, thus providing insights into the opportunities to implement circular economy
strategies i.e., adoption of recycling technologies at large scale. In lllinois, adoption of technologies
for industrial waste-water & hog manure recycling will have the highest impact by reducing > 62
% of hog industry waste outputs, > 99 % of soybean hull waste, and > 96 % of dry corn milling
(corn ethanol production) waste reduction. A small % reduction in nitrogen fertilizer manufacturing
waste was also observed. The physical economy model revealed that Urea sector had the highest
material use of 5.52E+08 tons and green bean farming with lowest material use of 1.30E+-05 tons for
the year modeled (2018). The mechanistic modeling also allowed to capture elemental flows across
the physical economy with Urea sector using 8.25E+07 tons of elemental carbon per operation-
year (highest) and green bean farming using 3.90E+04 tons of elemental carbon per operation-year
(least). The approach proposed here establishes a connection between engineering and physical
economy modeling community for standardizing the mapping of physical economy that can provide
insights for successfully transitioning to a low carbon and zero waste circular economy.

erated by human activities are projected to increase by 60 % for

Earth has entered a phase of Anthropocene where anthropogenic
mass is larger as compared to the overall natural mass!. A large
portion of these anthropogenic mass is discarded as waste, thus
effecting the environment negatively. Waste and emissions gen-
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solid waste and 52 % for GHG emissions by 20502, from the al-
ready high values of 49.2 Giga metric tons (GT) of wastes and
emissions (approx. 49 % of total material use in 2017). Hence,
it is crucial to identify pathways for sustainable transition to low
carbon and zero waste or circular economy. While significant ad-
vancements are being made in renewable energy and recycling
technologies, identifying the most suitable technology based on
existing industrial set up of a regional economy is not obvious.
Further, evaluating the impact in terms of reducing wastes and
emissions while maintaining the same level of production in a re-

Journal Name, [year], [vol.], 1-19 |1


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D1EE00544H

Open Access Article. Published on 26 July 2021. Downloaded on 7/28/2021 9:39:21 PM.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Energy & Environmental Science

gion is also important to inform adoption of proposed technolog-
ical solutions. In order to gain insights into these open questions,
a full-scale physical map of the whole economic region in terms
of material flows among industries, waste generation and associ-
ated emissions is necessary. Material Flow Analysis (MFA) is one
such approach that enables comprehensive flow accounting, thus
helping to better understand how materials flow from one indus-
trial/human activity to another, and eventually back into nature
as emissions or waste flows3. Apart from quantifying flows, MFAs
need to be designed to make crucial connections between eco-
nomics and other engineering or social science fields*. Economy
Wide Material Flow Analysis (EW-MFA)> such as shown in Fig-
ure 1 at global scale have been performed in recent years2. Such
analyses provide a clear insight into the relationship between con-
sumption or production activities in the economy and associated
wastes or emissions. This understanding of flow mobility en-
ables development of sustainable resource use strategies ranging
from identifying hot-spots for increasing production efficiencies
at a single process or an industry level to economy-wide circular
economy implementations that will reduce impacts on the envi-
ronment. Further, it can inform development of policies or tech-
nologies to reduce wastes and emissions®. While EW-MFAs have
been performed at national” and multi-national levels?, there are
very few studies that perform EW-MFA at regional levels with high
sectoral level resolution®. One key reason behind lack of map-
ping regional physical economies is unavailability of data at finer
spatial resolution (Figure 1). Another reason is that the current
approach to create these MFAs is tedious and slow due to man-
ual collection of data and mapping to different industrial sectors.
Further, reliance on empirical data in creating these MFAs poses
additional challenge of continuity, reproducibility, validation and
increased efforts for collecting data at sub-regional scale. As de-
cisions are made on local scale for implementing technologies for
transitioning to lower waste/emissions or meeting environmen-
tal regulations, lack of MFAs at regional scale lead to sub-optimal
decisions or adoption of technologies that may have unintended
long term consequences.

In this work, we address these challenges by proposing a novel
integrated mechanistic-macroscopic approach. The proposed
approach uses computational mechanistic Engineering Models
(EMs) to simulate material flows at high regional and sectoral
level resolutions and connect these flows to the macroeconomic
framework of Input-Output (I0) models to generate detailed ma-
terial flow maps of a regional economy. Although, IO models
were predominantly used by economists in the past, these are
now actively being used to quantify environmental flows and as-
sessing environmental impact of economic activities both at na-
tional? and multi-national levels19. This use was originally envi-
sioned by Wassily Leontief who won the Nobel prize for propos-
ing the IO model!!. As envisioned originally, IO models are now
increasingly being used for performing EW-MFAs at national lev-
els 2. However, these studies were performed over large spatial
scales as empirical data that feed into these studies are often only
available at a country or multi-national level 1314, On the other
hand, engineers, chemists, physicists and other physical scientists
have been using mechanistic models for a long time to simulate
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the physical flows of any system as governed by first principles.
We utilize the strength of such computational models and build
scaled mechanistic models that mimic the material transforma-
tion processes in various economic sectors of a given region !°.
The rationale behind this approach is that physical economy is a
manifestation of production processes, consumption of goods and
waste generation, with circular economy bringing these back into
production cycle. Hence, the models based on fundamental mass
balance and physics-based equations that mechanistically simu-
late production of various commodities and wastes can provide
necessary physical data without only relying on empirical data re-
lated to outputs of an economic sector. This mechanistic approach
greatly reduces allocation challenges as material flow information
can be simulated at an individual sector level of a given region.
Next, we establish an approach that integrates the sectoral EMs
with the standard IO methods to generate Physical Supply Tables
(PSTs), Physical Use Tables (PUTs) and Physical Input Output Ta-
bles (PIOT) that captures the material flow interactions between
industries. This enables us to develop a physical economy model
at regional levels that can be used to perform EW-MFAs and eval-
uate the impact of implementing circular economy (CE) strate-
gies on waste and emissions reduction in a region at macroscopic
scale using PIOTs. We first discuss the overview of the proposed
methodology for PIOT generation and the methodology to evalu-
ate impact of CE strategies in section 2. In section 3, we demon-
strate the application of the approach to map the physical econ-
omy of Illinois in year 2018 and also show the potential impact of
adopting recycling technologies for CE on overall economy wide
wastes reduction. In section 4, we discuss the strengths, limita-
tions and potential for wide scale adoption of the proposed ap-
proach as a critical bridge between engineering, physical sciences
and economics research communities for sustaining production
while minimizing waste and environmental impacts.

2 Methodology

The methodology developed in this work integrates mechanistic
EMs with the Input-Output (I0) macroeconomic framework. The
method proposed will facilitate automating and standardizing the
process of mapping physical flows among industries and waste
generation in a regional economy. As shown in Figure 2, EMs
form the core of the methodology that can allow for automation
while integrating the EMs to the macroeconomic framework of
Physical Supply Tables (PSTs), Physical Use Tables (PUTs) and
Physical Input-Output Tables (PIOTs) allows for standardization.
There are two key steps in the method: EM development for sec-
tors in a region, and mapping the simulation results from EMs to
build standardized PSTs, PUTs and PIOTs. The first step of EM
development process consists of three stages (Sec 2.1): i) iden-
tifying the economic sectors to be modeled and mapping to eco-
nomic sector codes used in a region, ii) using physical, chemical
or physiological based mechanistic approaches to model material
transformation processes in the identified economic sector, and
iii) scaling the developed EM to represent material flows of the
region being studied. Once the EMs are developed and scaled
to represent various industries/sectors of a region, in the second
step, the material flow information is organized to quantify the
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Fig. 1 Economy wide Material Flow Analysis at different spatial resolution (Global EW-MFA numbers taken from the circularity gap report 2)

physical economy model using PSTs, PUTs and PIOTs which pro-
vide the physical model of the economy (Sec 2.2). This model
can then be used to study the impact of any technology intro-
duction/changes in a region or strategies for transition to circular
economy as described in Sec 2.3.

2.1 EM development for sectors to map regional physical
flows

2.1.1 Identifying economic sectors to develop EMs

The first step in connecting EMs to the macroeconomic frame-
work of I0 model is identification of economic sectors in the re-
gion for which we need to develop EMs. Standard classification
system such as the North American Industry Classification System
(NAICS) 16 of economic sector classification is used first to iden-
tify economic sectors. Specifically, all economic sectors need to be
tagged at the most detailed economic sector classification system
available. For US, it corresponds to the 6-digit NAICS code. The
most detailed sector classification should be selected to ensure the
EMs developed accurately represent the production technology of
economic sectors. At higher level of sectoral aggregation, the un-
derlying model of production technologies get more unrealistic
and only represent an averaged material transformation process
for all the sub-sectors in the aggregated sector. Hence, finer scale
of sectoral representation is selected so that EMs developed are
reliable engineering depiction for each sector to model material
and waste flows. If required, EMs can always be aggregated (by
combining multiple EMs) to higher levels of classification.

2.1.2 Classification and Modeling the material transforma-
tion processes using EMs

A single EM type cannot be used to model the flows for all
industries (sectors) in the economy as the underlying material
transformation processes are different for different industries.
For example, agricultural industries involve growth of various
biomass such as crops and livestock, whereas chemical industries
involve chemically transforming materials from one form to an-
other, while a metal forming industry involves operations such
as welding and machining. Hence, several types or categories of
EMs will be needed to capture physical flows such as materials
and wastes, reliably for different sectors in any region. For the
US, we have developed this classification at the 6-digit NAICS
code (See SI-2, Tab NAICSclassification). This classification will
be used as a guide for selection of modeling tool for develop-
ing EMs relevant to the region. All the industries that involve
growing biomass (such as crops and live animals) were catego-
rized as “Biomass” type and all the industries involving chemi-
cal transformation were categorized as “Process” type. Industries
that do not perform any material transformation but use join-
ing/separating techniques such as in assembly were categorized
as “operations” type. In this paper, three categories of EMs were
used based on the scope and variations in production technolo-
gies of the economic sectors considered in the case study (see
section 3). After categorizing the sectors by EM type needed,
EMs are developed using appropriate computational tools such
as Python/Matlab code for biomass growth, ASPEN/ChemCad
(process modeling software) models for process type and Python
based model to simulate operations. These EMs capture the non-
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Typical EM for Sectoral Material Flows
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Fig. 2 Proposed Integration of mechanistic EMs with Macroeconomic Input-Output framework for modeling physical economies and EW-MFAs

linear relationship between material inputs and outputs such as
products/wastes/emissions for the sector, which can be scaled to
represent the actual input and output flows for a sector following
the non-linear relationship. Hence, this approach can overcome
a key challenge 17 of true representation of “production technolo-
gies” to track material flows for a sector in any region utilizing
the mechanistic EM approach.

2.1.3 Scaling and validating EMs to represent material flows
in the economy

After selecting the economic sectors to be modeled and develop-
ing the EMs using appropriate computational techniques, these
EMs need to be scaled to accurately represent the material flows
in the selected region and year. The EMs are scaled using ei-
ther input side or output side data. Scaling for a region and a
particular year using input or output side empirical data ensures
representation of actual sectoral operation, thus eliminating the
uncertainties in flows for mapping physical economy. A key ad-
vantage of using mechanism-based EMs is that it can capture the
nonlinear scaling for material and waste flows, i.e. material in-
put requirements may change non-linearly based on the amount
of output produced (unlike LCA or similar approaches that scale
models linearly 18). A typical EM is shown in Figure 3 along with
possible scaling variables shown in Table 1.

In Table 1, we propose “Input side” or “Output side” scaling.
Whenever input scaling data in the form of commodity consump-
tion (as raw material or intermediate input) is available, the ma-
terial flow input data for all possible input commodities can be
used to scale EMs. Since EMs are based on underlying produc-
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Table 1 Typical flows available as scaling variables in an EM

Model material flow feature = Type
Raw material Input
Intermediate input Input
Intermediate output Output
Commodity production Output
Waste and emissions Output

tion or operation methodology, it will scale rest of the physical
flows as defined by the mechanistic rules. When only “Output
side” information is available, scaling EMs to represent the sec-
tor in an economy is not straightforward. This is because most
mechanistic EMs are built as “input” driven models. In this case,
we have proposed using a stochastic approach. A range of input
flows can be used to simulate the EMs and resulting output can
be compared with available “output flow” data. This is an iter-
ative approach; however, a reasonable level of accuracy can be
obtained. Automation of simulation allows for testing vast range
of input flows, which is not a challenge due to increasing compu-
tation power availability. An example of the output side scaling is
shown in the SI (SI 2, tab 2).

Validation of scaled EMs: While scaling the EMs, care has to
be taken to make sure that each material flow (input or output)
associated with an EM should be a realistic representation of the
material flows in the region in order to model the true size of
physical economy. Hence, it is recommended to cross validate
the flows against empirical data as per the availability. If input
side scaling was used and there is data on one of the “output”


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D1EE00544H

Page 5 of 19

Open Access Article. Published on 26 July 2021. Downloaded on 7/28/2021 9:39:21 PM.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Energy & Environmental Science

View Article Online
DOI: 10.1039/D1EE00544H

Data to Physical Use table

| |
' I I
| Commodity IN 1 | 01 |
] 1 Subsystem Subsystem Commodity OUT 1 |
1 1 3
i |
] Commodity IN 2 : Commodity OUT 2 I
: 1 0 2 Commodity OUT 3 |
| Subsystem Subsystem |
\ I 6 I
: I I
I Commodity IN 3 I I
! | subsystem | 12 | subsystem Wasto 1 I
| 2 4 1
! Natural ResourcelN 1 T |
\ I I
' I
L

Data to Physical Supply table

Fig. 3 Typical EM and various material flows associated with it

flows, the model simulation can be cross checked to ensure that
EMs have been developed correctly. In case of output side scal-
ing, the validation is harder. If additional “output” flows such as
a co-product or emissions data is reported by sectors, that can be
used for validation. If both inputs and outputs are not available,
then a decision must be made about how to use the only available
input/output data, however such cases are rare as all industrial
sectors collect some information on input or output side flows.
Since the EMs are mechanistic in nature, if they are correctly
modeled and scaled, their outputs should be close to the “vali-
dating” stream material flow information, which is calculated as
% error. Once validated, the confidence of using the EMs for mod-
eling physical economy at scale and reusing the EMs for different
operating scale in the economy is established.

2.2 Transforming material flow information from EMs to
PSUTs and PIOTs.

In order to standardize models for mapping physical economy
and use the model for evaluating impact of technology interven-
tions at economy scale, the input and output material flow infor-
mation from scaled EMs are transformed into PSTs, PUTs and PI-
OTs. PIOTs allow for standardization of depicting physical inter-
connections among sectors (industries) in an economy. I0 mod-
els allow for analyzing macro-scale economic and environmen-
tal impacts of production changes or technology interventions 7.
The data from EM provides information about use and supply
of different “commodities” along with “natural resource” use and
“waste” generation in the region for the modeled industrial sector
(figure 3). The information from EMs is then organized into Phys-
ical Supply Table (PST) and Physical Use Table (PUT) as shown
in table 2 and table 3. The tables PST and PUT are “commodity
x industry” with dimensions m x n (m is no of commodities and

n is no of industries). RoE is the supply and use of commodities
by industries in rest of the economy, i.e. the sectors which are
not being modeled or are out of scope for analysis. Since, these
industrial sectors are not modeled there is not a straightforward
way to fill this data at this stage and is proposed to be used as
balancing column in our approach.

In the tables 2 and 3, the data in matrices EM_IN, EM_NAT IN,
EM_OUT, and EM_W_OUT is obtained directly from the material
flow information provided by the EMs. Additional information
about exports (EX), imports (IM), and final consumption (FC)
of each commodity can be obtained from empirical data sources
such as survey data or consumption statistics 12. The imports and
exports can also be filled in using interregional trade models2.
Once these tables are populated using data from EM simulation
and empirical data for EX, IM and FC, the tables are checked
for imbalances and balanced to satisfy the IO framework require-
ment, as discussed below.

Balancing PSUTs: As the commodities are physical entities, for
the whole region, a mass balance constraint of Total Commodity
Used (TCU) = Total Commodity Supplied (TCS) for whole re-
gion is applied first. This is based on the balanced commodity
flow system at basic prices from the supply use table manual by
Eurostat?!. Additionally, assuming a steady state system or no
accumulation for the industries modeled an industry level mass
balance of Total Industry Input (TI) = Total Industry Output
(TIO) is also applied. At each industry level, using mechanistic
EMs ensure that the total mass input in an industry is equal to
mass output from industry, thus industry level mass balance is al-
ready ensured via modeling. As the data in the PST and PUTs
are in physical units, the commodity level mass balance must also
hold true. Hence, we first check PSTs and PUTs for commodity
level mass balance before transforming them into a PIOT. Figure

Journal Name, [year], [vol.], 1-19 |5
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Commodities Industry 1

Industry N

ROE Exports | FC | Total commodity used

Commodity 1
" EM_IN

n

Commodity M

ROE IN | EX FC | TCU

Natural Resources
Natural resource 1
" EM_NAT IN

Natural Resource P

Stocks (balancing slack)

S IN

Total Industry IN TII

(EM_IN: Material input data from EMs, EM_NAT IN: Natural resource input data from EMs, ROE_IN: Material inputs from ROE, FC: commodity final
demand, EX: Commodity exports, S_IN: balancing slack variable in PST, TCU: Total commodity used, TII: Total industry input.)

Table 3 Structure of Physical Supply Table (PST)

o

Commodities Industry 1

Industry N

ROE Imports | Total commodity supplied

Commodity 1
" EM_OUT

"

Commodity N

ROE_OUT | IM TCS

Waste flows
Waste flow 1
" EM_W_OUT

"

Waste flow P

Stocks (balancing slack)

S_OUT

Total Industry IN TIO

(EM_OUT: Material output data from EMs, EM_W_OUT: Waste output data from EMs, ROE_OUT: Material outputs from ROE, IM: Commodity imports,
S_OUT: balancing slack variable in PST, TCS: Total commodity supplied, TIO: Total industry output.)

4 shows the approach used to balance PSTs and PUTs.

As shown in figure 4, industry level mass balances are checked
first. If imbalanced, EMs are modified to ensure that the inher-
ent mechanistic equations used ensure mass balance. In the next
stage, all available empirical data on EX, IM and FC is appended
to the PST and PUT containing data from EMs. This is then fol-
lowed by a commodity level balance check for the region. Since
imports, exports and final demand of commodities are already
taken care in the empirical data addition stage, the remaining
commodity imbalances are assigned to the RoE (Rest of the Econ-
omy, ie industries not modeled) industry that either supplies or
uses any deficit or excess in commodities. Since the ROE com-
modity adjustment may create an imbalance in the ROE industry
level balances, a slack stock variable is used (S-IN and S-OUT in
table 2 and 3) to account for the imbalances in industries included
in RoE. As detailed information about stocks of commodities are
not available, at this stage a simple deficit balance is assumed.
Converting PST and PUT to PIOT : After populating all the vari-
ables in tables 2 and 3, and followed by balancing them using ap-
proach in Figure 4, the PST and PUT are converted to an “Industry
x Industry” PIOT using an adaptation of the conversion model D
described in Eurostat manual?!. Model D assumes a fixed prod-
uct consumption structure assumption where each product has its
own consumption/sales patterns, irrespective of where it is pro-
duced, which closely matches our economy as we trace use of

6| Journal Name, [year], [vol.], 1-19

commodities regardless of which sector it is produced?!. First a
transformation matrix T (industry by commodity matrix) is de-
fined (equation 1). T matrix can be interpreted as the proportion
contribution of each industry to the supply of each commodity.
Inter industry flows, Z is calculated using equation 2. The com-
modity level final demand (FC) is converted to industry level final
demand (FD) using equation 3 and similarly “commodity exports”
(EX) are converted to “industry exports” (EX D) using equation
4.

T =V -diag(TCS)™! €Y}
where V = [EM_OUT ROE_OUT]T

Z=T-U 2
where U = [EM_IN ROE_IN]

FD=T-FC 3

EX D=T-EX 4)

Finally, the imports data available at a commodity level are
redistributed and allocated to sectors, final consumption and
exports (cross-hauling). The allocation was done by weighting
a sector’s or final consumption or export column’s usage of
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Balanced PSUT

Fig. 4 Approach to balance PSUTs for commodity and industry level
mass balances

commodity imported. For example, if a commodity “A" is used
20% by sector 1, 50% by sector 2, 25% by final consumption and
5% by exports based on PUT data, then any imported commodity
‘A" was allocated 20%, 50%, 25%, and 5% to sector 1, sector
2, final consumption and exports respectively. At the end, these
interindustry flows Z, and industry level FD, EX D and IM_D are
used to construct a PIOT as shown in table 4.

Uncertainty Quantification of Material Flows in Economy
from EMs: Uncertainty in accounting for material flows in the
economy from EMs pertain to two sources : 1) uncertainty in
model depicting the flows of the sector and 2) uncertainty in
input/output data used for scaling the model to represent to-
tal flows. These uncertainty can then propagate to the final
PSTs/PUTs/PIOTs constructed from the simulated physical flows
for sectors. In order to calculate these uncertainty methods such
as Monte carlo etc. are described in detail in literature22-23, For
the case of EMs, the model uncertainty can be studied as scenario
analysis using variations in EMs for same sectors. The second
case of uncertainty in scaling data will need additional empirical
data for reliable uncertainty propagation study similar to work
described in 2223,
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2.3 Simulating Impact of Technology Adoption for Circular
Economy

The symmetric PIOTs developed can be used to perform stan-
dard Environmentally Extended Input-Output (EEIO) analysis to
study the impact of novel technology adoption or implementing
new recycling technology on the inter-industry dependence and
waste/emissions generation for the region. EEIO models pro-
vide a systematic way to assess environmental impacts based on
dollar based (ex: impact per USD) emission factors24 and re-
cently, in the work by Donati et al®> further expanded on the
EEIO approach to study global material flows. While EEIO models
were conventionally employed using monetary 10 tables (MIOTs)
as their primary source to quantify inter industry dependencies,
we use the proposed PIOTs to quantify the dependencies®. The
flows represented by MIOTs are prone to variability in the prices
assigned to different materials2® (purchaser’s price, producer’s
price, margins, etc) and create further uncertainty in quantifying
material flows in an economy. Hence, to overcome such chal-
lenges, PIOTs are used to ensure the correct representation of ma-
terial flows2’. For example, all material flows that do not have
an economic value are not accounted for in MIOTs. Where as
in PIOTs, all flows, irrespective of their economic value are in-
cluded in the table and it removes the variability associated with
pricing of materials (ex: a ton of steel is always a ton of steel
irrespective of the region/industry/sector using it). Finally, since
the underlying mathematical framework behind IO methodology
remains the same, we can use similar equations used in conven-
tional EEIO studies to simulate the impacts of final demand in the
economy on material flows. Equation 5 shows the change in total
physical through flows for a change in Final Demand (FD) FD of
the specific industries in the economy. To calculate overall impact
using Equation 5, we calculate L as (I —A)~! which is called the
Leontief’s inverse (L). L quantifies the changes in total material
throughput including direct and indirect impacts for industries
(sectors) in response to per unit change in final demand!”. A
is called the technical coefficient matrix which is derived using
information from the Z matrix and the X column vector (Equa-
tion 6). X is matrix of total useful output from each sector, cal-
culated as [TIO -W]. TIO and W are from PIOT in Table 4. In
Equation 6, z; ; represents each element of Z matrix and X; repre-
sents each element of the column sum vector of matrix X. It has to
be noted that waste flows were not included in calculating the A
matrix since waste flows are not primary or co-products that are
used by other industries and not driving the production process
as discussed in detail in IO literature28. Further, the coefficients
A calculated here are Regional Input Coefficients (RICs), which
captures the industrial interaction within the region. As import
data was used to separate industrial use of commodities between
regional input and import use, it was feasible to calculate RICs.

AX =L-AFD 5)
aij =z j/Xj (6
Two types of structural changes can be observed as a result of

emerging technology adoption or implementation of CE strate-
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gies. Since the A matrix quantifies the material requirements of
an industry per unit output produced (technical coefficients), ow-
ing to the economies of scale, the A matrix may change as a result
of introducing structural changes in economy due to adoption of
new technologies. If A, and A, represent the A matrices before
and after implementing CE, then the changes in material require-
ments of industries to produce unit outputs can be quantified by:

AN =A,—A4p @

Since each element in the A matrix represents the requirement
of inputs per unit output, the difference between the two A ma-
trices will quantify by how much the input requirements change
to produce the same unit output. The other type of change can
be observed in the Leontief matrix. The L matrix before (L;) and
after (L,) technology adoption for CE implementation can pro-
vide insights into how industrial interactions change in response
to new technology adoption for the same per unit changes in fi-
nal demands of industries. If changes in industry outputs before
is represented by AX, and after CE implementation is represented
by AX, and if the change in final demand is AFD then the dif-
ference in change of outputs can be calculated by equation 8.
In equation 8, subscript AL refers to the fact that the change in
physical throughout are due to the changes in direct and indirect
impact coefficients after implementing CE strategy.

AXar = (Lg-AFD) — (L, - AFD) (8)

This analysis allows evaluation of impact of adopting new re-
cycling technology in any region by improving overall material
efficiency and reduction of wastes in the economy.

Apart from studying the impact of structural changes, the waste
intensities of each sector can also be quantified. If W represents
the waste flows matrix, the waste intensity w (tons of waste/ton)
can be calculated by dividing each sector’s waste with the sector’s
output. The difference in waste intensities before and after CE is
calculated as wy, - wy,.

3 Results

We present a detailed mapping of physical economy for the major
economic sectors that constitute the agro-based economy in Illi-
nois to establish the standardization process using the proposed

8 | Journal Name, [year], [vol], 1-19

approach in sections 3.1 and 3.2. Illinois was selected based on
prior studies®2° where PIOTs for Illinois existed that provided a
benchmark for selection of sectors to model. Further, in section
3.3, we demonstrate how the approach developed in this work
can be used to select recycling strategies and evaluate the impact
of adoption of recycling technology on the Illinois agro-based sec-
tors.

3.1 EMs for agro-based physical economy of Illinois

The major agro-based sectors in Illinois, USA were first identi-
fied and tagged with a 6-digit NAICS code as shown in table 5
and the EM type was given to each sector based on the type of
material transformation processes. The EMs developed capture
all the material processing related flows for waste and emissions
quantification in this case study, emissions and upstream wastes
related to energy consumption in sectors are not included.

3.1.1 Modeling field crops

Field crops (EMs 1-5 in table 5) were modeled using Python Crop
Simulation Environment (PCSE). PCSE is a Python package for
building crop simulation models33. PCSE provides the environ-
ment to implement crop simulation models which give crop yield
information and much more. Since only the crop yield data was
used in this study, other outputs such as plant phenology, respi-
ration, and evapotranspiration parameters that PCSE models pro-
duce are not discussed. The PCSE simulation engine produces
outputs for daily time steps and requires four primary inputs: i)
weather data, ii) model parameters such as crop, soil and site
parameters, iii) agromanagement information such as farming
schedule and iv) custom configuration file for storing outputs. For
each of the four inputs, PCSE provides a range of data provider
options. For example, NASA power API3* was used in this study
as the primary weather data provider. The four types of input
information were obtained for each of the field crops mapped to
NAICS sectors being modeled and can be found in the SI (SI 2).
PCSE reports the crop yield in terms of mass per unit area (kg per
hectare). This yield data was multiplied with the field crop area
cultivated from USDASC to get the total crop biomass output for
each field crop modeled in Illinois, USA. This provided the input
and output data for “Crop sectors” at corresponding 6-digit NAICS

Page 8 of 19
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EM No Sector name NAICS code EM type

1 Soybean farming 111110 Plant growth model — Python

2 Bean farming 111130 Plant growth model — Python

3 Wheat farming 111140 Plant growth model — Python

4 Corn farming 111150 Plant growth model — Python

5 Potato farming 111211 Plant growth model — Python

6 Hog farming 112210 Animal growth model — Python

7 Urea manufacturing 325311 Chemical process model — Aspen plus

8 Soybean crushing 311224 Chemical process model — Aspen plus

9 Soybean biodiesel 324199 Chemical process model — Aspen plus

10 Corn ethanol manufacturing 325193 Chemical process model — Aspen plus

Table 6 Scaling and validation data used for each model along with error of scaling
NAICS Code  Sector name Scaling variables ~ Output variables Model value  Unit Validation source Error (%)
111110 Soybean farming Fertilizers used Soybean yield 5.74E+01 bu/ac 0 10
111130 Bean farming Fertilizers used Bean yield 1.18E+08 kg 30 5
111140 Wheat farming Fertilizers used Wheat yield 8.03E+01 bu/ac 30 -18
111150 Corn farming Fertilizers used Corn yield 1.72E+02 bu/ac 30 -18
111211 Potato farming Fertilizers used Potato yield 9.12E+03 kg/ha 30 NA
112210 Hog farming Hogs produced Hog mass 1.23E4+06 ton 30 -26
325311 Urea manufacturing Ammonia used Urea produced 5.36E+08 ton Industry in very small in
Illinois (only used for NA
EM representation)

311224 Soybean crushing Soybeans crushed ~ Soybean oil 1.36E+06 ton 31 0.07
- - - Soybean meal 3.15E+06 ton 7
324199 Soybean biodiesel Soybean biodiesel Soybean biodiesel 1.53E+02 Mgal 32 -
325193 Corn ethanol manufacturing  Ethanol produced  Ethanol produced 1.75E+03 Mgal 32 -

Soybean crushing, bio-diesel and ethyl alcohol were scaled from the output side. Since the only available output data was used for scaling, it was not used to measure the

error percentages.

code using mechanistic model and scale of operation for the year
of 2018. These models were validated using the output variable
data obtained independently from survey/census data shown in
Table 6. Maximum % error while validation was about 18 %,
which establishes that the PCSE models can capture the mecha-
nism well and represent scale of inputs/output flows associated
with this sector in the region with close to 80 % coverage.

3.1.2 Modeling animal farming sectors

Hog farming sector (NAICS 112210, EM - 6 in table 5) was mod-
eled using custom Python program that were built to simulate the
animal farming practices for the state of Illinois, USA. The model
built was based on hog biomass growth rate, feed consumption,
and overall mass balance equations. The model parameters for
capturing the mechanism of growth includes feed composition,
mass of feed intake, animal age distribution and average daily
mass gain rates for each age group. These input information were
obtained from USDA NASS30. Validation of this model was done
using the total hog mass output of the state data3C. The EM out-
put shows a 26 % underestimation (Table 6). However, the EM
provided enough confidence in using mechanistic models for an-
imal farming sector to independently capture inputs/outputs of
these sectors in any economic region.

3.1.3 Biomass processing and chemical manufacturing sec-
tors

The sectors with conventional chemical processing (EMs 7-10 in
table 5) were modeled using Aspen Plus process modeling soft-

ware. A typical process model developed using Aspen plus in-
volves rigorous application of mass and thermodynamic balances
that determine how different materials or chemicals are trans-
formed from one form to another. Once a process model was
developed for sectors in Aspen Plus, it was scaled to match the
material flows of the representing industry in Illinois (Table 6).
Details of models for each sector are presented in SI (SI-2). Since
the only available empirical data was used to scale the model, er-
ror % in outputs were not reported except for the soybean crush-
ing industry as data was available for it (output error % of 0.07
for soybean oil produced and 7% for soybean meal produced).
The validation of the soybean crushing EM proved that process
modeling based EMs can represent the physical flows for indus-
trial systems at regional levels.

3.2 Physical model for agro-based economy in Illinois

After validating all the EMs developed for the agro-based sectors,
the material flow information was extracted from these scaled
models to construct PUT and PST using the proposed approach
in section 2.2. The various material inputs and outputs of each
EM provided commodity data for each industry which were tabu-
lated as individual columns following the structure shown for PUT
(table 2) and PST (table 3). The PST and PUT constructed for
the agro-based economy of Illinois are shown in SI-1, Tabs-"PST",
"PUT" which provide detailed commodity use and supply in the
region. The corresponding Sankey diagrams for both the tables
are shown in figures 5 and 6. The PST and PUT were converted
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to PIOT following approach in section 2.2. The PIOT captures the
inter-industry dependence for materials in Illinois (See SI-1, Tab-
PIOT). Since the EMs developed are bottom-up and mechanistic
in nature, information such as any available elemental chemical
composition of different flows is also retained throughout the pro-
cess.

All the tables, Sankey diagrams and heatmaps presented here
provide a highly detailed physical map of materials flowing from
one agro-based industry to another in Illinois. Such physical econ-
omy models can be critically useful to better manage regional re-
source usage and to track elemental use efficiencies of different
industries. The two Sankey diagrams comprehensively show how
different commodities are moving from one industry to another
and all the while interacting with nature by using raw materi-
als and emitting waste flows. One important and easy to look
observation is that water accounts for a significant amount of
the total flows and corn-ethanol and hog farming sectors have
highest amount of waste being produced in 2018. Exact track-
ing of the waste flows through modeling at economy scale pro-
vides an approach to automate projection of these flows in fu-
ture as well. Another important observation is that the dry corn
milling (or bioethanol/corn ethanol manufacturing) has the max-
imum number of input flows and also has the highest number of
output waste flows. Using these quantitative observation about
the type and amount of waste flows, we develop the CE strategy
in next section. The detailed information on commodity flows
can also be utilized to perform sensitivity analysis of the dry corn
milling industry supply chains to study how the industry behaves
if one of the many input requirements was low in supply. The
two Sankey diagrams and the PST/PUT provides a highly dis-
aggregate material flow information at detailed economic sector
and commodity level with exact composition of material flows as
well. Further, using the aggregate information from PST, PUT,
PIOT and Sankey diagrams developed, key material flow charac-
teristics of the physical economy of Illinois has been identified as
shown in Table 7. The highest material inputs are for the urea
manufacturing sector consuming high volumes of ammonia and
CO,, this also makes urea manufacturing a key sector for carbon
and nitrogen flows and potentially a target for carbon capture
technologies to integrate with fertilizer manufacturing. Sector
with the least material flow intensity was the bean farming sec-
tor. This owes to low nutrient input requirement (as N fixation
happens), thus beans could be a target for sustainable food pro-
duction. Last, corn-ethanol manufacturing was the sector with
highest number of waste flows including water mixture with or-
ganic content (2.34E+06 tons) and water with CO, and ethanol
mix (1.49E+08 tons). Given the organic content of these water
mixtures, these form target for further treatment and recycling of
both water and any organic waste content.

Uncertainty in Material Flows from EMs: Among the two
sources of uncertainty, we have eliminated the study of uncer-
tainty due to EM by selecting the most representative process for
the sectors in state of Illinois (See SI-2). This information was
based on underlying mechanisms of material transformation in
the region. For example, the process of dry corn milling is fairly
homogenized in terms of technology in US mid-west. Hence, for
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the selected year, the developed EM was considered a close rep-
resentation of processing in the state and other technology sce-
narios were not modeled. Within the scope of assumed technol-
ogy/production methods, computational models such as the EMs
described in this work are proven to simulate material flows close
to experimental data3®. Since experimental validation of each
of the EM developed can be potentially an independent study by
themselves, it was not considered in the scope of this study. How-
ever, the outputs of EMs were compared with existing empirical
data such as government agricultural records3? wherever avail-
able and percentage differences are reported in Table 6, providing
confidence in estimation of material flows using these EMs.

The second source of uncertainty can arise from the in-
put/output scaling data provided to all the developed EMs. While
information such as coefficient of variation (CV) was provided in
some model output sources in USDA census data3°, required un-
certainty parameters for all the input data was unavailable to fit a
probability distribution and perform detailed uncertainty analysis
such as Monte Carlo22. Hence, we did not quantify uncertainty
propagation due to uncertainty in scaling data. However, if such
detailed uncertainty information was available for all scaling vari-
ables, it then becomes possible to quantify how uncertainty can
propagate throughout the material flow modeling framework to
the estimation in PSTs/PUTs/PIOTs.

3.3 Identifying and quantifying Impact of circular economy
strategies

Since it was possible to capture highly detailed chemical charac-
teristic information of individual material flows across the phys-
ical economy model, we used the compositions and stream flow
information to determine the recycling potential and appropriate
technologies for various waste flows. The identified waste flows
can then be recycled to implement a circular economy strategy by
selecting appropriate recycling technology. It has to be noted that
some waste flows may have very high concentrations of a valu-
able chemical, but the required recycling/extraction technology
may not be available. Hence, the available recycling technologies
could constrain the real potential of recycling and proper techno-
economic assessment (TEA) of the recycling technologies must
be done for selection of appropriate technology to be adopted at
scale. However, TEA is not the focus of our work and we assume
that the technology selected is economically viable for adoption
at the required scale. If the technology is available and viable,
the waste flows can be supplied as an input to the recycling in-
dustry where it transforms them into valuable commodities. To
study the impact of this strategy, new EMs can be developed for
the new recycling technology and included in the PST, PUT and
PIOT construction to reflect the recycling of materials in physical
model of economy. We utilize this approach for transitioning Illi-
nois economy towards CE by adopting technologies for recycling
industrial waste water and hog manure and evaluate it’s impact
on physical material flows in economy along with inter-industry
dependence changes. However, we acknowledge the lack of un-
certainty quantification on material flows and waste flows that
can effect the actual impact of implementation of CE strategies
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Table 7 Physical Economy Characteristics for lllinois from PST, PUT and PIOT

Physical Characteristics Industry Name

Urea sector
Bean farming
Urea sector
Bean farming
Urea sector
Bean farming

Highest mass output

Least mass output

Highest known elemental C output
Least known elemental C output
Highest known elemental C input
Least commodity use intensity
Highest waste flows

Corn ethanol manufacturing

Value Units
5.52E+08 tons/oper-yr
1.30E+05 tons/oper-yr
1.07E+08 tons/oper-yr
3.90E+04 tons/oper-yr
8.25E+07 tons/oper-yr

3.00E-02 tons/ton
1.60E+08 tons/oper-yr

described in this work. Therefore, the results presented only per-
tain to the waste quantities (see SI-1) modeled with particular
EM models (See SI-2) and scaling values used.

Based on the waste data obtained from the PST (See SI-1),
the manure flow from hog farming and industrial wastes from
corn ethanol manufacturing and soybean crushing were identi-
fied as flows which can be potentially recyclable. A manure re-
cycling industry and water recycling industry was introduced in
the economy to process these streams and the entire process of
constructing PST, PUT and PIOT was repeated as in the previous
section. Each recycling sector was represented as an EM. One
EM was developed using Aspen Plus to recycle waste-water flows
coming from different sectors. The EM was based on the work by
Rajendran et al3® where a modified Anaerobic Digestion Model 1
(ADM 1) was used to simulate the biochemical reactions of treat-
ing wastewater under anaerobic conditions. The wastewater re-
cycling EM divides the digestion or fermentation reactions into
two groups of reaction-sets: (a) The reactions of hydrolysis oper-
ating based on the extent of reaction, and (b) reactions of other
phases (acidogenic, acetogenic, and methanogenic reactions) in
AD functioning on a kinetic basis. Hydrolysis is one of the rate-
limiting steps in AD, and henceforth a separate reaction-set was
added. The second EM was an operations model that empirically
converted hog manure into fertilizer, developed using a manure
composting technology assumption. Details on both the recycling
EMs are provided in the SI (SI-2, Tabs-"Water Recycling", "Ma-
nure Recycling"). Both the EMs were scaled from the input side
with each EM taking in the waste flows it can process, data for
which was available from PST developed for mapping the waste
in Illinois economy. This scaling was chosen as no empirical data
was available to scale the introduced recycling EMs with CE im-
plementation scenario. Since water is a natural resource, no in-
dustry had to be scaled down to ensure water final demand. The
major changes observed was the reduced dependence on water
as a natural resource by industries and the availability of recycled
fertilizer commodity that can be used by farming sectors.

During CE implementation, it was assumed that the final de-
mand of commodities will remain the same. This was done to
specifically understand the role of recycling sector in changing the
material exchanges between industries in the simulated CE phys-
ical model while meeting the same level of production demand
from the economy. Since the recycling industry is now supplying
water and fertilizer to the economy, interaction with other indus-
tries that provided water and fertilizer changes in the economy
while ensuring that economy meets the same final demand even

after implementing CE. Since water is a natural resource, using
recycled water implied lower water withdrawal from nature to
meet the demand of water to same production level in all sectors
in the economy. As seen in figure 8, the input requirements of all
the sectors change as a result of introducing new technologies in
the economy. This increase or decrease in input requirements can
depend on the inherent mechanistic methods used to model and
also the economies of scale. The PIOT heatmap for the newly cre-
ated recycling economy is shown in figure 7 and captures these
nonlinear changes in industrial exchanges under CE implemen-
tation. The heatmap also shows how the sectors are interacting
with each other and the newly introduced recycling sector.

It can be observed from the heatmap (Figure 7 that the re-
cycling sectors, water recycling and manure recycling, is taking
inputs from Corn ethanol manufacturing, Soybean oil manufac-
turing and hog farming sectors. The recycling sector is also sup-
plying recycled materials such as water and fertilizer to other sec-
tors such as corn ethanol manufacturing, soybean biodiesel, bean
farming, corn farming, peas farming, soybean farming, and hog
farming. Additionally, the recycling sector provides biogas as new
commodity to the economy. Figure 8 shows how the material
requirements of industries to produce unit output changed as a
result of introducing the recycling sector. It can be observed that
the farming industries (bean, corn, peas, soybean, and hog) are
now requiring fewer materials from the remaining agro-based in-
dustries in the region and the rest of the economy. This deficit
is now being contributed by the recycling industry. The recycling
industry is also supplying recycled water to sectors such as corn
ethanol, soybean processing and hog farming, which reduces wa-
ter withdrawal from natural systems.

Further, to study the impact of restructuring the economy on to-
tal material requirements for meeting the final demand changes
(FD), artificial demand pulls were simulated using equations 1
to 8. The marginal increase was simulated using a vector of all
ones (1 ton of products from sectors). Note that the final demand
changes for both the newly introduced recycling sectors (water
recycling and manure recycling) was assumed to be 0, to only
simulate the material requirement to meet the demand of orig-
inal economy. This implies that these recycling sectors are only
recycling wastes and providing commodities back to industries in
the economy but not providing outputs to consumers. Since these
industries did not exist in original economy, this assumption pro-
vides a fair comparison of physical flows required to meet the
original demands in economy. The Leontief inverses (L) were cal-
culated for both the baseline scenario (L;) and after implement-
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Fig. 7 The heatmap of PIOT after implementing CE (numerical table in SI-2)
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ing circular economy (L,). Then changes in physical throughput
of all the industries were calculated based on the simulated de-
mand pull. The difference in throughputs (AX) is shown in the
table 8.

Overall, there was significant reduction in total material
throughflows for all sectors to meet the final demand of 1 tons
of products in the restructured economy. Sectors showing reduc-
tion of material throughflow are soy-oil manufacturing (-11%),
urea manufacturing (-53%), corn farming (-56%), soybean farm-
ing (-27%), wheat farming (-8%) and other sectors in ROE (-59
%). These decreases are due to reduced extraction of new ma-
terials and increased recycling rate which can allow meeting the
demand at lower level of external resource inputs. The significant
reduction in throughflow of urea manufacturing is because of the
manure recycling industry which is transforming the hog manure
into N fertilizer, that reduces the dependency of other sectors on
urea manufacturing sector, hence lower throughflow in this sec-
tor. However, existence of Urea manufacturing industry to also
supply N fertilizer increases the physical economy’s resilience to
fluctuations in final demand of N fertilizer as there are now two
industries (urea manufacturing and manure recycling sector) in
the economy supplying the same commodities. Since urea pro-
duction industry has capacity to produce more as originally in the
baseline scenario, it can ramp up its production to pre-CE physi-
cal economy level in case demand arises. This makes the economy
less prone to fluctuations in fertilizer demand as compared to the
baseline scenario. However, it has to be noted it may be eco-
nomically beneficial for the urea production industry to produce
at original capacity, however the trade-off on environmental im-
pact needs to be considered in cases when extra production from
virgin materials is not needed and regional economy can meet de-
mands by re-utilizing wastes. Alternatively, this industry can uti-
lize the extra production capacity to provide fertilizers to "Nitro-
gen/Phosphorus " poor regions by exporting which can help in the
imbalances of resource availability in different parts of the world.
Thus, a CE strategy in one region can eventually help in equitable
distribution of important resources such as Nitrogen/phosphorus
for food production in areas challenged with food poverty, while
overcoming the environmental challenges arising due to run-off
of nutrient wastes37. Corn-ethanol sector shows an increase in
throughflow because of the increased indirect dependence of this
sector on other sectors through re-using water from recycling sec-
tor and corn-farming dependence on recycled manure. However,
overall, these recycling strategies reduced the total throughflows
for the economy as shown in high reduction of throughflows in
other sectors.

Last, to understand the impact of adopting these recycling tech-
nologies on overall waste reduction in Illinois, we show the sector
wise reduction of waste flows after implementing CE strategy. In
table 9, one of the main differences we observe is that the number
of waste flows has decreased in the economy as recycling indus-
try is consuming them to produce useful commodities, which is
an intuitive result. However, there is a new waste flow in the sys-
tem coming out of the recycling industry which was not present in
the baseline scenario, this can be systematically quantified using
generated PIOTs. Although recycling industry has its own waste,
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it is producing far more quantities of useful commodities from the
waste compared to its own waste flows. There was a reduction
of total 1.48E+08 tons of waste flows in the economy as a result
of recycling while meeting the same demand from the economic
sectors in the region (waste before CE was 1.76E+08 tons and
mass of waste after CE was 2.75E+07 tons; the percentage reduc-
tions in waste flows are shown in table 9). Water recycling used
1.55E+08 tons of waste from corn ethanol and 2.89E+05 tons of
waste from soy-oil while manure recycling used 4.62E+06 tons
of hog manure. After recycling, 3.07E+04 tons on nitrogen fer-
tilizer and 1.17E+04 tons of phosphorus fertilizer was supplied
by the recycling sector. Overall, the introduction of recycling sec-
tor reduced >96 % of waste from corn ethanol sector, >99 % of
soybean oil sector waste, and >62 % hog farming waste outputs.
All this waste was despite of a total of 7.14E+06 tons of waste
generated from water recycling system. It has to be noted that,
while it is true the quality of the recycled material flows maybe
inferior to virgin material flows, the scope of the current work as-
sumes that the recycled water is primarily used by industries and
is not potable. The EM model used in water recycling ensured
that the water output meets standard requirements (all organic
contaminants, particulate matter, and volatile solids removed) to
be reused by industries. In the case of recycled hog manure as
fertilizer, elemental nutrient mass requirements were considered
when using the recycled manure as fertilizer. For example, 1 kg
Nitrogen from Urea being used by crop farming sectors was re-
placed by 1 kg Nitrogen from recycled hog manure, hence the
equivalent functional substitution was ensured.

4 Conclusion

The integrated bottom-up approach developed in this work by uti-
lizing mechanistic EMs to simulate material transformations and
using the extracted data in standardized IO framework to create
PSTs, PUTs and PIOTs proved to be a comprehensive technique
to account economy-wide material flows without overly relying
on empirical data. The only empirical data used was in validating
and scaling the models. Once validated, the same EMs can now be
used for other regions or to find material flows in consequential
scenario assessments, thus making this approach highly repro-
ducible. Hence, this approach solves a long lasting issue of lack
of standardized techniques for mapping material flow in econ-
omy. In previous work, to build regional physical economy model
as PIOTSs, an empirical approach was taken by Singh et al.8 for ni-
trogen flows and only process models with manual mapping was
used in Wachs & Singh??. Both these earlier approaches prove
to be tedious in mapping the data and limited in scope such as
lacking standardization/reproducibility for modeling the physical
economy. Hence, this work provides a novel and significant ad-
vancement to previous approaches to build PIOTs by establishing
approach that allows automation and standardization of integrat-
ing mechanistic models for all type of sectors that was not fea-
sible in tedious empirical and manual mapping work. Here, we
have shown how mechanistic physics-based modeling approaches
can be effectively used to simulate material flows across different
industries in a region and map physical economy in a standard-
ized framework. Thus, this work also fills a critical gap of lack of
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Table 8 Change in material flows (AX) per unit change in final demand (1 ton) across all original sectors in economy

Sector AXpeforeCE AXafrerce Change % change
corn_ethanol 1.23 4.27 3.12 248
Soybean Biodiesel 1.01 1.00 0.00 -1
soy_oil 2.99 2.66 -0.20 -11
Urea Manufacturing 10.65 5.00 -4.93 -53
bean_farming 1.00 1.00 0.00 0
corn_farming 8.45 3.69 -4.08 -56
hog_farming 1.12 1.12 -0.15 0
soybean_farming 5.05 3.71 -1.11 -27
potato_farming 1.00 1.00 0.00 0
wheat_farming 1.15 1.06 -0.08 -8
ROE 50.66 20.81 -26.10 -59
Water_Recycling 0.00 3.03 3.03 100
Manure_Recycling 0.00 0.07 0.07 100

Table 9 Waste flows after CE implementation and percentage waste reductions
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computational approaches for evaluating economy wide impact
of emerging technologies or adoption of a new technology in a
region on overall material changes and waste flows.

Since the final output of the approach is in the form of PSTs,
PUTs and PIOTs, the approach is also compatible with other exist-
ing top-down and hybrid flow accounting techniques widely used
in industrial ecology for assessing the economic and environmen-
tal impact of demand changes383°. Finally, as demonstrated in
the case study, the established approach can have wide ranging
applications such as : providing detailed insights into sectoral de-
pendence on different material flows, sectors with highest waste
flows and streams with potential for recycling technologies adop-
tion that can be simulated to evaluate the overall impact on re-
ducing environmental impacts of the regional production system.

Thus, our approach can feed into the growing emphasis on us-
ing regional material flow data to perform circular economy im-
plementations 40412542 In the work by Donati et al*!, the au-
thors use a framework of supply use tables to account waste sup-
plies from different sectors at a city level relying on empirical data
for highly aggregate sectors. The approach presented in this work
can supplement the data needs of the framework of using supply
use tables used in the work by Donati et. al as well to make the ap-
proach reproducible for other sectors and regions, thus reducing
the time effort for building PST and PUTs. There is also work on
use of IO supply use table approach to model material flows and
circular economies2°, however reliance on monetary EEIO tables
to map global material flows may provide biased results as mon-
etary tables are generally not an accurate description of physical
economies. The work presented here overcomes this challenge by
generating the physical A matrix as explained in the method sec-
tion. Thus, our approach can overcome a significant challenge

for data generation over time to map physical economies reli-
ably. In future, the approach on reuse, recycling and refurbishing
presented in Donati et al®® can be combined with our work us-
ing physical A matrices. Overall, the approach presented in this
work addresses the challenge of physical models for economy in
the current literature by both making the approach highly repro-
ducible and relying on technical coefficient matrix derived from
purely physical flows based on mechanistic models for material
conversion in sectors. Sharing of EMs will allow fast generation
of physical economy models for other regions as well. Since, the
EMs can be validated, errors on modeling a region can be easily
checked and iteratively improved for accuracy which is not fea-
sible in current empirical approaches. Further, these EMs should
be simulated with range of values to capture the uncertainty in
material flows in the economy that can provide insights into vari-
ations in impact of recycling strategies. Updating the EMs to re-
flect changes in technologies will also allow to study scenarios of
adoption of emerging technologies in various sectors.

Apart from addressing the challenges in the literature, the au-
thors believe that the work presented here pushes the bound-
ary of material flow accounting methods by inviting mechanistic
modeling researchers using physics, chemistry, biological mod-
els along with process systems engineering community to inte-
grate their work with macroeconomic framework to account for
large scale economy-wide impact of emerging technologies. With
growing computational power and increase in the use of machine
learning to develop process/materials/physical models*344, the
approach presented here can act as a blueprint for automation
of mapping materials flows in the economy from any computa-
tional model derived data. For example, once a large no of mod-
els are developed using different techniques to represent all sec-
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tors in the economy, all the material flows can be mapped at a
global/country/state level, providing a truly collaborative effort
to solve the challenge of environmental impact of waste genera-
tion and design of sustainable technologies.

We discuss more about this idea of collaborative and auto-
mated effort of simulating large scale economy-wide material
flow data in another work focused on cloud-based PIOT-Hub. The
PIOT-Hub*® uses a Python based automated tool called Material
Flow Data Extractor and Simulator (MFDES) at the backend 40
to implement the proposed approach. This cloud based platform
at scale will provide the computational tool for a global effort
to map physical economy using the approach presented in this
work, similar to large scale efforts of mapping human genome.
This tool will be available to researchers for non-commercial use
via Purdue’s MyGeoHub platform to comply with license restric-
tion (https://mygeohub.org/piot).Recently, an effort to mapping
global physical flows in virtual laboratory has been made using a
top down approach4’, which can be complemented with the ap-
proach presented in this work. We envision that these physical
maps of local/global economy will enable us to function within
the constraints of planetary limits*® by connecting anthropogenic
material flows with ecological and planetary mass flows.

Conflicts of interest

There are no conflicts to declare. A US Patent is pending on cloud
platform implementing the methodology for automation, with po-
tential for commercialization as technology.

Acknowledgements

Authors are grateful for support from U.S. National Science Foun-
dation CBET-1805741. We also thank the anonymous reviewers
for their feedback that has further improved this manuscript.

Notes and references

1 E. Elhacham, L. Ben-Uri, J. Grozovski, Y. M.Bar-On and
R. Milo, Nature, 2020, 588, 442-444.

2 The Circularity Gap Report 2020, Circle economy technical re-
port, 2020.

3 Y. Moriguchi and S. Hashimoto, in Material Flow Analysis and
Waste Management, ed. R. Clift and A. Druckman, Springer
International Publishing, Cham, 2016, pp. 247-262.

4 T. E. Graedel, Environmental science & technology, 2019, 53,
12188-12196.

5 M. Fischer-Kowalski, F. Krausmann, S. Giljum, S. Lutter,
A. Mayer, S. Bringezu, Y. Moriguchi, H. Schiitz, H. Schandl
and H. Weisz, Journal of Industrial Ecology, 2011, 15, 855-
876.

6 Circularity Economy Action Plan, European union technical re-
port, 2020.

7 A. Schaffartzik, N. Eisenmenger, F. Krausmann and H. Weisz,
Journal of Industrial Ecology, 2014, 18, 102-112.

8 S. Singh, J. E. Compton, T. R. Hawkins, D. J. Sobota and E. J.
Cooter, Ecological modelling, 2017, 360, 194-203.

9 B. Reutter, P. Lant, C. Reynolds and J. Lane, Journal of Cleaner
Production, 2017, 153, 506-514.

18 | Journal Name, [year], [vol.], 1-19

View Article Online
DOI: 10.1039/D1EE00544H

10 A. Tukker, E. Poliakov, R. Heijungs, T. Hawkins, F. Neuwahl,
J. M. Rueda-Cantuche, S. Giljum, S. Moll, J. Oosterhaven and
M. Bouwmeester, Ecological Economics, 2009, 68, 1928-1937.

11 W. Leontief, The Review of Economics and Statistics, 1970, 52,
262-271.

12 J. Kovanda, Journal of Industrial Ecology, 2019, 23, 893-905.

13 United Nations, Food and Agriculture Organization, 2020,
http://www.fao.org/faostat/en.

14 United Nations, UN Comtrade, International Trade Statistics
Database, 2019, https://comtrade.un.org/.

15 T. E. Casavant and R. P. Co " té, Journal of Cleaner Production,
2004, 12, 901-908.

16 North American Industry Classification System - NAICS, https:
//www.census.gov/naics/.

17 R. E. Miller and P. D. Blair, Input-output analysis: foundations
and extensions, Cambridge university press, 2009.

18 Y. Yang, The International Journal of Life Cycle Assessment,
2019, 24, 620-626.

19 Commodity Flow Survey (CFS), https://www.census.gov/
programs-surveys/cfs.html.

20 R. Boero, B. K. Edwards and M. K. Rivera, Regional Studies,
2017, 52, 225 - 238.

21 Eurostat, Eurostat Manual of Supply, Use and Input-Output Ta-
bles, 2008, ch. 8, pp. 1-592.

22 Y. Wang and H.-w. Ma, Journal of Cleaner Production, 2018,
170, 1017-1028.

23 D. Laner, H. Rechberger and T. Astrup, Journal of Industrial
Ecology, 2014, 18,.

24 Y. Yang, W. W. Ingwersen, T. R. Hawkins, M. Srocka and D. E.
Meyer, Journal of cleaner production, 2017, 158, 308-318.

25 F. Donati, G. A. Aguilar-Hernandez, C. P. Sigiienza-Sénchez,
A. de Koning, J. F. Rodrigues and A. Tukker, Resources, Con-
servation and Recycling, 2020, 152, 104508.

26 S. Merciai and R. Heijungs, Ecological Economics, 2014, 102,
69-74.

27 S. Nakamura, K. Nakajima, Y. Kondo and T. Nagasaka, Jour-
nal of Industrial Ecology, 2007, 11, 50-63.

28 S. Suh, Ecological Economics, 2004, 48, 9-17.

29 L. Wachs and S. S., Economic Structures, 2018, 7, 1-24.

30 United States Department of Agriculture, USDA - National
Agricultural Statistics Service - Statistics by State, 2018, https:
//www.nass.usda.gov/Statistics_by_State/.

31 US Department of Agriculture, Agricultural Marketing Service,
US Department of Agriculture, 2020, https://mymarketnews.
ams .usda.gov/viewReport/3191.

32 US Department of Energy, Energy Information Administration
(EIA), 2020, https://www.eia.gov/.

33 A. J. de Wit, PCSE: The Python Crop Simulation Environ-
ment, 2018, https://pcse.readthedocs.io/en/stable/
index.html.

34 N. Power, API Documentation | NASA POWER, https://
power.larc.nasa.gov/docs/v1l/.

35 A. Giwa and K. S. Umanah, International Journal of Engineer-
ing Research in Africa, 2019, pp. 38-48.

Page 18 of 19


http://www.fao.org/faostat/en
https://comtrade.un.org/
https://www.census.gov/naics/
https://www.census.gov/naics/
https://www.census.gov/programs-surveys/cfs.html
https://www.census.gov/programs-surveys/cfs.html
https://www.nass.usda.gov/Statistics_by_State/
https://www.nass.usda.gov/Statistics_by_State/
https://mymarketnews.ams.usda.gov/viewReport/3191
https://mymarketnews.ams.usda.gov/viewReport/3191
https://www.eia.gov/
https://pcse.readthedocs.io/en/stable/index.html
https://pcse.readthedocs.io/en/stable/index.html
https://power.larc.nasa.gov/docs/v1/
https://power.larc.nasa.gov/docs/v1/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D1EE00544H

Page 19 of 19

Open Access Article. Published on 26 July 2021. Downloaded on 7/28/2021 9:39:21 PM.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

36

37

38

39

40

41

42

K. Rajendran, H. R. Kankanala, M. Lundin and M. J.
Taherzadeh, Bioresource technology, 2014, 168, 7-13.

D. Cordell, J.-O. Drangert and S. White, Global environmental
change, 2009, 19, 292-305.

S. Merciai and J. Schmidt, Journal of Industrial Ecology, 2018,
22, 516-531.

M. K. Heun, A. Owen and P. E. Brockway, Applied Energy,
2018, 226, 1134-1162.

M. Virtanen, K. Manskinen, V. Uusitalo, J. Syvdnne and
K. Cura, Journal of Cleaner Production, 2019, 235, 1020-
1025.

V. Zeller, E. Towa, M. Degrez and W. M. Achten, Waste man-
agement, 2019, 83, 83-94.

L. Plastinina, L. Teslyuk, N. Dukmasova and E. Pikalova, Re-
sources, 2019, 8, 90.

43

44

45

46

47

48

Energy & Environmental Science

View Article Online
DOI: 10.1039/D1EE00544H

T. Bikmukhametov and J. Jaschke, Computers & Chemical En-
gineering, 2020, 138, 106834.

S. Stocker, G. Csanyi, K. Reuter and J. T. Margraf, Nature com-
munications, 2020, 11, 1-11.

PIOT Hub : Cloud Infrastructure for Automated Generation of
PIOTs, https://mygeohub. org/piot, Accessed: 2021-02-19.
G. Vunnava, J. Shin, L. Zhao and S. Singh, In Review.

H. Wieland, M. Lenzen, A. Geschke, J. Fry, D. Wiedenhofer,
N. Eisenmenger, J. Schenk and S. Giljum, Ecological Economic
Papers, 2020, 36,.

W. Steffen, K. Richardson, J. Rockstrom, S. E. Cornelll, I. Fet-
zer, E. M. Bennett, B. Reinette, C. Stephen R., d. V. Wim,
A. d. W. Cynthia, F. Carl, G. Dieter, H. Jens, M. M. Georgina,
P. Linn M., R. Veerabhadran, R. Belinda and S. Sverker, Sci-
ence, 2015, 347,.

Journal Name, [year], [vol.]1-19 |19


https://mygeohub.org/piot
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D1EE00544H

