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ABSTRACT: We develop a supersymmetric bi-axion model of high-scale inflation coupled
to supergravity, in which the axionic structure originates from, and is protected by, gauge
symmetry in an extra dimension. While local supersymmetry (SUSY) is necessarily Higgsed
at high scales during inflation we show that it can naturally survive down to the ~ TeV
scale in the current era in order to resolve the electroweak hierarchy problem. We show how
a suitable inflationary effective potential for the axions can be generated at tree-level by
charged fields under the higher-dimensional gauge symmetry. The inflationary trajectory
lies along the lightest direction in the bi-axion field space, with periodic effective potential
and an effective super-Planckian field range emerging from fundamentally sub-Planckian
dynamics. The heavier direction in the field space is shown to also play an important role, as
the dominant source of super-Higgsing during inflation. This model presents an interesting
interplay of tuning considerations relating the electroweak hierarchy, cosmological constant
and inflationary superpotential, where maximal naturalness favors SUSY breaking near
the electroweak scale after inflation. The scalar superpartner of the axionic inflaton, the
“sinflaton”, can naturally have ~ Hubble mass during inflation and sufficiently strong
coupling to the inflaton to mediate primordial non-Gaussianities of observable strength
in future 21-cm surveys. Non-minimal charged fields under the higher-dimensional gauge
symmetry can contribute to periodic modulations in the CMB, within the sensitivity of

ongoing measurements.
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Introduction

Cosmic inflation provides an attractive framework for understanding the robustness of the

early state of our universe (see [1] for a review). Its simplest implementation driven by a

slowly rolling scalar field (inflaton) requires a very flat inflaton potential, suggesting that

the inflaton is a pseudo-Goldstone boson of a spontaneously broken global symmetry. A

small explicit breaking of the symmetry can then give rise to a weak potential naturally

varying on the scale of the spontaneous breaking, f. A canonical example is given by the

model of “Natural Inflation” [2], with periodic inflaton potential,

V(g) =V (1 - cos?) .

(1.1)



However, even a crude fit to the Cosmic Microwave Background (CMB) data [3] requires
f = Mpy,! which conflicts with our general expectation that there should be no dynamical
scales above the Planck scale, and with the particular arguments that global symmetries
themselves are ill-defined in the context of Quantum Gravity [5-7].

These concerns can be resolved by (a) relating but not identifying the scale over which
the inflaton potential varies with the scale of spontaneous symmetry breaking, and (b)
realizing the spontaneously broken approximate symmetries as accidental symmetries in
the IR rather than fundamental global symmetries in the UV. The simplest version of
(a) is given by beginning with two pseudo-Goldstone bosons, ¢4 and ¢p, for two global
symmetries U(1)4 x U(1) g spontaneously broken at approximately the same scale f4, fp ~
f < Mp; [8]. For suitable explicit symmetry breaking sources one can then generate a
potential of the form

V(pa, o) = Vo(l) (1 — Cos ¢B> + VO(2) [1 — CoS <¢A + qu)] , (1.2)

/B fa /B
where N represents a large charge under U(1)p for one of the “spurions” characterizing
the explicit breaking. Naively, this makes the problem worse, since the potential varies in
the ¢4 direction on the scale f < Mpi, and in the ¢p direction on the scale f/N < f,
while CMB data suggests a potential varying more slowly than the Planck scale. However,
just such a potential can arise when we properly consider the mass eigenstates. Taking for

simplicity 1/0(1)’(2) ~ Vy, these are given by heavy and light directions in field space,

¢n = ¢+ %dm O = da— %@f)B- (1.3)

After setting the heavy ¢, to its vacuum expectation value (VEV), we can obtain the
effective potential for the light field ¢; as

Verr (90)] (5,100 = Vo (1 — cos K;}) : (1.4)

This corresponds to an effective Natural Inflation model, with inflaton ¢; and an emergent
scale of potential variation f.g = N f, which can be > Mp; even though f < Mp, for
sufficiently large spurious charge N. We will refer to this as the “Bi-axion inflation”
model.

An attractive microscopic realization of Bi-axion inflation satisfying (b), based on the
mechanism of “extranatural inflation” [9], is provided by using gauge symmetry in an
extra dimension [10]. If the higher-dimensional spacetime is highly warped so as to have
an AdS5;/CFTy type holographic purely-4D dual description, then the dual interpretation
is that the axions are composite Goldstone bosons of some strong dynamics (see e.g. [11]),
analogous to the pions of QCD, and the spontaneously broken symmetries are accidental
or emergent symmetries below the Planck scale. Here, we just briefly summarize the
unwarped (or mildly warped) higher-dimensional case. The 4D axions above are realized

IThis is an example of the model-independent Lyth bound [4] in the case of Natural Inflation model.



as gauge-invariant Wilson-loops (or lines, given suitable boundary conditions) around (or
across) the compact extra dimension,

L L
d)A E/ A5 dﬂj‘5, ¢B = / B5 dl‘5. (15)
0 0

Charged matter propagating in the 5D bulk, H; and Hs, with mass m, can generate the
potential (1.2) for ¢4 and ¢p, given that they are charged under the two gauge groups as
(0,1) and (1, N), respectively. The scales fa, fp emerge as

1 1
fa=—7— fB=—. 1.6
gal gL (16)
The potential in (1.2) can be generated minimally by the loop contributions of Hy, Hy via
the “Hosotani mechanism” [12] which gives

—mL

Vloop ~ €

; — (17)

in (1.4), as well as “higher harmonics” accompanied by higher powers of e ™%, As studied
in [13], bi-axion extranatural inflation can also non-trivially satisfy the plausible constraints
of the Weak Gravity Conjecture (WGC) [14]. These quantum gravity constraints are an
even stronger form of the arguments forbidding fundamental global symmetries, to also
forbid UV gauge symmetries with very weak gauge couplings (relative to gravitational
strength). These higher dimensional realizations of bi-axion inflation can be generalized to
multiple-axion models, which then allow for more modest values of charge, N [10, 13].

In this paper, we study compatibility of the bi-axion inflation scenario arising from
higher dimensional gauge theory with the scenario of ~ TeV-scale supersymmetry (SUSY)
for resolving the electroweak hierarchy problem. In the presence of SUSY, the loop contri-
butions from the charged matter fields to the effective potential of 4D axions cancel out.
We are hence forced to have tree-level contributions for the same, which can be achieved
if Hy, Hy have non-zero VEVs (v,v) at both the boundaries, which generates

viree o e mlmay’, (1.8)

Obviously, the question of whether the above-mentioned very plausible and robust forms
of inflation are naturally realizable within the constraints of supergravity (SUGRA) dy-
namics in the UV, with SUSY being present at ~ collider energies today, is of considerable
importance to our picture of fundamental physics and the prospects for experiments and
observations. See [15-21] for other discussions of bi-axion inflation combined with SUSY,
where the axions have alternative UV realizations. See [22-28] for other attempts to recon-
cile low energy SUSY and inflation from a UV perspective. We will also explore the possible
new signatures from extra fields in the axion supermultiplets, most notably in the form of
primordial non-Gaussianities (NG) in the cosmological collider physics program [29-39] as
well as periodic modulations in the CMB [13, 40-48].

Models of single-field inflation with relatively simple potentials, such as Natural In-
flation and its variants, necessarily operate at high scales in order to satisfy cosmological



data, with inflationary Hubble scale Hi,s ~ 10'3-10'4 GeV. The recently released Planck
2018 data places tight constraints on such high-scale models, especially given the non-
observation of CMB B-modes induced by super-horizon gravitational waves [49]. Natural
Inflation itself is now disfavored at 95% confidence level, but not ruled out. However, the
bi-axionic structure of inflation from extra-dimensional gauge symmetry can generically
produce multiple periodic terms in the potential (1.1), which can alleviate the tension
above with a suitable and plausibly not very fine-tuned choice of parameters. We leave
such a detailed analysis and appraisal for a future study. Furthermore, there are various
ways discussed in the existing literature to relax these constraints for axion-based inflation,
e.g. by realizing the structure of hybrid inflation from a bi-axion potential [50].

The paper is organized as follows. In section 2, we review a SUGRA-based inflation
model, the “Kallosh-Linde-Rube model” [51, 52], which has many common features with
our SUSY bi-axion model as developed in sections 3 and 4. In section 3, starting from the
5D SUSY gauge structure, we first construct a 4D effective theory of an axion supermulti-
plet. After generalizing it to the case of two axions, we account for (effective) 4D SUGRA
couplings below the compactification scale. In section 4, we discuss the inflationary tra-
jectory along the lightest direction in the field space with an effective super-Planckian
field range and periodic potential, also stabilized along all the other heavier directions.
We then describe the picture of SUSY breaking (SUSY) during inflation which we find to
be caused mostly by the heavy sector and not the inflaton sector. Furthermore, we also
account for the post-inflationary SHSY vacuum that we occupy today, which we find not
affecting the inflationary dynamics significantly as long as the SUSY scale is much below
the inflationary energy scale. This model presents an interesting interplay of fine-tunings
in the electroweak (EW) sector, cosmological constant (CC), and superpotential which are
connected together after incorporating the SUSY today. The superpotential fine-tuning
favors SUSY at high-scale, however the net fine-tuning, dominated by the EW and CC
fine-tunings, can be shown to favor SUSY at low-scale i.e. somewhat above the EW scale.
In section 5, we discuss observable signals in the form of primordial NG and periodic mod-
ulations in the CMB. The “sinflaton”, the real scalar partner of inflaton, can have O(Hiys)
mass during inflation and sufficiently strong coupling to the inflaton to mediate primordial
NG of observable strength in future experiments. A boundary-localized gauge singlet, in
the presence of a shift-symmetric Kahler coupling, can also mediate sizeable primordial
NG. Charged matter much heavier than the compactification scale, even only modestly
below the 5D gauge theory cut-off, can contribute to periodic modulations in the CMB,
within the sensitivity of ongoing searches. We conclude in section 6.

We use units with the reduced Planck mass Mp; = 1 everywhere in the paper, except
sections 4.4 and 5, where we explicitly write factors of Mp; in order to get a better sense
of the numbers.

2 The Kallosh-Linde-Rube model

We seek a locally supersymmetric description of high-scale inflation in which SUSY is only
broken somewhat above the weak scale today. Since the weak scale is < Hj,f, we can first



consider the supersymmetric limit of the ground state today. On the other hand, during
inflation we know that the approximate de Sitter geometry is incompatible with SUSY. So
inflation must be a spontaneous breaking (super-Higgsing) of SUSY within an excitation
on top of today’s SUSY vacuum, which we can also approximate to have zero vacuum
energy (cosmological constant).

In order to have a light inflaton (¢), we will have an inflaton supermultiplet (®) with
approximate shift symmetry. This can be implemented with K(®,®) = K(® + ®) and
¢ = Im(®). A small explicit breaking of the shift symmetry from the superpotential
can generate slow-roll potential for ¢. Thus, the lightness of inflaton can be explained
by its pseudo-Goldstone boson nature. However, implementing inflation with only this
single supermultiplet is challenging [53]. In this case, the Goldstino of spontaneous SUSY
during inflation would have to be the inflatino (then “eaten” by the gravitino). Consider
K = %(CI) + @)2 and W = f(®). Then, restricting to polynomial f(®) for illustration,
in SUGRA, V(¢) ~ f%(¢/v2) — 3f%(¢/+/2), which has a clear instability.? This can be
avoided by introducing a separate supermultiplet for the Goldstino during inflation.

We see that the Goldstino multiplet must be part of a sector that Higgses SUSY during
inflation. One of the simplest models to describe spontaneous SUSY coupled to SUGRA,
is the Polonyi model [57]:

K =85—-X(589)%, W = pus, (2.1)

with the addition of the non-minimal Kéahler coupling A\. The SUSY order parameter in
the vacuum is DSW’<S>z0 ~ u # 0. Spontaneous SUSY in this model gives rise to a
massless Goldstino which however is eaten by the gravitino which then becomes massive
(“super-Higgs mechanism”). The quartic term in the Kéhler potential also makes the scalar
heavy, with m% ~ 4\p?. Thus, there is no light particle in this sector. During inflation, in
the limit of the slow-roll approximation i.e. for a fixed value of inflaton, the physics can be
approximately described by this model. But we need to have a coupling between this sector
(S) and the inflaton (®) such that there is no SHSY at ® = 0 (i.e. at the vacuum today)
but with SUSY at ® = &y # 0 (i.e. during inflation). In other words, the p parameter
of (2.1) needs to be made ®-dependent in a suitable manner. This can be achieved with
the following model [51, 52]:

1 _ _ _

K=2(2+8)"+55-(55)", W=5f(2), (2.2)
which we will refer to as the “Kallosh-Linde-Rube (KLR) model” and consider as a toy
model for our SUSY bi-axion model. All scalars except for ¢ = Im(®) can be shown to
be heavy and thus the inflationary potential (see appendix A for SUGRA scalar potential)
can be obtained as,

V(gb)}(S),(n) = f2(¢/\/§)a

Viar = 3H2; = f2(60/V2) 2
inf inf 0 .

2However, see [54-56] for attempts towards building “sColdstino inflation” model.



The SUSY order parameters for ® and S during inflation can be evaluated as follows:
DeW|. . ~0, DsW| .~ f(®g) #0. (2.4)

This implies that, as expected, SUSY during inflation is caused by the heavy sector ().
Hence the Goldstino during inflation (further eaten by the gravitino) is equal to the fermion
from the S-sector (1g) and not the inflatino (¢¢).

The real scalar partner of the inflaton i.e. sinflaton (n = Re(®)), has the following
mass coming from its coupling to the SUSY-breaking curvature from (2.2):

my ~ \/éHinf- (25)

This is within the favorable range of masses for observing it in primordial NG in the
cosmological collider physics program. However, such a light sinflaton (i.e. m, ~ O(Hiut))
is not guaranteed from this class of models. Indeed, a higher order term in the Kahler
potential with a direct coupling between S and ®, respecting the shift symmetry of ¢,

c

K> -4

(@ +)° S5, (2.6)

can give a large contribution to the sinflaton mass:

mgzzwﬁ+f3§ﬁzﬁﬂﬁf@f%i%). (2.7)
Thus, m, ~ O(Hiyt) for A = O(1)Mpy. But, m,, > Hjyr is also possible with A < Mpy.

Even assuming m,, ~ O(Hiyn¢), in order for 7 to mediate observable primordial NG,
there has to be sufficiently strong coupling between it and the inflaton (¢). The SUGRA
scalar potential from (2.2) does have such couplings, but these are shift-symmetry vi-
olating and hence very small, e.g. £ > min%ﬁz ~ 1071992¢2. However, higher order
shift-symmetric terms in Kéhler potential,

Kaxﬂ®+@, (2.8)
can generate derivative-interactions as
4 2,2
L3> p(&b) ne. (2.9)

This sinflaton-inflaton interaction (with a non-zero VEV for 7) along with m,, ~ O(Hiut)
can give rise to observable NG for sufficiently small A and large (). However, in this
paper, we will not pursue the phenomenology of this model further.

The main drawback of this construction is that the origin of such a form of La-
grangian (2.2) is not explained within the model. Also, it suffers from the issue of trans-
Planckian field displacement needed for ¢, since a typical choice of f(®) in (2.2) gives a
large-field inflation model subject to the Lyth bound [4].
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(a) Non-SUSY. (b) SUSY.

Figure 1. 5D gauge field and charged matter: (a) non-SUSY and (b) SUSY version. See text and
table 1 for details.

3 SUSY bi-axion model

In this section, we develop the setup of supersymmetric inflation with the pseudo-Goldstone
boson (or axion) nature of inflaton derived from a gauge symmetry in a compact extra
dimension (“extranatural inflation” [9]). Firstly, we describe how we obtain the effective
theory of a light axion supermultiplet starting from the A/ = 1 5D SUSY gauge theory.
Then, we describe how to introduce two such axion supermultiplets in order to get fog >
Mp (for trans-Planckian field displacement satisfying the WGC). Finally, we also discuss
how to take into account gravity, thus constructing our “SUSY bi-axion model”.

As we will see later, this model has many common features with the KLR model
described in section 2. It however provides a more UV-complete and robust picture of
inflationary dynamics where the central features are governed by the 5D SUSY gauge
theory structure.

3.1 Light axion supermultiplet from 5D SUSY gauge theory

In this sub-section, we will show how a single light axion supermultiplet can emerge from 5D
SUSY gauge theory. The extension to the more realistic case of two axion supermultiplets
follows in the next sub-section. Consider a flat extra dimension with boundaries, with
a gauge field Aj; and a charged scalar field H propagating in the bulk (see figure la).
If A, and A5 have, respectively, Dirichlet and Neumann boundary conditions at both the
boundaries, then only As has a zero-mode (Aé0)>. As mentioned in section 1, if H has non-
zero VEVs at both the boundaries, then it gives a tree-level contribution to the effective
potential of Ago).

Now, consider the full 5D supersymmetric version of this setup (see figure 1b). N =1
5D SUSY is equivalent to N’ = 2 4D SUSY which can be written in the N’ = 1 4D SUSY
language as follows [58] (see table 1). 5D SUSY gauge multiplet has a gauge field (Axy),
Dirac gaugino (xpirac) and a real scalar (7). These can be represented in N' = 1 4D
SUSY language in terms of vector superfields V(zs5) > A, (x5), x1(z5) and chiral superfields
O (z5) 3 n(xs) +1As(x5), x2(z5), where the extra-dimensional coordinate x5 is viewed as a
mere continuous “label” from the N' = 1 4D viewpoint. Charged matter fields in 5D SUSY
are part of a hypermultiplet which includes two complex scalars which are conjugates



5D super-multiplet 5D fields N =1 4D superfields
Vector superfields: V(zs5) 2 A, (xs), x1(xs5)

Gauge multiplet | Az, XDirac, real
o Chiral superfields: ®(z5) 3 n(x5) + 1 A5(xs5), x2(v5)

Chiral superfields: H(z5) > H(xs), ¢ (x5)
H(ws) > HE(w5), 9" (25)

Table 1. /=1 5D SUSY in the A’ =1 4D SUSY language.

Hypermultiplet H, H®, Ypirac

of each other under the respective gauge group (H,H¢) and a Dirac fermion (¢pirac)-
These can be represented in N’ = 1 4D SUSY language in terms of chiral superfields with
conjugate representations: H(xs) 3 H(zs), ¥ (xs5); H(x5) 2 H(xs5), ¢ (z5), again with the
continuous “label” xs.

As illustrated in [58], imposing 4D SUSY and 5D Poincare symmetry automatically
generates an emergent 5D SUSY. Thus, the full 5D Lorentz-invariant, gauge-invariant and
SUSY action for a gauge multiplet and a charged hypermultiplet, keeping manifest only
the N =1 4D SUSY, can be written as follows:

L 2
. 4 2 1 2 /4 _L P
Sg,—/dx/o d:x5[/d94Wa+h.c.+ d 0 <05V ﬁ(<1>+<1>)

+ / d*0 (Hee®VH  + He PVH) + / d*0 {% <m + 05 — j‘%@) H} +h.c.

(3.1)

As mentioned in section 1, in the presence of SUSY, we need tree-level contributions from
charged matter to the effective potential of As, which can be achieved by the charged
matter taking non-zero VEVs at the boundaries. Such VEVs break gauge invariance, but
this is allowed because we have already broken gauge invariance by the Dirichlet boundary
conditions for the boundary components of the gauge fields. These VEVs can be achieved
by adding the following boundary-localized superpotential terms to the action:

6Ss = /d4x /OL dzs [/ d*0 {\(H —v)* 6(z5) + N(H —v)* §(z5 — L)} + hee.|. (3.2)

Consider Dirichlet boundary conditions for V and H¢ and Neumann boundary con-
ditions for ® and H, at both the boundaries. We implement these boundary conditions
via realizing the extra dimension with an interval as an “orbifold” of the circle. With the
angular coordinate (#) on the circle going from —7 to 7, we identify the points 6 with —6.
Thus, half of the circumference of the extra-dimensional circle is the physical interval with
x5 going from 0 to 7R = L, where R is the radius of the circle. The Dirichlet and Neu-
mann boundary conditions for the fields in an interval can be implemented by assigning,
respectively, odd and even parity under orbifold (# — —6). (See [59] for a review of this.)

Let us solve for the classical potential of this model. We need to integrate out the heavy
fields (i.e. H,H® and the KK modes in V) at tree-level to get an effective theory in terms of



®. We search for a supersymmetric vacuum of the full theory where inflation happens at
an excited state with SUSY vacuum energy Vi, ¢. Considering the inflationary energy scale

to be much less than the masses of the heavy fields (Vll[lf‘ < mKK,m),3 to the leading

1/4

order in n‘f;‘(fK, for the purpose of the dynamics of the heavy fields, their ground state can

be approximated to be supersymmetric even during inflation. Thus, we can integrate them

out by using their SUSY equations of motion.

Firstly, we can set V to zero since it contains only heavy fields and with zero VEVs. A,
in ¥V cannot have non-zero VEV due to Lorentz invariance. The D-scalar in V is an order
parameter for SUSY and hence (D) = 0 for SUSY ground state. Of course the fermions in
V have vanishing VEVs. This leaves us with only the following terms in the action:

L
S5 = / d*x / dxs [ / d*e {;(mé)?#ﬁ%%ﬁﬂ}
0

+ / %0 {’H <m+as—\g/5§q>> HANH—0)? §(x5)+N (H—')? 5(x5—L)}+h.c} .

(3.3)

The heavy charged matter fields H and H¢, with 5D bulk masses m 2 mgx, can now be
integrated out by imposing the following SUSY constraints:

ow oW

— =0= . 34
OH OHC (34)
Thus, we obtain the following 4D effective action* for ®,
4 ap 1 512
54:/dzv /d92((1>+<1>)
9 v? e~mlL e%q) + 02 eml e_%qj — 2v0/ o
+/d9 Wo+ A g PIPy +he ||,
el e vat 4 emml ev2

where we take A = )\ for technical simplicity. The derivatives on H and H¢ at the bound-
aries in (3.3) are evaluated by taking into account their orbifold parity (even and odd,
respectively).

The Kéhler potential in (3.5) displays shift symmetry for As, which is the imaginary
part of the scalar component of ®. However, integrating out the charged hypermultiplet
using (3.4) also generates shift symmetry violating terms in the Kéhler potential. These

mL

corrections are however functions of gL ® and suppressed by e~ ™", our modest expan-

sion parameter. Thus, they contribute to the scalar potential only with ?—dependence

_gL’

these corrections sub-dominant and hence we neglect them here.

not changing its qualitative form. Furthermore, the e™"*" suppression makes

1/4

. . v _ _ Lo

3 As can be seen in section 4.1, —nf— ~ 2Le=mL L o=mly13/2 which is small due to the smallness of
MKK i NG

—m

e~™L and the hypermultiplet boundary VEVs ~ v.

“Here, all the 4D fields are in canonical normalization. The 4D gauge coupling g is defined as: -

92

L
.
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(H;) = v; Hl! HZ (Hy) = v; (H;) = v j{lrj{f (H;) = vi

(HEYy =0 Hy, Hy (HEY =0

A, A
(4,,B,) =0 Hos (A4,B)=0  (VaVs)=0 Var P4 (Va,Vg) =0
B,,B Vg, Pp
x5 =0 x5 =L x5 =0 x5 =1L
(a) Non-SUSY. (b) SUSY.

Figure 2. Bi-axion inflation field content: (a) non-SUSY and (b) SUSY version. See text for
details.

The superpotential is the source of shift symmetry breaking for As which is naturally
suppressed by e”™ for mL > 1 (see e.g. for v ~ v'). This is a generic feature of extranatural
inflation scenario where the compact extra dimension effectively acts as a “filter” for any
far-UV physics by suppressing its contribution by e ™uvL 11 is a constant term in the
superpotential which is relevant only in the presence of gravity, as we will see in section 3.3.

3.2 Bi-axion generalization to realize feg > Mp;

As mentioned in section 1, in order to have f.g > Mpj, we need to introduce two axions
in such a way that one of their linear combinations has an effective super-Planckian field
range. The non-SUSY version of bi-axion inflation has the setup as shown in figure 2a.
There are two gauge fields (Ays, Bar) with only (As, Bs) having zero modes (by suitably
assigning boundary conditions). The scalar fields H; and Hs are charged under the gauge
groups as (0,1) and (1, V), respectively. This field content can now be embedded into the
respective 5D SUSY multiplets, as shown in figure 2b. By extending the construction from
section 3.1, the full 5D action in this case can be obtained as follows:

L 1 1
Sy = /d4:1;/ dxs /d20 <4Wiya+4W%’a> +h.c.
0

2 2
1 _
d40 8V——¢ +P }—i—{(‘)V—(I) +& }
5 A+P4) 53\@(3 B)

/ 0 { (H5eVP 1+ Hy eV 0y )+ (M VAt NV g Va TNy, ) |
{ <m+35—\f¢'3> Hi+Hs <m+85—\g/5§ (@A+N<I)B)> 7‘[2}+h.c.
+/ d*0 { A1 (H1—v1)? 6(zs5)+N (H1—v})? 6(zs—L) }+h.c.

+ /dQQ{Ag(HQ—UQ)Q §(w5)+ Ny (Ha—vh)? 6(x5—L) }+h.c.

(3.6)

~10 -



Similarly to how (3.5) was obtained starting from (3.1) and (3.2) in the previous
section, we can obtain the 4D effective Kéahler potential and superpotential for the two
axion supermultiplets (®4, Pp) as follows:

1 _ 1 )
K= (®a+ Dy 4+ 5(®5 + dp)?,

IL(p 4+ NP — 9Ly, +NO
W= W+ A vi emmb eva(Pat B)+U’12 el ¢ va(Pat 3)721)11)3
CoerA 9L (4 +NOp) 9L (4 +NO ) (3.7)

eml e vz +emL gvz

2 ,—mL Laop 12 .mL ~4Zop /
i vy e evz © 4y e e v2T — 2u9uy
2 .

_g9L 9L
eml ¢ vaTE | o-mL o\ PE

We would like to highlight here that in (3.6), and hence also in (3.7), all the scales and
field ranges are sub-Planckian.

3.3 Adding SUGRA and identifying the SUSY vacuum

We have not considered the effects of gravity so far in obtaining the £y ¢g(®a, Pp) of (3.7).
But now we can use this 4D effective K and W to compute the SUGRA scalar potential
(Vsugra) directly in 4D (see appendix A). With this strategy, from effective field theory
perspective, we could only be missing Mp-suppressed terms e.g. K > (&4 + ®4)*, (P +
®p)*. In the case of SUSY bi-axion model, as highlighted below (3.7), the range (and
hence also the VEVs) of fields in ®4 and ®p is sub-Planckian, thus making the above-
mentioned Mpi-suppressed terms also sub-dominant. We would like to highlight here that
in the case of a single axion (in section 3.1), such Mpj-suppressed terms in (3.5) are not
sub-dominant due to the super-Planckian range of the fields. Hence the truncation of
the ®/Mp) expansion is uncontrolled in this case. In section 5, we will see that higher
order Kéhler interactions can have interesting observable effects if they are stronger than
Mpi-suppressed.

The Wy parameter in (3.7) is now physical, due to the presence of gravity, and it will
contribute to the vacuum energy. We will consider a boundary-localized contribution to
Wy such that the net post-inflationary vacuum energy is (approximately) zero.

In order for the inflationary picture to be compatible with low energy SUSY (bro-
ken only at a scale somewhat above the EW scale) and approximately zero cosmological
constant as observed today, the vacuum of post-inflationary dynamics should be SUSY-
preserving and with zero vacuum energy. Thus, it seems that the inflation endpoint has to
(approximately) satisfy the following three conditions: (1) unbroken SUSY ((Dg, W) = 0),
(2) zero vacuum energy ((W) = 0), and (3) local minimum® of Vgygra. However, as
shown below, (1) and (2) automatically imply (3), i.e. a point in the field space satisfying
Do, W =0 and W = 0 implies that it is automatically at a local minimum of Vsugra, so
we do not bother to check (3) further.

5Global minimum can be separated enough in the field space from this local minimum such that the
decay via tunneling does not happen even on the cosmological timescales.
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Consider, for simplicity, a single chiral superfield ® for which Vgygra is
- 2
V=K (K@% IDeW|? — 3 |W]2> . (3.8)
Now, for DegW =0 and W = 0, one can clearly see that,

06V =0 =05V, 0500V ="K 1 [06DsW|[*, 03V = 0= 03V, (3.9)

and for ® = (n+1i¢)/v/2,
I
OV =0=04V, 0}V =93V = ieKK@ﬁ |0 Da W 2. (3.10)

Thus, for K;é > 0 and Kggq, Kspgpe finite, (3.10) implies a local minimum of Vsuygra-
The same proof can be applied for multiple chiral superfields ®;, with K(;iléi > 0 in the
mass basis and no singularities in higher derivatives of K. These conditions are satisfied in
our cases of interest, since we mostly have K <£¢1<I>i ~ 1 (see (3.7)) with corrections suppressed
by high scales A and small field VEVs (see section 5.1).

Furthermore, the conditions Dg,W = 0 and W = 0 are equivalent to the conditions
O, W =0, W =0, (3.11)

since Do, W = 0p,W + (09, K ) W. This hugely simplifies identifying the inflation endpoint
analytically. The conditions 0y ,W = 0 = 0Jp,W can be satisfied for the superpotential
in (3.7) minimally by the following choice for the parameters® that govern the hypermul-
tiplet VEVs at the boundaries (see (3.6)) :

v = V] =vg = 0,0 ~ ve ™, (3.12)
In order to avoid having significant fine-tuning for choosing vy ~ ve ™™ we consider
e~ ~ O(1), while still having e=™/ < 1 for valid perturbative expansion (e.g. e~ ~

1/3 with mL ~ 1.1). With the choice of parameters v;, v} as in (3.12), and after doing a
change of basis from (P4, Ppg) to (P, ;) as defined by

1 1
O, =P —& P, =Py — —P 3.13
h B+N A, P A= B ( )

the superpotential from (3.7) becomes

W W 1

= —+ )\1 1-—
vt v cosh (mL - %N@h)

9 ki
— 2\ e—2mL €7L2<<I>h—zvl) [1 — cosh <fé (qph _ (Jlifl)ﬂ +0 (€f4mL) '

5The simplest choice with v; = v} = v = v5 does not admit a solution to Op ,W =0 = O0s, W when

(3.14)

restricted to sub-Planckian field values.
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Now, we can identify the required Minkowski SUSY endpoint of inflation. Firstly, we
identify VEVs of all the scalars, ) = %(mx +i¢y), at inflation end by solving 0, W =0

to obtain
fmL

(1) =0=1(on), ()~ N (m) = fmlL, (3.15)

with f = g%. Then, plugging these VEVs back into (3.14), we can enforce (W) = 0. This
self-consistently demands Wy to be chosen to cancel the terms in (3.14) sub-dominant in
e L e,

Wo ~v?-0 (e_4mL) , (3.16)

where, as mentioned below (3.12), =™ is our modest expansion parameter.

One can clearly see from (3.14) that W =~ W (N®, ®;/N), for N > 1, and hence the
scalar potential will be of the form

Nnp, N¢h ol
V =~ V< f f Nf) (3.17)

Due to the eX contribution from Vgygra, and that K > %(‘1)1 +<i>l)2 has ;- but no
¢i-dependence, the potential along 7; varies over Mpj, and not Nf > Mp). As we will
detail in section 4.1, from (3.17) we can power-count my, ,mg, ~ Hins - O (NTQ) > Hif
and my,, ~ O(Hiyt), while only mg, < Hine. We will show in the section 4.1 that after
integrating out the heavy fields (np, ¢n,m), we get Veg ( N f) such that ¢; has an effective

super-Planckian field range: fog = N f > Mp; with f < Mp; and N > 1. Thus, we expect
that the SUSY vacuum ¢; = 0 can be approached from some (ﬁnitial ~ O(Nf) along a

2
slow-roll potential with the slow-roll parameters €, ~ (%*?) < 1

As in the case of single axion supermultiplet (see below (3.5)), integrating out the
charged hypermultiplets in (3.6) also generates shift symmetry violating terms in the Kéhler
potential in (3.7). Similar to the case of single axion supermultiplet, these corrections are
functions of (I)l which maintain the form of the effective inflationary potential, Vg ( 7 H)
i.e. effective super Planckian field range for ¢;. Furthermore, they are suppressed by powers

—mL

of e , our modest expansion parameter, which makes them sub-dominant and hence we

neglect them here.

4 Inflationary history

In this section, we describe various aspects of the inflationary history from our SUSY bi-
axion model. Here we discuss the inflationary trajectory, SUSY breaking during inflation,
accounting for the SUSY breaking vacuum that we occupy today, and the interplay of
different fine-tunings within this model.

4.1 Inflationary trajectory

In order to identify the inflationary trajectory and the effective potential along it, we first
consider the general problem where a potential depends on some heavy fields H and some
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light fields L. We expand the potential to quadratic order in H while keeping it to all
orders in L:

v (ﬁ E) — v (<ﬁ>, E) + A (E) CSH; + %mgj (E) C6H; - 0H; + O(SH®).  (4.1)

Here, (ﬁ ) are VEVs of the heavy fields at the post-inflationary SUSY vacuum, while §H

—

are the fluctuations away from (H) in the course of inflation. The expansion coefficients are
A; (E) =0,V (<FI>,E) , m?, (E) = O, 0m,V (<ﬁ>,E) , (4.2)

which are functions of L. We can now integrate out the heavy fields by extremizing (4.1)
with respect to the heavy fluctuations §H, for given light fields L, thereby getting an
effective potential for L as

Vet (E) ~V (<ﬁ>,i) +% [Ai (m?),)} A]—] (E) . (4.3)

In the case of our SUSY bi-axion inflation model, the heavy and light fields along the
inflationary trajectory are, respectively,

H = (np, dnm). L= (en). (4.4)

The coefficients A; and mass matrix mfj in Vsugra (A.2), for the superpotential (3.14),
scale parametrically as follows:

(1)~ (v ) U2,

4 A2 - (4.5)
oty (1) [ e e | L)
N 0 f?

where the indices 4, j run over H in the same order as in (4.4). We can now estimate the
parametric size of the heavy fluctuations during inflation as

_, f f 1
5H> ~ (L L ), 4.6
< <N 22 N2'Nf (4.6)
This then implies that the O(§H3) term that we dropped in (4.1) is sub-dominant, sup-
pressed by the small parameters % and Nif, and hence can be ignored along the inflationary

trajectory.
The mass eigenvalues of the heavy fluctuations 6 H are as follows:

2 2 4V<<I;T>,<E)) N* 2
Y N (4.7)

mi ~m2 ~V ((A),L) ~ 1 ().
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Thus, the heavy mass-squared eigenvalues are all positive and much larger than mé ~

v ((H),L
(15[27;2) Hence, we can integrate out the heavy fluctuations §H all along the inflationary
trajectory yielding

Ve (0) = V <<ﬁ> ﬁ}) : [1 +0(1)+0 (Niﬂﬂ . (4.8)

Here, the second term comes from integrating out the mass eigenstates (Hy, H2) = (np, ¢p)
while the third term comes from integrating out Hs ~ ;. Since the contribution from
(Hy, Hs) is of the same order as V <<ﬁ>, %) , we perform the integration out of §H
numerically. Firstly, we verify that as suggested by the parametric estimates in (4.5)
and (4.7), the heavy mass-squared eigenvalues are indeed much larger than mﬁl all along
the inflationary trajectory. The numerically computed Vog(¢;) is as shown in figure 3. Tt

has the following approximate analytic form,

V;eff(gbl) ~ 1nf <1 — COSs ]f;f> mf )\2 f —2mL’ (49)

which is the leading contribution in terms of the small parameters 1/N, f and e~™. Thus,
the SUSY bi-axion model effectively provides an approximate Natural Inflation model with

fet = N f > Mp, where the best-fit values are [49]
fot = Nf ~10Mpy, VM* ~ 100 GeV. (4.10)
The precise inflationary potential, Veg(¢;), does contain “higher harmonics” in ]% Al-
though, these do not affect the qualitative features as outlined above, they can play an
important role in precision fitting to the CMB data which we will explore in a future work.

As can be seen from (4.7), the heavy fields 7y, ¢, are much heavier than Hiys:
N2

mnh,m¢h ~ HinfT. (411)

While sinflaton (7;), the real scalar partner of the inflaton, has an intermediate mass,
iy, ~ O(Hing), (4.12)
about which we will discuss more in section 5.1.1.

4.2 SUSY breaking during inflation

As mentioned earlier in section 2, the approximate de Sitter geometry during inflation
requires it to be an excited state with spontaneous SBSY on top of the post-inflationary
SUSY vacuum. The SUSY order parameters (see appendix A) for ®; and ®; evaluated
along the inflationary trajectory are

2
W‘ (), (m0) )\276 e Nf (1 cos Nf>

1
D W g,y ~ © <N> Da W,

(4.13)
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—L—V(9)

— Vesi(¢)

_ s
----- Vo(1 - cos Nf)

Figure 3. The dark line refers to the effective inflationary potential Veg(¢;) after numerically
integrating out the heavy fields ny, ¢p,n; all along the inflationary trajectory. For comparison, a
pure cosine potential with the magnitude matching to that of Veg(¢;) is plotted as the dashed line.

4 _—4mL

Inflation can start close to the hilltop of Veg (), with Vips ~ % ef2

Here, we can clearly see that the SUSY order parameters are zero only at the vacuum
(i.e. ¢l = 0)

As described in appendix A, the massless Goldstino of spontaneous SUSY, which is
“eaten” by gravitino to become massive, is given by the linear combination of all the
fermions weighted by the respective SUSY order parameters: 9goldstino < (Do, W) - ;.
Hence, the SUSY order parameters during inflation (4.13) imply that,

1
wGoldstino ~ wh +0 <N> : wla (414)

i.e. the Goldstino during inflation belongs mostly to the heavy sector (®5,) and not to the
inflaton sector (®;). In other words, SUSY during inflation is caused mostly by the heavy
sector (®p). This feature of our SUSY bi-axion model is very similar to the KLR model
discussed in section 2 where the Goldstino during inflation belongs solely to the heavy
sector (S) (see (2.4)).

4.3 SUSY breaking after inflation

We need to account for the post-inflationary SUSY vacuum that we occupy today which
we have neglected so far. In this section, we look for any possibly significant effects of this
SUSY vacuum on the inflationary dynamics. We consider a boundary-localized Polonyi-
type sector with -
(XX)?
A2 7
which undergoes spontaneous SUSY at a scale ~ Agygy. Consider the SUSY from this
hidden sector to be minimally communicated to the Standard Model via Mp; suppressed

0Ky =XX — Wi = Adpey X, (4.15)
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interactions which then implies an intermediate scale SUSY Agusy ~ Uweak - Mp1 ~
10 GeV. We expect that as long as Agpysy < Hiye or even Vhll&, the effect of this SUSY
X-sector on the inflationary dynamics will be negligible. (See also e.g. [60].) We show
below that indeed this expectation is borne out here.

The scalar field X in the Polonyi sector gets O(Hiys) mass during inflation, similar
to that of ;. Thus, X can be added to the “heavy” fields H of (4.4) and essentially the
same procedure as described in section 4.1 can be repeated to integrate them out along the
inflationary trajectory. The tadpole and mass matrix terms (see (4.2)) involving X field

scale as follows:

Ax(¢1) ~ MpsyHine(d1) - f mx (¢1) ~ Ho (),

L (416)
m? x(d) ~md x (o) ~ AdpgyHine(dr) - N, m2 x (1) ~ AéngHinf(Cbl)N-
The fluctuations of X during inflation can be estimated from (4.16) as
A2
ox ~ Dsusyd (4.17)

V2 (1)

The O(§H?) terms in (4.1) involving X are hence sub-dominant, suppressed by AVSJ;"%;T . We
inf

can now integrate out X following (4.3) yielding

4 1 Adusy
Vet (1) ~ Adpsy - 2+ [1 + *NQV&E((ZH)} : (4.18)

This 0Veg(¢;) is much smaller than the Veg(¢;) of (4.8). Thus, as expected, for Agpsy ~

10* GeV and Virllfl ~ 1016 GeV (see (4.10)) satisfying Agpsy < Vhlléll, the SUSY X-sector
gives a negligible contribution to Veg(¢;) and hence does not significantly affect the infla-

tionary dynamics.

4.4 Interplay of electroweak, cosmological constant and superpotential
tunings

In order to have (almost) vanishing vacuum energy after the end of inflation, as discussed
in section 3.3, we need to have (W) = 0 which can be achieved by tuning the W, parameter
in (3.7). We also need to account for the SUSY breaking vacuum that we occupy today.
Here, we evaluate this combined fine-tuning which displays an interesting interplay with
the electroweak (EW) and cosmological constant (CC) fine-tunings.

Consider the SUSY hidden sector of section 4.3 which minimally communicates to the
Standard Model via gravity mediation (i.e. Mp; suppressed interactions). In order for it to

today
address the electroweak hierarchy problem, this requires that SAJ/‘;’SY ~ vaeak.7 This implies
Pl
the following fine-tuning in the EW sector,

2 2

vweakMPl
Tgw ~ ~ytoday (4.19)

SUSY

Tystoday _ A4
V,sys% = Asusr
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1/4
which can be minimized with (Vggég) ~ /Uweak Mp1, as is standard. This SUSY sector
and also AWy # 0 in (3.7) give contributions to the CC today as below:

CC=-3 + Voo ) mevt, (4.20)

2
Mg,

The two terms in the above equation have typical sizes of ~ J\Z—é (see (3.16)) and ~
Pl
U?vealegl’ respectively, which consist of a priori different and ;mrelated scales. This implies
v

‘Mpy?

\/Vggga%. Hence, we have the following fine-tuning in the contributions to Wy:

that multiple contributions to AWj, each of magnitude ~ must first cancel to within

SUSY

today
V Mpy
v2 '

Ty, ~ (4.21)
Once the two terms on the right hand side of (4.20) are of the same order, they still have
to cancel to give CC ~ meV* as observed today. This amounts to having the following
usual CC fine-tuning:

meV*

today *
VSU’S’T

Tec ~ (4.22)

As can be seen from (4.19) and (4.22), the EW and CC fine-tunings favor SUSY at
low-scale. However, (4.21) shows that the W fine-tuning displays preference for SUSY at
high-scale! But, the net fine-tuning, assuming that these three are independent of each
other, is

weak

2 i [3 4
V. me \/
Pl
Tnet = TEVV X TW'O X TCC ~ —’U2 (

vgggg) 2 (4.23)
This shows a net preference for SUSY at low-scale, namely close to the EW scale.

Our considerations here are reminiscent of comparable tuning issues that arise in high-
scale string-derived SUGRA theories, in particular the necessary existence of a high-scale
Wy which makes the tuning worse. See [61] for a review. For a sample choice of the pa-
rameters, Vstgég ~ 02 M3 and v? ~ (0.1Mp))3, we see that the net tuning in (4.23) is
considerable (Tnet ~ 10_100), predominantly because of the Cosmological Constant Prob-
lem. However, such a residual tuning is still acceptable in the context of the anthropic
principle or some as yet unknown mechanism solving this problem. See [62, 63] for a

review.

5 Observable signals

In this section we discuss the phenomenology of our SUSY bi-axion model. The observable
signals from this model can come in the form of primordial non-Gaussianities mediated
by heavy particles, sinflaton being the prime candidate for this. Also, “higher harmonic”
terms in the inflaton potential can give rise to periodic modulations in the CMB.
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5.1 Primordial non-Gaussianities

As first introduced in [29] and further illustrated in [30-39], a particle X can mediate
primordial non-Gaussianities of observable size if it (1) has mx ~ O(Hiut), (2) has suf-
ficiently strong X (0¢)(0¢) couplings, and (3) can give tree-level contribution to inflaton
3-point function which can come only from bosons.

5.1.1 Sinflaton

In the SUSY bi-axion model, mass of the sinflaton (r;) during inflation is
My, R V6Hips, (5.1)
which can be seen schematically from Vgugra as follows:

Vovara = €& (yp%wy? + Do, W[* -3 \W\2> , 52)
V(Ul) ~ 677l2vir1f > UZQVYinf ~ 3H12nf77l2

This contribution to m,, comes from the coupling of 7 to the SUSY curvature during
inflation which also shows up in the KLR model as described in section 2 (see (2.5)).
However, as in the case of the KLR model (see (2.7)), m,, ~ O(Hin¢) is not guaranteed in
our SUSY bi-axion model too. A higher order term in K&hler potential of the form

cC _ —
K5 3 8(25) 33 (P4 + 24 (@5 + Bp)° (53)
2
can give a contribution to the sinflaton mass as

2Vint . c2Vins co M2
2 2 Pl
mZ = = 6H: 1 . 5.4

M, TR mf( N (5.4)

Thus, for X—% > ﬁ&,

between ® 4 and ®p can arise radiatively via the loops of hypermultiplet (Ha, HS) which is

my, > Hins is possible.® The effective higher order coupling (5.3)

charged under both the gauge groups as (1, N). Naive dimensional analysis suggests that
this loop contribution to (5.3) is

272
c N< 1
<A22> - i6 2mi (5:5)
2/ loop ™ MKk
Considering N ~ O(100) and mgx ~ Ms ~ 0.1Mp},” we can have (%) < M% with
2 / loop Pl

g < 0.1. Thus, with g < 0.1, the contribution from loop-induced term (5.3) to sinflaton
mass is small, thus keeping m,, ~ O(Hiyn¢), which is crucial to get observable NG mediated
by it.

80One might worry that the sub-leading term (5.3) can have a dominant effect on the sinflaton mass and
whether this signals breakdown of the EFT expansion. This is however not true. The sinflaton mass in (5.1)
comes purely from Mpi-suppressed SUGRA contributions whereas the higher order Kéhler term (5.3) gives
a direct coupling with suppression scale (A2) which can be below Mp;.

1/3
My ~ Mp (ﬁ) is the scale at which gravity becomes strong in 5D.
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The references [64, 65] and [66] construct SUSY EFT of inflation with a minimal field
content which does not include any scalar other than the inflaton, especially the sinflaton.
This can be interpreted by the UV-completion of these EFTs having sinflaton with mass
much greater than Hi,¢. In our SUSY bi-axion model, as can be seen from (5.4), there
exists a region of parameter space where m,, > Hj,¢, which is consistent with the results
of [64-66]. This parameter space corresponds to Ay < Mpj in (5.4) or g > 0.1 in (5.5). This
feature of having a region of parameter space allowing mginfiaton => Hinr is also present in the
KLR model described in section 2 (see (2.7)). However, in this case, the size of primordial
NG suffers a severe exponential “Boltzmann-suppression” (~ e~y / Hing ). Below, we
focus on the region where m,, ~ O(Hi,¢) which allows the sinflaton to be observable via
primordial NG.

Even in the presence of m,,, ~ O(Hiy¢), n; still needs to have sufficiently strong coupling
with the inflaton to mediate NG of observable size. The Vgygra from (3.7) has the following
coupling which violates the shift symmetry for ¢; and hence is very small:

_ o Hj
Vsucara 2 10 3Ml: Hing mio7- (5.6)

This coupling gives rise to the primordial NG of the following typical size [37, 39]:

_o Hing —6
I ~ 107222 <1076, 5.7
Moy (5.7)

This is much less than the sensitivity of the proposed experiments involving 21-cm cosmol-
ogy, fnL ~ 1072 [67, 68], or even from more futuristic surveys, fxr, ~ 1074 [69].

However, the following shift symmetry preserving, higher order, boundary-localized
term in the Kéhler potential,

c _
K5 5(:;:5)[\*12(% +d4)%, (5.8)
1
can generate the following derivative coupling of sinflaton with inflaton:
C1
L4 3 n (061)° (5.9)
1
The above coupling can give primordial NG of the size [37, 39]
Mpp\* (M) i 2 _¢ [ Mp 4
~ 0.03 cf inf ) <1070 [ —— 5.10
I e ( Ay ) ( Mpy ) ™ Ay )7 (5.10)

2
where the VEV of sinflaton during inflation is (1), ¢ =~ %—F]’} ~ 0.1Mp), as can be calculated

from Vgygra using (3.7). € in the above expression is the slow roll parameter of inflation
which is constrained to be < 1072 [49]. The suppression scale Aj in (5.8), which would be
the cutoff scale on the boundaries, has to be less than M;. Considering M5 ~ O(0.1) Mpy,
this implies that even for A1 being very close to Mj, we can get fnr, ~ O(1072). This signal
can be observed at the proposed 21-cm experiments as described after (5.7). Furthermore,
A1 can be as low as the inflationary energy scale Vhll& < 1072 Mpy, while maintaining EFT

control, in which case fxi, ~ O(1) or even higher is also possible.

—90 —



5.1.2 Boundary-localized gauge singlets

It is also possible to see boundary-localized fields via primordial NG. Consider, for example,
a chiral superfield X localized at one of the boundaries and singlet under both the gauge
groups A and B. If it has the following Kéahler potential, i.e. a direct coupling with ® 4
preserving its shift symmetry,

X

K5 > 5(.%'5) Ax

(Pa+ P4 (X+X)+ XX, (5.11)
then it has the following derivative interaction between the real scalar part of X (nx) and
the inflaton:

L4 Xlnx (8@)2. (5.12)
X

Also, analogous to the case of sinflaton as in (5.2), mass of this gauge singlet during
inflation is

mx ~ V3Hys. (5.13)
(5.12) and (5.13) imply that the size of primordial NG mediated by nx is as follows [37, 39]:
Mpy\* Mpp\?
L~ 075 e [ 22) <1072 (22 (5.14)
Ax Ax

Similar to the case of A; as discussed below (5.10), Ax < Ms ~ 0.1Mp; which can give
a2 O(1). /
If the direct coupling in (5.11) is of the form K5 > 6(:E5)/C\—§(<I> +®)2X X, then it gives
f X
the interaction £4 IC\—’ﬂX 2 (8¢;)?. In this case, the fn1, mediated by X has an additional
X

2 2
suppression factor due to its VEV during inflation: fnr, ~ cgfe (A/([—;l) (%2) . Hence, in
order to get fxr, of an observable size, we need to have (X) during inflation to be sufficiently

large as compared to Ax.

5.2 Periodic modulations in the CMB

Extra-dimensional realization of Natural Inflation gives the leading slowly varying infla-
ton potential with super-Planckian field range (~ feg = Nf > Mp;), while also gener-
ically giving sub-leading “higher harmonic” terms oscillating over a much shorter range
(~ f,f/N < Mpi). Although these higher harmonics in V' (¢i,f) are suppressed by factors
of ™ML they can still give observable effects in the form of primordial features with peri-
odic modulations in the CMB power spectrum. These features, being motivated from var-
ious theoretical constructions, have been searched for in the Planck CMB data [13, 40-48].

In our SUSY bi-axion model, there exist such higher harmonics in V(¢;) arising from
within the model, but they are small. These can come from the sub-dominant terms in the

L
superpotential (3.14), §W = §W (emL : e\%N@l>, suppressed by powers of e™™ . This

gives corrections to the inflaton potential of the form

‘5/1‘; ~ e 2L cog <n]j;lf> . (5.15)
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However, contributions to the periodic modulations in the CMB come only from the har-
monics with n > 1 i.e. n ~ O(N). But, such cos (O(N) : ]%) terms in the potential are

hugely suppressed by ~ e~27LO(N) " Thys, the higher harmonics from within the SUSY
bi-axion model cannot give rise to observable CMB periodic modulations.

But, let us now consider contribution from a generic heavy hypermultiplet beyond our
minimal model (Hg, H$), with mass M and charges (n4,np) under the gauge groups A
and B. This will give an additional term in the superpotential (3.14) as

L
SW = 202 ML |1 — gva(na®atns®s)| (5.16)

where we have taken the parameters governing boundary VEVs of Hgz, H§ to be equal:
v3 = vh = v. As expected, this is suppressed by e ML which is “filtered” out by the extra
dimension for M > 1/L. However, as discussed below, the precision CMB observables can
be sensitive to the contributions to periodic modulations sourced by such a hypermultiplet
if it is not too heavy. The contribution to the inflaton potential from (5.16) is

oV
V;nf

~npele=ML ¢og [(NnB — nA)]f;l] ) (5.17)

The observational constraint on the size of CMB periodic modulations is ’%’ <1075,

also depending upon the higher harmonic frequency [47]. Considering ng ~ O(N) ~ 100

and e”™ ~ 1/3, we can get ‘é—v) ~ 1075 from M ~ 20 x % This shows sensitivity of
inf

CMB periodic modulations to the charged matter much heavier than the KK scale!

The 5D gauge theory being non-renormalizable has a cutoff which is given by Asp ~

g%%. As discussed below (5.5), we require g < 0.1 in order to have m,, ~ O(Hiyt) for

getting observable primordial NG mediated by sinflaton. Hence, for g < 0.1 and ¢ ~ O(1),
the cutoff is Asp = 100 x % Thus, charged matter beyond the minimal model with

1
M'S cAsp (5.18)

oV

inf

~

can generate observable periodic modulations in the CMB power spectrum with

10~°. Of course, some such heavy states are expected near the cutoff of 5D gauge theory
as part of a UV-completion of our non-renormalizable effective field theory.

6 Conclusions

In the present work, we demonstrated the compatibility of low-energy SUSY (i.e. SUSY
broken only at somewhat above the EW scale) with high-scale axionic inflation where the
axionic nature of inflaton is derived from extra-dimensional gauge symmetry. The inflaton
potential, in the presence of SUSY, can be generated at tree-level by charged matter in the
5D bulk with gauge symmetry breaking at the 5D boundaries. We also required that this
robust gauge-theoretic origin for the inflaton satisfy the Weak Gravity Conjecture quantum
gravity constraints, which are especially tight given the super-Planckian inflaton field range
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required by the data (Lyth bound). But we showed that this can be achieved by introducing
two axion supermultiplets, containing a light inflaton direction having feg > Mp;. The
heavy sector, apart from stabilizing the inflationary trajectory, also contributes dominantly
to SUSY breaking (SUSY) during inflation. The Goldstino of spontaneous SUSY during
inflation lies mostly in this heavy sector.

Our SUSY bi-axion model displays an interesting interplay of electroweak (EW), cos-
mological constant (CC) and superpotential (Wp) fine-tunings after considering the SUSY
vacuum we occupy today. The fine-tuning for EW and CC, as usual, prefer low-scale SUSY.
The Wy fine-tuning, however, shows preference for high-scale SUSY. We showed that the
net fine-tuning is dominated by EW and CC fine-tunings and hence prefers low-scale SUSY
i.e. somewhat above the EW scale.

The observable signals in our model can come in the form of primordial non-Gaus-
sianities (NG) and periodic modulations in the CMB. The sinflaton can naturally have
O(Hjys) mass via its coupling to the SUSY curvature during inflation. It can also naturally
have sufficiently strong couplings with inflaton such that it can be seen via primordial NG
in future 21-cm experiments, with the measure of NG, fyr,, being > 1072, The sinflaton
mass can receive large contributions from higher order Kahler terms which, however, can
be kept sub-dominant with small enough gauge coupling. Similarly, a boundary-localized
gauge singlet can have O(Hi,¢) mass during inflation and strong enough coupling with
inflaton, via higher order Kéahler couplings, thus allowing it to mediate large primordial
NG with even fy1, 2 O(1).

Although the extra dimension acts as a “filter” for the unknown UV-completion of our

~ML suppression, the precision observables in the CMB

non-renormalizable model, with e
can still probe modulating features imprinted by such heavy physics. We showed that
charged matter, not far below the effective field theory cutoff of our model, can generate
modulations in the inflationary potential, ‘%) ~ 107°, which lie within the sensitivity of
ongoing searches [45, 47].

As mentioned in section 1, the recent Planck 2018 CMB data [49] puts tight constraints
on Natural Inflation. The bi-axionic inflation studied here, while very roughly giving a
Natural Inflation potential, can have significant differences at precision level that can be
used to better agree with the data, as exemplified in [50]. We hope to further explore

SUSY axionic inflation models in the future for the best fit to the precision data.

A SUGRA preliminaries

We write here the important SUGRA expressions relevant for the present paper. See [70]
for review and further details.
For a general Kahler potential and superpotential for chiral superfields ®;,

K=K(®;,®), W=W(®,), (A.1)
the SUGRA scalar potential is

Vicatar (@3, B:) = e [ K%y (Do, W) (D, W) = 3WW |, (A2)
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with subscripts referring to the respective partial derivatives, and with
Do, W =Ws, + Ko, W. (A.3)

(Dg,W) is the SUSY order parameter for each of the superfields ®;. If there exists spon-
taneous breaking of SUSY in a model, it gives rise to a massless Goldstino,

wGoldstino o8 <D¢’1W> w@” (A4)

where g, are fermions in the superfields ®;. The Goldstino is further “eaten” by the
gravitino which then becomes massive. This is called the “super-Higgs mechanism”.

Acknowledgments

The authors would like to thank Soubhik Kumar, Marco Peloso and Jesse Thaler for helpful
discussions. This research was supported in part by the NSF under Grant No. PHY-1620074
and by the Maryland Center for Fundamental Physics (MCFP).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] D. Baumann, Inflation, in proceedings of the Theoretical Advanced Study Institute in
Elementary Particle Physics: Physics of the Large and the Small (TASI 2009), Boulder,
Colorado, U.S.A., 1-26 June 2009, pp. 523-686
[https://doi.org/10.1142/9789814327183.0010] [arXiv:0907.5424] INSPIRE].

[2] K. Freese, J.A. Frieman and A.V. Olinto, Natural inflation with pseudo - Nambu-Goldstone
bosons, Phys. Rev. Lett. 65 (1990) 3233 [INSPIRE].

[3] PLANCK collaboration, Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys.
594 (2016) A20 [arXiv:1502.02114] [NSPIRE].

[4] D.H. Lyth, What would we learn by detecting a gravitational wave signal in the cosmic
microwave background anisotropy?, Phys. Rev. Lett. 78 (1997) 1861 [hep-ph/9606387|
[INSPIRE].

[5] R. Kallosh, A.D. Linde, D.A. Linde and L. Susskind, Gravity and global symmetries, Phys.
Rev. D 52 (1995) 912 [hep-th/9502069] [INSPIRE].

[6] T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev.
D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

[7] D. Harlow and H. Ooguri, Constraints on Symmetries from Holography, Phys. Rev. Lett. 122
(2019) 191601 [arXiv:1810.05337] [INSPIRE].

[8] J.E. Kim, H.P. Nilles and M. Peloso, Completing natural inflation, JCAP 01 (2005) 005
[hep-ph/0409138] [INSPIRE].

[9] N. Arkani-Hamed, H.-C. Cheng, P. Creminelli and L. Randall, Eztra natural inflation, Phys.
Rev. Lett. 90 (2003) 221302 [hep-th/0301218] [INSPIRE].

— 94 —


https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1142/9789814327183_0010
https://arxiv.org/abs/0907.5424
https://inspirehep.net/search?p=find+EPRINT+arXiv:0907.5424
https://doi.org/10.1103/PhysRevLett.65.3233
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,65,3233%22
https://doi.org/10.1051/0004-6361/201525898
https://doi.org/10.1051/0004-6361/201525898
https://arxiv.org/abs/1502.02114
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.02114
https://doi.org/10.1103/PhysRevLett.78.1861
https://arxiv.org/abs/hep-ph/9606387
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9606387
https://doi.org/10.1103/PhysRevD.52.912
https://doi.org/10.1103/PhysRevD.52.912
https://arxiv.org/abs/hep-th/9502069
https://inspirehep.net/search?p=find+EPRINT+hep-th/9502069
https://doi.org/10.1103/PhysRevD.83.084019
https://doi.org/10.1103/PhysRevD.83.084019
https://arxiv.org/abs/1011.5120
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.5120
https://doi.org/10.1103/PhysRevLett.122.191601
https://doi.org/10.1103/PhysRevLett.122.191601
https://arxiv.org/abs/1810.05337
https://inspirehep.net/search?p=find+EPRINT+arXiv:1810.05337
https://doi.org/10.1088/1475-7516/2005/01/005
https://arxiv.org/abs/hep-ph/0409138
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0409138
https://doi.org/10.1103/PhysRevLett.90.221302
https://doi.org/10.1103/PhysRevLett.90.221302
https://arxiv.org/abs/hep-th/0301218
https://inspirehep.net/search?p=find+EPRINT+hep-th/0301218

[10] Y. Bai and B.A. Stefanek, Natural millicharged inflation, Phys. Rev. D 91 (2015) 096012
[arXiv:1405.6720] [INSPIRE].

[11] R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudoGoldstone boson,
Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].

. Hosotani, Dynamical Gauge Symmetry Breaking as the Casimair ect, ys. Lett.
12] Y. H i, D ical G S Breaki he Casimir Eff Phys. L B 129
(1983) 193 [INSPIRE].

[13] A. de la Fuente, P. Saraswat and R. Sundrum, Natural Inflation and Quantum Gravity,
Phys. Rev. Lett. 114 (2015) 151303 [arXiv:1412.3457] [INSPIRE].

[14] N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The String landscape, black holes and
gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [INSPIRE].

[15] M. Czerny, T. Higaki and F. Takahashi, Multi-Natural Inflation in Supergravity and
BICEP2, Phys. Lett. B 734 (2014) 167 [arXiv:1403.5883] [NSPIRE].

[16] X. Gao, T. Li and P. Shukla, Combining Universal and Odd RR Azions for Aligned Natural
Inflation, JCAP 10 (2014) 048 [arXiv:1406.0341] [INSPIRE].

[17] C. Long, L. McAllister and P. McGuirk, Aligned Natural Inflation in String Theory, Phys.
Rev. D 90 (2014) 023501 [arXiv:1404.7852] [NSPIRE].

[18] T. Ali, S.S. Haque and V. Jejjala, Natural Inflation from Near Alignment in Heterotic String
Theory, Phys. Rev. D 91 (2015) 083516 [arXiv:1410.4660] [INSPIRE].

[19] 1. Ben-Dayan, F.G. Pedro and A. Westphal, Towards Natural Inflation in String Theory,
Phys. Rev. D 92 (2015) 023515 [arXiv:1407.2562] [INSPIRE].

[20] E. Palti, On Natural Inflation and Moduli Stabilisation in String Theory, JHEP 10 (2015)
188 [arXiv:1508.00009] [INSPIRE].

[21] R. Kappl, H.P. Nilles and M.W. Winkler, Natural Inflation and Low Energy Supersymmetry,
Phys. Lett. B 746 (2015) 15 [arXiv:1503.01777] [INSPIRE].

[22] R. Kallosh and A.D. Linde, Landscape, the scale of SUSY breaking and inflation, JHEP 12
(2004) 004 [hep-th/0411011] INSPIRE].

[23] T. He, S. Kachru and A. Westphal, Gravity waves and the LHC: Towards high-scale inflation
with low-energy SUSY, JHEP 06 (2010) 065 [arXiv:1003.4265] INSPIRE].

[24] T. Kobayashi and M. Sakai, Inflation, moduli (de)stabilization and supersymmetry breaking,
JHEP 04 (2011) 121 [arXiv:1012.2187] [inSPIRE].

[25] S. Antusch, K. Dutta and S. Halter, Combining High-scale Inflation with Low-energy SUSY,
JHEP 03 (2012) 105 [arXiv:1112.4488] [INSPIRE].

[26] Y. Yamada, Instant uplifted inflation: A solution for a tension between inflation and SUSY
breaking scale, JHEP 07 (2013) 039 [arXiv:1211.1455] INSPIRE].

[27] M. Czerny, T. Higaki and F. Takahashi, Multi-Natural Inflation in Supergravity, JHEP 05
(2014) 144 [arXiv:1403.0410] [INSPIRE].

[28] W. Buchmiiller, E. Dudas, L. Heurtier, A. Westphal, C. Wieck and M.W. Winkler,
Challenges for Large-Field Inflation and Moduli Stabilization, JHEP 04 (2015) 058
[arXiv:1501.05812] [INSPIRE].

[29] X. Chen and Y. Wang, Large non-Gaussianities with Intermediate Shapes from Quasi-Single
Field Inflation, Phys. Rev. D 81 (2010) 063511 [arXiv:0909.0496] [INSPIRE].

— 95—


https://doi.org/10.1103/PhysRevD.91.096012
https://arxiv.org/abs/1405.6720
https://inspirehep.net/search?p=find+EPRINT+arXiv:1405.6720
https://doi.org/10.1016/j.nuclphysb.2003.08.027
https://arxiv.org/abs/hep-ph/0306259
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0306259
https://doi.org/10.1016/0370-2693(83)90841-9
https://doi.org/10.1016/0370-2693(83)90841-9
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B129,193%22
https://doi.org/10.1103/PhysRevLett.114.151303
https://arxiv.org/abs/1412.3457
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.3457
https://doi.org/10.1088/1126-6708/2007/06/060
https://arxiv.org/abs/hep-th/0601001
https://inspirehep.net/search?p=find+EPRINT+hep-th/0601001
https://doi.org/10.1016/j.physletb.2014.05.041
https://arxiv.org/abs/1403.5883
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.5883
https://doi.org/10.1088/1475-7516/2014/10/048
https://arxiv.org/abs/1406.0341
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.0341
https://doi.org/10.1103/PhysRevD.90.023501
https://doi.org/10.1103/PhysRevD.90.023501
https://arxiv.org/abs/1404.7852
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.7852
https://doi.org/10.1103/PhysRevD.91.083516
https://arxiv.org/abs/1410.4660
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.4660
https://doi.org/10.1103/PhysRevD.92.023515
https://arxiv.org/abs/1407.2562
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.2562
https://doi.org/10.1007/JHEP10(2015)188
https://doi.org/10.1007/JHEP10(2015)188
https://arxiv.org/abs/1508.00009
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.00009
https://doi.org/10.1016/j.physletb.2015.04.035
https://arxiv.org/abs/1503.01777
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.01777
https://doi.org/10.1088/1126-6708/2004/12/004
https://doi.org/10.1088/1126-6708/2004/12/004
https://arxiv.org/abs/hep-th/0411011
https://inspirehep.net/search?p=find+EPRINT+hep-th/0411011
https://doi.org/10.1007/JHEP06(2010)065
https://arxiv.org/abs/1003.4265
https://inspirehep.net/search?p=find+EPRINT+arXiv:1003.4265
https://doi.org/10.1007/JHEP04(2011)121
https://arxiv.org/abs/1012.2187
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.2187
https://doi.org/10.1007/JHEP03(2012)105
https://arxiv.org/abs/1112.4488
https://inspirehep.net/search?p=find+EPRINT+arXiv:1112.4488
https://doi.org/10.1007/JHEP07(2013)039
https://arxiv.org/abs/1211.1455
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.1455
https://doi.org/10.1007/JHEP05(2014)144
https://doi.org/10.1007/JHEP05(2014)144
https://arxiv.org/abs/1403.0410
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.0410
https://doi.org/10.1007/JHEP04(2015)058
https://arxiv.org/abs/1501.05812
https://inspirehep.net/search?p=find+EPRINT+arXiv:1501.05812
https://doi.org/10.1103/PhysRevD.81.063511
https://arxiv.org/abs/0909.0496
https://inspirehep.net/search?p=find+EPRINT+arXiv:0909.0496

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

X. Chen and Y. Wang, Quasi-Single Field Inflation and Non-Gaussianities, JCAP 04 (2010)
027 [arXiv:0911.3380] [INSPIRE].

X. Chen, Primordial Non-Gaussianities from Inflation Models, Adv. Astron. 2010 (2010)
638979 [arXiv:1002.1416] [INSPIRE].

D. Baumann and D. Green, Signatures of Supersymmetry from the FEarly Universe, Phys.
Rev. D 85 (2012) 103520 [arXiv:1109.0292] [iNSPIRE].

V. Assassi, D. Baumann and D. Green, On Soft Limits of Inflationary Correlation
Functions, JCAP 11 (2012) 047 [arXiv:1204.4207] nSPIRE].

X. Chen and Y. Wang, Quasi-Single Field Inflation with Large Mass, JCAP 09 (2012) 021
[arXiv:1205.0160] [INSPIRE].

S. Pi and M. Sasaki, Curvature Perturbation Spectrum in Two-field Inflation with a Turning
Trajectory, JCAP 10 (2012) 051 [arXiv:1205.0161] INSPIRE].

T. Noumi, M. Yamaguchi and D. Yokoyama, Effective field theory approach to quasi-single
field inflation and effects of heavy fields, JHEP 06 (2013) 051 [arXiv:1211.1624] [nSPIRE].

N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, arXiv:1503.08043
[INSPIRE].

E. Dimastrogiovanni, M. Fasiello and M. Kamionkowski, Imprints of Massive Primordial
Fields on Large-Scale Structure, JCAP 02 (2016) 017 [arXiv:1504.05993] [INSPIRE].

S. Kumar and R. Sundrum, Heavy-Lifting of Gauge Theories By Cosmic Inflation, JHEP 05
(2018) 011 [arXiv:1711.03988] [INSPIRE].

X. Wang, B. Feng, M. Li, X.-L. Chen and X. Zhang, Natural inflation, Planck scale physics
and oscillating primordial spectrum, Int. J. Mod. Phys. D 14 (2005) 1347
[astro-ph/0209242] [INSPIRE].

C. Pahud, M. Kamionkowski and A.R. Liddle, Oscillations in the inflaton potential?, Phys.
Rev. D 79 (2009) 083503 [arXiv:0807.0322] [INSPIRE].

R. Flauger, L. McAllister, E. Pajer, A. Westphal and G. Xu, Oscillations in the CMB from
Azion Monodromy Inflation, JCAP 06 (2010) 009 [arXiv:0907.2916] [INSPIRE].

T. Kobayashi and F. Takahashi, Running Spectral Index from Inflation with Modulations,
JCAP 01 (2011) 026 [arXiv:1011.3988] [INSPIRE].

R. Easther and R. Flauger, Planck Constraints on Monodromy Inflation, JCAP 02 (2014)
037 [arXiv:1308.3736] [INSPIRE].

R. Flauger, L. McAllister, E. Silverstein and A. Westphal, Drifting Oscillations in Axion
Monodromy, JCAP 10 (2017) 055 [arXiv:1412.1814] InSPIRE].

T. Higaki and F. Takahashi, Azion Landscape and Natural Inflation, Phys. Lett. B 744
(2015) 153 [arXiv:1409.8409] [INnSPIRE].

K. Choi and H. Kim, Aligned natural inflation with modulations, Phys. Lett. B 759 (2016)
520 [arXiv:1511.07201] [INSPIRE].

L.C. Price, Power spectrum oscillations from Planck-suppressed operators in effective field
theory motivated monodromy inflation, Phys. Rev. D 92 (2015) 103507 [arXiv:1507.08360)]
[INSPIRE].

— 96 —


https://doi.org/10.1088/1475-7516/2010/04/027
https://doi.org/10.1088/1475-7516/2010/04/027
https://arxiv.org/abs/0911.3380
https://inspirehep.net/search?p=find+EPRINT+arXiv:0911.3380
https://doi.org/10.1155/2010/638979
https://doi.org/10.1155/2010/638979
https://arxiv.org/abs/1002.1416
https://inspirehep.net/search?p=find+EPRINT+arXiv:1002.1416
https://doi.org/10.1103/PhysRevD.85.103520
https://doi.org/10.1103/PhysRevD.85.103520
https://arxiv.org/abs/1109.0292
https://inspirehep.net/search?p=find+EPRINT+arXiv:1109.0292
https://doi.org/10.1088/1475-7516/2012/11/047
https://arxiv.org/abs/1204.4207
https://inspirehep.net/search?p=find+EPRINT+arXiv:1204.4207
https://doi.org/10.1088/1475-7516/2012/09/021
https://arxiv.org/abs/1205.0160
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.0160
https://doi.org/10.1088/1475-7516/2012/10/051
https://arxiv.org/abs/1205.0161
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.0161
https://doi.org/10.1007/JHEP06(2013)051
https://arxiv.org/abs/1211.1624
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.1624
https://arxiv.org/abs/1503.08043
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.08043
https://doi.org/10.1088/1475-7516/2016/02/017
https://arxiv.org/abs/1504.05993
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.05993
https://doi.org/10.1007/JHEP05(2018)011
https://doi.org/10.1007/JHEP05(2018)011
https://arxiv.org/abs/1711.03988
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.03988
https://doi.org/10.1142/S0218271805006985
https://arxiv.org/abs/astro-ph/0209242
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0209242
https://doi.org/10.1103/PhysRevD.79.083503
https://doi.org/10.1103/PhysRevD.79.083503
https://arxiv.org/abs/0807.0322
https://inspirehep.net/search?p=find+EPRINT+arXiv:0807.0322
https://doi.org/10.1088/1475-7516/2010/06/009
https://arxiv.org/abs/0907.2916
https://inspirehep.net/search?p=find+EPRINT+arXiv:0907.2916
https://doi.org/10.1088/1475-7516/2011/01/026
https://arxiv.org/abs/1011.3988
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.3988
https://doi.org/10.1088/1475-7516/2014/02/037
https://doi.org/10.1088/1475-7516/2014/02/037
https://arxiv.org/abs/1308.3736
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.3736
https://doi.org/10.1088/1475-7516/2017/10/055
https://arxiv.org/abs/1412.1814
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.1814
https://doi.org/10.1016/j.physletb.2015.03.052
https://doi.org/10.1016/j.physletb.2015.03.052
https://arxiv.org/abs/1409.8409
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.8409
https://doi.org/10.1016/j.physletb.2016.05.097
https://doi.org/10.1016/j.physletb.2016.05.097
https://arxiv.org/abs/1511.07201
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.07201
https://doi.org/10.1103/PhysRevD.92.103507
https://arxiv.org/abs/1507.08360
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.08360

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[64]

[65]

[66]

[67]

PLANCK collaboration, Planck 2018 results. X. Constraints on inflation, arXiv:1807.06211
[INSPIRE].

M. Peloso and C. Unal, Trajectories with suppressed tensor-to-scalar ratio in Aligned Natural
Inflation, JCAP 06 (2015) 040 [arXiv:1504.02784] [INSPIRE].

M. Kawasaki, M. Yamaguchi and T. Yanagida, Natural chaotic inflation in supergravity,
Phys. Rev. Lett. 85 (2000) 3572 [hep-ph/0004243] [INSPIRE].

R. Kallosh, A.D. Linde and T. Rube, General inflaton potentials in supergravity, Phys. Rev.
D 83 (2011) 043507 [arXiv:1011.5945] [INSPIRE].

A. Achucarro, S. Mooij, P. Ortiz and M. Postma, Sgoldstino inflation, JCAP 08 (2012) 013
[arXiv:1203.1907] [INSPIRE].

S. Ferrara and D. Roest, General sGoldstino Inflation, JCAP 10 (2016) 038
[arXiv:1608.03709] [INSPIRE].

S.V. Ketov and T. Terada, Generic Scalar Potentials for Inflation in Supergravity with a
Single Chiral Superfield, JHEP 12 (2014) 062 [arXiv:1408.6524] [INSPIRE].

L. Alvarez-Gaumé, C. Gomez and R. Jimenez, A Minimal Inflation Scenario, JCAP 03
(2011) 027 [arXiv:1101.4948] [INSPIRE].

J. Polonyi, Generalization of the Massive Scalar Multiplet Coupling to the Supergravity,
Central Research Institute for Physics, Budapest Hungary (1977) [KFKI-77-93]
[https://doi.org/10.13140/RG.2.1.4621.4884].

N. Arkani-Hamed, T. Gregoire and J.G. Wacker, Higher dimensional supersymmetry in
4 — D superspace, JHEP 03 (2002) 055 [hep-th/0101233] [INSPIRE].

R. Sundrum, TASI 2004 lectures: To the fifth dimension and back, in proceedings of the
Theoretical Advanced Study Institute in Elementary Particle Physics: Many Dimensions of
String Theory (TASI 2005), Boulder, Colorado, U.S.A., 5 June-1 July 2005, pp. 585-630
[hep-th/0508134] [INSPIRE].

E. Dudas and C. Wieck, Moduli backreaction and supersymmetry breaking in string-inspired
inflation models, JHEP 10 (2015) 062 [arXiv:1506.01253] [INSPIRE].

M.R. Douglas and S. Kachru, Fluz compactification, Rev. Mod. Phys. 79 (2007) 733
[hep-th/0610102] [INSPIRE].

S. Weinberg, The Cosmological Constant Problem, Rev. Mod. Phys. 61 (1989) 1 [INSPIRE].

R. Bousso, TASI Lectures on the Cosmological Constant, Gen. Rel. Grav. 40 (2008) 607
[arXiv:0708.4231] [INSPIRE].

Y. Kahn, D.A. Roberts and J. Thaler, The goldstone and goldstino of supersymmetric
inflation, JHEP 10 (2015) 001 [arXiv:1504.05958] [NSPIRE].

S. Ferrara, R. Kallosh and J. Thaler, Cosmology with orthogonal nilpotent superfields, Phys.
Rev. D 93 (2016) 043516 [arXiv:1512.00545] INSPIRE].

L.V. Delacretaz, V. Gorbenko and L. Senatore, The Supersymmetric Effective Field Theory
of Inflation, JHEP 03 (2017) 063 [arXiv:1610.04227] [INSPIRE].

A. Loeb and M. Zaldarriaga, Measuring the small - scale power spectrum of cosmic density
fluctuations through 21 cm tomography prior to the epoch of structure formation, Phys. Rev.
Lett. 92 (2004) 211301 [astro-ph/0312134] [INSPIRE].

— 97 -


https://arxiv.org/abs/1807.06211
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.06211
https://doi.org/10.1088/1475-7516/2015/06/040
https://arxiv.org/abs/1504.02784
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.02784
https://doi.org/10.1103/PhysRevLett.85.3572
https://arxiv.org/abs/hep-ph/0004243
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0004243
https://doi.org/10.1103/PhysRevD.83.043507
https://doi.org/10.1103/PhysRevD.83.043507
https://arxiv.org/abs/1011.5945
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.5945
https://doi.org/10.1088/1475-7516/2012/08/013
https://arxiv.org/abs/1203.1907
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.1907
https://doi.org/10.1088/1475-7516/2016/10/038
https://arxiv.org/abs/1608.03709
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.03709
https://doi.org/10.1007/JHEP12(2014)062
https://arxiv.org/abs/1408.6524
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.6524
https://doi.org/10.1088/1475-7516/2011/03/027
https://doi.org/10.1088/1475-7516/2011/03/027
https://arxiv.org/abs/1101.4948
https://inspirehep.net/search?p=find+EPRINT+arXiv:1101.4948
https://doi.org/10.13140/RG.2.1.4621.4884
https://doi.org/10.1088/1126-6708/2002/03/055
https://arxiv.org/abs/hep-th/0101233
https://inspirehep.net/search?p=find+EPRINT+hep-th/0101233
https://arxiv.org/abs/hep-th/0508134
https://inspirehep.net/search?p=find+EPRINT+hep-th/0508134
https://doi.org/10.1007/JHEP10(2015)062
https://arxiv.org/abs/1506.01253
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.01253
https://doi.org/10.1103/RevModPhys.79.733
https://arxiv.org/abs/hep-th/0610102
https://inspirehep.net/search?p=find+EPRINT+hep-th/0610102
https://doi.org/10.1103/RevModPhys.61.1
https://inspirehep.net/search?p=find+J+%22Rev.Mod.Phys.,61,1%22
https://doi.org/10.1007/s10714-007-0557-5
https://arxiv.org/abs/0708.4231
https://inspirehep.net/search?p=find+EPRINT+arXiv:0708.4231
https://doi.org/10.1007/JHEP10(2015)001
https://arxiv.org/abs/1504.05958
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.05958
https://doi.org/10.1103/PhysRevD.93.043516
https://doi.org/10.1103/PhysRevD.93.043516
https://arxiv.org/abs/1512.00545
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.00545
https://doi.org/10.1007/JHEP03(2017)063
https://arxiv.org/abs/1610.04227
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.04227
https://doi.org/10.1103/PhysRevLett.92.211301
https://doi.org/10.1103/PhysRevLett.92.211301
https://arxiv.org/abs/astro-ph/0312134
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0312134

[68] J.B. Mutioz, Y. Ali-Haimoud and M. Kamionkowski, Primordial non-Gaussianity from the
bispectrum of 21-cm fluctuations in the dark ages, Phys. Rev. D 92 (2015) 083508
[arXiv:1506.04152] [INSPIRE].

[69] P.D. Meerburg, M. Miinchmeyer, J.B. Mufioz and X. Chen, Prospects for Cosmological
Collider Physics, JCAP 03 (2017) 050 [arXiv:1610.06559] INSPIRE].

[70] J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press,
Princeton NJ U.S.A. (1992).

~ 98 —


https://doi.org/10.1103/PhysRevD.92.083508
https://arxiv.org/abs/1506.04152
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.04152
https://doi.org/10.1088/1475-7516/2017/03/050
https://arxiv.org/abs/1610.06559
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.06559

	Introduction
	The Kallosh-Linde-Rube model
	SUSY bi-axion model
	Light axion supermultiplet from 5D SUSY gauge theory
	Bi-axion generalization to realize f(eff) > M(Pl)
	Adding SUGRA and identifying the SUSY vacuum

	Inflationary history
	Inflationary trajectory
	SUSY breaking during inflation
	SUSY breaking after inflation
	Interplay of electroweak, cosmological constant and superpotential tunings

	Observable signals
	Primordial non-Gaussianities
	Sinflaton
	Boundary-localized gauge singlets

	Periodic modulations in the CMB

	Conclusions
	SUGRA preliminaries

