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Abstract: We develop a supersymmetric bi-axion model of high-scale inflation coupled

to supergravity, in which the axionic structure originates from, and is protected by, gauge

symmetry in an extra dimension. While local supersymmetry (SUSY) is necessarily Higgsed

at high scales during inflation we show that it can naturally survive down to the ∼ TeV

scale in the current era in order to resolve the electroweak hierarchy problem. We show how

a suitable inflationary effective potential for the axions can be generated at tree-level by

charged fields under the higher-dimensional gauge symmetry. The inflationary trajectory

lies along the lightest direction in the bi-axion field space, with periodic effective potential

and an effective super-Planckian field range emerging from fundamentally sub-Planckian

dynamics. The heavier direction in the field space is shown to also play an important role, as

the dominant source of super-Higgsing during inflation. This model presents an interesting

interplay of tuning considerations relating the electroweak hierarchy, cosmological constant

and inflationary superpotential, where maximal naturalness favors SUSY breaking near

the electroweak scale after inflation. The scalar superpartner of the axionic inflaton, the

“sinflaton”, can naturally have ∼ Hubble mass during inflation and sufficiently strong

coupling to the inflaton to mediate primordial non-Gaussianities of observable strength

in future 21-cm surveys. Non-minimal charged fields under the higher-dimensional gauge

symmetry can contribute to periodic modulations in the CMB, within the sensitivity of

ongoing measurements.
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1 Introduction

Cosmic inflation provides an attractive framework for understanding the robustness of the

early state of our universe (see [1] for a review). Its simplest implementation driven by a

slowly rolling scalar field (inflaton) requires a very flat inflaton potential, suggesting that

the inflaton is a pseudo-Goldstone boson of a spontaneously broken global symmetry. A

small explicit breaking of the symmetry can then give rise to a weak potential naturally

varying on the scale of the spontaneous breaking, f . A canonical example is given by the

model of “Natural Inflation” [2], with periodic inflaton potential,

V (φ) = V0

(
1− cos

φ

f

)
. (1.1)
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However, even a crude fit to the Cosmic Microwave Background (CMB) data [3] requires

f &MPl,
1 which conflicts with our general expectation that there should be no dynamical

scales above the Planck scale, and with the particular arguments that global symmetries

themselves are ill-defined in the context of Quantum Gravity [5–7].

These concerns can be resolved by (a) relating but not identifying the scale over which

the inflaton potential varies with the scale of spontaneous symmetry breaking, and (b)

realizing the spontaneously broken approximate symmetries as accidental symmetries in

the IR rather than fundamental global symmetries in the UV. The simplest version of

(a) is given by beginning with two pseudo-Goldstone bosons, φA and φB, for two global

symmetries U(1)A×U(1)B spontaneously broken at approximately the same scale fA, fB ≈
f � MPl [8]. For suitable explicit symmetry breaking sources one can then generate a

potential of the form

V (φA, φB) = V
(1)

0

(
1− cos

φB
fB

)
+ V

(2)
0

[
1− cos

(
φA
fA

+N
φB
fB

)]
, (1.2)

where N represents a large charge under U(1)B for one of the “spurions” characterizing

the explicit breaking. Naively, this makes the problem worse, since the potential varies in

the φA direction on the scale f � MPl, and in the φB direction on the scale f/N � f ,

while CMB data suggests a potential varying more slowly than the Planck scale. However,

just such a potential can arise when we properly consider the mass eigenstates. Taking for

simplicity V
(1),(2)

0 ≈ V0, these are given by heavy and light directions in field space,

φh ≡ φB +
1

N
φA, φl ≡ φA −

1

N
φB. (1.3)

After setting the heavy φh to its vacuum expectation value (VEV), we can obtain the

effective potential for the light field φl as

Veff(φl)
∣∣
〈φh〉≈0

≈ V0

(
1− cos

φl
Nf

)
. (1.4)

This corresponds to an effective Natural Inflation model, with inflaton φl and an emergent

scale of potential variation feff = Nf , which can be > MPl even though f < MPl, for

sufficiently large spurious charge N . We will refer to this as the “Bi-axion inflation”

model.

An attractive microscopic realization of Bi-axion inflation satisfying (b), based on the

mechanism of “extranatural inflation” [9], is provided by using gauge symmetry in an

extra dimension [10]. If the higher-dimensional spacetime is highly warped so as to have

an AdS5/CFT4 type holographic purely-4D dual description, then the dual interpretation

is that the axions are composite Goldstone bosons of some strong dynamics (see e.g. [11]),

analogous to the pions of QCD, and the spontaneously broken symmetries are accidental

or emergent symmetries below the Planck scale. Here, we just briefly summarize the

unwarped (or mildly warped) higher-dimensional case. The 4D axions above are realized

1This is an example of the model-independent Lyth bound [4] in the case of Natural Inflation model.
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as gauge-invariant Wilson-loops (or lines, given suitable boundary conditions) around (or

across) the compact extra dimension,

φA ≡
∫ L

0
A5 dx5 , φB ≡

∫ L

0
B5 dx5. (1.5)

Charged matter propagating in the 5D bulk, H1 and H2, with mass m, can generate the

potential (1.2) for φA and φB, given that they are charged under the two gauge groups as

(0, 1) and (1, N), respectively. The scales fA, fB emerge as

fA =
1

gAL
, fB =

1

gBL
. (1.6)

The potential in (1.2) can be generated minimally by the loop contributions of H1, H2 via

the “Hosotani mechanism” [12] which gives

V loop
0 ∼ e−mL

L4
, (1.7)

in (1.4), as well as “higher harmonics” accompanied by higher powers of e−mL. As studied

in [13], bi-axion extranatural inflation can also non-trivially satisfy the plausible constraints

of the Weak Gravity Conjecture (WGC) [14]. These quantum gravity constraints are an

even stronger form of the arguments forbidding fundamental global symmetries, to also

forbid UV gauge symmetries with very weak gauge couplings (relative to gravitational

strength). These higher dimensional realizations of bi-axion inflation can be generalized to

multiple-axion models, which then allow for more modest values of charge, N [10, 13].

In this paper, we study compatibility of the bi-axion inflation scenario arising from

higher dimensional gauge theory with the scenario of ∼ TeV-scale supersymmetry (SUSY)

for resolving the electroweak hierarchy problem. In the presence of SUSY, the loop contri-

butions from the charged matter fields to the effective potential of 4D axions cancel out.

We are hence forced to have tree-level contributions for the same, which can be achieved

if H1, H2 have non-zero VEVs (v, v′) at both the boundaries, which generates

V tree
0 ∼ e−mLmvv′. (1.8)

Obviously, the question of whether the above-mentioned very plausible and robust forms

of inflation are naturally realizable within the constraints of supergravity (SUGRA) dy-

namics in the UV, with SUSY being present at ∼ collider energies today, is of considerable

importance to our picture of fundamental physics and the prospects for experiments and

observations. See [15–21] for other discussions of bi-axion inflation combined with SUSY,

where the axions have alternative UV realizations. See [22–28] for other attempts to recon-

cile low energy SUSY and inflation from a UV perspective. We will also explore the possible

new signatures from extra fields in the axion supermultiplets, most notably in the form of

primordial non-Gaussianities (NG) in the cosmological collider physics program [29–39] as

well as periodic modulations in the CMB [13, 40–48].

Models of single-field inflation with relatively simple potentials, such as Natural In-

flation and its variants, necessarily operate at high scales in order to satisfy cosmological
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data, with inflationary Hubble scale Hinf ∼ 1013–1014 GeV. The recently released Planck

2018 data places tight constraints on such high-scale models, especially given the non-

observation of CMB B-modes induced by super-horizon gravitational waves [49]. Natural

Inflation itself is now disfavored at 95% confidence level, but not ruled out. However, the

bi-axionic structure of inflation from extra-dimensional gauge symmetry can generically

produce multiple periodic terms in the potential (1.1), which can alleviate the tension

above with a suitable and plausibly not very fine-tuned choice of parameters. We leave

such a detailed analysis and appraisal for a future study. Furthermore, there are various

ways discussed in the existing literature to relax these constraints for axion-based inflation,

e.g. by realizing the structure of hybrid inflation from a bi-axion potential [50].

The paper is organized as follows. In section 2, we review a SUGRA-based inflation

model, the “Kallosh-Linde-Rube model” [51, 52], which has many common features with

our SUSY bi-axion model as developed in sections 3 and 4. In section 3, starting from the

5D SUSY gauge structure, we first construct a 4D effective theory of an axion supermulti-

plet. After generalizing it to the case of two axions, we account for (effective) 4D SUGRA

couplings below the compactification scale. In section 4, we discuss the inflationary tra-

jectory along the lightest direction in the field space with an effective super-Planckian

field range and periodic potential, also stabilized along all the other heavier directions.

We then describe the picture of SUSY breaking (����SUSY) during inflation which we find to

be caused mostly by the heavy sector and not the inflaton sector. Furthermore, we also

account for the post-inflationary ����SUSY vacuum that we occupy today, which we find not

affecting the inflationary dynamics significantly as long as the ����SUSY scale is much below

the inflationary energy scale. This model presents an interesting interplay of fine-tunings

in the electroweak (EW) sector, cosmological constant (CC), and superpotential which are

connected together after incorporating the ����SUSY today. The superpotential fine-tuning

favors ����SUSY at high-scale, however the net fine-tuning, dominated by the EW and CC

fine-tunings, can be shown to favor ����SUSY at low-scale i.e. somewhat above the EW scale.

In section 5, we discuss observable signals in the form of primordial NG and periodic mod-

ulations in the CMB. The “sinflaton”, the real scalar partner of inflaton, can have O(Hinf)

mass during inflation and sufficiently strong coupling to the inflaton to mediate primordial

NG of observable strength in future experiments. A boundary-localized gauge singlet, in

the presence of a shift-symmetric Kähler coupling, can also mediate sizeable primordial

NG. Charged matter much heavier than the compactification scale, even only modestly

below the 5D gauge theory cut-off, can contribute to periodic modulations in the CMB,

within the sensitivity of ongoing searches. We conclude in section 6.

We use units with the reduced Planck mass MPl = 1 everywhere in the paper, except

sections 4.4 and 5, where we explicitly write factors of MPl in order to get a better sense

of the numbers.

2 The Kallosh-Linde-Rube model

We seek a locally supersymmetric description of high-scale inflation in which SUSY is only

broken somewhat above the weak scale today. Since the weak scale is � Hinf , we can first
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consider the supersymmetric limit of the ground state today. On the other hand, during

inflation we know that the approximate de Sitter geometry is incompatible with SUSY. So

inflation must be a spontaneous breaking (super-Higgsing) of SUSY within an excitation

on top of today’s SUSY vacuum, which we can also approximate to have zero vacuum

energy (cosmological constant).

In order to have a light inflaton (φ), we will have an inflaton supermultiplet (Φ) with

approximate shift symmetry. This can be implemented with K(Φ, Φ̄) = K(Φ + Φ̄) and

φ = Im(Φ). A small explicit breaking of the shift symmetry from the superpotential

can generate slow-roll potential for φ. Thus, the lightness of inflaton can be explained

by its pseudo-Goldstone boson nature. However, implementing inflation with only this

single supermultiplet is challenging [53]. In this case, the Goldstino of spontaneous ����SUSY

during inflation would have to be the inflatino (then “eaten” by the gravitino). Consider

K = 1
2

(
Φ + Φ̄

)2
and W = f(Φ). Then, restricting to polynomial f(Φ) for illustration,

in SUGRA, V (φ) ≈ f ′2(φ/
√

2) − 3f2(φ/
√

2), which has a clear instability.2 This can be

avoided by introducing a separate supermultiplet for the Goldstino during inflation.

We see that the Goldstino multiplet must be part of a sector that Higgses SUSY during

inflation. One of the simplest models to describe spontaneous ����SUSY coupled to SUGRA,

is the Polonyi model [57]:

K = S̄S − λ
(
S̄S
)2
, W = µS, (2.1)

with the addition of the non-minimal Kähler coupling λ. The SUSY order parameter in

the vacuum is DSW
∣∣
〈S〉≈0

≈ µ 6= 0. Spontaneous ����SUSY in this model gives rise to a

massless Goldstino which however is eaten by the gravitino which then becomes massive

(“super-Higgs mechanism”). The quartic term in the Kähler potential also makes the scalar

heavy, with m2
S ≈ 4λµ2. Thus, there is no light particle in this sector. During inflation, in

the limit of the slow-roll approximation i.e. for a fixed value of inflaton, the physics can be

approximately described by this model. But we need to have a coupling between this sector

(S) and the inflaton (Φ) such that there is no ����SUSY at Φ = 0 (i.e. at the vacuum today)

but with ����SUSY at Φ = Φ0 6= 0 (i.e. during inflation). In other words, the µ parameter

of (2.1) needs to be made Φ-dependent in a suitable manner. This can be achieved with

the following model [51, 52]:

K =
1

2

(
Φ + Φ̄

)2
+ S̄S − λ

(
S̄S
)2
, W = Sf(Φ), (2.2)

which we will refer to as the “Kallosh-Linde-Rube (KLR) model” and consider as a toy

model for our SUSY bi-axion model. All scalars except for φ = Im(Φ) can be shown to

be heavy and thus the inflationary potential (see appendix A for SUGRA scalar potential)

can be obtained as,

V (φ)
∣∣
〈S〉,〈η〉 = f2(φ/

√
2),

Vinf = 3H2
inf = f2(φ0/

√
2).

(2.3)

2However, see [54–56] for attempts towards building “sGoldstino inflation” model.
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The SUSY order parameters for Φ and S during inflation can be evaluated as follows:

DΦW
∣∣
inf
≈ 0 , DSW

∣∣
inf
≈ f(Φ0) 6= 0. (2.4)

This implies that, as expected, ����SUSY during inflation is caused by the heavy sector (S).

Hence the Goldstino during inflation (further eaten by the gravitino) is equal to the fermion

from the S-sector (ψS) and not the inflatino (ψΦ).

The real scalar partner of the inflaton i.e. sinflaton (η = Re(Φ)), has the following

mass coming from its coupling to the SUSY-breaking curvature from (2.2):

mη ≈
√

6Hinf . (2.5)

This is within the favorable range of masses for observing it in primordial NG in the

cosmological collider physics program. However, such a light sinflaton (i.e. mη ∼ O(Hinf))

is not guaranteed from this class of models. Indeed, a higher order term in the Kähler

potential with a direct coupling between S and Φ, respecting the shift symmetry of φ,

K 3 − c

Λ2

(
Φ + Φ̄

)2
S̄S, (2.6)

can give a large contribution to the sinflaton mass:

m2
η ≈ 2Vinf + c

Vinf

Λ2
≈ 6H2

inf

(
1 +

c

2Λ2

)
. (2.7)

Thus, mη ∼ O(Hinf) for Λ ≈ O(1)MPl. But, mη � Hinf is also possible with Λ�MPl.

Even assuming mη ∼ O(Hinf), in order for η to mediate observable primordial NG,

there has to be sufficiently strong coupling between it and the inflaton (φ). The SUGRA

scalar potential from (2.2) does have such couplings, but these are shift-symmetry vi-

olating and hence very small, e.g. L 3 m2
φη

2φ2 ∼ 10−10η2φ2. However, higher order

shift-symmetric terms in Kähler potential,

K 3 c′

Λ2

(
Φ + Φ̄

)4
, (2.8)

can generate derivative-interactions as

L 3 c′

Λ2
(∂φ)2η2. (2.9)

This sinflaton-inflaton interaction (with a non-zero VEV for η) along with mη ∼ O(Hinf)

can give rise to observable NG for sufficiently small Λ and large 〈η〉. However, in this

paper, we will not pursue the phenomenology of this model further.

The main drawback of this construction is that the origin of such a form of La-

grangian (2.2) is not explained within the model. Also, it suffers from the issue of trans-

Planckian field displacement needed for φ, since a typical choice of f(Φ) in (2.2) gives a

large-field inflation model subject to the Lyth bound [4].

– 6 –
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(a) Non-SUSY. (b) SUSY.

Figure 1. 5D gauge field and charged matter: (a) non-SUSY and (b) SUSY version. See text and

table 1 for details.

3 SUSY bi-axion model

In this section, we develop the setup of supersymmetric inflation with the pseudo-Goldstone

boson (or axion) nature of inflaton derived from a gauge symmetry in a compact extra

dimension (“extranatural inflation” [9]). Firstly, we describe how we obtain the effective

theory of a light axion supermultiplet starting from the N = 1 5D SUSY gauge theory.

Then, we describe how to introduce two such axion supermultiplets in order to get feff >

MPl (for trans-Planckian field displacement satisfying the WGC). Finally, we also discuss

how to take into account gravity, thus constructing our “SUSY bi-axion model”.

As we will see later, this model has many common features with the KLR model

described in section 2. It however provides a more UV-complete and robust picture of

inflationary dynamics where the central features are governed by the 5D SUSY gauge

theory structure.

3.1 Light axion supermultiplet from 5D SUSY gauge theory

In this sub-section, we will show how a single light axion supermultiplet can emerge from 5D

SUSY gauge theory. The extension to the more realistic case of two axion supermultiplets

follows in the next sub-section. Consider a flat extra dimension with boundaries, with

a gauge field AM and a charged scalar field H propagating in the bulk (see figure 1a).

If Aµ and A5 have, respectively, Dirichlet and Neumann boundary conditions at both the

boundaries, then only A5 has a zero-mode
(
A

(0)
5

)
. As mentioned in section 1, if H has non-

zero VEVs at both the boundaries, then it gives a tree-level contribution to the effective

potential of A
(0)
5 .

Now, consider the full 5D supersymmetric version of this setup (see figure 1b). N = 1

5D SUSY is equivalent to N = 2 4D SUSY which can be written in the N = 1 4D SUSY

language as follows [58] (see table 1). 5D SUSY gauge multiplet has a gauge field (AM ),

Dirac gaugino (χDirac) and a real scalar (η). These can be represented in N = 1 4D

SUSY language in terms of vector superfields V(x5) 3 Aµ(x5), χ1(x5) and chiral superfields

Φ(x5) 3 η(x5) + iA5(x5), χ2(x5), where the extra-dimensional coordinate x5 is viewed as a

mere continuous “label” from the N = 1 4D viewpoint. Charged matter fields in 5D SUSY

are part of a hypermultiplet which includes two complex scalars which are conjugates

– 7 –
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5D super-multiplet 5D fields N = 1 4D superfields

Gauge multiplet AM , χDirac, ηreal

Vector superfields: V(x5) 3 Aµ(x5), χ1(x5)

Chiral superfields: Φ(x5) 3 η(x5) + iA5(x5), χ2(x5)

Hypermultiplet H,Hc, ψDirac

Chiral superfields: H(x5) 3 H(x5), ψ(x5)

Hc(x5) 3 Hc(x5), ψc(x5)

Table 1. N = 1 5D SUSY in the N = 1 4D SUSY language.

of each other under the respective gauge group (H,Hc) and a Dirac fermion (ψDirac).

These can be represented in N = 1 4D SUSY language in terms of chiral superfields with

conjugate representations: H(x5) 3 H(x5), ψ(x5);Hc(x5) 3 Hc(x5), ψc(x5), again with the

continuous “label” x5.

As illustrated in [58], imposing 4D SUSY and 5D Poincare symmetry automatically

generates an emergent 5D SUSY. Thus, the full 5D Lorentz-invariant, gauge-invariant and

SUSY action for a gauge multiplet and a charged hypermultiplet, keeping manifest only

the N = 1 4D SUSY, can be written as follows:

S5 =

∫
d4x

∫ L

0
dx5

[∫
d2θ

1

4
W2
α + h.c. +

∫
d4θ

{
∂5V −

1√
2

(Φ + Φ̄)

}2

+

∫
d4θ

(
Hceg5VH̄c + H̄e−g5VH

)
+

∫
d2θ

{
Hc
(
m+ ∂5 −

g5√
2

Φ

)
H
}

+ h.c.

]
.

(3.1)

As mentioned in section 1, in the presence of SUSY, we need tree-level contributions from

charged matter to the effective potential of A5, which can be achieved by the charged

matter taking non-zero VEVs at the boundaries. Such VEVs break gauge invariance, but

this is allowed because we have already broken gauge invariance by the Dirichlet boundary

conditions for the boundary components of the gauge fields. These VEVs can be achieved

by adding the following boundary-localized superpotential terms to the action:

δS5 =

∫
d4x

∫ L

0
dx5

[∫
d2θ

{
λ(H− v)2 δ(x5) + λ′(H− v′)2 δ(x5 − L)

}
+ h.c.

]
. (3.2)

Consider Dirichlet boundary conditions for V and Hc and Neumann boundary con-

ditions for Φ and H, at both the boundaries. We implement these boundary conditions

via realizing the extra dimension with an interval as an “orbifold” of the circle. With the

angular coordinate (θ) on the circle going from −π to π, we identify the points θ with −θ.
Thus, half of the circumference of the extra-dimensional circle is the physical interval with

x5 going from 0 to πR ≡ L, where R is the radius of the circle. The Dirichlet and Neu-

mann boundary conditions for the fields in an interval can be implemented by assigning,

respectively, odd and even parity under orbifold (θ → −θ). (See [59] for a review of this.)

Let us solve for the classical potential of this model. We need to integrate out the heavy

fields (i.e. H,Hc and the KK modes in V) at tree-level to get an effective theory in terms of

– 8 –
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Φ. We search for a supersymmetric vacuum of the full theory where inflation happens at

an excited state with ����SUSY vacuum energy Vinf . Considering the inflationary energy scale

to be much less than the masses of the heavy fields
(
V

1/4
inf � mKK ,m

)
,3 to the leading

order in
V

1/4
inf

mKK
, for the purpose of the dynamics of the heavy fields, their ground state can

be approximated to be supersymmetric even during inflation. Thus, we can integrate them

out by using their SUSY equations of motion.

Firstly, we can set V to zero since it contains only heavy fields and with zero VEVs. Aµ
in V cannot have non-zero VEV due to Lorentz invariance. The D-scalar in V is an order

parameter for SUSY and hence 〈D〉 = 0 for SUSY ground state. Of course the fermions in

V have vanishing VEVs. This leaves us with only the following terms in the action:

S5 =

∫
d4x

∫ L

0
dx5

[∫
d4θ

{
1

2
(Φ+Φ̄)2+H̄cHc+H̄H

}
+

∫
d2θ

{
Hc
(
m+∂5−

g5√
2

Φ

)
H+λ(H−v)2 δ(x5)+λ′(H−v′)2 δ(x5−L)

}
+h.c.

]
.

(3.3)

The heavy charged matter fields H and Hc, with 5D bulk masses m & mKK , can now be

integrated out by imposing the following SUSY constraints:

∂W

∂H
= 0 =

∂W

∂Hc
. (3.4)

Thus, we obtain the following 4D effective action4 for Φ,

S4 =

∫
d4x

∫ d4θ
1

2
(Φ + Φ̄)2

+

∫
d2θ

W0 + λ
v2 e−mL e

gL√
2

Φ
+ v′2 emL e

− gL√
2

Φ − 2vv′

emL e
− gL√

2
Φ

+ e−mL e
gL√

2
Φ

+ h.c.

 ,
(3.5)

where we take λ = λ′ for technical simplicity. The derivatives on H and Hc at the bound-

aries in (3.3) are evaluated by taking into account their orbifold parity (even and odd,

respectively).

The Kähler potential in (3.5) displays shift symmetry for A5, which is the imaginary

part of the scalar component of Φ. However, integrating out the charged hypermultiplet

using (3.4) also generates shift symmetry violating terms in the Kähler potential. These

corrections are however functions of gLΦ and suppressed by e−mL, our modest expan-

sion parameter. Thus, they contribute to the scalar potential only with Φ
f -dependence(

f ≡ 1
gL

)
, not changing its qualitative form. Furthermore, the e−mL suppression makes

these corrections sub-dominant and hence we neglect them here.

3As can be seen in section 4.1,
V

1/4
inf

mKK
∼ vL√

f
e−mL ∼ 1√

g
e−mLvL3/2 which is small due to the smallness of

e−mL and the hypermultiplet boundary VEVs ∼ v.
4Here, all the 4D fields are in canonical normalization. The 4D gauge coupling g is defined as: 1

g2
= L

g25
.
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(a) Non-SUSY. (b) SUSY.

Figure 2. Bi-axion inflation field content: (a) non-SUSY and (b) SUSY version. See text for

details.

The superpotential is the source of shift symmetry breaking for A5 which is naturally

suppressed by e−mL formL & 1 (see e.g. for v ∼ v′). This is a generic feature of extranatural

inflation scenario where the compact extra dimension effectively acts as a “filter” for any

far-UV physics by suppressing its contribution by e−MUVL. W0 is a constant term in the

superpotential which is relevant only in the presence of gravity, as we will see in section 3.3.

3.2 Bi-axion generalization to realize feff > MPl

As mentioned in section 1, in order to have feff > MPl, we need to introduce two axions

in such a way that one of their linear combinations has an effective super-Planckian field

range. The non-SUSY version of bi-axion inflation has the setup as shown in figure 2a.

There are two gauge fields (AM , BM ) with only (A5, B5) having zero modes (by suitably

assigning boundary conditions). The scalar fields H1 and H2 are charged under the gauge

groups as (0, 1) and (1, N), respectively. This field content can now be embedded into the

respective 5D SUSY multiplets, as shown in figure 2b. By extending the construction from

section 3.1, the full 5D action in this case can be obtained as follows:

S5 =

∫
d4x

∫ L

0
dx5

[∫
d2θ

(
1

4
W2
A,α+

1

4
W2
B,α

)
+h.c.

+

∫
d4θ

{
∂5VA−

1√
2

(ΦA+Φ̄A)

}2

+

{
∂5VB−

1√
2

(ΦB+Φ̄B)

}2

+

∫
d4θ

{(
Hc1eg5VBH̄c1+H̄1e

−g5VBH1

)
+
(
Hc2eg5(VA+NVB)H̄c2+H̄2e

−g5(VA+NVB)H2

)}
+

∫
d2θ

{
Hc1
(
m+∂5−

g5√
2

ΦB

)
H1+Hc2

(
m+∂5−

g5√
2

(ΦA+NΦB)

)
H2

}
+h.c.

+

∫
d2θ

{
λ1(H1−v1)2 δ(x5)+λ′1(H1−v′1)2 δ(x5−L)

}
+h.c.

+

∫
d2θ

{
λ2(H2−v2)2 δ(x5)+λ′2(H2−v′2)2 δ(x5−L)

}
+h.c.

]
.

(3.6)
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Similarly to how (3.5) was obtained starting from (3.1) and (3.2) in the previous

section, we can obtain the 4D effective Kähler potential and superpotential for the two

axion supermultiplets (ΦA,ΦB) as follows:

K =
1

2
(ΦA + Φ̄A)2 +

1

2
(ΦB + Φ̄B)2,

W = W0 + λ1
v2

1 e
−mL e

gL√
2

(ΦA+NΦB)
+ v′21 emL e

− gL√
2

(ΦA+NΦB) − 2v1v
′
1

emL e
− gL√

2
(ΦA+NΦB)

+ e−mL e
gL√

2
(ΦA+NΦB)

+ λ2
v2

2 e
−mL e

gL√
2

ΦB + v′22 emL e
− gL√

2
ΦB − 2v2v

′
2

emL e
− gL√

2
ΦB + e−mL e

gL√
2

ΦB
.

(3.7)

We would like to highlight here that in (3.6), and hence also in (3.7), all the scales and

field ranges are sub-Planckian.

3.3 Adding SUGRA and identifying the SUSY vacuum

We have not considered the effects of gravity so far in obtaining the L4,eff(ΦA,ΦB) of (3.7).

But now we can use this 4D effective K and W to compute the SUGRA scalar potential

(VSUGRA) directly in 4D (see appendix A). With this strategy, from effective field theory

perspective, we could only be missing MPl-suppressed terms e.g. K 3 (ΦA + Φ̄A)4, (ΦB +

Φ̄B)4. In the case of SUSY bi-axion model, as highlighted below (3.7), the range (and

hence also the VEVs) of fields in ΦA and ΦB is sub-Planckian, thus making the above-

mentioned MPl-suppressed terms also sub-dominant. We would like to highlight here that

in the case of a single axion (in section 3.1), such MPl-suppressed terms in (3.5) are not

sub-dominant due to the super-Planckian range of the fields. Hence the truncation of

the Φ/MPl expansion is uncontrolled in this case. In section 5, we will see that higher

order Kähler interactions can have interesting observable effects if they are stronger than

MPl-suppressed.

The W0 parameter in (3.7) is now physical, due to the presence of gravity, and it will

contribute to the vacuum energy. We will consider a boundary-localized contribution to

W0 such that the net post-inflationary vacuum energy is (approximately) zero.

In order for the inflationary picture to be compatible with low energy SUSY (bro-

ken only at a scale somewhat above the EW scale) and approximately zero cosmological

constant as observed today, the vacuum of post-inflationary dynamics should be SUSY-

preserving and with zero vacuum energy. Thus, it seems that the inflation endpoint has to

(approximately) satisfy the following three conditions: (1) unbroken SUSY (〈DΦiW 〉 = 0),

(2) zero vacuum energy (〈W 〉 = 0), and (3) local minimum5 of VSUGRA. However, as

shown below, (1) and (2) automatically imply (3), i.e. a point in the field space satisfying

DΦiW = 0 and W = 0 implies that it is automatically at a local minimum of VSUGRA, so

we do not bother to check (3) further.

5Global minimum can be separated enough in the field space from this local minimum such that the

decay via tunneling does not happen even on the cosmological timescales.
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Consider, for simplicity, a single chiral superfield Φ for which VSUGRA is

V = eK
(
K−1

ΦΦ̄
|DΦW |2 − 3 |W |2

)
. (3.8)

Now, for DΦW = 0 and W = 0, one can clearly see that,

∂ΦV = 0 = ∂Φ̄V, ∂Φ̄∂ΦV = eKK−1
ΦΦ̄
|∂ΦDΦW |2 , ∂2

ΦV = 0 = ∂2
Φ̄V, (3.9)

and for Φ = (η + iφ)/
√

2,

∂ηV = 0 = ∂φV, ∂
2
ηV = ∂2

φV =
1

2
eKK−1

ΦΦ̄
|∂ΦDΦW |2 . (3.10)

Thus, for K−1
ΦΦ̄
≥ 0 and KΦ̄ΦΦ,KΦ̄ΦΦ̄Φ finite, (3.10) implies a local minimum of VSUGRA.

The same proof can be applied for multiple chiral superfields Φi, with K−1
ΦiΦ̄i

≥ 0 in the

mass basis and no singularities in higher derivatives of K. These conditions are satisfied in

our cases of interest, since we mostly have K−1
ΦiΦ̄i

≈ 1 (see (3.7)) with corrections suppressed

by high scales Λ and small field VEVs (see section 5.1).

Furthermore, the conditions DΦiW = 0 and W = 0 are equivalent to the conditions

∂ΦiW = 0 , W = 0, (3.11)

since DΦiW = ∂ΦiW + (∂ΦiK)W . This hugely simplifies identifying the inflation endpoint

analytically. The conditions ∂ΦAW = 0 = ∂ΦBW can be satisfied for the superpotential

in (3.7) minimally by the following choice for the parameters6 that govern the hypermul-

tiplet VEVs at the boundaries (see (3.6)) :

v1 = v′1 = v2 ≡ v, v′2 ∼ ve−mL. (3.12)

In order to avoid having significant fine-tuning for choosing v′2 ∼ ve−mL, we consider

e−mL ∼ O(1), while still having e−mL < 1 for valid perturbative expansion (e.g. e−mL ≈
1/3 with mL ≈ 1.1). With the choice of parameters vi, v

′
i as in (3.12), and after doing a

change of basis from (ΦA,ΦB) to (Φh,Φl) as defined by

Φh ≡ ΦB +
1

N
ΦA , Φl ≡ ΦA −

1

N
ΦB, (3.13)

the superpotential from (3.7) becomes

W

v2
=
W0

v2
+ λ1

1− 1

cosh
(
mL− gL√

2
NΦh

)


− 2λ2 e
−2mL e

gL√
2

(
Φh−

Φl
N

) [
1− cosh

(
gL√

2

(
Φh −

Φl

N

))]
+O

(
e−4mL

)
.

(3.14)

6The simplest choice with v1 = v′1 = v2 = v′2 does not admit a solution to ∂ΦAW = 0 = ∂ΦBW when

restricted to sub-Planckian field values.
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Now, we can identify the required Minkowski SUSY endpoint of inflation. Firstly, we

identify VEVs of all the scalars, Φk = 1√
2
(ηk + iφk), at inflation end by solving ∂ΦkW = 0

to obtain

〈φl〉 = 0 = 〈φh〉 , 〈ηh〉 ≈
fmL

N
, 〈ηl〉 ≈ fmL, (3.15)

with f ≡ 2
gL . Then, plugging these VEVs back into (3.14), we can enforce 〈W 〉 = 0. This

self-consistently demands W0 to be chosen to cancel the terms in (3.14) sub-dominant in

e−mL, i.e.

W0 ∼ v2 · O
(
e−4mL

)
, (3.16)

where, as mentioned below (3.12), e−mL is our modest expansion parameter.

One can clearly see from (3.14) that W ≈W (NΦh,Φl/N), for N � 1, and hence the

scalar potential will be of the form

V ≈ V
(
Nηh
f

,
Nφh
f

, ηl,
φl
Nf

)
. (3.17)

Due to the eK contribution from VSUGRA, and that K 3 1
2

(
Φl + Φ̄l

)2
has ηl- but no

φl-dependence, the potential along ηl varies over MPl, and not Nf > MPl. As we will

detail in section 4.1, from (3.17) we can power-count mηh ,mφh ∼ Hinf · O
(
N2

f

)
� Hinf

and mηl ∼ O(Hinf), while only mφl � Hinf . We will show in the section 4.1 that after

integrating out the heavy fields (ηh, φh, ηl), we get Veff

(
φl
Nf

)
such that φl has an effective

super-Planckian field range: feff = Nf > MPl with f < MPl and N � 1. Thus, we expect

that the SUSY vacuum φl = 0 can be approached from some φinitial
l ∼ O(Nf) along a

slow-roll potential with the slow-roll parameters ε, η ∼
(
MPl
Nf

)2
� 1.

As in the case of single axion supermultiplet (see below (3.5)), integrating out the

charged hypermultiplets in (3.6) also generates shift symmetry violating terms in the Kähler

potential in (3.7). Similar to the case of single axion supermultiplet, these corrections are

functions of Φl
feff

which maintain the form of the effective inflationary potential, Veff

(
φl
feff

)
,

i.e. effective super-Planckian field range for φl. Furthermore, they are suppressed by powers

of e−mL, our modest expansion parameter, which makes them sub-dominant and hence we

neglect them here.

4 Inflationary history

In this section, we describe various aspects of the inflationary history from our SUSY bi-

axion model. Here we discuss the inflationary trajectory, SUSY breaking during inflation,

accounting for the SUSY breaking vacuum that we occupy today, and the interplay of

different fine-tunings within this model.

4.1 Inflationary trajectory

In order to identify the inflationary trajectory and the effective potential along it, we first

consider the general problem where a potential depends on some heavy fields ~H and some

– 13 –
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light fields ~L. We expand the potential to quadratic order in ~H while keeping it to all

orders in ~L:

V
(
~H, ~L

)
= V

(
〈 ~H〉, ~L

)
+Ai

(
~L
)
· δHi +

1

2
m2
ij

(
~L
)
· δHi · δHj +O(δH3). (4.1)

Here, 〈 ~H〉 are VEVs of the heavy fields at the post-inflationary SUSY vacuum, while δ ~H

are the fluctuations away from 〈 ~H〉 in the course of inflation. The expansion coefficients are

Ai

(
~L
)
≡ ∂HiV

(
〈 ~H〉, ~L

)
, m2

ij

(
~L
)
≡ ∂Hi∂HjV

(
〈 ~H〉, ~L

)
, (4.2)

which are functions of ~L. We can now integrate out the heavy fields by extremizing (4.1)

with respect to the heavy fluctuations δ ~H, for given light fields ~L, thereby getting an

effective potential for ~L as

Veff

(
~L
)
≈ V

(
〈 ~H〉, ~L

)
+

1

2

[
Ai
(
m2
)−1

ij
Aj

] (
~L
)
. (4.3)

In the case of our SUSY bi-axion inflation model, the heavy and light fields along the

inflationary trajectory are, respectively,

~H = (ηh, φh, ηl) , ~L = (φl). (4.4)

The coefficients Ai and mass matrix m2
ij in VSUGRA (A.2), for the superpotential (3.14),

scale parametrically as follows:

Ai

(
~L
)
∼
(
N2, N2,

1

N

) V
(
〈 ~H〉, ~L

)
f

,

m2
ij

(
~L
)
∼

N4 N2 N

N2 N4 0

N 0 f2

 V
(
〈 ~H〉, ~L

)
f2

,

(4.5)

where the indices i, j run over ~H in the same order as in (4.4). We can now estimate the

parametric size of the heavy fluctuations during inflation as〈
δ ~H
〉
∼
(
f

N2
,
f

N2
,

1

Nf

)
. (4.6)

This then implies that the O(δH3) term that we dropped in (4.1) is sub-dominant, sup-

pressed by the small parameters 1
N and 1

Nf , and hence can be ignored along the inflationary

trajectory.

The mass eigenvalues of the heavy fluctuations δ ~H are as follows:

m2
1,2 ≈ m2

ηh,φh
∼ N4

V
(
〈 ~H〉, 〈~L〉

)
f2

∼ N4

f2
H2

inf ,

m2
3 ≈ m2

ηl
∼ V

(
〈 ~H〉, ~L

)
∼ H2

inf

(
~L
)
.

(4.7)
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Thus, the heavy mass-squared eigenvalues are all positive and much larger than m2
φl
∼

V (〈 ~H〉,~L)
N2f2 . Hence, we can integrate out the heavy fluctuations δ ~H all along the inflationary

trajectory yielding

Veff (φl) ≈ V
(
〈 ~H〉, φl

Nf

)
·
[
1 +O(1) +O

(
1

N2f2

)]
. (4.8)

Here, the second term comes from integrating out the mass eigenstates (H1, H2) ≈ (ηh, φh)

while the third term comes from integrating out H3 ≈ ηl. Since the contribution from

(H1, H2) is of the same order as V
(
〈 ~H〉, φlNf

)
, we perform the integration out of δ ~H

numerically. Firstly, we verify that as suggested by the parametric estimates in (4.5)

and (4.7), the heavy mass-squared eigenvalues are indeed much larger than m2
φl

all along

the inflationary trajectory. The numerically computed Veff(φl) is as shown in figure 3. It

has the following approximate analytic form,

Veff(φl) ∼ H2
inf

(
1− cos

φl
Nf

)
, Hinf ∼ λ2

v2

f
e−2mL, (4.9)

which is the leading contribution in terms of the small parameters 1/N , f and e−mL. Thus,

the SUSY bi-axion model effectively provides an approximate Natural Inflation model with

feff = Nf > MPl, where the best-fit values are [49]

feff = Nf ∼ 10MPl , V
1/4

inf ∼ 1016 GeV. (4.10)

The precise inflationary potential, Veff(φl), does contain “higher harmonics” in φl
Nf . Al-

though, these do not affect the qualitative features as outlined above, they can play an

important role in precision fitting to the CMB data which we will explore in a future work.

As can be seen from (4.7), the heavy fields ηh, φh are much heavier than Hinf :

mηh ,mφh ∼ Hinf
N2

f
. (4.11)

While sinflaton (ηl), the real scalar partner of the inflaton, has an intermediate mass,

mηl ∼ O(Hinf), (4.12)

about which we will discuss more in section 5.1.1.

4.2 SUSY breaking during inflation

As mentioned earlier in section 2, the approximate de Sitter geometry during inflation

requires it to be an excited state with spontaneous ����SUSY on top of the post-inflationary

SUSY vacuum. The SUSY order parameters (see appendix A) for Φh and Φl evaluated

along the inflationary trajectory are

DΦhW
∣∣
〈Φh〉,〈ηl〉

∼ λ2
v2

f
e−2mL e

−i φl
Nf

(
1− cos

φl
Nf

)
,

DΦlW
∣∣
〈Φh〉,〈ηl〉

∼ O
(

1

N

)
·DΦhW

∣∣
〈Φh〉,〈ηl〉

.

(4.13)
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ϕl

Nf
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f
2

v
4
e
-4mL

.V(ϕl)

Veff(ϕl)

V0(1 - cos
ϕl

Nf
)

Figure 3. The dark line refers to the effective inflationary potential Veff(φl) after numerically

integrating out the heavy fields ηh, φh, ηl all along the inflationary trajectory. For comparison, a

pure cosine potential with the magnitude matching to that of Veff(φl) is plotted as the dashed line.

Inflation can start close to the hilltop of Veff(φl), with Vinf ∼ v4e−4mL

f2 .

Here, we can clearly see that the SUSY order parameters are zero only at the vacuum

(i.e. φl = 0).

As described in appendix A, the massless Goldstino of spontaneous ����SUSY, which is

“eaten” by gravitino to become massive, is given by the linear combination of all the

fermions weighted by the respective SUSY order parameters: ψGoldstino ∝ 〈DΦiW 〉 · ψi.
Hence, the SUSY order parameters during inflation (4.13) imply that,

ψGoldstino ∼ ψh +O
(

1

N

)
· ψl, (4.14)

i.e. the Goldstino during inflation belongs mostly to the heavy sector (Φh) and not to the

inflaton sector (Φl). In other words, ����SUSY during inflation is caused mostly by the heavy

sector (Φh). This feature of our SUSY bi-axion model is very similar to the KLR model

discussed in section 2 where the Goldstino during inflation belongs solely to the heavy

sector (S) (see (2.4)).

4.3 SUSY breaking after inflation

We need to account for the post-inflationary ����SUSY vacuum that we occupy today which

we have neglected so far. In this section, we look for any possibly significant effects of this

����SUSY vacuum on the inflationary dynamics. We consider a boundary-localized Polonyi-

type sector with

δK4 = X̄X − (X̄X)2

Λ2
, δW4 = Λ2

���SUSYX, (4.15)

which undergoes spontaneous ����SUSY at a scale ∼ Λ���SUSY. Consider the ����SUSY from this

hidden sector to be minimally communicated to the Standard Model via MPl suppressed

– 16 –



J
H
E
P
0
8
(
2
0
1
9
)
0
2
9

interactions which then implies an intermediate scale ����SUSY Λ���SUSY ∼
√
vweak ·MPl ∼

1011 GeV. We expect that as long as Λ���SUSY � Hinf or even V
1/4

inf , the effect of this ����SUSY

X-sector on the inflationary dynamics will be negligible. (See also e.g. [60].) We show

below that indeed this expectation is borne out here.

The scalar field X in the Polonyi sector gets O(Hinf) mass during inflation, similar

to that of ηl. Thus, X can be added to the “heavy” fields ~H of (4.4) and essentially the

same procedure as described in section 4.1 can be repeated to integrate them out along the

inflationary trajectory. The tadpole and mass matrix terms (see (4.2)) involving X field

scale as follows:

AX(φl) ∼ Λ2
���SUSYHinf(φl) · f , m2

XX(φl) ∼ H2
inf(φl),

m2
ηhX

(φl) ∼ m2
φhX

(φl) ∼ Λ2
���SUSYHinf(φl) ·N , m2

ηlX
(φl) ∼ Λ2

���SUSYHinf(φl)
1

N
.

(4.16)

The fluctuations of X during inflation can be estimated from (4.16) as

δX ∼
Λ2
���SUSYf

V
1/2

inf (φl)
. (4.17)

The O(δH3) terms in (4.1) involving X are hence sub-dominant, suppressed by
Λ���SUSY

V
1/4
inf

. We

can now integrate out X following (4.3) yielding

δVeff(φl) ∼ Λ4
���SUSY · f

2 ·
[
1 +

1

N2

Λ4
���SUSY

Veff(φl)

]
. (4.18)

This δVeff(φl) is much smaller than the Veff(φl) of (4.8). Thus, as expected, for Λ���SUSY ∼
1011 GeV and V

1/4
inf ∼ 1016 GeV (see (4.10)) satisfying Λ���SUSY � V

1/4
inf , the ����SUSY X-sector

gives a negligible contribution to Veff(φl) and hence does not significantly affect the infla-

tionary dynamics.

4.4 Interplay of electroweak, cosmological constant and superpotential

tunings

In order to have (almost) vanishing vacuum energy after the end of inflation, as discussed

in section 3.3, we need to have 〈W 〉 = 0 which can be achieved by tuning the W0 parameter

in (3.7). We also need to account for the SUSY breaking vacuum that we occupy today.

Here, we evaluate this combined fine-tuning which displays an interesting interplay with

the electroweak (EW) and cosmological constant (CC) fine-tunings.

Consider the ����SUSY hidden sector of section 4.3 which minimally communicates to the

Standard Model via gravity mediation (i.e. MPl suppressed interactions). In order for it to

address the electroweak hierarchy problem, this requires that
V today

���SUSY

M2
Pl
∼ v2

weak.7 This implies

the following fine-tuning in the EW sector,

TEW ∼
v2

weakM
2
Pl

V today
���SUSY

, (4.19)

7V today

���SUSY
= Λ4

���SUSY.
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which can be minimized with
(
V today
���SUSY

)1/4
∼
√
vweakMPl, as is standard. This ����SUSY sector

and also ∆W0 6= 0 in (3.7) give contributions to the CC today as below:

CC = −3
∆W 2

0

M2
Pl

+ V today
���SUSY

(obs.)∼ meV4. (4.20)

The two terms in the above equation have typical sizes of ∼ v4

M2
Pl

(see (3.16)) and ∼
v2

weakM
2
Pl, respectively, which consist of a priori different and unrelated scales. This implies

that multiple contributions to ∆W0, each of magnitude ∼ v2

MPl
, must first cancel to within√

V today
���SUSY . Hence, we have the following fine-tuning in the contributions to W0:

TW0 ∼

√
V today
���SUSYMPl

v2
. (4.21)

Once the two terms on the right hand side of (4.20) are of the same order, they still have

to cancel to give CC ∼ meV4 as observed today. This amounts to having the following

usual CC fine-tuning:

TCC ∼
meV4

V today
���SUSY

. (4.22)

As can be seen from (4.19) and (4.22), the EW and CC fine-tunings favor ����SUSY at

low-scale. However, (4.21) shows that the W0 fine-tuning displays preference for ����SUSY at

high-scale! But, the net fine-tuning, assuming that these three are independent of each

other, is

Tnet = TEW × TW0 × TCC ∼
v2

weakM
3
PlmeV4

v2

(
V today
���SUSY

)−3/2
. (4.23)

This shows a net preference for ����SUSY at low-scale, namely close to the EW scale.

Our considerations here are reminiscent of comparable tuning issues that arise in high-

scale string-derived SUGRA theories, in particular the necessary existence of a high-scale

W0 which makes the tuning worse. See [61] for a review. For a sample choice of the pa-

rameters, V today
���SUSY ∼ v2

weakM
2
Pl and v2 ∼ (0.1MPl)

3, we see that the net tuning in (4.23) is

considerable
(
Tnet ∼ 10−100

)
, predominantly because of the Cosmological Constant Prob-

lem. However, such a residual tuning is still acceptable in the context of the anthropic

principle or some as yet unknown mechanism solving this problem. See [62, 63] for a

review.

5 Observable signals

In this section we discuss the phenomenology of our SUSY bi-axion model. The observable

signals from this model can come in the form of primordial non-Gaussianities mediated

by heavy particles, sinflaton being the prime candidate for this. Also, “higher harmonic”

terms in the inflaton potential can give rise to periodic modulations in the CMB.
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5.1 Primordial non-Gaussianities

As first introduced in [29] and further illustrated in [30–39], a particle X can mediate

primordial non-Gaussianities of observable size if it (1) has mX ∼ O(Hinf), (2) has suf-

ficiently strong X(∂φ)(∂φ) couplings, and (3) can give tree-level contribution to inflaton

3-point function which can come only from bosons.

5.1.1 Sinflaton

In the SUSY bi-axion model, mass of the sinflaton (ηl) during inflation is

mηl ≈
√

6Hinf , (5.1)

which can be seen schematically from VSUGRA as follows:

VSUGRA = eK
(
|DΦAW |

2 + |DΦBW |
2 − 3 |W |2

)
,

V (ηl) ≈ eη
2
l Vinf 3 η2

l Vinf ≈ 3H2
infη

2
l .

(5.2)

This contribution to mηl comes from the coupling of ηl to the ����SUSY curvature during

inflation which also shows up in the KLR model as described in section 2 (see (2.5)).

However, as in the case of the KLR model (see (2.7)), mηl ∼ O(Hinf) is not guaranteed in

our SUSY bi-axion model too. A higher order term in Kähler potential of the form

K5 3 δ(x5)
c2

Λ2
2

(ΦA + Φ̄A)2(ΦB + Φ̄B)2 (5.3)

can give a contribution to the sinflaton mass as

m2
ηl
≈ 2Vinf

M2
Pl

+
c2Vinf

Λ2
2

= 6H2
inf

(
1 +

c2M
2
Pl

2Λ2
2

)
. (5.4)

Thus, for c2
Λ2

2
� 1

M2
Pl

, mηl � Hinf is possible.8 The effective higher order coupling (5.3)

between ΦA and ΦB can arise radiatively via the loops of hypermultiplet (H2, H
c
2) which is

charged under both the gauge groups as (1, N). Naive dimensional analysis suggests that

this loop contribution to (5.3) is(
c2

Λ2
2

)
loop

∼ g2N2

16π2

1

m2
KK

. (5.5)

Considering N ∼ O(100) and mKK ∼ M5 ∼ 0.1MPl,
9 we can have

(
c2
Λ2

2

)
loop

. 1
M2

Pl
with

g . 0.1. Thus, with g . 0.1, the contribution from loop-induced term (5.3) to sinflaton

mass is small, thus keeping mηl ∼ O(Hinf), which is crucial to get observable NG mediated

by it.

8One might worry that the sub-leading term (5.3) can have a dominant effect on the sinflaton mass and

whether this signals breakdown of the EFT expansion. This is however not true. The sinflaton mass in (5.1)

comes purely from MPl-suppressed SUGRA contributions whereas the higher order Kähler term (5.3) gives

a direct coupling with suppression scale (Λ2) which can be below MPl.

9M5 ∼ MPl

(
1

MPlL

)1/3

is the scale at which gravity becomes strong in 5D.
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The references [64, 65] and [66] construct SUSY EFT of inflation with a minimal field

content which does not include any scalar other than the inflaton, especially the sinflaton.

This can be interpreted by the UV-completion of these EFTs having sinflaton with mass

much greater than Hinf . In our SUSY bi-axion model, as can be seen from (5.4), there

exists a region of parameter space where mηl � Hinf , which is consistent with the results

of [64–66]. This parameter space corresponds to Λ2 �MPl in (5.4) or g > 0.1 in (5.5). This

feature of having a region of parameter space allowing msinflaton � Hinf is also present in the

KLR model described in section 2 (see (2.7)). However, in this case, the size of primordial

NG suffers a severe exponential “Boltzmann-suppression” (∼ e−πmηl/Hinf ). Below, we

focus on the region where mηl ∼ O(Hinf) which allows the sinflaton to be observable via

primordial NG.

Even in the presence of mηl ∼ O(Hinf), ηl still needs to have sufficiently strong coupling

with the inflaton to mediate NG of observable size. The VSUGRA from (3.7) has the following

coupling which violates the shift symmetry for φl and hence is very small:

VSUGRA 3 10−3Hinf

MPl
Hinf ηlφ

2
l . (5.6)

This coupling gives rise to the primordial NG of the following typical size [37, 39]:

fNL ∼ 10−2Hinf

MPl
. 10−6. (5.7)

This is much less than the sensitivity of the proposed experiments involving 21-cm cosmol-

ogy, fNL ∼ 10−2 [67, 68], or even from more futuristic surveys, fNL ∼ 10−4 [69].

However, the following shift symmetry preserving, higher order, boundary-localized

term in the Kähler potential,

K5 3 δ(x5)
c1

Λ2
1

(ΦA + Φ̄A)4, (5.8)

can generate the following derivative coupling of sinflaton with inflaton:

L4 3
c1

Λ2
1

η2
l (∂φl)

2 . (5.9)

The above coupling can give primordial NG of the size [37, 39]

fNL ≈ 0.03 c2
1ε

(
MPl

Λ1

)4(〈ηl〉inf

MPl

)2

. 10−6

(
MPl

Λ1

)4

, (5.10)

where the VEV of sinflaton during inflation is 〈ηl〉inf ≈
M2

Pl
Nf ≈ 0.1MPl, as can be calculated

from VSUGRA using (3.7). ε in the above expression is the slow roll parameter of inflation

which is constrained to be . 10−2 [49]. The suppression scale Λ1 in (5.8), which would be

the cutoff scale on the boundaries, has to be less than M5. Considering M5 ∼ O(0.1)MPl,

this implies that even for Λ1 being very close to M5, we can get fNL ∼ O(10−2). This signal

can be observed at the proposed 21-cm experiments as described after (5.7). Furthermore,

Λ1 can be as low as the inflationary energy scale V
1/4

inf . 10−2MPl, while maintaining EFT

control, in which case fNL ∼ O(1) or even higher is also possible.
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5.1.2 Boundary-localized gauge singlets

It is also possible to see boundary-localized fields via primordial NG. Consider, for example,

a chiral superfield X localized at one of the boundaries and singlet under both the gauge

groups A and B. If it has the following Kähler potential, i.e. a direct coupling with ΦA

preserving its shift symmetry,

K5 3 δ(x5)

[
cX
ΛX

(ΦA + Φ̄A)2(X + X̄) + X̄X

]
, (5.11)

then it has the following derivative interaction between the real scalar part of X (ηX) and

the inflaton:

L4 3
cX
ΛX

ηX (∂φl)
2 . (5.12)

Also, analogous to the case of sinflaton as in (5.2), mass of this gauge singlet during

inflation is

mX ≈
√

3Hinf . (5.13)

(5.12) and (5.13) imply that the size of primordial NG mediated by ηX is as follows [37, 39]:

fNL ≈ 0.75 c2
Xε

(
MPl

ΛX

)2

. 10−2

(
MPl

ΛX

)2

. (5.14)

Similar to the case of Λ1 as discussed below (5.10), ΛX . M5 ∼ 0.1MPl which can give

fNL & O(1).

If the direct coupling in (5.11) is of the form K5 3 δ(x5)
c′X
Λ2
X

(Φ + Φ̄)2X̄X, then it gives

the interaction L4 3
c′X
Λ2
X
|X|2 (∂φl)

2. In this case, the fNL mediated by X has an additional

suppression factor due to its VEV during inflation: fNL ∼ c2
Xε
(
MPl
ΛX

)2 ( 〈X〉
ΛX

)2
. Hence, in

order to get fNL of an observable size, we need to have 〈X〉 during inflation to be sufficiently

large as compared to ΛX .

5.2 Periodic modulations in the CMB

Extra-dimensional realization of Natural Inflation gives the leading slowly varying infla-

ton potential with super-Planckian field range (∼ feff = Nf > MPl), while also gener-

ically giving sub-leading “higher harmonic” terms oscillating over a much shorter range

(∼ f, f/N �MPl). Although these higher harmonics in V (φinf) are suppressed by factors

of e−ML, they can still give observable effects in the form of primordial features with peri-

odic modulations in the CMB power spectrum. These features, being motivated from var-

ious theoretical constructions, have been searched for in the Planck CMB data [13, 40–48].

In our SUSY bi-axion model, there exist such higher harmonics in V (φl) arising from

within the model, but they are small. These can come from the sub-dominant terms in the

superpotential (3.14), δW = δW

(
e−mL · e

gL√
2N

Φl

)
, suppressed by powers of e−mL. This

gives corrections to the inflaton potential of the form

δV

Vinf
∼ e−2nmL cos

(
n
φl
Nf

)
. (5.15)
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However, contributions to the periodic modulations in the CMB come only from the har-

monics with n � 1 i.e. n ∼ O(N). But, such cos
(
O(N) · φlNf

)
terms in the potential are

hugely suppressed by ∼ e−2mL·O(N). Thus, the higher harmonics from within the SUSY

bi-axion model cannot give rise to observable CMB periodic modulations.

But, let us now consider contribution from a generic heavy hypermultiplet beyond our

minimal model (H3,Hc3), with mass M and charges (nA, nB) under the gauge groups A

and B. This will give an additional term in the superpotential (3.14) as

δW ≈ 2v2e−ML

[
1− e

gL√
2

(nAΦA+nBΦB)
]
, (5.16)

where we have taken the parameters governing boundary VEVs of H3, H
c
3 to be equal:

v3 = v′3 = v. As expected, this is suppressed by e−ML which is “filtered” out by the extra

dimension for M � 1/L. However, as discussed below, the precision CMB observables can

be sensitive to the contributions to periodic modulations sourced by such a hypermultiplet

if it is not too heavy. The contribution to the inflaton potential from (5.16) is

δV

Vinf
≈ nBe2mLe−ML cos

[
(NnB − nA)

φl
Nf

]
. (5.17)

The observational constraint on the size of CMB periodic modulations is
∣∣∣ δVVinf

∣∣∣ . 10−5,

also depending upon the higher harmonic frequency [47]. Considering nB ∼ O(N) ∼ 100

and e−mL ∼ 1/3, we can get
∣∣∣ δVVinf

∣∣∣ ∼ 10−5 from M ∼ 20 × 1
L . This shows sensitivity of

CMB periodic modulations to the charged matter much heavier than the KK scale!

The 5D gauge theory being non-renormalizable has a cutoff which is given by Λ5D ∼
c
g2

1
L . As discussed below (5.5), we require g . 0.1 in order to have mηl ∼ O(Hinf) for

getting observable primordial NG mediated by sinflaton. Hence, for g . 0.1 and c ∼ O(1),

the cutoff is Λ5D & 100× 1
L . Thus, charged matter beyond the minimal model with

M .
1

5
Λ5D (5.18)

can generate observable periodic modulations in the CMB power spectrum with
∣∣∣ δVVinf

∣∣∣ ∼
10−5. Of course, some such heavy states are expected near the cutoff of 5D gauge theory

as part of a UV-completion of our non-renormalizable effective field theory.

6 Conclusions

In the present work, we demonstrated the compatibility of low-energy SUSY (i.e. SUSY

broken only at somewhat above the EW scale) with high-scale axionic inflation where the

axionic nature of inflaton is derived from extra-dimensional gauge symmetry. The inflaton

potential, in the presence of SUSY, can be generated at tree-level by charged matter in the

5D bulk with gauge symmetry breaking at the 5D boundaries. We also required that this

robust gauge-theoretic origin for the inflaton satisfy the Weak Gravity Conjecture quantum

gravity constraints, which are especially tight given the super-Planckian inflaton field range
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required by the data (Lyth bound). But we showed that this can be achieved by introducing

two axion supermultiplets, containing a light inflaton direction having feff > MPl. The

heavy sector, apart from stabilizing the inflationary trajectory, also contributes dominantly

to SUSY breaking (����SUSY) during inflation. The Goldstino of spontaneous ����SUSY during

inflation lies mostly in this heavy sector.

Our SUSY bi-axion model displays an interesting interplay of electroweak (EW), cos-

mological constant (CC) and superpotential (W0) fine-tunings after considering the ����SUSY

vacuum we occupy today. The fine-tuning for EW and CC, as usual, prefer low-scale ����SUSY.

The W0 fine-tuning, however, shows preference for high-scale ����SUSY. We showed that the

net fine-tuning is dominated by EW and CC fine-tunings and hence prefers low-scale ����SUSY

i.e. somewhat above the EW scale.

The observable signals in our model can come in the form of primordial non-Gaus-

sianities (NG) and periodic modulations in the CMB. The sinflaton can naturally have

O(Hinf) mass via its coupling to the ����SUSY curvature during inflation. It can also naturally

have sufficiently strong couplings with inflaton such that it can be seen via primordial NG

in future 21-cm experiments, with the measure of NG, fNL, being & 10−2. The sinflaton

mass can receive large contributions from higher order Kähler terms which, however, can

be kept sub-dominant with small enough gauge coupling. Similarly, a boundary-localized

gauge singlet can have O(Hinf) mass during inflation and strong enough coupling with

inflaton, via higher order Kähler couplings, thus allowing it to mediate large primordial

NG with even fNL & O(1).

Although the extra dimension acts as a “filter” for the unknown UV-completion of our

non-renormalizable model, with e−ML suppression, the precision observables in the CMB

can still probe modulating features imprinted by such heavy physics. We showed that

charged matter, not far below the effective field theory cutoff of our model, can generate

modulations in the inflationary potential,
∣∣∣ δVVinf

∣∣∣ ∼ 10−5, which lie within the sensitivity of

ongoing searches [45, 47].

As mentioned in section 1, the recent Planck 2018 CMB data [49] puts tight constraints

on Natural Inflation. The bi-axionic inflation studied here, while very roughly giving a

Natural Inflation potential, can have significant differences at precision level that can be

used to better agree with the data, as exemplified in [50]. We hope to further explore

SUSY axionic inflation models in the future for the best fit to the precision data.

A SUGRA preliminaries

We write here the important SUGRA expressions relevant for the present paper. See [70]

for review and further details.

For a general Kähler potential and superpotential for chiral superfields Φi,

K = K(Φi, Φ̄i) , W = W (Φi), (A.1)

the SUGRA scalar potential is

Vscalar(Φi, Φ̄i) = eK
[
K−1

ΦiΦ̄j
(DΦiW )

(
DΦ̄j

W
)
− 3WW

]
, (A.2)
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with subscripts referring to the respective partial derivatives, and with

DΦiW ≡WΦi +KΦiW. (A.3)

〈DΦiW 〉 is the SUSY order parameter for each of the superfields Φi. If there exists spon-

taneous breaking of SUSY in a model, it gives rise to a massless Goldstino,

ψGoldstino ∝ 〈DΦiW 〉 ψΦi , (A.4)

where ψΦi are fermions in the superfields Φi. The Goldstino is further “eaten” by the

gravitino which then becomes massive. This is called the “super-Higgs mechanism”.
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