20

21

22

23

epl draft
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Abstract — Model systems of self-propelled particles reproduce many phenomena observed in
laboratory active matter systems that defy our thermal equilibrium-based intuition. In particular,
in stationary states of self-propelled systems, it is recognized that velocities of different particles
exhibit non-trivial equal-time correlations. Such correlations are absent in equivalent equilibrium
systems. Recently, researchers found that the range of the velocity correlations increases with
increasing persistence time of the self-propulsion and can extend over many particle diameters.
Here we review the initial studies of long-ranged velocity correlations in solid-like systems of
self-propelled particles. Then, we demonstrate that the long-ranged velocity correlations are also
present in dense fluid-like systems. We show that the range of velocity correlations in dense
systems of self-propelled particles is determined by the combination of the self-propulsion and the

virial bulk modulus that originates from repulsive interparticle interactions.

Introduction . — A quickly growing field is the study
of active matter systems [1H7]. Individual components of
these systems perform persistent motion due to the in-
jection (consumption) of energy from their environment.
Examples include cell assemblies [8H13|, bird flocks [2],
bacterial suspensions [14-20], and self-propelled colloids
[21H28]. Active matter systems exhibit many properties
absent in equilibrium thermal systems, e.g. they may un-
dergo a phase separation of liquid-gas type in the absence
of any attractive interactions [29).

One interesting property of active matter systems are
non-trivial equal-time velocity correlations. These cor-
relations were first demonstrated experimentally in stud-
ies of cell monolayers [11,30], which were inspired by the
role which coherent collective cell motions play in impor-
tant biological processes such as wound healing or cancer
spreading.

Equal-time velocity correlations are absent in classical
equilibrium systems. It has been recognized for some time
[31133] that such correlations are present in simple micro-
scopic models of active matter systems, i.e. in systems of
self-propelled particles. Velocity correlations are an emer-
gent property of these systems, i.e. they appear spon-

(8)E-mail: grzegorz.szamel@colostate.edu

taneously, without any explicit velocity-aligning interac-
tions. Recently, two groups [13}34] independently found
that velocity correlations in dense systems of self-propelled
particles can be long—rangedﬂ The analysis and rational-
ization of these correlations relied upon the solid-like na-
ture of the systems studied. Here we review these studies
and present computer simulation results that demonstrate
the presence of long-ranged velocity correlations also in
dense fluid-like systems. We develop a simple theory that
explains the appearance of these correlations through the
combined effect of the self-propulsion and the virial bulk
modulus of the active fluid. We finish with a brief discus-
sion, emphasizing the features of velocity correlations that
the simple theory cannot describe.

Long-ranged velocity correlations in dense, or-
dered systems of self-propelled particles. — Caprini
et al. [34135] investigated 2d systems of repulsive, monodis-
perse, overdamped active Brownian particles (ABPs) |36
37]. They showed that the previously studied motility-
induced phase separation [29] is accompanied by a spon-
taneous alignment of the velocities of the particles in the
dense phase. They found that the dense phase is either

1Long range of velocity correlations was noted in passing in early
work [32], but it was not studied systematically.
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hexatic or solid, and that the transition between these two
phases influences the alignment. The average size of the
domains with aligned velocities was found to grow with in-
creasing persistence time of the self-propulsion. Although
the spontaneous alignment of the velocities was mainly
discussed in the context of phase separation, Caprini et al.
showed that it also occurrs in single-phase systems if the
density is high enough. While sufficiently high density was
important for the appearance of the spontaneous velocity
ordering, the size of the ordered domains was growing pri-
marily due to increasing persistence time.

To quantify the observed velocity ordering Caprini et al.
introduced and evaluated two correlation functions. Here
we focus on velocity correlation function C(r) [35],

ie) (o), "

where v(r) represents the velocity of the particle located
at r (continuous limit is implied). Caprini et al. found
that in dense systems C(r) exhibits exponential depen-
dence on r. Using C(r), Caprini et al. defined and eval-
uated the velocity correlation length. They found that it
increases as the square root of the persistence time of the
self-propulsion, but it is also influenced by the transition
between the solid and hexatic phases.

To explain their findings Caprini et al. developed a the-
ory for velocity correlation function C(r) based on the as-
sumption that the dense phase is a 2d hexagonally ordered
crystal, with particles oscillating around their average po-
sitions. While this assumption is appropriate for dense
ordered systems investigated in Refs. [341/35], it is not ap-
plicable for fluid-like disordered systems. Caprini et al.
showed that their assumption results in the following for-
mula for the large-r behavior of the correlation function,

j‘Q / 1/2 .,
0(7‘) X 7z (87rr> € /la (2)

where Z is the lattice constant and correlation length £ is

given by
(= x\ﬁ B <U”(a‘3) + Uf)ﬂ " (3)

In Eq. 7 is the persistence time of the self-propulsion,
~ is the friction coefficient of an isolated particle and U (r)
is the interparticle interaction potential.

Caprini et al. found that the approach outlined above
describes the behavior of velocity correlation function very
well, see the left panel of Fig. [1| for an example.

In a recent work Caprini and Marconi |38] investigated
underdamped analogues of active Brownian particles sys-
tems. They showed that long-ranged equal-time velocity
correlations persist in the presence of inertia and thermal
fluctuations. We note that Caporuso et al. [39] did not
find long-ranged equal-time velocity correlations in over-
damped systems of active Brownian particles with thermal
fluctuations. We suggest that further work is needed to
clarify these somewhat conflicting results.

C(r) =

=
O
— 0.2
3|l — 2.0
— 20
— 200 S
— 2000| Tegr = 0.005
107 10°
r lql
Fig. 1:  Left panel: velocity correlations for ABP systems

studied in Refs. [34,/35] for different persistence times 7 at
vo = 50. Symbols: simulation results. Lines: theoretical pre-
dictions. Reprinted with Author’s permission from Ref. [35].
Right panel: velocity correlations for ABP systems studied in
Ref. |13] for different persistence times 7 at T, = 0.005. Dots:
simulation results. Lines: theoretical predictions; solid line:
normal mode-based approach; dashed lines: continuum elastic-
ity approach. Reprinted with Author’s permission from Ref.
[13].

Long-ranged velocity correlations in dense amor-
phous systems of self-propelled particles. — Henkes
et al. [13] completed a combined experimental, simula-
tional and theoretical study of velocity correlations in ac-
tive matter systems. On the experimental side they stud-
ied the dynamics of epithelial cell monolayers and found
displacement and velocity correlations over several cell
sizes. They found that the displacement correlations re-
sembled those observed in supercooled liquids. Conversely,
there are no equal-time velocity correlations in liquids.

Henkes et al. simulated 2d systems of repulsive polydis-
perse overdamped active Brownian particles. They also
simulated systems of polydisperse self-propelled Voronoi
cells [40l/41], which can be thought of as active objects with
complicated many-particle (non-pairwise-additive) inter-
actions. The polydispersity was introduced to account for
cell size heterogeneity. As a result, systems simulated by
Henkes et al. remained amorphous in the range of the
parameters used in their study.

Henkes et al. found that non-trivial equal-time velocity
correlations exist in both simulated systems. In agreement
with the results obtained by Caprini et al., the range of
these correlations was found to increase as the square-root
of the persistence time of the self-propulsion.

To explain their results Henkes et al. assumed that on
short enough time scales, their systems can be approxi-
mated by amorphous elastic solids. They used two related
approaches. First, they generated local potential energy
minima (inherent structures) corresponding to configura-
tions obtained in simulations and approximated the real
short-time dynamics by harmonic motion around these
minima. They found the associated normal modes and
expressed the equal-time velocity correlations in terms of
normal mode frequencies, normal mode amplitudes and
the persistence time. Second, Henkes et al. postulated
a continuum elastic description of their active systems.
In this case, the equal-time velocity correlations were ex-
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pressed in terms of the elastic bulk and shear moduli, and
the persistence time,

o Nuj 1 1
(v@l) = 2 |1+ (£nq) i + (érq)?

(4)

where v(q) = Zj r;je 9% N is the number of particles,
vg is the self-propulsion velocity. The correlation lengths
& and &p can be expressed in terms of the bulk B and
shear p moduli as £2 = (B + u) 7/ and &2 = ut /7.

The normal mode-based approach gives quite accurate
predictions for both small and large wavevectors, see the
solid line in the right panel of Fig. [l By construction,
the continuum elastic approach is only applicable in the
small wavevector (large distance) limit, and in this limit it
reproduces the results of the normal mode approach, see
the dashed lines in the right panel of Fig.

While Henkes et al.’s approach is generally applicable to
active systems exhibiting slow glassy-like dynamics, from
a physical point of view it seems inapplicable to dense
active systems with constituents moving perhaps slowly
but in a standard, fluid-like fashion.

Long-ranged velocity correlations in dense fluid-
like systems of self-propelled particles. — We orig-
inally stumbled upon non-trivial equal-time velocity cor-
relations when developing a theory for the dynamics of
of active Ornstein-Uhlenbeck particles [42H44]. We found
that these correlations determine their short-time dynam-
ics and they also appear in an approximate
mode-coupling-like theory for active particle systems .

Here we present computer simulation results showing
that velocity correlations in dense active fluid-like systems
are long-ranged. To rationalize this finding we develop a
simple theory similar to the one presented by Henkes et al.
Our theory does not assume elastic response, is applicable
to fluid-like systems and describes the major part of the
long-ranged velocity correlations.

Simulations.  We simulated two-dimensional polydis-
perse systems of active Brownian particles [36,[37]. The
equations of motion for the position r; and the angle ¢;
specifying the orientation of the self-propulsion of particle
i are given by
()

1, = —viZV(Tij)-i-’YUoni
J

(6)

where vy is the self-propulsion velocity, n; =
(cos(¢;), sin(¢;)) is the direction of the self-propulsion, and
random variables n;(t) satisfy (n;(t)n;(t')) = 2D,.0;;0(t —
t"). In 2d, persistence time of the self-propulsion, 7, is the
inverse of the rotational diffusion coefficient, 7 = 1/D,..
For an isolated active particle, Egs. (bH6|) result in a mean-
square displacement (MSD) that for long times grows as

(or2(t)) ~ %t. Comparing this result to the MSD of a

(Z.Si = N
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Fig. 2: Snapshots of configurations for 7 = 0.14 (left panel)
and 7 = 10.0 (right panel). Arrows show orientations of the
velocities; specific velocity directions are also color-coded.

Brownian particle in 2d, (6r%(t)) = 4T/~, we can define
an active temperature as T, = vivy/(2D,.).

The interaction potential is given by
+ca (U) ) (7)
Jij

o 12 P 2
Vi(rij) =e (”) +co+ e (”)
rij Oij

when the distance between particles ¢ and j, r;; < 1.250;;
and zero otherwise. In Eq. @ coeflicients ¢, are chosen so
that the potential and the first two derivatives are contin-
uous. The diameters o; are chosen from the distribution
P(o) = A/o3 for 0.73 < o < 1.63. The cross diameter
0ij = 0.5(c; +0;)(1 —0.2|o; — 0;]). The number density
is p = 1.23. The interaction potential and the density are
chosen to prevent crystallization and significant structural
changes for a large range of simulation parameters. We
found that many commonly studied glass-forming binary
systems become ordered for large persistence times.

Most of the simulations were done using N = 10000 par-
ticles. Due to the long-range of the velocity correlations,
the simulations for the three lowest D, used N = 250000.

Velocity Correlations.  Qualitatively, the increase of
the range of velocity correlations is evident from snap-
shots shown in Fig. To quantify these correlations we
introduce two correlation functions. The first function,

wi@) = % (la-v@l), (8)
which we refer to as the longitudinal velocity correlation
function, appears naturally in the analysis of the short-
time behavior of the intermediate scattering function of
self-propelled particles , where it plays the role analo-
gous to the longitudinal current correlation function for a
Newtonian fluid. We recall that for unequal times the lat-
ter function describes a propagating pressure wave, which
originates from fluid’s resistance to a volume change.

Here we examine wy(¢) and the complementary part
of velocity correlations, the transverse velocity correlation
function,

1

wi(@) =5 (V@ -a@v@l).
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Fig. 3: The equal time velocity correlation functions (a) wj(q)
and (b) w, (q) calculated at a fixed vo = 4 for a range of 7. The
longitudinal correlation function w(q) indicates a a correlation
length rapidly growing with increasing 7. Solid and dashed
lines in (a) are predictions of the approximate theory, Eq.
and numerical fits, respectively.

We recall that the analogous function in a Newtonian fluid,
the transverse current correlation function, exhibits diffu-
sive behavior due to fluid’s vanishing shear modulus. Con-
trasting behavior of the two current correlation functions
in Newtonian fluids suggests that functions and @
may also behave differently.

Both wj(¢) and w (¢) are equal to v§/2 for ¢ = 0, which
is useful in fits for the correlation length described below.

The large number of parameters, vy, D, p, necessitates
choosing some cuts through the parameter space. Caprini
et al. fixed vy and examined velocity correlations as a func-
tion of the persistence time 7 = 1/D,. for various densities.
Henkes et al. fixed p and examined velocity correlations
as a function of 7 for a fixed value of active temperature
T, = v3v/D, and as a function of T, for a fixed value of 7.
Here we fix p = 1.23 and examine velocity correlations as
a function of 7, first for a fixed value of vg = 4 and then for
a fixed value of T, = 8. One interesting feature of the lat-
ter procedure is that as 7 — 0 the active system becomes
equivalent to a Brownian system with 7' = T, and it has
been argued that with increasing 7 at fixed T, the system
moves systematically farther away from equilibrium .

In Fig. a) we show w)(q) for vg = 4 and a range of 7
from 0.14 to 10. Since wj (g = 0) is constant for a fixed vy,
it is apparent that there is a faster decay of wj(¢) at the
small wavelengths with increasing 7, which corresponds to
a longer range of longitudinal velocity correlations.

In contrast, w; (¢), which is shown in Fig. [3(b) changes

1,0 %

Fig. 4: The longitudinal correlation length & obtained
from fitting wy(¢) (filled red circles) and transverse correla-
tion length &, (filled black circles) obtained from fitting w (q)
(closed black circles) for a fixed self-propulsion velocity vg = 4.
The longitudinal correlation length grows approximately as /T
(solid line is to guide the eye), while the transverse correlation
length is almost unchanged for a fixed vg. The open red circles
are results of the approximate theory.

little with 7, which implies that transverse velocity corre-
lations are significantly less dependent on 7 at fixed vy.

To determine the velocity correlation length, we fit-
ted wy(q) for ¢ < 0.2 to an Ornstein-Zernike-like form
(v3/2)/[14 (£09)?] +wa(o0). In Fig. We show correlation
lengths £ and &, obtained from fitting w)(¢) and w. (q),
respectively. The longitudinal correlation length increases
from approximately 4 at 7 = 0.14 to 34 at 7 = 10.0
whereas the transverse length increases only slightly over
the full range of 7.

In Fig. |5/ we show w(¢) and w (q) for a fixed T, = 8.
Since increasing persistence time for a fixed value of the
active temperature results in a rapidly slowing diffusive
motion of the particles, we could only simulate a restricted
range of 7. Once again we observe increasing range of
velocity correlations, but for fixed T, the range of both
longitudinal and transverse correlations is increasing.

The corresponding velocity correlation lengths are pre-
sented in Fig.[6] For large 7 both correlation lengths grow
with increasing persistence time. We recall that we did
not observe growing &, at fixed vy, which implies that
this length must also depend on vy.

Theory.  Our starting point for an approximate theory
for velocity correlations is equation of motion from
which we derive the following relation between velocity,
polarization and force fields in the Fourier space,

v(g;t) = Z Z Fjre” "4 4+ quon(q; t)
J k#j

(10)
where v(qit) = 3, Fje7 i) and n(q;t) =
> me a0 Next, we follow Sec. 8.4 of Hansen and

McDonald’s monograph and we re-write the first term
at the right-hand-side of Eq. as

. T elarik — —iqers
S o[£ e

- A 7 ik
i k#j a1
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Fig. 5: The equal time velocity correlation functions (a) w(q)
and (b) w, (q) calculated at a fixed active temperature T, = 8
for a range of 7. The longitudinal correlation function wj(q)
indicates a correlation length growing with increasing 7. The
transverse correlation function w, (g) also suggests a growing
length scale, albeit a smaller one. Solid and dashed lines in
(a) are predictions of the approximate theory, Eq. and
numerical fits, respectively.

= —iq-IL,(q;t), (11)

where rj, = r; —r, and II, has the same form as the
virial (interaction) part of the pressure tensor. We then
assume that in the direct space IL,(r;t) can be expressed
in terms of the deviation of the microscopic density from
its steady-state average value p,

I, (r; ) = (Hy(r; ) + L9, F) (p(r;t) — p),  (12)

where I(0,P,) = 0 (I1,(r;t)) /Op, I is the unit tensor and
p(r;t) =3, 0(r —r;(t)) is the microscopic instantaneous
density. In the steady state, averages (IL,(r;t)) = IP,
and (p(r;t)) = p are translationally invariant. Thus, com-
bining Eq. and the Fourier transform of Eq. we
obtain the following approximate expression for the first
term at the right-hand-side of Eq.

—iq(9,P,) Z e—iar;(t)

J

(13)

Next, we take a time derivative and Fourier transform in
time and we obtain

—viwv(q;w) &= —Yvetwn(q;w)—q (0,P,) q-v(q; w). (14)
To proceed we choose q = (¢, 0), which allows us to write

o (o) = iwyvon®(q; w)

 iw — q%(0,Py) (15)

10

€1, 0%

Fig. 6: The longitudinal velocity correlation length ) (filled
red circles) and the transverse correlation length &, (filled
black circles) for a fixed active temperature T, = 8. Solid
lines in (a) represent theoretical predictions. The longitudinal
correlation length is much larger than the transverse correla-
tion length, but they both grow approximately as /7 for fixed
T, (solid line is to guide the eye). The open red circles are
predictions of the approximate theory.

for the longitudinal correlations. Finally, using the same
arguments as Henkes et al. , we obtain the equal-time
longitudinal velocity correlations

X Nv2 1
(lav@f) =5 1 om0

We identify correlation length & = /7B,/(yp) where
B, = p0,P, is the virial bulk modulus of the active fluid.

We calculated virial bulk modulus B, for our active
fluid, and found that it depends weakly on 7. B, increases
slightly from 136 for 7 = 0.14 to 148 for 7 = 10.0 at a fixed
v9 = 4 and in our range of persistence times it is approx-
imately constant and equal to 145 at fixed T, = 8. The
resulting dynamic correlation length is shown in Figs. [4]
and [6] as open red symbols. The increase of the correla-
tion length £ is predominantly due to the increase of the
persistence time for both fixed vy = 4 and fixed T, = 8.
Our simple theory accurately captures almost all of £, but
it does not predict any transverse velocity correlations.
More work is needed to understand these correlations in
active fluids, as opposed to ordered and amorphous solids
discussed in earlier studies.

(16)

Properties of our active system. In this section
we briefly present some of the properties of our sys-
tem and show that it remains a single-phase fluid
in the range of the parameters that we investigated.
First, we evaluated the pair-correlation function g(r) =
piN <E] Do Ot —(rj — rk)]> , which is sensitive to
changes in the local structure and to fractionation that
could occur in our polydisperse system. Parenthetically,
the polydispersity results in significantly broader peaks in
g(r) compared to single-component systems. In Fig. (a)
we show ¢(r) for simulations with fixed vy = 4. We see
very little change in the structure over the whole range
of 7. In general, the height of the first peak decreases
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Fig. 7: Pair correlation functions for (a) fixed vo = 4 and
(b) fixed T, = 8. There is no significant change in the liquid
structure over the full range of the simulation parameters.

slightly with increasing 7. In Fig. [f{b) we show g(r) for
fixed T, = 8 and, again, we see little change from a liquid
like structure. In this case, we find that the height of the
first peak decreases with decreasing 7. In both cases we do
not see any indication of crystallization or fractionation.

To examine the dynamics of our system we evaluated
MSD (8r2(6)) = N~ (53, [r() = x;(0)]*). In Figs. a—
b) we show (672(t)) for the simulations with fixed vy = 4
and for simulations with fixed T, = 8. For both sets of
parameters the long time motion is diffusive. However, the
system monotonically speeds up with increasing 7 for fixed
v = 4, while it monotonically slows down with increasing
7 for fixed T,, = 8. This behavior may be expected for fixed
vg = 4 since the diffusion coefficient of an isolated particle
for fixed vy grows as 7. For small enough 7 the system
may approach a structural arrest, which would cause a
dramatic slowing down, but we do not observe it in these
simulations. For fixed T, on the basis of our earlier work
on the dynamics of systems of self-propelled particles [45]
48], we would expect a non-monotonic dependence of the
long-time diffusion on the persistence time but we did not
simulate a large enough range of 7 to see it.

Finally, to check for macroscopic motility-induced phase
separation and for the appearance of significant local den-
sity fluctuations we examined the probability distribution
of the local density. To this end we divided the system
into squares of length 10 and calculated the probability
of the density for these squares. For a system that un-
dergoes motility induced phase separation one should see
this probability bifurcate into high density and low den-

0E () 3
F—T1=100 — 7=1.00 E
100 — = _ -
F T=13.33 T=0.50 E
F —T1=200 —T1=025 E
10°F 3
N 1E ]
SRS -
1F 3
10 .
1 1 P I» ....I‘ ]
1 10" 10° 103 10
t
(b)
— T=200 — T=025
10°F — 1=100 — T=0.14 B
T=0.50
by
Lk i
1072 E
1 P 1

sl Ll " .......I‘ "
10! 10 103

t

—=E
ok
—

Fig. 8: The mean-square displacement <6r2(t)> for (a) fixed
vp = 4 and (b) fixed T, = 8 for the range of 7 studied in this
work. All the systems are diffusive at long times and they don’t
show any signs of arrest or glassy dynamics. For a fixed vg = 4
increasing 7 results in faster dynamics, while for a fixed T, = 8
increasing 7 results in slower dynamics. Note that for 7 = 1.0,
vo = 4 and T, = 8 correspond to the same state point.

sity. The local density probability distribution that we
obtained exhibited a single peak only, indicating single
phase, and generally changed little in the range of the pa-
rameters that we investigated.

Discussion. — Equal-time velocity correlations are a
ubiquitous feature of active matter systems, regardless of
whether the system is arrested or diffusive and ordered or
amorphous. These velocity correlations can be very long
ranged for large persistence times. The correlations in the
arrested (or almost arrested) systems can be rationalized
in terms of the combined effect of the persistence of the
directed motion and the elastic response of these systems.
The longitudinal correlations in the diffusive systems can
be explained in terms of the combined effect of the persis-
tence and the fluid’s virial bulk modulus, which originates
from repulsive interparticle interactions. The description
of the transverse velocity correlations in diffusive systems
that do not exhibit features of glassy dynamics is an open
problem that deserves further study.

In our opinion, the most interesting open question is
the relation of the long-ranged velocity correlations to the
macroscopic properties of active matter. For example, ac-
tive and passive systems with the same local structure,
as examined by the pair distribution function or the static
structure factor, usually have very different dynamic prop-
erties. Which of the differences can be attributed to the
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existence of equal-time velocity correlations in active mat-
ter systems? Are these differences sensitive to the range
of the velocity correlations? We hope that this short Per-
spective will stimulate further work in this direction.
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