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Abstract – Model systems of self-propelled particles reproduce many phenomena observed in
laboratory active matter systems that defy our thermal equilibrium-based intuition. In particular,
in stationary states of self-propelled systems, it is recognized that velocities of different particles
exhibit non-trivial equal-time correlations. Such correlations are absent in equivalent equilibrium
systems. Recently, researchers found that the range of the velocity correlations increases with
increasing persistence time of the self-propulsion and can extend over many particle diameters.
Here we review the initial studies of long-ranged velocity correlations in solid-like systems of
self-propelled particles. Then, we demonstrate that the long-ranged velocity correlations are also
present in dense fluid-like systems. We show that the range of velocity correlations in dense
systems of self-propelled particles is determined by the combination of the self-propulsion and the
virial bulk modulus that originates from repulsive interparticle interactions.

Introduction . – A quickly growing field is the study1

of active matter systems [1–7]. Individual components of2

these systems perform persistent motion due to the in-3

jection (consumption) of energy from their environment.4

Examples include cell assemblies [8–13], bird flocks [2],5

bacterial suspensions [14–20], and self-propelled colloids6

[21–28]. Active matter systems exhibit many properties7

absent in equilibrium thermal systems, e.g. they may un-8

dergo a phase separation of liquid-gas type in the absence9

of any attractive interactions [29].10

One interesting property of active matter systems are11

non-trivial equal-time velocity correlations. These cor-12

relations were first demonstrated experimentally in stud-13

ies of cell monolayers [11, 30], which were inspired by the14

role which coherent collective cell motions play in impor-15

tant biological processes such as wound healing or cancer16

spreading.17

Equal-time velocity correlations are absent in classical18

equilibrium systems. It has been recognized for some time19

[31–33] that such correlations are present in simple micro-20

scopic models of active matter systems, i.e. in systems of21

self-propelled particles. Velocity correlations are an emer-22

gent property of these systems, i.e. they appear spon-23

(a)E-mail: grzegorz.szamel@colostate.edu

taneously, without any explicit velocity-aligning interac- 24

tions. Recently, two groups [13, 34] independently found 25

that velocity correlations in dense systems of self-propelled 26

particles can be long-ranged1. The analysis and rational- 27

ization of these correlations relied upon the solid-like na- 28

ture of the systems studied. Here we review these studies 29

and present computer simulation results that demonstrate 30

the presence of long-ranged velocity correlations also in 31

dense fluid-like systems. We develop a simple theory that 32

explains the appearance of these correlations through the 33

combined effect of the self-propulsion and the virial bulk 34

modulus of the active fluid. We finish with a brief discus- 35

sion, emphasizing the features of velocity correlations that 36

the simple theory cannot describe. 37

Long-ranged velocity correlations in dense, or- 38

dered systems of self-propelled particles. – Caprini 39

et al. [34,35] investigated 2d systems of repulsive, monodis- 40

perse, overdamped active Brownian particles (ABPs) [36, 41

37]. They showed that the previously studied motility- 42

induced phase separation [29] is accompanied by a spon- 43

taneous alignment of the velocities of the particles in the 44

dense phase. They found that the dense phase is either 45

1Long range of velocity correlations was noted in passing in early
work [32], but it was not studied systematically.
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hexatic or solid, and that the transition between these two46

phases influences the alignment. The average size of the47

domains with aligned velocities was found to grow with in-48

creasing persistence time of the self-propulsion. Although49

the spontaneous alignment of the velocities was mainly50

discussed in the context of phase separation, Caprini et al.51

showed that it also occurrs in single-phase systems if the52

density is high enough. While sufficiently high density was53

important for the appearance of the spontaneous velocity54

ordering, the size of the ordered domains was growing pri-55

marily due to increasing persistence time.56

To quantify the observed velocity ordering Caprini et al.57

introduced and evaluated two correlation functions. Here58

we focus on velocity correlation function C(r) [35],59

C(r) =
⟨v(r) · v(0)⟩

⟨v2⟩
, (1)

where v(r) represents the velocity of the particle located60

at r (continuous limit is implied). Caprini et al. found61

that in dense systems C(r) exhibits exponential depen-62

dence on r. Using C(r), Caprini et al. defined and eval-63

uated the velocity correlation length. They found that it64

increases as the square root of the persistence time of the65

self-propulsion, but it is also influenced by the transition66

between the solid and hexatic phases.67

To explain their findings Caprini et al. developed a the-68

ory for velocity correlation function C(r) based on the as-69

sumption that the dense phase is a 2d hexagonally ordered70

crystal, with particles oscillating around their average po-71

sitions. While this assumption is appropriate for dense72

ordered systems investigated in Refs. [34,35], it is not ap-73

plicable for fluid-like disordered systems. Caprini et al.74

showed that their assumption results in the following for-75

mula for the large-r behavior of the correlation function,76

C(r) ∝ x̄2

ℓ2

(︃
ℓ

8πr

)︃1/2

e−r/l, (2)

where x̄ is the lattice constant and correlation length ℓ is77

given by78

ℓ = x̄

√︃
τ

γ

[︃
3

4

(︃
U ′′(x̄) +

U ′(x̄)

x̄

)︃]︃1/2
. (3)

In Eq. (3) τ is the persistence time of the self-propulsion,79

γ is the friction coefficient of an isolated particle and U(r)80

is the interparticle interaction potential.81

Caprini et al. found that the approach outlined above82

describes the behavior of velocity correlation function very83

well, see the left panel of Fig. 1 for an example.84

In a recent work Caprini and Marconi [38] investigated85

underdamped analogues of active Brownian particles sys-86

tems. They showed that long-ranged equal-time velocity87

correlations persist in the presence of inertia and thermal88

fluctuations. We note that Caporuso et al. [39] did not89

find long-ranged equal-time velocity correlations in over-90

damped systems of active Brownian particles with thermal91

fluctuations. We suggest that further work is needed to92

clarify these somewhat conflicting results.93

Fig. 1: Left panel: velocity correlations for ABP systems
studied in Refs. [34, 35] for different persistence times τ at
v0 = 50. Symbols: simulation results. Lines: theoretical pre-
dictions. Reprinted with Author’s permission from Ref. [35].
Right panel: velocity correlations for ABP systems studied in
Ref. [13] for different persistence times τ at Ta = 0.005. Dots:
simulation results. Lines: theoretical predictions; solid line:
normal mode-based approach; dashed lines: continuum elastic-
ity approach. Reprinted with Author’s permission from Ref.
[13].

Long-ranged velocity correlations in dense amor- 94

phous systems of self-propelled particles. – Henkes 95

et al. [13] completed a combined experimental, simula- 96

tional and theoretical study of velocity correlations in ac- 97

tive matter systems. On the experimental side they stud- 98

ied the dynamics of epithelial cell monolayers and found 99

displacement and velocity correlations over several cell 100

sizes. They found that the displacement correlations re- 101

sembled those observed in supercooled liquids. Conversely, 102

there are no equal-time velocity correlations in liquids. 103

Henkes et al. simulated 2d systems of repulsive polydis- 104

perse overdamped active Brownian particles. They also 105

simulated systems of polydisperse self-propelled Voronoi 106

cells [40,41], which can be thought of as active objects with 107

complicated many-particle (non-pairwise-additive) inter- 108

actions. The polydispersity was introduced to account for 109

cell size heterogeneity. As a result, systems simulated by 110

Henkes et al. remained amorphous in the range of the 111

parameters used in their study. 112

Henkes et al. found that non-trivial equal-time velocity 113

correlations exist in both simulated systems. In agreement 114

with the results obtained by Caprini et al., the range of 115

these correlations was found to increase as the square-root 116

of the persistence time of the self-propulsion. 117

To explain their results Henkes et al. assumed that on 118

short enough time scales, their systems can be approxi- 119

mated by amorphous elastic solids. They used two related 120

approaches. First, they generated local potential energy 121

minima (inherent structures) corresponding to configura- 122

tions obtained in simulations and approximated the real 123

short-time dynamics by harmonic motion around these 124

minima. They found the associated normal modes and 125

expressed the equal-time velocity correlations in terms of 126

normal mode frequencies, normal mode amplitudes and 127

the persistence time. Second, Henkes et al. postulated 128

a continuum elastic description of their active systems. 129

In this case, the equal-time velocity correlations were ex- 130

p-2



Long-ranged velocity correlations

pressed in terms of the elastic bulk and shear moduli, and131

the persistence time,132

⟨︁
|v(q)|2

⟩︁
=

Nv20
2

[︄
1

1 + (ξLq)
2 +

1

1 + (ξT q)
2

]︄
(4)

where v(q) =
∑︁

j ṙje
−iq·rj , N is the number of particles,133

v0 is the self-propulsion velocity. The correlation lengths134

ξL and ξT can be expressed in terms of the bulk B and135

shear µ moduli as ξ2L = (B + µ) τ/γ and ξ2T = µτ/γ.136

The normal mode-based approach gives quite accurate137

predictions for both small and large wavevectors, see the138

solid line in the right panel of Fig. 1. By construction,139

the continuum elastic approach is only applicable in the140

small wavevector (large distance) limit, and in this limit it141

reproduces the results of the normal mode approach, see142

the dashed lines in the right panel of Fig. 1.143

While Henkes et al.’s approach is generally applicable to144

active systems exhibiting slow glassy-like dynamics, from145

a physical point of view it seems inapplicable to dense146

active systems with constituents moving perhaps slowly147

but in a standard, fluid-like fashion.148

Long-ranged velocity correlations in dense fluid-149

like systems of self-propelled particles. – We orig-150

inally stumbled upon non-trivial equal-time velocity cor-151

relations when developing a theory for the dynamics of152

of active Ornstein-Uhlenbeck particles [42–44]. We found153

that these correlations determine their short-time dynam-154

ics [31, 32, 45, 46] and they also appear in an approximate155

mode-coupling-like theory for active particle systems [47].156

Here we present computer simulation results showing157

that velocity correlations in dense active fluid-like systems158

are long-ranged. To rationalize this finding we develop a159

simple theory similar to the one presented by Henkes et al.160

Our theory does not assume elastic response, is applicable161

to fluid-like systems and describes the major part of the162

long-ranged velocity correlations.163

Simulations. We simulated two-dimensional polydis-164

perse systems of active Brownian particles [36, 37]. The165

equations of motion for the position ri and the angle ϕi166

specifying the orientation of the self-propulsion of particle167

i are given by168

γṙi = −∇i

∑︂
j

V (rij) + γv0ni (5)

ϕ̇i = ηi, (6)

where v0 is the self-propulsion velocity, ni =169

(cos(ϕi), sin(ϕi)) is the direction of the self-propulsion, and170

random variables ηi(t) satisfy ⟨ηi(t)ηj(t′)⟩ = 2Drδijδ(t −171

t′). In 2d, persistence time of the self-propulsion, τ , is the172

inverse of the rotational diffusion coefficient, τ = 1/Dr.173

For an isolated active particle, Eqs. (5-6) result in a mean-174

square displacement (MSD) that for long times grows as175 ⟨︁
δr2(t)

⟩︁
≃ 2v2

o

Dr
t. Comparing this result to the MSD of a176
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Fig. 2: Snapshots of configurations for τ = 0.14 (left panel)
and τ = 10.0 (right panel). Arrows show orientations of the
velocities; specific velocity directions are also color-coded.

Brownian particle in 2d,
⟨︁
δr2(t)

⟩︁
= 4T/γ, we can define 177

an active temperature as Ta = v20γ/(2Dr). 178

The interaction potential is given by 179

V (rij) = ϵ

(︃
σij

rij

)︃12

+ c0 + c2

(︃
rij
σij

)︃2

+ c4

(︃
rij
σij

)︃4

, (7)

when the distance between particles i and j, rij < 1.25σij 180

and zero otherwise. In Eq. (7) coefficients cα are chosen so 181

that the potential and the first two derivatives are contin- 182

uous. The diameters σi are chosen from the distribution 183

P (σ) = A/σ3 for 0.73 < σ < 1.63. The cross diameter 184

σij = 0.5(σi + σj)(1 − 0.2|σi − σj |). The number density 185

is ρ = 1.23. The interaction potential and the density are 186

chosen to prevent crystallization and significant structural 187

changes for a large range of simulation parameters. We 188

found that many commonly studied glass-forming binary 189

systems become ordered for large persistence times. 190

Most of the simulations were done using N = 10000 par- 191

ticles. Due to the long-range of the velocity correlations, 192

the simulations for the three lowest Dr used N = 250000. 193

Velocity Correlations. Qualitatively, the increase of 194

the range of velocity correlations is evident from snap- 195

shots shown in Fig. 2. To quantify these correlations we 196

introduce two correlation functions. The first function, 197

ω∥(q) =
1

N

⟨︂
|q̂ · v(q)|2

⟩︂
, (8)

which we refer to as the longitudinal velocity correlation 198

function, appears naturally in the analysis of the short- 199

time behavior of the intermediate scattering function of 200

self-propelled particles [31], where it plays the role analo- 201

gous to the longitudinal current correlation function for a 202

Newtonian fluid. We recall that for unequal times the lat- 203

ter function describes a propagating pressure wave, which 204

originates from fluid’s resistance to a volume change. 205

Here we examine ω∥(q) and the complementary part 206

of velocity correlations, the transverse velocity correlation 207

function, 208

ω⊥(q) =
1

N

⟨︂
|v(q)− q̂(q̂ · v(q))|2

⟩︂
. (9)
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Fig. 3: The equal time velocity correlation functions (a) ω∥(q)
and (b) ω⊥(q) calculated at a fixed v0 = 4 for a range of τ . The
longitudinal correlation function ω∥(q) indicates a a correlation
length rapidly growing with increasing τ . Solid and dashed
lines in (a) are predictions of the approximate theory, Eq. (16)
and numerical fits, respectively.

We recall that the analogous function in a Newtonian fluid,209

the transverse current correlation function, exhibits diffu-210

sive behavior due to fluid’s vanishing shear modulus. Con-211

trasting behavior of the two current correlation functions212

in Newtonian fluids suggests that functions (8) and (9)213

may also behave differently.214

Both ω∥(q) and ω⊥(q) are equal to v20/2 for q = 0, which215

is useful in fits for the correlation length described below.216

The large number of parameters, v0, Dr, ρ, necessitates217

choosing some cuts through the parameter space. Caprini218

et al. fixed v0 and examined velocity correlations as a func-219

tion of the persistence time τ = 1/Dr for various densities.220

Henkes et al. fixed ρ and examined velocity correlations221

as a function of τ for a fixed value of active temperature222

Ta = v20γ/Dr and as a function of Ta for a fixed value of τ .223

Here we fix ρ = 1.23 and examine velocity correlations as224

a function of τ , first for a fixed value of v0 = 4 and then for225

a fixed value of Ta = 8. One interesting feature of the lat-226

ter procedure is that as τ → 0 the active system becomes227

equivalent to a Brownian system with T = Ta and it has228

been argued that with increasing τ at fixed Ta the system229

moves systematically farther away from equilibrium [48].230

In Fig. 3(a) we show ω∥(q) for v0 = 4 and a range of τ231

from 0.14 to 10. Since ω∥(q = 0) is constant for a fixed v0,232

it is apparent that there is a faster decay of ω∥(q) at the233

small wavelengths with increasing τ , which corresponds to234

a longer range of longitudinal velocity correlations.235

In contrast, ω⊥(q), which is shown in Fig. 3(b) changes236

ξ||
ℓ
ξ⏊

v0 = 4

∼ τ

ξ ⏊
,ℓ

,  
ξ |

|

2

5

10

20

50

τ
0.1 1 10

Fig. 4: The longitudinal correlation length ξ∥ obtained
from fitting ω∥(q) (filled red circles) and transverse correla-
tion length ξ⊥ (filled black circles) obtained from fitting ω⊥(q)
(closed black circles) for a fixed self-propulsion velocity v0 = 4.
The longitudinal correlation length grows approximately as

√
τ

(solid line is to guide the eye), while the transverse correlation
length is almost unchanged for a fixed v0. The open red circles
are results of the approximate theory.

little with τ , which implies that transverse velocity corre- 237

lations are significantly less dependent on τ at fixed v0. 238

To determine the velocity correlation length, we fit- 239

ted ωα(q) for q < 0.2 to an Ornstein-Zernike-like form 240

(v20/2)/[1+(ξαq)
2]+ωα(∞). In Fig. 4 we show correlation 241

lengths ξ∥ and ξ⊥ obtained from fitting ω∥(q) and ω⊥(q), 242

respectively. The longitudinal correlation length increases 243

from approximately 4 at τ = 0.14 to 34 at τ = 10.0 244

whereas the transverse length increases only slightly over 245

the full range of τ . 246

In Fig. 5 we show ω∥(q) and ω⊥(q) for a fixed Ta = 8. 247

Since increasing persistence time for a fixed value of the 248

active temperature results in a rapidly slowing diffusive 249

motion of the particles, we could only simulate a restricted 250

range of τ . Once again we observe increasing range of 251

velocity correlations, but for fixed Ta the range of both 252

longitudinal and transverse correlations is increasing. 253

The corresponding velocity correlation lengths are pre- 254

sented in Fig. 6. For large τ both correlation lengths grow 255

with increasing persistence time. We recall that we did 256

not observe growing ξ⊥ at fixed v0, which implies that 257

this length must also depend on v0. 258

Theory. Our starting point for an approximate theory 259

for velocity correlations is equation of motion (5) from 260

which we derive the following relation between velocity, 261

polarization and force fields in the Fourier space, 262

γv(q; t) =
∑︂
j

∑︂
k ̸=j

Fjke
−iq·rj + γv0n(q; t) (10)

where v(q; t) =
∑︁

j ṙje
−iq·rj(t) and n(q; t) = 263∑︁

j nje
−iq·rj(t). Next, we follow Sec. 8.4 of Hansen and 264

McDonald’s monograph [49] and we re-write the first term 265

at the right-hand-side of Eq. (10) as 266

iq ·
∑︂
j

∑︂
k ̸=j

rjk
rjk
2rjk

V ′(rjk)

[︃
eiq·rjk − 1

iq · rjk

]︃
e−iq·rj
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Fig. 5: The equal time velocity correlation functions (a) ω∥(q)
and (b) ω⊥(q) calculated at a fixed active temperature Ta = 8
for a range of τ . The longitudinal correlation function ω∥(q)
indicates a correlation length growing with increasing τ . The
transverse correlation function ω⊥(q) also suggests a growing
length scale, albeit a smaller one. Solid and dashed lines in
(a) are predictions of the approximate theory, Eq. (16) and
numerical fits, respectively.

= −iq ·Πv(q; t), (11)

where rjk = rj − rk and Πv has the same form as the267

virial (interaction) part of the pressure tensor. We then268

assume that in the direct space Πv(r; t) can be expressed269

in terms of the deviation of the microscopic density from270

its steady-state average value ρ,271

Πv(r; t) ≈ ⟨Πv(r; t)⟩+ I (∂ρPv) (ρ(r; t)− ρ) , (12)

where I (∂ρPv) = ∂ ⟨Πv(r; t)⟩ /∂ρ, I is the unit tensor and272

ρ(r; t) =
∑︁

i δ(r − ri(t)) is the microscopic instantaneous273

density. In the steady state, averages ⟨Πv(r; t)⟩ = IPv274

and ⟨ρ(r; t)⟩ = ρ are translationally invariant. Thus, com-275

bining Eq. (11) and the Fourier transform of Eq. (12) we276

obtain the following approximate expression for the first277

term at the right-hand-side of Eq. (10)278

−iq (∂ρPv)
∑︂
j

e−iq·rj(t). (13)

Next, we take a time derivative and Fourier transform in279

time and we obtain280

−γiωv(q;ω) ≈ −γvoiωn(q;ω)−q (∂ρPv)q·v(q;ω). (14)

To proceed we choose q = (q, 0), which allows us to write281

vx(q, ω) =
iωγv0n

x(q;ω)

γiω − q2(∂ρPv)
(15)

ξ||
ℓ
ξ⏊

Ta = 8

∼ τ

ξ ⏊
,ℓ

, ξ
||

1

10

τ
0.1 1 10

Fig. 6: The longitudinal velocity correlation length ξ∥ (filled
red circles) and the transverse correlation length ξ⊥ (filled
black circles) for a fixed active temperature Ta = 8. Solid
lines in (a) represent theoretical predictions. The longitudinal
correlation length is much larger than the transverse correla-
tion length, but they both grow approximately as

√
τ for fixed

Ta (solid line is to guide the eye). The open red circles are
predictions of the approximate theory.

for the longitudinal correlations. Finally, using the same 282

arguments as Henkes et al. [13], we obtain the equal-time 283

longitudinal velocity correlations 284⟨︂
|q̂ · v(q)|2

⟩︂
=

Nv20
2

1

1 + q2τBv/(γρ)
. (16)

We identify correlation length ξ∥ =
√︁
τBv/(γρ) where 285

Bv = ρ∂ρPv is the virial bulk modulus of the active fluid. 286

We calculated virial bulk modulus Bv for our active 287

fluid, and found that it depends weakly on τ . Bv increases 288

slightly from 136 for τ = 0.14 to 148 for τ = 10.0 at a fixed 289

v0 = 4 and in our range of persistence times it is approx- 290

imately constant and equal to 145 at fixed Ta = 8. The 291

resulting dynamic correlation length is shown in Figs. 4 292

and 6 as open red symbols. The increase of the correla- 293

tion length ξ∥ is predominantly due to the increase of the 294

persistence time for both fixed v0 = 4 and fixed Ta = 8. 295

Our simple theory accurately captures almost all of ξ∥, but 296

it does not predict any transverse velocity correlations. 297

More work is needed to understand these correlations in 298

active fluids, as opposed to ordered and amorphous solids 299

discussed in earlier studies. 300

Properties of our active system. In this section 301

we briefly present some of the properties of our sys- 302

tem and show that it remains a single-phase fluid 303

in the range of the parameters that we investigated. 304

First, we evaluated the pair-correlation function g(r) = 305

1
ρN

⟨︂∑︁
j

∑︁
k ̸=j δ [r− (rj − rk)]

⟩︂
, which is sensitive to 306

changes in the local structure and to fractionation that 307

could occur in our polydisperse system. Parenthetically, 308

the polydispersity results in significantly broader peaks in 309

g(r) compared to single-component systems. In Fig. 7(a) 310

we show g(r) for simulations with fixed v0 = 4. We see 311

very little change in the structure over the whole range 312

of τ . In general, the height of the first peak decreases 313
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Fig. 7: Pair correlation functions for (a) fixed v0 = 4 and
(b) fixed Ta = 8. There is no significant change in the liquid
structure over the full range of the simulation parameters.

slightly with increasing τ . In Fig. 7(b) we show g(r) for314

fixed Ta = 8 and, again, we see little change from a liquid315

like structure. In this case, we find that the height of the316

first peak decreases with decreasing τ . In both cases we do317

not see any indication of crystallization or fractionation.318

To examine the dynamics of our system we evaluated319

MSD
⟨︁
δr2(t)

⟩︁
= N−1

⟨︂∑︁
j [rj(t)− rj(0)]

2
⟩︂
. In Figs. 8(a-320

b) we show
⟨︁
δr2(t)

⟩︁
for the simulations with fixed v0 = 4321

and for simulations with fixed Ta = 8. For both sets of322

parameters the long time motion is diffusive. However, the323

system monotonically speeds up with increasing τ for fixed324

v0 = 4, while it monotonically slows down with increasing325

τ for fixed Ta = 8. This behavior may be expected for fixed326

v0 = 4 since the diffusion coefficient of an isolated particle327

for fixed v0 grows as τ . For small enough τ the system328

may approach a structural arrest, which would cause a329

dramatic slowing down, but we do not observe it in these330

simulations. For fixed Ta, on the basis of our earlier work331

on the dynamics of systems of self-propelled particles [45,332

48], we would expect a non-monotonic dependence of the333

long-time diffusion on the persistence time but we did not334

simulate a large enough range of τ to see it.335

Finally, to check for macroscopic motility-induced phase336

separation and for the appearance of significant local den-337

sity fluctuations we examined the probability distribution338

of the local density. To this end we divided the system339

into squares of length 10 and calculated the probability340

of the density for these squares. For a system that un-341

dergoes motility induced phase separation one should see342

this probability bifurcate into high density and low den-343

τ= 10.0
τ= 3.33
τ= 2.00

τ= 1.00
τ= 0.50
τ= 0.25

(a)

v0 = 4

⟨δ
r2 ⟩

10−1

1

101

102

103

104

t
1 101 102 103 104

τ= 2.00
τ= 1.00
τ= 0.50

τ= 0.25
τ= 0.14

Ta = 8

(b)

⟨δ
r2 ⟩

10−2

1

102

t
10−1 1 101 102 103

Fig. 8: The mean-square displacement
⟨︁
δr2(t)

⟩︁
for (a) fixed

v0 = 4 and (b) fixed Ta = 8 for the range of τ studied in this
work. All the systems are diffusive at long times and they don’t
show any signs of arrest or glassy dynamics. For a fixed v0 = 4
increasing τ results in faster dynamics, while for a fixed Ta = 8
increasing τ results in slower dynamics. Note that for τ = 1.0,
v0 = 4 and Ta = 8 correspond to the same state point.

sity. The local density probability distribution that we 344

obtained exhibited a single peak only, indicating single 345

phase, and generally changed little in the range of the pa- 346

rameters that we investigated. 347

Discussion. – Equal-time velocity correlations are a 348

ubiquitous feature of active matter systems, regardless of 349

whether the system is arrested or diffusive and ordered or 350

amorphous. These velocity correlations can be very long 351

ranged for large persistence times. The correlations in the 352

arrested (or almost arrested) systems can be rationalized 353

in terms of the combined effect of the persistence of the 354

directed motion and the elastic response of these systems. 355

The longitudinal correlations in the diffusive systems can 356

be explained in terms of the combined effect of the persis- 357

tence and the fluid’s virial bulk modulus, which originates 358

from repulsive interparticle interactions. The description 359

of the transverse velocity correlations in diffusive systems 360

that do not exhibit features of glassy dynamics is an open 361

problem that deserves further study. 362

In our opinion, the most interesting open question is 363

the relation of the long-ranged velocity correlations to the 364

macroscopic properties of active matter. For example, ac- 365

tive and passive systems with the same local structure, 366

as examined by the pair distribution function or the static 367

structure factor, usually have very different dynamic prop- 368

erties. Which of the differences can be attributed to the 369
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existence of equal-time velocity correlations in active mat-370

ter systems? Are these differences sensitive to the range371

of the velocity correlations? We hope that this short Per-372

spective will stimulate further work in this direction.373
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K., Goldstein R.E., Löwen H. and Yeomans J.M.,417

PNAS, 109 (2012) 14308.418

[17] Dunkel J., Heidenreich S., Drescher K., Wensink419

H.H., Bär M., Goldstein R.E., Phys. Rev. Lett., 110420

(2013) 228102.421

[18] Wioland H., Woodhouse F.G., Dunkel J., Gold-422

stein R.E., Nat. Phys., 12 (2016) 341.423

[19] Urzay J., Doostmohammadi A. and Yeomans J., J.424

Fluid Mech., 822 (2017) 762425

[20] James M., Bos W.J. and Wilczek M., Phys. Rev. Flu- 426

ids, 3 (2018) 061101. 427

[21] Howse J.R., Jones R.A.L., Ryan A.J., Gough T., 428

Vafabakhsh R. and Golestanian R., Phys. Rev. Lett., 429

99 (2007) 048102. 430

[22] Tierno P., Golestanian R., Paganabarraga I. and 431

Sagués F., J. Phys. Chem. B, 112 (2008) 16525. 432

[23] Gosh A. and Fischer P., Nano Lett., 9 (2009) 2243. 433

[24] Palacci J., Cottin-Bizonne C., Ybert C. and Boc- 434

quet L., Phys. Rev. Lett., 105 (2010) 088304. 435

[25] Jiang H.R., Yoshinaga N. and Sano M., Phys. Rev. 436

Lett., 105 (2010) 268302. 437

[26] Michelin S., Lauga E. and Bartolo D., Phys. Fluids, 438

25 (2013) 061701. 439

[27] Dai B., Wang J., Xiong Z., Zhan X., Dai W., Li C.- 440

C., Feng S.-P. and Tang J., Nature Nano., 11 (2016) 441

1087. 442

[28] Moran J. L. and Posner J.D., Annu. Rev. Fluid Mech., 443

49 (2017) 511. 444

[29] Cates M.E. and Tailleur J., Ann. Rev. Cond. Matt. 445

Phys., 6 (2015) 219. 446

[30] Angelini T.E, Hannezo H., Trepat X., Fredberg 447

J.J. and Weitz D.A., Phys. Rev. Lett., 104 (2010) 448

168104. 449

[31] Szamel G., Flenner E. and Berthier L., Phys. Rev. 450

E, 91 (2015) 062304. 451

[32] Flenner E., Szamel G. and Berthier L., Soft Matter, 452

12 (2016) 7136. 453

[33] Marconi U.M.B., Gnan N., Paoluzzi M., Maggi C. 454

and Di Leonardo R., Sci. Rep., 6 (2016) 23297. 455

[34] Caprini L., Marconi U.M.B. and Puglisi A., Phys. 456

Rev. Lett., 124 (2020) 078001. 457

[35] Caprini L., Marconi U.M.B, Maggi C., Paoluzzi P. 458

and Puglisi A., Phys. Rev. Res., 2 (2020) 023321. 459

[36] ten Hagen B., van Teeffelen A. and H. Löwen, J. 460
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