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1 Introduction

The commutator plays a crucial role in relativistic quantum field theories. It precisely
captures the causal propagation of physical effects. Cosmic Microwave Background (CMB)
observation is an archetypical experiment sensitive to these causality constraints. Any
correlation recorded on it must have arisen in the past lightcone of the correlation points.
Predictions for the primordial correlations seen in CMB probes are typically computed
with in-in perturbation theory, as we are measuring expectation values within a state

L Often, for practical purposes, it is sufficient that deep principles

at a particular time.
are “buried somewhere in the formalism” as long as the method of calculation is efficient.
Nonetheless, formulations that make fundamental principles and symmetries manifest often
bring a sharpening clarity to conceptual questions and can motivate new approximations.
In a recent work by the present authors making heavy use of explicit causality [1], we showed
how the nonperturbative reorganization of infrared divergences in light scalar De Sitter field
theory, posited originally by Starobinsky as “stochastic inflation” [2], arises efficiently from
considerations of power counting and the all-orders structure of in-in perturbative diagrams.
Weinberg’s “nested commutator” reformulation of in-in perturbation theory, with its more
explicit rendering of causality constraints, played a central role in our analysis.?

The standard approach to in-in perturbation theory computes expectation values in
the interaction picture, with ket and bra versions of the same state multiplying the time
evolution operator, U, given by the interacting hamiltonian Hj, and its hermitian conju-

gate, UT:
(OY(t) = () (Te“' S H”“’) 0 (Tei S H““’) Q). (1.1)

In [5] though, Weinberg sketched an argument for an equivalent, alternative determination
of the time-dependent expectation value:
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!This technique is also referred to as Closed Time Path (CTP) or Schwinger-Keldysh.
2QOther examples of the utility of the manifestly-causal nested commutators can be found in [3, 4].




We fleshed the argument out into a complete formal derivation of eq. (1.2) in the appendix
of [1]. In particular, the presence of the nested commutators makes causality manifest.
This, combined with the development of a diagrammatic formalism by ref. [6] to make
operational use of eq. (1.2) allowed us to give a clear, rigorous graphical proof of stochastic
inflation, heretofore elusive for 30+ years. See refs. [7-9] for alternative recent discussions.

We wish to address here though, a technical detail missing from the demonstration
of the equivalence of egs. (1.1) and (1.2). The proof we gave in [1] is straightforward
starting from eq. (1.1) as given, and even holds at the operator level, dropping the states
from the r.h.s. of it and eq. (1.2). At the mathematical level, one is just reorganizing the
operator algebra. For any given |Q2), one can thus compute the expectation value either
way. In practice though, doing time-dependent perturbation theory typically means we
do not have an explicit external state to compute with. Typically, we seek to calculate
expectation values of the vacuum state of the interacting theory (which we continue to
call |©2)) in terms of the free-theory ground state, |0). Thus, in order to account for the
nontrivial projection of the latter onto the former, similarly to in-out perturbation theory,
the trick is to deform eq. (1.1) to

. rt , - ,
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i [t / .t ,
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(O)(t) = (1.3)

As pointed out in refs. [10, 11], this would seem to spoil Weinberg’s eq. (1.2) as an equivalent
computation. In particular, the e shifts into the complex plane are different for bra and
ket evolution, and we cannot blithely interchange terms coming from UEJr and U, as the
commutators would have us do. Furthermore, Ul and U, are no longer unitary, and thus
not inverses of each other, leading to the nontrivial denominator, which gives the familiar
(from in-out perturbation theory) division by “vacuum bubbles” in order to account for
the projection factor from |0) onto |Q2).

While the roles played by e are crucial in enabling projection onto the interacting
vacuum and rendering perturbative vertex integrals to ¢t — —oo well-defined, the detailed
form of the e-prescription is quite flexible at the perturbative level. Ref. [12] recognized
this flexibility and proposed an alternative ¢ deformation that would maintain exact uni-
tarity, and hence the derivation of a nested commutator formulation of in-in perturbation
theory. It claimed perturbative equivalence of its new e prescription to eq. (1.3). This is
a valuable insight, but the argument given in [12] for this perturbative equivalence has an
important loophole.

Indeed, such a loophole had to exist because otherwise the argument of [12] would
have shown the equivalence of just the numerator of eq. (1.3) to a nested commutator
form, missing the subtlety of vacuum bubbles. Here, we present a complete treatment,
showing that in-in perturbation theory can be made manifestly unitary at all intermediate
steps, as well as manifestly causal. In particular, we show the perturbative equivalence of



eq. (1.3) to the nested commutator form

(O)(t) = / dty .. / ity [

v 0 -
< (0|[[ .- [0 Hi )] ..., Hi )], HE(11)] o), (1.4)
where

HS(t) = Hre® (1.5)
is clearly hermitian. Note that in eq. (1.4) the state is just the free vacuum |0), while the
interaction Hamiltonian is multiplied by an e damping factor, giving rise to a well-defined
perturbative expansion that can be compared with that of eq. (1.3).

In section 2, we show the equivalence of eq. (1.3) and eq. (1.4) for the easier case
of Minkowski space, before extending the argument to De Sitter in section 3. It would
be interesting to further investigate if the same nested commutator reformulation can
be derived more generally for in-in perturbation theory in any past-eternal background
spacetime, but this lies beyond the scope of this paper.

2 Minkowski space

We begin with the technically simpler argument for flat-space in-in perturbation theory.
The core of the argument will be the same for our cosmological case of interest, but this
warmup has the advantage of very simple calculus. Ultimately, we will demonstrate that the
reorganization of in-in perturbation theory due to ref. [5] is legitimate, even in the presence
of e-deformed contours that extend to t — —oo to project onto the full interacting vacuum
from the free theory, or Fock, vacuum. To do so though, we begin with the conventional
in-in formulation and its standard ie deformation, egs. (1.1) and (1.3), respectively.

The reason why in-in perturbation theory is “richer” than familiar in-out is the pres-
ence of the two different quantum mechanical evolution operators, U(f) = Te " S it
and UT(#). We reserve t to denote the correlation time from here on for clarity. Upon
deformation, these are no longer inverses of each other, which is why the denominator in
eq. (1.3) is nontrivial, and this violation of unitarity precludes the naive use of Weinberg’s
reformulation. In in-in perturbation theory, we typically work with four different propaga-
tors, depending on whether the fields arise from U, Ut or a mix. We explicitly treat only
scalars, writing ¢* for those from U and ¢~ for those from UT, and thus have

GTr(t,t) = (T o ()™ (1))

G ()= (T o () (t))

GTr(tt) = (¢~ ()" (t))

G (1) = (¢~ ()" (1), (2.1)
where we note that “—” fields are always to the left of “+.” The state indicated by the

brackets, (...) is implicitly the free vacuum, |0). For reference we note that Gt is just
the familiar Feynman propagator, with its time arguments shifted into the complex plane
by e-deformation. We can take ¢ to have its time argument deformed to t — ¢(1 — ie)



and ¢~ to have t — ¢(1 + ie). Working in t-k space familiar from cosmology, for a scalar

with wy, = \/k2 + m2, this gives

1
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and we note that the ¢* are no longer hermitian. Whenever a time will explicitly have a
finite value, like the correlation time ¢, we can set € = 0, similarly for € appearing in any
fixed power of ¢t. In practice, it is only the combination of { - —oo and t appearing in an
exponential that require careful tracking of e.

Obtaining the e-deformed Green’s functions that properly give projections of the free
vacuum onto the interacting one for both bra and ket states is just a straightforward
combination of egs. (2.1) and (2.2),
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With these functions in hand, one can commence computing perturbatively.

Ref. [12] conjectured that a different, unitary e-deformation is possible, but which leads
to identical perturbative correlation functions, (2|O|Q)(t). We can arrive at this by the
manifestly hermitian deformation of eq. (2.2). One can think of this as just making the
interactions time-dependent so as to vanish at asymptotically early times. The related
e-deformed time evolution operator,

t
—1 Hretdt
126 — Z e ffoo ,

(2.4)

remains exactly unitary. The derivation we gave in ref. [1] straightforwardly applies to this
deformed Hamiltonian and results in the perturbative equivalence of (0|UIOU|0) with the
nested commutator form, eq. (1.4).

The perturbative expansion of (0|UOU|0) involves fields ¢ and ¢~ in the interactions
from U, and U] respectively, replacmg eq (2.2),

0= gty e
— e —iwy, iwpt T
(bg(t)zm[@ taE“r@ ta/]z:|7
= o (t) = oz (t) = e“op(t), (2.5)

where ¢ is the naive, undeformed scalar field, and thus ¢+ are clearly hermitian. To see that
eq. (2.5) follows from eq. (2.4), consider A\¢?* interactions, where we can trivially replace



the e factor in eq. (2.4) by e since this is just rescaling the definition of e. One can
then associate an e factor with each of the interacting fields ¢, as above. Similarly, fields
inside correlator operators O can be multiplied by eef, since this will trivially approach 1
as € — 0 at the end of any calculation. Thus, these deformed fields lead simply to new
propagators,

. efiw\tft’\ee(tth’)
G (t,t'sk) =

2wy,
. eiw|t7t’|ee(t+t’)
Gt ="
R =
. —iw(t—t") Le(t+t")
Gt t:k) = & i

2w
. fiw(t’ft)ee(tth’)
) =S 2.
GU (a ’ ) 2wk ) ( 6)

replacing eq. (2.3). The subscript “U” denotes “unitary”, in that they arise from the
manifestly unitary U..

It is broadly plausible that such an e deformation might be equivalent to the original
one following from eq. (1.3). After all, final physical answers have € set to zero. In practice,
we see that the action of the deformation to the propagators in eq. (2.3) is minimal,
if crucial. When we perform the time integrals in computing correlation functions, the
nonzero € removes any ambiguity in the result as ¢ — —oo. In fact, it allows us to drop
the contribution from the infinite past. A healthy theory clearly does not admit any
ambiguous terms, and yet we see that the role played by the G** and G*F of eq. (2.3) is
very different. In the latter, all early time contributions are exponentially suppressed. In
the former, though, we see that even if ¢, ¥’ — —oo, suppression does not automatically
occur in the region ¢ — ¢’ ~ const. This subtlety was overlooked in [12].

Tackling the ¢t — ¢’ ~ const. issue properly, we will show that we get an identical set
of correlation functions whether we use the propagators of eq. (2.3) or eq. (2.6), after
e — 0 at the end of calculations. And yet, since the latter are equivalent to the nested
commutator reformulation of eq. (1.4), so are the former, namely those of eq. (1.3). Note
that the analog of the denominator of eq. (1.3) is trivial in the unitary e deformation,
since (0|JUJU|0) = 1 by unitarity and the normalization of |0). Therefore we are really
comparing the perturbative expansion of eq. (1.3) constructed using the G propagators of
eq. (2.3) with the same diagrams constructed using the Gy propagators of eq. (2.6), and
checking they are the same after ¢ — 0. If so, then we have the equivalence of eq. (1.3)
and eq. (1.4).

Consider a generic in-in diagram following from the use of propagators, G, from
eq. (2.3), and decompose it into partial contributions where the vertices are time-ordered.
Thus, the structure of the integral will be as follows,

. ) ) d®ky
(O)(#) > lim lim 2n)? Sl ]
t ., t . o
X / dty ViV [ dty it ™ot (2.7)
T to



where the use of “D” just indicates that this a particular perturbative in-in contribution
with V' vertices and may represent just one of many time orderings. We note that the
function, f, captures all of the pure momentum dependence (outside of energy-dependent
phase factors) as well as any numerical factors. The wj factors in the phases are linear
combinations of (momentum-dependent) energies, whose overall sign may be positive or
negative. Before taking the limit, the r.h.s. depends on e within the slightly complexified
w;, which we will discuss more explicitly below. The earliest time limit of integration, T,
is explicitly written as limiting to —oo.

Because all the time integrals involve exponential integrands, they are easily performed
to give the form,

3
OY® 5 tim tim [ ]

50 T ) (@m)3

v i LV .
X Z Riw1, .. ] elzmzo wmt ol 2ot wnT (2.8)
=0

The wo factor always necessarily multiplies ¢, since that combination appears from the
original integrand. The sum is over the partitions of the vertices to account for the different
choice of integration limits for each time integral. The fact that the division into ¢t and T’
terms has such a simple structure is due to the integrand’s time-ordering. R; is a rational
function of the energy linear combinations, w;, arising from doing the integrals. Note, we
have neglected € everywhere except in the exponentials involving the earliest time 7', since
this tends to —oo. After performing all time integrals, the only remnant of each vertex
time ¢; is its possible limiting values of ¢ and 7. We can now study the origin and fate of
the e dependence.

The € dependence originates from the propagators in eq. (2.3), appearing as small
imaginary corrections to the energies w that appear there. Linear combinations of such
e-corrected w constitute the wj above. While in the GT~ and G~ propagators, this
dependence always gives a damping factor for any sufficiently early (negative) time ¢,
et < 1, this is clearly not always the case in the G™F and G~ propagators, where it is
possible for a time ¢ to have a e~ factor which is an enhancement for early time. The

burning question is then whether the early time factor in eq. (2.8) above, eiZZ:in;T, is
(a) damped by the accumulated e factors, in which case it is simply set to zero after the
T — —oo limit, or (b) has a net enhancement factor or complete cancelation of e factors
so that the T — —oo limit is ill-defined. We will show that, with one exception, (a) is
always the case. Furthermore, that exception is always the trivial case where ¢ = V, and
thus all vertex times are evaluated at ¢, making the early time factor of eq. (2.8) just 1.
Therefore, there is a well-defined T' — —oo limit in which the early time factor vanishes.
Consequently, after the T — —oo limit, eq. (2.8) collapses to

3 v _
(O)(D) > /é:;g o f kL ] Rylwr, . . el om0 @mi, (2.9)

To show that the ill-defined case of (b) does not arise, we proceed as follows. We first
note that after doing all ¢; time integrals, in any contribution these times are evaluated at



one of the integration limits, ¢ or 7. Therefore every propagator between any ¢; and ¢,
ends up contributing possible e dependence obtained from eq. (2.3) by choosing t; and ¢,
from either ¢ or T. The e dependences are therefore given by propagators chosen from the
following sets,

(GTH(E,T), GTH(T, 1), G~ (£,T),G™ (T, 1)} o e T T
{GTF(#,0),GTH(T,T),G(t,1),G" (T, T)} x 1
(GY=(,T),G*(T,0), G (£, T),G (T, 1)} ox T e
(G (11,6 (1, )}oce ’~1
{(GT(T,T),GHT,T)} x T ~ T (2.10)

from which we see that there are no exponential enhancements as T' — —oo. There are
at worst the 1 terms on the second line where vertex times are evaluated at T and yet
there is no exponential damping factor. It is then easy to see that in any diagram that
connects to the correlator time ¢, there is always a contribution to the early time factor
of eq. (2.8) of our type (a); the terms from eq. (2.10) cannot come exclusively from (b).
This is because for any 7 < V there is at least one ¢; vertex time which is evaluated at T,
so there must then be some propagator in this diagram which straddles from time T to
correlator time £, and is therefore oc e? (cf. figure 1). Given that no other propagator has
an exponential enhancement that can cancel this, as seen above, a net suppression must
remain, corresponding to our case (a).

If instead we had used the alternate Gy propagators of eq. (2.6), the analysis would

t+t)  Consequently, any

be much easier because their e dependence is universally o e
contribution in eq. (2.8) with i < V would have the early time factor o eV for some
strictly positive integer N, and would therefore vanish as 7' — —oo. Thus, again eq. (2.8)
would collapse to eq. (2.9). This completes the proof of the equivalence of perturbative
diagrams that connect to the correlator time ¢ whether we use propagators G from eq. (2.3)
or Gy from eq. (2.6).

There is one remaining subtlety, missed in ref. [12], namely diagrams that do not con-
nect to the correlator time t. For such graphs we cannot show that building them from the
propagators of eq. (2.3) always gives early time factors that are suppressed by e<¥7, N >0
because we clearly lack the “straddling” argument above. This conflicts with the use of the
Gy propagators from eq. (2.6), which obviously yield such a suppression. But such dia-
grams are precisely the “vacuum bubbles” that are canceled in taking the ratio of eq. (1.3).
Thus, the net diagrammatic expansion following from eq. (1.3) for the in-in correlator is
indeed the same whether computed by using G of eq. (2.3) or Gy of eq. (2.6). However, as
discussed when introducing Gy, the diagrams that follow from its use are the perturbative
expansion of the in-in correlators using the e-deformation of eq. (2.4), which maintains
manifest exact unitarity of the e-deformed time evolution operators. This undeformed
exact unitarity allows us to then derive the Weinberg formulation, eq. (1.4), unimpeded.

Assembling all the results for Minkowski spacetime, we have shown that the original
in-in perturbation theory following from eq. (1.3), with the standard e-deformed propaga-
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Figure 1. An in-in diagram with all G** propagators where we demonstrate the structure of
contributions to eq. (2.8). The coarse, purple line is a partition that divides vertices into those
whose time argument evaluates to the final correlation time, ¢, from those set to the early-time
cutoff, T. Since the original integral (eq. (2.7)) is time-ordered, this dividing line occurs between
the i*" and (i + 1)™ vertices. Here we show it in a four vertex graph for i = 2. The red labels on
some propagators show the e dependence, 1 or ¢!, that results from deformation (cf. eq. (2.10)).
We see that the factor is 1 if the propagator connects two vertices on the same side of the partition.
If, however, a propagator straddles the partition, then there is a suppressing e¢’. Furthermore,
because the propagators that connect to the external correlation point have one end evaluated at
t even before integration, the external correlation points are always above the partition line; the
only way to avoid suppression is if every vertex evaluates to ¢ (corresponding to the partition drawn
below the entire graph and cutting no propagators), which is precisely the surviving contribution in
eq. (2.9). We note that this straddler argument fails for the case of a vacuum bubble, as all vertices
can evaluate to T" without any suppression, giving a finite contribution.

tors of eq. (2.3) is equivalent to Weinberg’s reformulation in time-dependent perturbation
theory, eq. (1.4).3

3 De Sitter

For our De Sitter (DS) derivation, we start in FRW coordinates, and change the time vari-
able from FRW proper time to conformal time, n (= —e~**/H). This gives the following
form for the metric,

ds? = (H177)2 (dn? - d?). (3.1)

Here, H is the constant Hubble scale. The construction of a manifestly unitary and causal
in-in formalism for De Sitter follows from a very similar argument to flat space. The modifi-
cations are simply technical, as propagators are given at asymptotically early times (where

3The result of this theorem is a permissive one. Whether one finds the standard definition of in-in
perturbation theory (eq. (1.1)) or Weinberg’s nested commutators (eq. (1.2)) more convenient for the
problem at hand, either is self-consistent and the two approaches give equivalent answers. However, it is
important to be consistent in making one choice or the other, as mixing methods can lead to erroneous
results. One simple of example of this is the difference between the nontrivial vacuum bubble denominator
in the traditional formalism and the unit denominator in the alternative, manifestly-unitary approach.



the details of different € prescriptions matter) by asymptotic series of terms ~ e~*7/(kn)™,
rather than the simple exponentials of time we dealt with in section 2 (cf. eq. (2.6)). This
follows from the exact solution of the De Sitter equations of motion. Taking the free the-
ory ground state to be the Bunch-Davies vacuum, we have the following expression for a

scalar field,
H

i) = e PRHD (k) a + ¥ 2H (k) al] (3.2)
where H"? are Hankel functions with v = V9/4 —m?/H? in 4D [13].4

Much of the technical challenge of DS arises from the fact that H ,51’2) are not elementary
functions unless v is a half odd integer. In fact, for the exactly massless case, v = 3/2.
However, the steps involved in validating manifestly unitary and causal in-in perturbation
theory for m = 0 are just a subset of those needed for general m. We therefore proceed
with the analysis for arbitrary v € R. At early times (large |n|) where the e prescription is

relevant, ngl,?) admit asymptotic expansions of the form,

2NV a1 S ai(v)
G ~ () et iy e
7=0
2 1/2 1 1 o0 . -a-(u)
() ~ (2] enitembnio o iy, (33)
7=0
in the sense that if one truncates the series at the j = N term, the corrections scale

as |z|~V+D for large |z| [15].> The presence of the z~1/2 prefactor generally places a
branch cut on the negative real axis. However, in our physical case of interest, propagators
are constructed by products of the mode functions, */2H, 51’2)(14:17), giving strictly integer
powers. The numerator factors, a;(v), can be found in any standard reference (e.g. DLMF,
section 10) [14], but we do not require their detailed form.

In diagrams, the Hankel functions appear via the four Green’s functions that make
up our initial basis for in-in perturbation theory, G**, G*T, which are still defined by
eq. (2.1). In the standard in-in DS perturbation theory, we deform the expression for ¢
given in eq. (3.2) to get

H , ,
¢g(77) = NIRRT {ns/sz) [ken(1 — de)] ag +n*2HWD [kn(1 — ie)] a]g ;
H

[n3/2H§2> [kn(1 +ie)] az + 72 H® [kn(1 +ic)] a } : (3.4)

I+

¢z (n) = V2 (2n)l2

for fields arising from the ket and bra evolution, respectively. In the early-time regime, large
In|, where the € prescription matters, it is sufficient to keep the € in just the exponential
factors of the asymptotic Hankel expansions of eq. (3.3), so that we can factor out the €

“In D dimensions this switches to v = \/(D —1)2/4—m?2/H?2.
5The series is exact and contains only a finite number of terms if v is a half-odd integer, which is the
case for an exactly massless particle.



deformation of the mode functions just as we did in flat space,

e P2 HP) (k) ag + e 2H (k) al]

H
¢g(77) - V2 (2n)l

H
= en p3/2 7 (2) L4 p3/2 (1) t
o (n) — NACLE {e 0 “H (kn) ap + e~ "/ =H Y (kn) GE} . (3.5)

This exponential ¢ dependence is stronger than the € dependence in the powers of 7 in the
Hankel expansions, and will be shown below to always give overall exponential suppression
for early n in diagrammatic integrals, as was the case in flat space. This justifies dropping
the subleading € dependence in the powers of 1. We use “—” as this simple e-deformation
structure only strictly holds for finite € at early times, but it will result in the same value
of diagrams as the defining e-deformation once we finally take ¢ — 0, since we are only
sensitive to € when integrating over early times. Thus, in what follows we study the e-
deformed ¢* in eq. (3.5) at all times, as equivalent to the defining in-in e-deformation.

If we plug in the deformed ¢* fields from eq. (3.5) to get the in-in propagators, the
e-dependence is given by the following overall factors for each,

G (s k) oc e

G~ (n,n3 k) oc e~

G~ (n, s k) oc 1)

Gt (n,1'; E) oc efmtn) (3.6)

These are identical in form to the deformation factors in the flat space propagators
(eq. (2.3)) just by switching n — t. We showed in section 2 that the final result for a
Minkowski correlation function, (Q|O|Q)(¢), is identical if we switch to the Gy propaga-
tors (eq. (2.6)). The question for the De Sitter case is whether the analogous DS Gy
propagators, defined by the alternative e prescription,

Gy o eftm), (3.7)

gives an identical result to the G in eq. (3.6) once € — 0 in diagrams. The central difference
is that in De Sitter we do not have purely exponential integrals, even at asymptotically
early times, as the asymptotically-early integrands generally also have (negative) powers of
n from eq. (3.3), as well as from measure factors for the metric. There may also be positive
powers from inverse metric factors if there are derivative interactions, and higher-point
non-derivative interactions.

To prove equivalence of the different propagator deformations, we again write down
a general time-ordered perturbative contribution to an in-in correlator starting with the
effectively-standard G propagators in eq. (3.6):

A3k
(O)(@) > lim_lim _ (%;3 ST

n n
X /T dnv Fv(nv) [ dov-1 Fy_1(nv-1) ...

nv

" dmFi (1) Fo(). (3.8)

72

~10 -



Here, each F; involves products of Hankel functions (and other metric and measure depen-
dent powers of 1), and therefore has an early-time asymptotic expansion of the form,

Zb

The w depend on the k, and as in Minkowski space, they depend on € via eq. (3.6). We

zw 51

(3.9)

have kept the same notation for the early time cutoff, T', as in flat space, even though here
T is a conformal time.

Fortunately, we do not need to explicitly do these integrals, but only sequentially ascer-
tain the form of their asymptotic expansions at their early limit of integration, based on the
asymptotic expansion of their integrands. The key to this is given by the asymptotic form

/an +ch s (3.10)
"

if F' has an asymptotic expansion for large 7/,

wen’

Zd e (3.11)

This follows because the asymptotic dependence on 1 depends on the integration for early
time 7/, where we can use the integrand’s asymptotic expansion. The integral of each term
is given by an incomplete gamma function because of the identity,

—(=)""'T[1 —n, —iz] = —. 3.12
iy - i) = S (3.12)
We note that I'[a, b] is holomorphic in the vicinity of the imaginary axis away from zero,
which is our domain of interest given x = wy’ (cf. DLMF, section 8 [14]). This then leads

to eq. (3.10), given the large-z asymptotics (ref. [16], eq. 2.02),

(—=i)"IT[1 — n, —iz] = Zz [—z’ +0 (;)} : (3.13)

where the corrections in the square brackets are negative powers of z. The ¢(7) in eq. (3.10)
is an “integration constant” with respect to the 1 dependence.

In this way, we see that starting with 7, and ending with 7y, we repeatedly get integrals
of the form of eq. (3.10) with the integrands having eq. (3.11) as their asymptotic early-
time behavior. We thereby get, in analogy with eq. (2.8) in section 2, a sum of early-7" and
€ dependent contributions of the form

o € Lami “’ZT%. (3.14)
At each stage of integration, we must sum over the choice to follow either the “integration
constant” ¢(7) or the asymptotic series in eq. (3.10). The index i in eq. (3.14) represents
the largest index in any particular contribution for which the “integration constant” option
is chosen for the asymptotics of the n;_; integral (in the notation of the diagram in figure 1,
the contribution of eq. (3.14) puts vertices 1 through i — 1 above the partition line).

- 11 -



The logic from here on is identical to the Minkowski case, given the nearly identical
structure of eq. (3.6) (with ¢ — n). Again, eq. (3.6) implies that there cannot be exponen-
tial enhancements in 7' coming from e deformation, only exponential damping or neutral
independence of €. Also paralleling the Minkowski case, we see from eq. (3.14) that there
are some early vertices 7, ...ny evaluated at T', while the later times 7y, ...,7;—1 only get
T-independent contributions. If the entire diagram connects to correlator time 7, there
must be straddling propagators from the early vertices to the later ones, implying at least
one suppression factor in T, e’ from such a propagator, and there is no possibility of
cancelling this suppression with exponential enhancement in 1. Therefore all such graphs
where any vertex time integral is evaluated at 1" have net exponential damping, and there-
fore vanish as T' — —oo. Dropping all such contributions of the form of eq. (3.14) is the
entire action of the standard in-in e prescription, after which we can safely take ¢ — 0.

The “straddling” argument again fails for graphs which are not connected to correlator
time 7, but these “vacuum bubble” graphs are canceled in the ratio of eq. (1.3). Just as
for flat space, if we switch to the Gy propagators of the unitary e deformation, which all
have (") suppression, these straightforwardly eliminate precisely any contributions of
the form of eq. (29), just as we non-trivially found for the standard G propagators. There
are also again no vacuum bubble graphs with the Gy propagators, as they vanish by the
preserved unitarity of time evolution (cf. eq. (2.4), which has a trivial DS equivalent).

This then proves that standard in-in perturbation theory in De Sitter is equivalent
to the manifestly unitary reformulation, and therefore eq. (1.4) follows, by which it is
manifestly causal, as well.
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