

Stepwise genetic engineering of *Pseudomonas putida* enables robust heterologous production of prodigiosin and glidobactin A

Taylor B. Cook^a, Tyler B. Jacobson^b, Maya V. Venkataraman^a, Heike Hofstetter^c, Daniel Amador-Noguez^{b,d}, Michael G. Thomas^{b,d}, Brian F. Pfleger^{a,d,*}

^aDepartment of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA

^bDepartment of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA

^cDepartment of Chemistry, University of Wisconsin-Madison, Madison, WI, USA

^dMicrobiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA

*Corresponding author. Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA.

E-mail address: brian.pfleger@wisc.edu

1 **Abstract**

2 Polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS) comprise
3 biosynthetic pathways that provide access to diverse, often bioactive natural products. Metabolic
4 engineering can improve production metrics to support characterization and drug-development
5 studies, but often native hosts are difficult to genetically manipulate and/or culture. For this
6 reason, heterologous expression is a common strategy for natural product discovery and
7 characterization. Many bacteria have been developed to express heterologous biosynthetic gene
8 clusters (BGCs) for producing polyketides and nonribosomal peptides. In this article, we
9 describe tools for using *Pseudomonas putida*, a Gram-negative soil bacterium, as a heterologous
10 host for producing natural products. Pseudomonads are known to produce many natural products,
11 but *P. putida* production titers have been inconsistent in the literature and often low compared to
12 other hosts. In recent years, synthetic biology tools for engineering *P. putida* have greatly
13 improved, but their application towards production of natural products is limited. To demonstrate
14 the potential of *P. putida* as a heterologous host, we introduced BGCs encoding the synthesis of
15 prodigiosin and glidobactin A, two bioactive natural products synthesized from a combination of
16 PKS and NRPS enzymology. Engineered strains exhibited robust production of both compounds
17 after a single chromosomal integration of the corresponding BGC. Next, we took advantage of a
18 set of genome-editing tools to increase titers by modifying transcription and translation of the
19 BGCs and increasing the availability of auxiliary proteins required for PKS and NRPS activity.
20 Lastly, we discovered genetic modifications to *P. putida* that affect natural product synthesis,
21 including a strategy for removing a carbon sink that improves product titers. These efforts
22 resulted in production strains capable of producing 1.1 g/L prodigiosin and 470 mg/L glidobactin
23 A.

1 **Keywords:** *Pseudomonas putida*, heterologous expression, genome editing, polyketide, non-
2 ribosomal peptide

1 **1. Introduction**

2 For most of the last century, natural products have been an essential source for the
3 discovery of novel drugs for treating human diseases (Newman and Cragg, 2012). Natural
4 products are secondary metabolites produced by living organisms that are often unnecessary for
5 growth but provide advantages to the host organism in certain environments. These compounds
6 evolved for specific interactions with biomolecules, and as a result, they often exhibit medically
7 relevant properties, such as antibiotic or anti-cancer activities (Atanasov et al., 2021). Two of the
8 most intriguing classes of natural products are polyketides and nonribosomal peptides. These
9 compounds are often synthesized in an assembly line fashion by modular enzymes called type I
10 polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS) (Keating and Walsh,
11 1999). Multiple enzymatic domains are encoded in single large peptides, and chemical diversity
12 is achieved through the addition, deletion, and modification of individual domains (Vanner et al.,
13 2013). The biosynthesis potential of these assembly-lines has long been touted as a panacea for
14 accessing diverse molecular structures, but this potential remains mostly unrealized due to
15 challenges in engineering enzymes to meet required synthesis metrics.

16 Bacteria, particularly Actinomycetes, are a rich source of natural products, including
17 polyketides and nonribosomal peptides. The number of putative biosynthetic gene clusters
18 (BGCs) has accelerated with the rise of next-generation sequencing (Niu, 2018), as has the
19 number without a validated product (Rutledge and Challis, 2015). Connecting putative BGCs to
20 purified compounds requires several challenges to be overcome. Putative BGC-containing hosts
21 can be difficult to cultivate in a laboratory setting, and even if cultivation is achieved, the
22 conditions required for inducing production of the desired natural product may be unknown (Ren
23 et al., 2017). Alternatively, BGCs can be transferred to a heterologous host and expressed from

1 modern synthetic biology vectors. This strategy by-passes growth and regulation problems
2 associated with the native host by using a microorganism with well-characterized genetic tools
3 that also grows robustly in laboratory conditions (Fu et al., 2012; Gaida et al., 2015; Pogorevc et
4 al., 2019). Once a BGC is introduced into a heterologous host, novel compounds can be isolated
5 for structure elucidation and titers can be improved with common metabolic engineering
6 strategies to enable *ex vivo* bioactivity assays (Chen et al., 2017; Wang et al., 2019). Most
7 heterologous BGC expression projects use *Streptomyces* species as hosts because actinomycetes
8 are the most abundant source of bacterial natural products (Cook and Pfleger, 2019; Park et al.,
9 2020). However, *Streptomyces* hosts are more difficult to genetically modify than the synthetic
10 biology workhorse, *Escherichia coli*. Several groups have developed *E. coli* strains for
11 polyketide and nonribosomal peptide production (D'Agostino and Gulder, 2018; Pfeifer et al.,
12 2001). However, functional expression of these modular enzymes in *E. coli* is often difficult to
13 achieve, so researchers have sought alternative hosts for producing heterologous polyketides and
14 nonribosomal peptides (Bian et al., 2017; Liu et al., 2020; Mendez-Perez et al., 2011; Pogorevc
15 et al., 2019).

16 *Pseudomonas putida* KT2440, a Gram-negative soil microbe, has become a popular
17 metabolic engineering chassis in recent years, mostly due to its ability to utilize lignin-derived
18 compounds and its tolerance to organic solvents and stresses associated with industrial-scale
19 cultivations (Nikel and de Lorenzo, 2018; Niu et al., 2020). *P. putida* also has several traits that
20 make it an attractive alternative host for producing natural products. Its genome has a relatively
21 high GC content (61.5%) similar to that of actinomycete-derived natural product BGCs. *P.*
22 *putida* natively expresses a promiscuous phosphopantetheinyl transferase (PPTase) capable of
23 activating heterologous acyl- and peptidyl-carrier proteins, and it has excellent growth properties

1 amenable to large-scale cultivations (Ankenbauer et al., 2020; Owen et al., 2011). There has also
2 been an explosion in synthetic biology tools developed for *P. putida*, including genetic parts for
3 expressing heterologous proteins and constructing genomic edits (Aparicio et al., 2018; Elmore
4 et al., 2017; Martin-Pascual et al., 2021). Despite these advantages, *P. putida* has performed
5 inconsistently in the literature as a heterologous host for producing polyketides and
6 nonribosomal peptides, where it either achieves titers on par or greater than the native host (Li et
7 al., 2010; Wenzel et al., 2005) or it performs poorly compared to alternative heterologous hosts
8 (Chai et al., 2012; Wang et al., 2019). Most reports have investigated the effect of transcriptional
9 control on heterologous BGC expression in *P. putida* (Domröse et al., 2017; Dudnik et al., 2013;
10 Fu et al., 2008). Other variables that affect production titers, such as GC content of the BGC,
11 translational efficiency, and specific activity of PKSs and NRPSs, have not been systematically
12 explored in *P. putida*.

13 We selected prodigiosin and glidobactin A, two natural products natively produced by
14 Gram-negative bacteria, to serve as model products for exploring factors that influence
15 biosynthesis in *P. putida*. The BGCs for prodigiosin and glidobactin A biosynthesis both contain
16 PKS and NRPS components, and both compounds possess medically relevant properties, such as
17 anti-cancer activity (Danevčič et al., 2016; Han et al., 2005; Oka et al., 1988; Stein et al., 2012;
18 Zhang et al., 2005). Prodigiosin is a tripyrrole secondary metabolite synthesized by many strains
19 of *Serratia marcescens* (Williamson et al., 2006). It is a red pigment, providing an easily
20 detectable phenotype for screening libraries for factors that increase prodigiosin production. The
21 highest reported production titer of prodigiosin from a heterologous host is 150 mg/L from *P.*
22 *putida* (Domröse et al., 2017). BGCs for glidobactin synthesis have been identified and
23 characterized from *Schlegelella brevitalea* DSM7029 and *Photorhabdus luminescens* subsp.

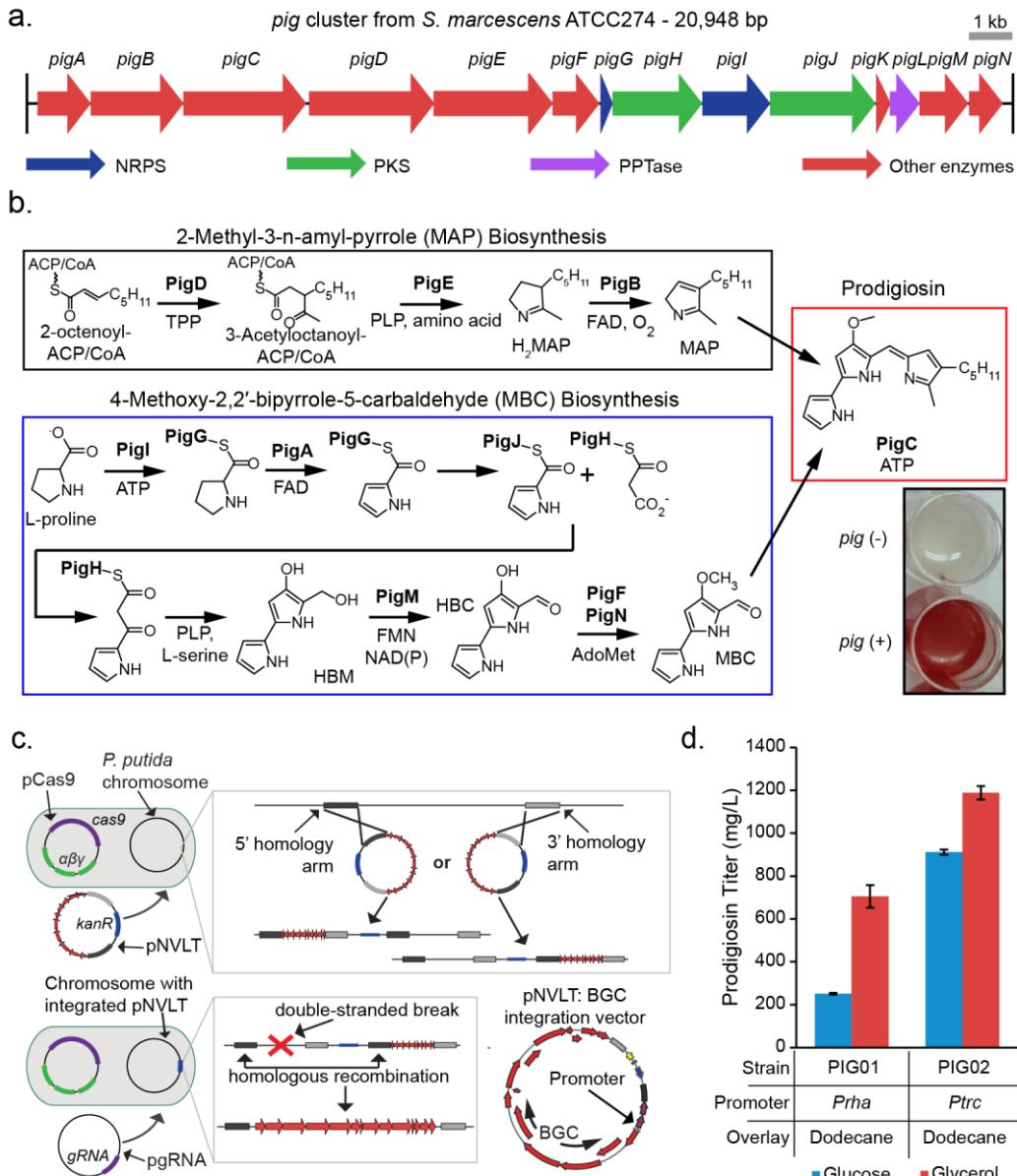
1 *laumondii* TT01 (Dudnik et al., 2013; Schellenberg et al., 2007). The two glidobactin BGCs
2 differ in their GC content and in the presence of different genes required for biosynthesis,
3 providing a case study that can reveal variables important for heterologous production in *P.*
4 *putida*. The highest heterologous titer for this molecule was achieved after expression of the
5 BGC from *P. luminescens* in *Xenorhabdus doucetiae*, which yielded 177 mg/L glidobactin A
6 while production from expression in *P. putida* was not detected (Wang et al., 2019).

7 In this work, we designed a genome editing pipeline for integrating and expressing
8 heterologous BGCs in *P. putida*. The BGCs responsible for prodigiosin (from *S. marcescens*
9 ATCC274) and glidobactin (from *S. brevitalea* DSM7029 and *P. luminescens* subsp. *laumondii*
10 TT01) biosynthesis serve as models for investigating the effects of transcription and translation
11 on production titers. Focusing on glidobactin A biosynthesis, we compare strategies for
12 improving the functional expression of modular PKSs and NRPSs. We also take advantage of the
13 visible phenotype associated with prodigiosin production to devise a screen for discovering
14 mutants with improved production titers of heterologous products. Through these efforts, we
15 demonstrate that *P. putida* is capable of heterologous production titers in 100 mg - 1 g/L
16 quantities from all three BGCs.

17
18 **2. Results**

19 **2.1 Introducing heterologous BGCs into *P. putida*.**

20 We initially focused on engineering a strain of *P. putida* to produce prodigiosin because
21 the visible pigmentation of production cultures would allow for rapid detection of heterologous
22 production from early production strains. The BGC for prodigiosin biosynthesis, designated *pig*,
23 in *S. marcescens* ATCC274 is 20,948 bp in length and contains 14 genes expressed in a single
24 operon (Harris et al., 2004) (Fig. 1a). Prodigiosin biosynthesis occurs as a bifurcated pathway


1 where two precursors, 2-methyl-3-n-amyl-pyrrole (MAP) and 4-methoxy-2,2'-bipyrrole-5-
2 carbaldehyde (MBC), are synthesized independently and then condensed in the final reaction that
3 yields prodigiosin (Fig. 1b). MAP is derived from 2-octenoyl-ACP/-CoA, and MBC is derived
4 from L-proline, malonyl-CoA, and L-serine. L-proline is incorporated into the pathway by a
5 NRPS (PigG and PigI), followed by the incorporation of malonyl-CoA by a PKS (PigJ and PigH)
6 (Williamson et al., 2006).

7 Replicative vectors in *P. putida* can sometimes induce a growth defect, which can have a
8 negative effect on heterologous production (Cook et al., 2018; Mi et al., 2016). Therefore, we
9 sought to optimize a genome editing protocol for integrating large DNA constructs into the *P.*
10 *putida* chromosome. We previously developed a set of vectors for constructing scarless deletions
11 in *P. putida* KT2440 using Cas9-assisted homologous recombination (Cook et al., 2018). A
12 replicative vector using the RK2 origin, pCas9, expressed Cas9 from *Streptococcus pyogenes*
13 and the genes encoding the λRed system from λ bacteriophage, Exo, Beta, and Gam. The single
14 guide RNA (sgRNA) was expressed from pgRNA, a replicative vector containing the BBR1
15 origin. The repair template was located in an integrative vector containing homology arms for
16 the region to be deleted (Graf and Altenbuchner, 2011). The biggest difference between our
17 needs and the existing genome editing method was the size of the required repair template, here
18 containing a full BGC. Cloning BGCs can lead to large plasmid sizes and the introduction of
19 genes that may be toxic to common *E. coli* cloning strains (Fu et al., 2012). Large plasmids are
20 not as easily transformed by electroporation into *P. putida*, but conjugation is significantly more
21 efficient (Fu et al., 2008). To address these issues, we edited the integrative vector to replace the
22 high-copy ColE1 origin with the medium-copy p15A origin and add a functional origin of

1 transfer (*oriT*) sequence for performing conjugations. Unnecessary genes in the original vector
2 were also removed to reduce the plasmid size, resulting in the integrative vector pNVLTv2.

3 Next, we deleted the endogenous BGC for pyoverdine biosynthesis to simplify the
4 baseline strain, create a “neutral” integration site, and eliminate potential analytical challenges
5 (Choi et al., 2018; Gomez-Escribano and Bibb, 2011; Ravel and Cornelis, 2003). We had already
6 created a strain from previous work with one gene deleted, (*P. putida* Δ *pvdL*), so we introduced
7 homology arms for deleting the remaining three genes, *pvdIJD*, into pNVLTv2, resulting in
8 pNVLTv2-*pvdIJD*. We designed a sgRNA plasmid targeting *pvdI*, pgRNAtet-*pvdI*, and
9 successfully constructed the 24,920-bp deletion using the two-step Cas9-assisted protocol that
10 our group has described previously, resulting in strain *P. putida* pvd-.

11 We selected two inducible promoter systems, the *rha* promoter (P_{rha} , induced by L-
12 rhamnose) and the *trc* promoter (P_{trc} , induced by IPTG), to drive expression of heterologous
13 BGCs at the *pvdIJD* locus. BGCs expressed as a single operon can be refactored for heterologous
14 expression by replacing the native sequence directly upstream of the initial gene with a synthetic
15 promoter and ribosome binding site (RBS) optimized for the heterologous host. Inducible
16 promoters are ideal for these types of projects because they reduce BGC expression during
17 cloning protocols and enable two-phase production cultures, where cultivation is separated into a
18 growth stage and a production stage (Raj et al., 2020). P_{rha} is tightly repressed by carbon
19 catabolite repression in *E. coli*, but not in *P. putida*, making it an appropriate promoter for
20 cloning BGCs in *E. coli* before transferring them into *P. putida* (Jeske and Altenbuchner, 2010).
21 P_{trc} is one the strongest promoters that we have characterized in *P. putida*, which allowed us to
22 maximize expression of heterologous BGCs (Cook et al., 2018).

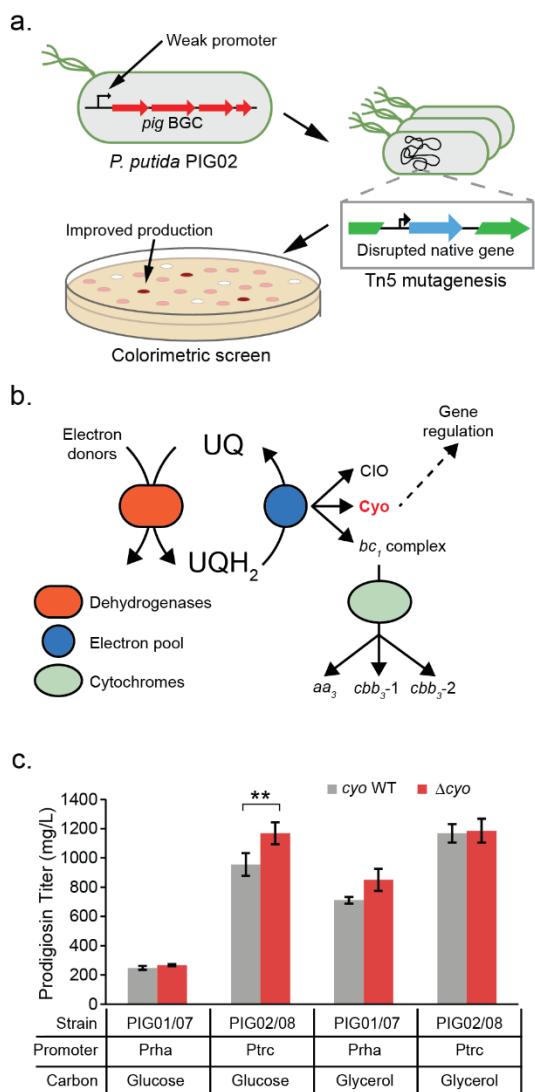
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Fig. 1. Establishing a prodigiosin production strain. (a) Map of prodigiosin BGC from *S. marcescens* ATCC274. Colored arrows indicate the enzyme class according to the legend. (b) Prodigiosin biosynthesis begins with intermediates in fatty acid metabolism and L-proline. 2-octenoyl-CoA/ACP is converted to MAP by PigDEB. L-proline, serine, and malonyl-CoA are converted to MBC by PigIAJHMFN. The two intermediates are then fused by PigC to produce prodigiosin which generates a visible red color (inset) in culture. (c) Integration of BGCs into the chromosome of *P. putida*. A pNVLTv2 integration vector is introduced via conjugation into a strain of *P. putida* containing pCas9. The integration vector carries out a single-crossover recombination with the *P. putida* chromosome. The Cas9 counterselection is then enabled after electroporating pgRNA targeting the wild-type sequence to be replaced by the BGC. This selects for the double-crossover recombination of the integration vector and results in a markerless and stable integration of the BGC. (d) Prodigiosin production from cultures grown in glucose or glycerol-based media under control of *P_{rha}* or *P_{trc}* promoters. All cultures were supplied with dodecane as a product-sink. Error bars represent standard deviation, n = 3 biological replicates. Differences in values between all samples were found to be statistically significant (P<0.01) by the Student's t-test.

1 Experiments with each promoter linked to a fluorescent reporter construct confirmed that
2 P_{trc} has higher basal and maximum expression than P_{rha} (Fig. S2a). Next, we attempted to
3 construct *pig* integration vectors with both promoters using RecET direct cloning (Fu et al.,
4 2012; Wang et al., 2016) in *E. coli* (Fig. 1c). We isolated correct clones with P_{rha} only when
5 transformation media was supplemented with glucose, conditions that silence P_{rha} through
6 catabolite repression. Consistently, we were unable to obtain a P_{trc} version of the *pig* vector,
7 presumably because leaky expression of the *pig* genes was toxic to *E. coli*. The expression
8 construct including P_{rha} and the *pig* BGC (23,247 bp total) was integrated into *P. putida*'s
9 chromosome at the *pvdIJD* locus through the two-step protocol as described above, resulting in
10 strain PIG01 (Fig. 1c). Upon addition of up to 0.5% (w/v) L-rhamnose to the growth media,
11 cultures of PIG01 produced a visible red pigment characteristic of prodigiosin production (Fig.
12 1b).

13 **2.2 Optimizing prodigiosin production.**

14 Once we established prodigiosin production in *P. putida*, we then compared various media
15 formulations and their effects on prodigiosin titers. Terrific Broth (TB) has been used previously
16 to produce prodigiosin in *P. putida* cultures (Domröse et al., 2015). Alternatively, Riesenber-
17 Korz (RK) medium is a minimal medium developed for high-cell density cultures of *E. coli*, and
18 variations of this medium have been used for the production of other products from *P. putida*
19 (Lee et al., 2000; Riesenber et al., 1991). After determining the optimum L-rhamnose
20 concentration for induction (0.2% w/v), we compared prodigiosin production in rich media and
21 minimal media (Fig. S2b). In non-baffled shake flask cultures of *P. putida* PIG01, prodigiosin
22 titers were less than 100 mg/L in TB media (Fig. S3a). Prodigiosin is insoluble in water, so we
23 added an organic overlay to provide a product sink, which greatly improved prodigiosin


1 production in TB media to over 500 mg/L. Prodigiosin production in RK media with 2.5%
2 glycerol reached approximately 500 mg/L without an organic overlay and over 600 mg/L with an
3 overlay (Fig. S3a). Interestingly, using glucose as the carbon source in minimal media led to
4 much lower prodigiosin titers of approximately 200 mg/L (Fig. 1d).

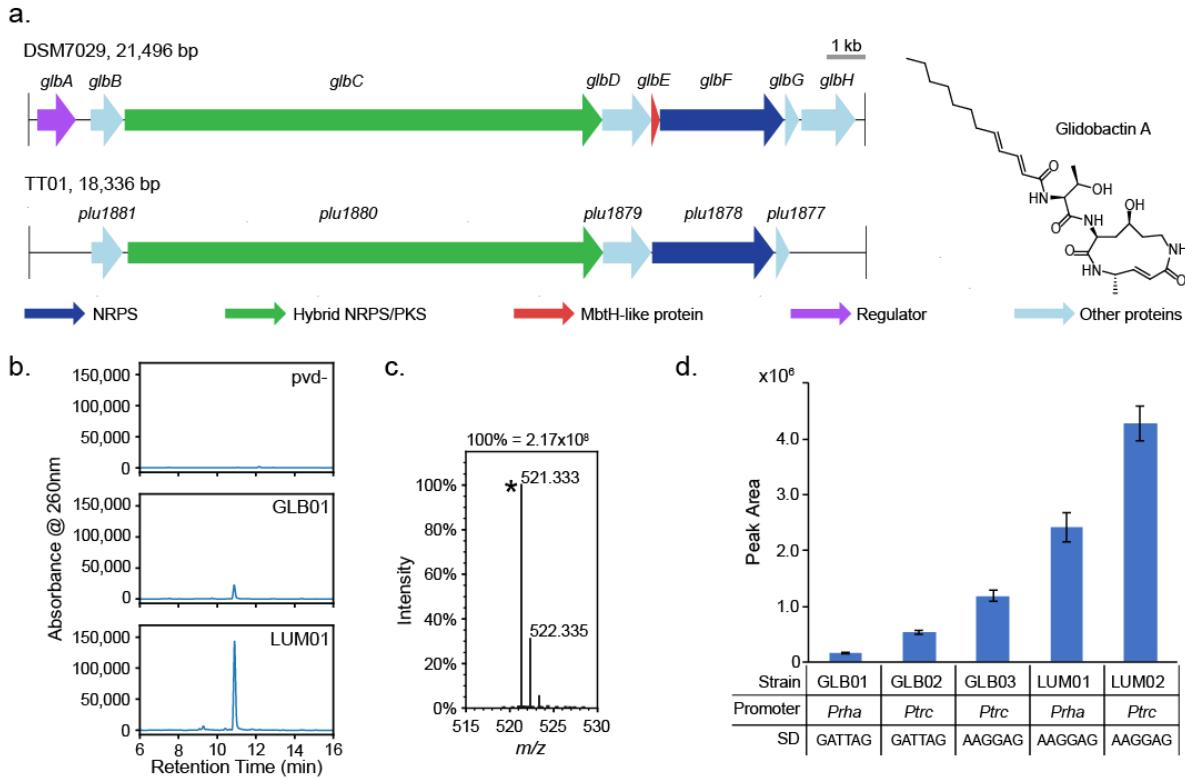
5 After establishing optimal media and cultivation conditions for strain PIG01, we sought
6 to further improve prodigiosin production through transcriptional control. In lieu of cloning a *pig*
7 integration construct with *P_{trc}*, we designed a chromosomal integration vector for replacing *P_{rha}*
8 with *P_{trc}* in PIG01, pNVLTV2-pvdIJD-Ptrc-pigA. Integration of this construct resulted in strain
9 PIG02, which produced a strong red pigment in cultures supplemented with IPTG, and 1 mM
10 was the optimal inducer concentration (Fig. S2c). Introducing a stronger promoter for *pig*
11 expression improved prodigiosin production, as *P. putida* PIG02 generated higher prodigiosin
12 titers than PIG01 (Fig. 1d). This strain also produced more prodigiosin on minimal media with
13 glycerol than with glucose. PIG02 cultures grown in RK media with glycerol generated
14 prodigiosin titers around 1.1 g/L, whereas production on glucose was approximately 900 mg/L.

15 **2.3 Screening for mutants with improved prodigiosin biosynthesis.**

16 To identify strategies for improving prodigiosin production, we devised a screen based on
17 the appearance of *P. putida* colonies producing prodigiosin. Tn5 mutagenesis was used to create
18 mutant libraries of *P. putida* PIG01 and PIG02, which normally have a light-pink phenotype on
19 solid media with a low concentration of inducer (Fig. 2a). Libraries of these strains were plated
20 on LB agar or minimal agar with glycerol, and individual colonies with a strong red color,
21 indicating increased prodigiosin production, were isolated and sequenced to determine the

- 1 location of the Tn5 insertion (Table S8). Surprisingly, the most common type of mutants were
- 2 disruptions in components of the electron transport chain.

Fig. 2. Tn5 libraries highlight disruptions in electron transport chain. (a) Generalized workflow for generating and screening mutant libraries for improved prodigiosin production. (b) Components of electron transport chain, highlighting role of the *bo3* oxidase, Cyo. UQ – ubiquinones, UQH₂ – ubiquinols, CIO – cyanide insensitive oxidase. Adapted from Ugidos et al. and Nikel et al. (c) Effect of deleting *cyo* operon on prodigiosin production on glucose and glycerol. Error bars represent standard deviation, n = 3 biological replicates. Differences between samples marked with asterisks were found to be statistically significant by the Student's *t*-test (** = P < 0.01).


The two operons containing Tn5 insertions, *cyo* and *ccm*, encode production of the *bo3* type oxidase (Cyo) and cytochrome c maturation, respectively (Fig. 2b). Cyo is the primary terminal oxidase used during exponential growth and has been shown to be involved in gene regulation in *P. putida* (Morales et al., 2006). Mutants with disruptions in the *ccm* operon had a drastic growth defect on minimal media and did not grow on rich media. Disruptions in the *cyo* operon led to only a slight growth defect, so we investigated this operon's effect on prodigiosin production (Fig. S5). The *cyo* operon contains five genes, *cyoABCDE*, and we deleted the region containing the RBS and all five genes in this operon in both the L-rhamnose- and IPTG-inducible prodigiosin producing strains (resulting in PIG07 and PIG08, respectively). Transcriptomic data available in the literature suggested that the *cyo* operon is upregulated during growth on glucose compared

1 to glycerol (Nikel et al., 2014), so we compared prodigiosin production in RK media with
2 glucose in addition to glycerol. No significant changes in production were observed from strains
3 grown on glycerol, but PIG08 had improved production on glucose, making its performance
4 equivalent to PIG02 on glycerol (Fig. 2c).

5 **2.4 Heterologous expression of two glidobactin A BGCs.**

6 The high titers of prodigiosin achieved from heterologous expression in *P. putida* were
7 encouraging, but we also wanted to interrogate variables affecting the expression of PKSs and
8 NRPSs with a canonical modular structure. Glidobactin A provided this opportunity, as its
9 biosynthesis involves a hybrid PKS/NRPS that has three modules in total and is encoded by
10 genes approximately 12.4 kb in length (Fig. 3a). The two homologous BGCs in *S. brevitalea*
11 (*glb*) and *P. luminescens* (*lum*) both produce glidobactin A as the primary product (Bian et al.,
12 2012; Schellenberg et al., 2007). Glidobactin A biosynthesis starts with the acylation of an L-
13 threonine residue by GlbF/PLU1878p (Imker et al., 2010). The hybrid PKS/NRPS,
14 GlbC/PLU1880p, then incorporates L-lysine, L-alanine, and malonyl-CoA before performing the
15 final cyclization reaction (Wang et al., 2019). The most apparent difference between the two
16 BGCs is that the *glb* and *lum* clusters have a GC content of 70% and 47%, respectively. The *glb*
17 cluster also has three genes that are not present in the *lum* cluster: *glbE*, which encodes an MbtH-
18 like protein (MLP); *glbA*, a transcriptional regulator; and *glbH*, which has been shown to be
19 involved in the hydroxylation of a lysine residue that is incorporated into glidobactin A (Table
20 S5) (Fu et al., 2012; Schellenberg et al., 2007). Unlike the prodigiosin BGC, neither glidobactin
21 BGC contains a gene encoding a dedicated PPTase. Expressing each BGC afforded us the
22 opportunity to assess several factors in heterologous production of polyketides and nonribosomal
23 peptides: the effect of MLP expression on the activity of a heterologous NRPS, interactions

1 between the host's PPTase and heterologous PKSs and NRPSs, and the significance of
 2 similarities in phylogeny and GC content between *P. putida* and heterologous BGCs.

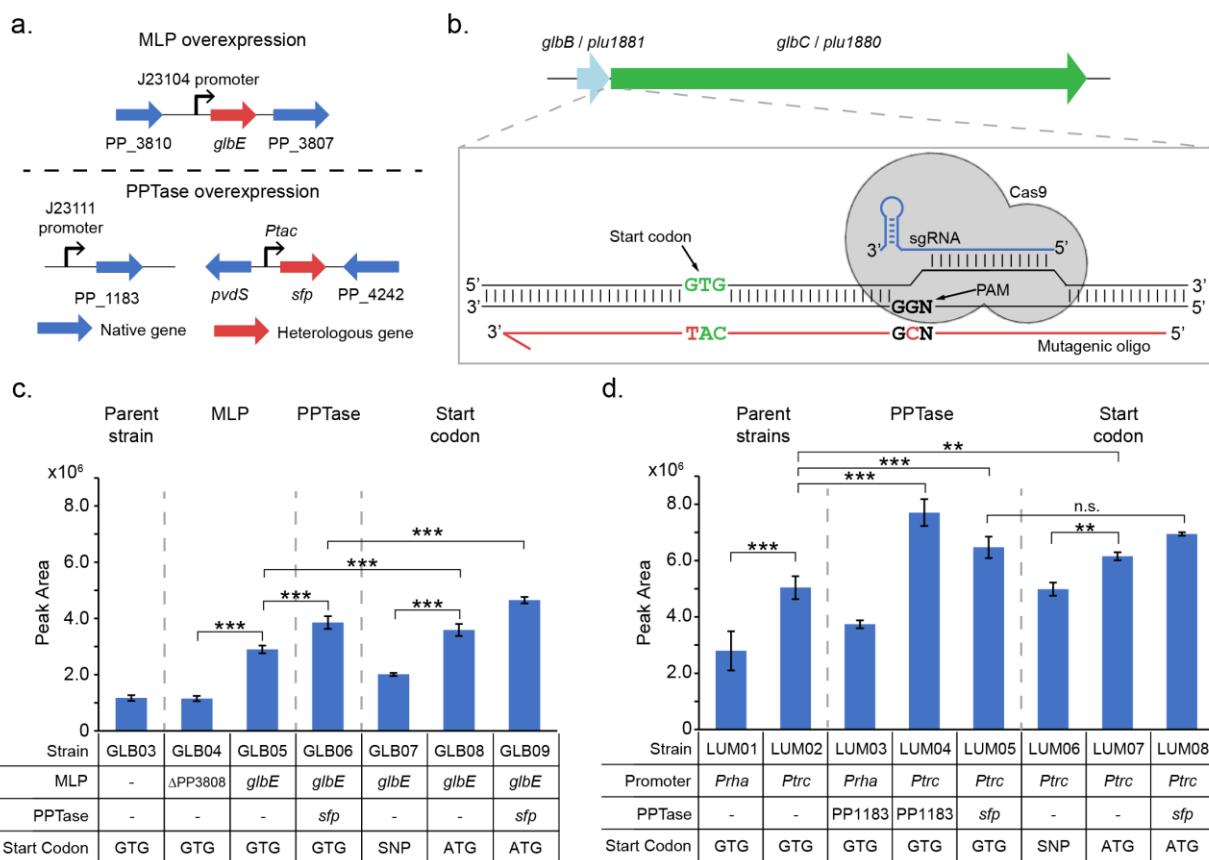
3
 4 Fig. 3. Identifying glidobactin A as primary product from expression of *glb* and *lum* clusters. (a) Gene maps of glidobactin BGCs from *S. brevitalea* DSM7029 and *P. luminescens* TT01. Colored arrows indicate the enzyme class according to the legend. The structure of glidobactin A is shown to the right. (b) Unique peak identified in HPLC analysis of extracts from glidobactin production strains. (c) LC-MS shows that the major peak has m/z value corresponding to glidobactin A + H^+ (calculated $m/z = 521.3334$). (d) Effects of promoter and RBS strength on glidobactin production. All strains were grown in 25 mL of glycerol-based media in 250-mL non-baffled shake flasks. SD=Shine-Dalgarno sequence. Error bars represent standard deviation, $n = 3$ biological replicates. Differences in values between all samples were found to be statistically significant ($P < 0.01$) by the Student's *t*-test.

14 Using the same strategy applied to prodigiosin, both BGCs were integrated into the

15 *pvdIJD* locus of *P. putida* pvd- with *P_{rha}* directly upstream of the first gene (*glbB*, *plu1881*),
 16 resulting in the strains *P. putida* GLB01 and LUM01. Glidobactin A production from these two
 17 strains was initially assessed by HPLC; based on peak area, LUM01 produced 15-fold more
 18 product than GLB01 (Fig. 3b). We verified that the primary compound was glidobactin A using

1 LC-MS and ^1H -NMR (Fig. 3c, Fig. S9). Similar to prodigiosin, glidobactin A production was
2 greater on glycerol compared to glucose (Fig. S8a). Before performing further modifications to
3 strains GLB01 and LUM01, we confirmed by RT-PCR that both BGCs were fully transcribed in
4 *P. putida* (Fig. S7). It has been shown that deleting the last gene in the *glb* cluster, *glbH*, does not
5 abolish glidobactin A production but significantly reduces it (Schellenberg et al., 2007). The RT-
6 PCR results demonstrated that *glbH* was transcribed, so we did not interrogate GlbH activity as a
7 limiting step in glidobactin production in strain GLB01.

8 After determining the relative production titers between GLB01 and LUM01, we sought
9 to improve production by modifying transcription and translation of the BGCs with the primary
10 goal of determining why the *glb* cluster yielded less product than the *lum* cluster in *P. putida*. We
11 continued to mirror our strategy with the *pig* cluster and swapped to the stronger promoter, P_{trc} in
12 both strains, resulting in strains GLB02 and LUM02. As expected, production of glidobactin A
13 increased, with both strains producing approximately 2-fold more product (Fig. 3d). Production
14 from GLB02 was still much lower than LUM02, so we investigated translation initiation as a
15 potential factor. Using the RBS calculator (Farasat et al., 2014), we had designed the RBS
16 sequences for the first gene in each BGC to have similar translation initiation rates (TIR) (*glb*:
17 13,000 au; *lum*: 9,000 au). Coincidentally, the Shine-Dalgarno sequences upstream of the BGCs
18 in strains PIG01 and LUM01 were the same (AAGGAG), whereas GLB01 had a different
19 sequence (GATTAG). When we changed the Shine-Dalgarno sequence for *glb* to AAGGAG in
20 the RBS calculator, the predicted TIR increased to 43,000 au. Therefore, we constructed strain
21 GLB03 by simultaneously inserting P_{trc} and the AAGGAG Shine-Dalgarno sequence upstream
22 of the *glb* cluster. Changing the Shine-Dalgarno sequence upstream of the *glb* cluster increased


1 glidobactin A production by 2-fold compared to GLB02, which had P_{trc} and the original RBS
2 sequence, consistent with the increased RBS strength predicted *in silico* (Fig. 3d).

3 **2.5 Improving glidobactin A production through MLP and PPTase overexpression.**

4 Functional expression of large, multi-modular enzymes is often the greatest challenge in
5 engineering natural product synthesis, so we identified the steps governed by PKSs and NRPSs
6 as a possible bottleneck in glidobactin production. The presence of a cognate MLP in the *glb*
7 cluster but not the *lum* cluster raised the question of whether MLP availability is affecting
8 heterologous NRPS activity. NRPSs often require a complementary MLP for optimal solubility
9 and activity, and homologs from different BGCs or strains are usually not interchangeable
10 (Schomer and Thomas, 2017). Indeed, it has been demonstrated that soluble expression of the
11 NRPS module, GlbF, in *E. coli* requires co-expression of its cognate MLP, GlbE (Imker et al.,
12 2010). The genome of *P. putida* KT2440 contains one gene (PP_3808) encoding an MLP
13 specific for the NRPSs responsible for pyoverdine biosynthesis. Deleting the gene encoding *P.*
14 *putida*'s native MLP in strain GLB03 (resulting in GLB04) did not significantly change
15 glidobactin A production (Fig. 4c). To increase MLP availability, we inserted a second copy of
16 *glbE* with a constitutive promoter in place of *P. putida*'s native MLP, resulting in strain GLB05
17 (Fig. 4a). Overexpression of *glbE* resulted in greater than 2-fold increase in glidobactin A
18 production compared to GLB03 and GLB04. In contrast, deleting PP_3808 or overexpressing
19 *glbE* on a plasmid did not have a noticeable effect on glidobactin production for strain LUM01
20 (Fig. S8b,c).

21 After demonstrating that expression of *glbE* was non-optimal for glidobactin A
22 production using only the *glb* cluster, we next investigated whether PPTase activity in *P. putida*
23 could be limiting production. We initially modified the strains LUM01 and LUM02 by inserting

1 a strong constitutive promoter upstream of PP_1183, resulting in the strains LUM03 and
 2 LUM04, respectively (Fig. 4a). Both strains saw an increase in production, and specifically,
 3 strain LUM04 had about 50% higher glidobactin A production compared to the parent strain,
 4 LUM02 (Fig. 4d). However, these strains had a slower growth rate compared to the parent
 5 strains, and when we measured glidobactin production from these strains in 3-mL cultures in
 6 tubes instead of 25-mL cultures in flasks, we found that they produced less glidobactin compared
 7 to the parent strains (Fig. S8d).

9 **Fig. 4. Improving functional expression of PKS/NRPS enzymes in glidobactin pathway.** (a) Strategies for
 10 overexpressing MLPs and PPTases in production strains. The MLP gene, *glbE*, was integrated in place of PP_3808,
 11 the gene encoding *P. putida*'s native MLP, along with a constitutive promoter from the Anderson promoter library.
 12 A constitutive promoter from the Anderson library was integrated upstream of PP_1183, the gene encoding *P.*
 13 *putida*'s native PPTase. The inducible promoter, *P_{tac}*, and *sfp* were integrated in place of *pvdL*. (b) Cas9-assisted
 14 ssDNA oligo recombination scheme for introducing ATG start codons in *glbC/plu1880*. To select for start codon
 15 mutations, an sgRNA targets the PAM sequence immediately downstream of the start codon. A mutagenic oligo
 16 contains mutations in the PAM and the start codon, and Cas9 activity selects against cells that don't incorporate
 17 mutations from this oligo. PAM=protospacer adjacent motif. (c) and (d) Effects of MLP overexpression, PPTase

1 overexpression, and start codon mutagenesis on glidobactin production strains. Charts are labeled and split into
2 sections to emphasize genetic changes made (e.g. “PPTase” samples have modifications to PPTase expression). All
3 cultures were in 25-mL of glycerol-based media in 250-mL non-baffled flasks. Error bars represent standard
4 devitaion, $n \geq 3$ biological replicates. Differences between samples marked with asterisks were found to be
5 statistically significant by the Student’s *t*-test (n.s. = not significant, * = $P < 0.05$, ** = $P < 0.01$, *** = $P < 0.001$).
6

7 To avoid any deleterious effects on native metabolism from over-producing *P. putida*’s
8 native PPTase, we introduced a heterologous PPTase as an orthogonal alternative. *Sfp* is a
9 promiscuous PPTase from *Bacillus subtilis* that has enabled the production of functional PKS
10 and NRPS enzymes in *E. coli* (Pfeifer et al., 2001). We designed an expression construct for
11 integrating *sfp* into the *pvdL* locus with the *tac* promoter, enabling induction by the addition of
12 IPTG in strains expressing LacI (Fig. 4a). Introducing this construct to the IPTG-inducible
13 production strains, LUM02 and GLB05, resulted in LUM05 and GLB06. Co-expression of *sfp*
14 improved glidobactin production by 30% in both strains (Fig. 4c,d). These strains also did not
15 have a noticeable growth defect and did not have a significant drop in production in smaller
16 cultures (Fig. S8d).

17 **2.6 Modifying translation of hybrid PKS/NRPS via Cas9-assisted mutagenesis.**

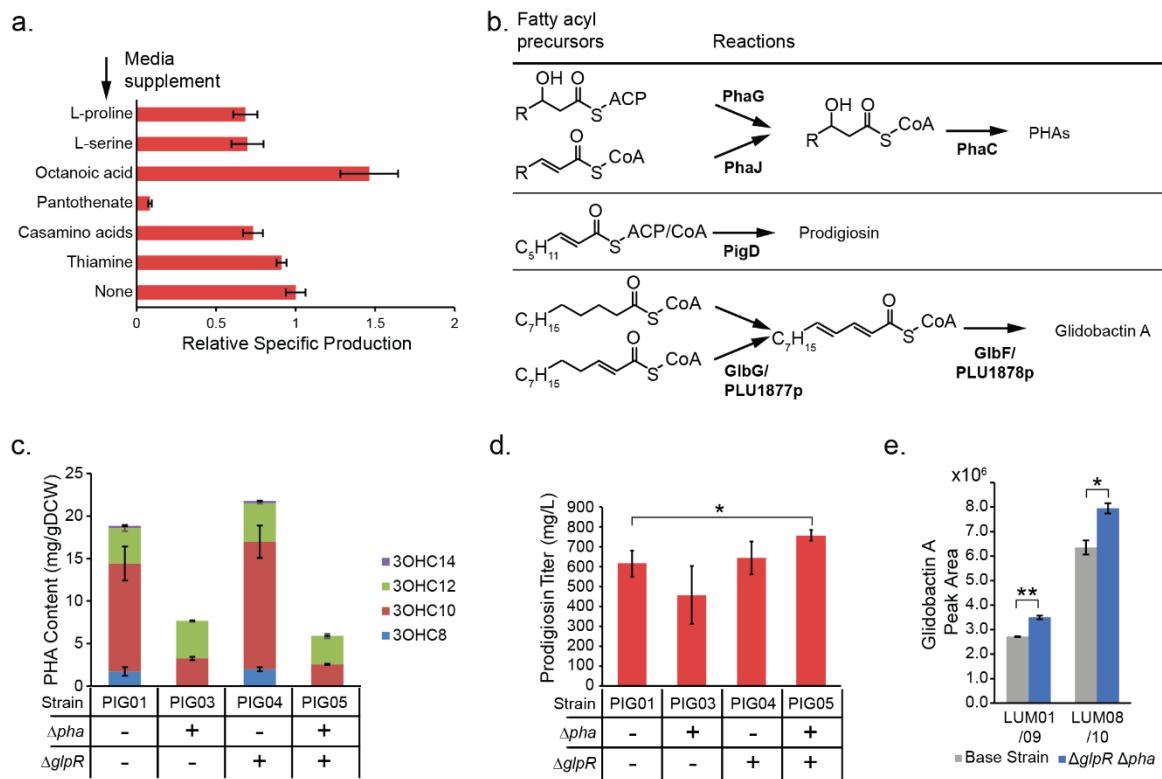
18 While analyzing GC content and codon usage of the BGCs described in this work, we
19 noticed that the genes encoding the hybrid PKS/NRPS (*glbC*, *plu1880*) in both glidobactin
20 clusters each used the alternative start codon, GTG, which lowers translation initiation rates
21 compared to the canonical ATG start codon in prokaryotes, including *P. putida* (Elmore et al.,
22 2021; Hecht et al., 2017). This realization provided the opportunity to further engineer
23 glidobactin production through the simple strategy of generating a point mutation in the start
24 codon of both genes. We hypothesized that this change would improve translation initiation for
25 these genes and increase glidobactin A production.

26 To generate strains with these start codon mutations, we adapted our genome editing
27 vectors for introducing point mutations via oligo recombineering. Wu and colleagues recently

1 reported the generation of knockouts in *P. putida* using only one λ phage recombinase, Beta (Wu
2 et al., 2019). We constructed a derivative of pCas9, pCas9-beta, and were able to construct small
3 chromosomal deletions using 80-nt oligos (Table S6). However, it has been shown in the
4 literature that *P. putida* can efficiently repair mismatches in its chromosome, and G to A changes
5 are much more sensitive to mismatch repair compared to other mutations (Aparicio et al.,
6 2020b). We accounted for this potential issue by incorporating a strategy developed by Aparicio
7 et al. to temporally inhibit mismatch repair in *P. putida*. We constructed a second plasmid for
8 oligo recombineering, pCas9-beta-mmr, which co-expresses *beta* and a defective mutant of *mutL*
9 from *P. putida*, *mutL_{E36K}*. Expression of the *mutL* mutant inhibits mismatch repair in *P. putida*,
10 allowing for the generation of point mutations that would normally be repaired by the host.

11 We identified sgRNA targets 18-24 bp downstream of the start codon in *glbC* and
12 *plu1880* (Fig. 4b). The single-stranded DNA oligos (125 nt) designed for each BGC contained
13 two point mutations: the desired G to A start codon mutation and a synonymous point mutation
14 in the PAM site of the sgRNA target. Attempts to introduce these mutations with pCas9-beta
15 resulted in most mutants having only the PAM mutation (Table S7). Repeating the
16 recombineering protocols with pCas9-beta-mmr resolved this problem, and most mutants
17 sequenced contained both the start codon and PAM mutations. We initially introduced these
18 mutations into IPTG-inducible strains without *sfp* overexpression (LUM02 and GLB05),
19 resulting in strains LUM06 and GLB07, which have the PAM mutation only (designated as
20 SNP), and strains LUM07 and GLB08, which have both mutations (designated as ATG). The
21 ATG derivatives of both strains produced about 20% more glidobactin A (Fig. 4c). Notably,
22 GLB07 produced 20% less glidobactin A than GLB05, suggesting that the synonymous PAM
23 mutation in *glbC* had a negative effect on expression, even though the mutated codon, TCG, is

1 more common in *P. putida* than the native one, TCC. Next, we introduced the ATG mutation to
2 strains containing *sfp* overexpression, resulting in strains LUM08 and GLB09. LUM08 did not
3 have a significant increase in glidobactin A production compared to its parent strain, LUM05,
4 but GLB09 produced 20% more glidobactin A than GLB06 (Fig. 4c,d).


5 The best glidobactin A production strain resulting from modifications mentioned above
6 was LUM08, which had an approximately 3-fold increase in production compared to the initial
7 production strain constructed with the *lum* cluster. GLB09 produced 30 times more glidobactin A
8 than GLB01. After purifying a glidobactin A standard that we verified by ¹H-NMR, we used LC-
9 MS to determine the titer from LUM08 and GLB09, which we found to produce approximately
10 390 mg/L and 270 mg/L glidobactin A, respectively.

11 **2.7 Engineering metabolism and gene regulation for improved natural product titers.**

12 After establishing robust production of both prodigiosin and glidobactin A, we set out to
13 identify metabolic engineering strategies that would improve production of both compounds.
14 Despite differences in the PKS and NRPS components in prodigiosin and glidobactin
15 biosynthesis, both compounds are synthesized from similar primary metabolites. Aided by the
16 visible phenotype of prodigiosin production, we screened for metabolites that could be limiting
17 prodigiosin production in *P. putida*. We hypothesized that results from these experiments could
18 apply to improving glidobactin A production as well.

19 We grew cultures of *P. putida* PIG01 in RK media supplemented with compounds related
20 to the metabolites directly incorporated into prodigiosin, including octanoic acid and amino acids
21 (Fig. 5a). Octanoic acid was the only supplement that improved specific prodigiosin production,
22 suggesting that the availability of 2-octenoyl-ACP/CoA could be limiting prodigiosin production
23 in *P. putida*. This effect was only apparent when glycerol was the carbon source, and not on

1 glucose (Fig. S3b). These results suggested to us that polyhydroxyalkanoate (PHA) biosynthesis
 2 was a potential carbon sink competing with the heterologous pathways for metabolites. Early
 3 reactions in both heterologous pathways incorporate an acyl-ACP or acyl-CoA into the natural
 4 product. *P. putida* synthesizes medium-chain-length PHAs (C8-C12) in order to store carbon and
 5 energy when an excess of carbon source is available (Prieto et al., 2016). Two PHA polymerases,
 6 PhaC-I and PhaC-II, are encoded in a single operon, *phaC1ZC2*, and incorporate 3-
 7 hydroxyalkanoates directly from fatty acid metabolism (Fig. 5b).

8

9 **Fig. 5. Identification of fatty acyl precursors as a metabolic engineering target.** (a) Supplementing various
 10 precursors in minimal media (RK 2.5% glycerol) affects prodigiosin production. Cultures were grown in 3 mL
 11 media without dodecane overlay. (b) Metabolites from fatty acid metabolism that are incorporated into PHA,
 12 prodigiosin, and glidobactin A biosynthesis. *P. putida* incorporates mostly C8-C12 3-hydroxyalkanoates into PHAs.
 13 2-octenoyl-ACP or CoA is incorporated into prodigiosin, and dodecanoyl-CoA or 2-dodecenoyl-CoA is
 14 incorporated into glidobactin A. (c) PHA composition from *P. putida* strains with and without $\Delta glpR$ and
 15 $\Delta \alpha$ genotypes. Cultures were grown in RK media with glycerol and extractions were completed at 24h of
 16 growth. (d) Prodigiosin production from *P. putida* strains with and without $\Delta glpR$ and $\Delta \alpha$ genotypes.
 17 Cultures were grown in 25 mL RK glycerol with dodecane overlay for 48h. (e) Effect of $\Delta glpR \Delta \alpha$ genotype on
 18 glidobactin A production. Cultures were grown in 25 mL RK glycerol for 48h. Error bars represent

1 standard deviation, n = 3 biological replicates. Differences between samples marked with asterisks were found to be
2 statistically significant by the Student's *t*-test (n.s. = not significant, * = P<0.05, ** = P<0.01, *** = P<0.001).

3
4 We initially deleted *phaC1ZC2* in strain PIG01, resulting in PIG03, which successfully
5 abolished PHA biosynthesis from *P. putida* (Fig. 5c). However, PIG03 had lower prodigiosin
6 production than the parent strain on RK media with glycerol (Fig. 5d). Based on reports in the
7 literature, we had also identified *glpR*, which encodes the transcriptional regulator that represses
8 the expression of genes involved in glycerol uptake and catabolism in *P. putida* (Fig. S4a)
9 (Escapa et al., 2013). Escapa *et al.* found that deleting *glpR* decreased the length of lag phase
10 during growth on glycerol as well as increased PHA production, so we hypothesized that this
11 mutation could be beneficial for prodigiosin production as well. Deleting *glpR* alone in *P. putida*
12 PIG01, resulting in PIG04, did not increase prodigiosin production, but introducing this mutation
13 to PIG03, resulting in PIG05, slightly improved the prodigiosin titer to approximately 750 mg/L
14 (Fig. 5d). In contrast, introducing the $\Delta glpR \Delta phaC1ZC2$ genotype to *P. putida* PIG02 did not
15 improve production (Fig. S4b). However, measuring prodigiosin titers at earlier time points did
16 reveal that strains with both deletions had increased initial specific productivity of prodigiosin
17 compared to strains without (Fig. S4b). To test our hypothesis that metabolic modifications
18 improving prodigiosin production can be applied to other natural products, we deleted *glpR* and
19 *phaC1ZC2* in LUM01, creating strain LUM09. This mutation had a more noticeable positive
20 effect on glidobactin A production, resulting in a 30% increase in titer at 48h of growth as
21 determined by HPLC (Fig. 5e). There was a similar benefit to production in the best glidobactin
22 production strain, LUM08, resulting in a strain capable of producing 470 mg/L glidobactin A
23 (LUM10).

24
25 **3. Discussion**

1 This work establishes several tools for rationally engineering natural product biosynthesis
2 using *P. putida* as a heterologous host. After optimizing production through various genetic
3 modifications, we achieved production titers greater than any previously reported values for
4 heterologous production for both prodigiosin (1.1 g/L) and glidobactin A (470 mg/L) (Bian et al.,
5 2014; Domröse et al., 2017; Wang et al., 2019). A major strength of our expression and
6 production strategies is that all initial strains (i.e. strains with *rha* promoter and zero
7 modifications to the BGC or host) were able to produce significant amounts of prodigiosin or
8 glidobactin A, with titers that were on par or greater than values reported in the literature.

9 Applying this approach to the heterologous expression of uncharacterized BGCs in *P. putida*
10 could be a viable strategy for drug discovery. Combined with the simple metabolic background
11 of *P. putida*, achieving functional expression of heterologous BGCs using a single integration
12 provides a rapid workflow for building strains to analyze for novel compounds.

13 In cases where the initial heterologous production titers are lower than desired, there are
14 multiple options for well-characterized promoters in *P. putida* (Lee et al., 2011). We have shown
15 that in the case of chromosomal expression, increasing the promoter strength provides an
16 expected increase in heterologous production (Fig. 1d, Fig. S2). In contrast, a recent paper that
17 attempted to express the *lum* BGC in *P. putida* using T7 RNA polymerase (T7 RNAP) did not
18 detect production of glidobactin A (Wang et al., 2019). Even though the T7 promoter is stronger
19 than other bacterial promoters, transcription of long transcripts with T7 RNAP in *P. putida* may
20 lead to poor mRNA stability because T7 RNAP, unlike bacterial RNAPs, is uncoupled from
21 translation in bacteria (Fan et al., 2017; Iost et al., 1992; Iost and Dreyfus, 1995).

22 In contrast to transcription, translational control is rarely investigated in articles
23 describing heterologous BGCs in bacteria. Here, we only tested two RBS sequences guided by *in*

1 *silico* predictions for expressing the *glb* cluster (Fig. 3d). A systematic analysis of RBS libraries
2 in future studies would reveal the extent to which translational control can affect heterologous
3 expression of BGCs (Reis and Salis, 2020). Translation initiation of internal genes in
4 heterologous BGCs also needs to be optimized, as demonstrated by the introduction of ATG start
5 codons into the *lum* and *glb* clusters (Fig. 4b-d). With the availability of mutagenic
6 recombineering techniques for *P. putida*, it would be feasible to optimize pathway expression by
7 mutating the 5' untranslated regions (UTRs) for individual genes (Aparicio et al., 2020a).
8 Indeed, this strategy has been used recently to improve production of the natural product,
9 violacein, in *E. coli* (Zhang et al., 2021).

10 GC content is often cited as a concern when designing heterologous BGCs, but the GC
11 content of the two glidobactin BGCs did not appear to be a major factor in heterologous
12 production. After accounting for issues in translation initiation and MLP expression in the *glb*
13 cluster, glidobactin A production in *P. putida* was still higher with the low-GC *lum* cluster (47%
14 GC) compared to the *glb* cluster (70% GC) (Fig. 4c,d). For comparison, the native BGC for
15 pyoverdine biosynthesis in *P. putida* is 66% GC (Ravel and Cornelis, 2003). It is worth noting
16 that *P. putida* and *P. luminescens* are both γ -proteobacteria while *S. brevitalea* belongs to the
17 class β -proteobacteria, so the phylogenetic relationship between the native host and the
18 heterologous host may have a greater influence on heterologous production than GC content and
19 codon usage. Furthermore, codon optimization has been shown in the literature to be detrimental
20 to heterologous gene expression in *P. putida* (Incha et al., 2020). For now, there is not enough
21 knowledge on codon optimization for *P. putida* and other heterologous hosts to consistently rely
22 on it for improving PKS and NRPS expression. Glidobactin A production with the *lum* cluster
23 suggests that *P. putida* could be an alternative host for expressing BGCs from lower GC bacteria,

1 such as cyanobacteria, which are becoming a more prevalent source for novel natural products
2 (Blunt et al., 2018).

3 The results presented here also demonstrate how *P. putida*'s native metabolism affects
4 heterologous production. For instance, media that elicited a strong carbon catabolite repression
5 (CCR) response in *P. putida*, such as glucose-based or rich media (Kim et al., 2013), resulted in
6 lower production titers compared to glycerol-based media (Fig. 1d, Fig. S8a). Bacteria use CCR
7 to alter their metabolism to maximize growth rate and consumption of a preferred carbon source,
8 which could prevent the diversion of metabolites needed for the production of a heterologous
9 product (Stölke and Hillen, 1999). An alternative hypothesis is that the carbons in glycerol are
10 more reduced than those in glucose and increase the availability of NAD(P)H for biosynthesis of
11 the acyl-ACP/acyl-CoA substrates incorporated into the heterologous products (Villadsen et al.,
12 2011). For example, *P. putida* has a higher composition of PHAs when grown on glycerol
13 compared to glucose (Eggink et al., 1992), suggesting that *P. putida* has higher fluxes through
14 fatty acid metabolism during growth on glycerol. Furthermore, the absence of the *cyo* operon in
15 PIG08 improved prodigiosin production on glucose to be on par with production from PIG02 on
16 glycerol (Fig. 2c). Inactivation of the *cyo* operon has been shown to alleviate CCR in *P. putida*
17 (Dinamarca et al., 2002; Petruschka et al., 2001), and deleting a major component of oxidative
18 phosphorylation could heavily impact the availability of reducing equivalents (Ebert et al.,
19 2011). Improvements in prodigiosin production observed from Δcyo strains could be attributed to
20 a partial disruption of CCR or an increased availability of NAD(P)H.

21 Another benefit to using *P. putida* as a heterologous host is that it is amenable to
22 metabolic engineering for improved production of targeted molecules (Banerjee et al., 2020).
23 Deleting PHA production in *P. putida* demonstrated that fatty acid metabolism can affect

1 heterologous product titers and potentially established a general chassis strain for producing
2 natural products containing fatty acid precursors (Fig. 5d,e). Strategies for overproducing fatty
3 acids in *P. putida* have recently been reported in the literature and could be applied towards
4 metabolic engineering efforts for natural products (Guss et al., 2021; Salvachúa et al., 2020). In
5 addition, combinatorial engineering of enzymes in glidobactin A biosynthesis enabled the
6 targeted production of derivatives with different chain lengths for the lipid tail, which can
7 modulate the potency of glidobactin derivatives as an anti-cancer drug (Zhong et al., 2021). *P.*
8 *putida* would be an ideal platform for furthering this work and engineering strains to produce
9 novel derivatives of glidobactin A and other compounds.

10 **4. Conclusions**

11 The wealth of synthetic biology tools available to *P. putida* is its primary strength as a
12 heterologous host. We generated multiple chromosomal deletions, insertions and point mutations
13 in *P. putida* using a generalized genome editing toolkit. These methods enabled rational
14 engineering of *P. putida* production strains to improve heterologous titers for both products,
15 primarily through improving transcription and translation of the heterologous BGCs and
16 overexpressing auxiliary proteins (MLPs and PPTases). Our efforts highlight simple and rational
17 steps to improve heterologous production that could be applied to other heterologous hosts for
18 improving expression and activity of PKSs and NRPSs. We also identified a carbon sink
19 negatively affecting heterologous production and discovered a regulatory change required for
20 improving productivity of prodigiosin and glidobactin A. As knowledge of metabolism and
21 regulatory networks in *P. putida* continues to improve, increasing heterologous product titers
22 from *P. putida* by engineering its native metabolism will be more common. In future studies, our
23 methodology described here could be applied towards uncharacterized BGCs or enzymes

1 engineered to synthesize natural product derivatives, establishing *P. putida* as a platform for
2 producing novel drug candidates.

3

1 **5. Materials and Methods**2 **5.1 Plasmids, bacterial strains, and growth conditions.**

3 The bacterial strains and plasmids used in this study are shown in Supplementary Table
4 S1 and S2. Plasmid sequences are provided as supplementary material in Genbank format.
5 Vectors constructed for various genome editing methods are available through Addgene. All *E.*
6 *coli* strains were grown in LB medium at 37°C. *P. putida* KT2440 and its derivative strains were
7 grown in LB medium at 30°C. LB medium was supplemented with kanamycin (50 µg/mL,
8 Kan50), gentamycin (30 µg/mL, Gent30), tetracycline (10 µg/mL, LB Tet10 for *E. coli*, 25
9 µg/mL, Tet25 for *P. putida*), and irgasan (25 µg/mL, Irg25) when necessary. *Serratia*
10 *marcescens* ATCC274 and *Photorhabdus luminescens* subsp. *laumondii* TT01 were grown in LB
11 medium at 30°C. *Schlegelella brevitalea* sp. nov. DSM7029 was grown at 30°C on CY-Agar
12 (3g/L casitone, 1.4g/L CaCl₂ • 2H₂O, 1.0g/L yeast extract, 15g/L agar) and in CYCG medium
13 (6g/L casitone, 1.4g/L CaCl₂ • 2H₂O, 2.0g/L yeast extract, 25g/L glycerol) (Tu et al., 2016). All
14 liquid cultures were shaken at 250 rpm during incubation.

15 For secondary metabolite production, *P. putida* was grown in RK medium (Riesenber et
16 al., 1991). The medium was prepared by mixing 13.3g potassium phosphate monobasic
17 (KH₂PO₄), 4.0g ammonium phosphate (NH₄)₂PO₄, 1.7g citric acid, 0.1g Fe(III) ammonium
18 citrate, and 25g glycerol or 25g D-glucose to 800mL deionized/distilled water. To this solution,
19 10mL of sterile 100X RK batch trace minerals and 10mL of sterile 120g/L MgSO₄ • 7H₂O were
20 added. The pH was adjusted to 6.7 with 5M NaOH and the volume was adjusted to 1L. The
21 100X trace minerals solution was prepared by adding 0.42g EDTA, 0.125g CoCl₂ • 6H₂O, 0.75g
22 MnCl₂ • 4H₂O, 0.06g CuCl₂, 0.15g H₃BO₃, 0.125g Na₂(MoO₄) • 2H₂O, and 0.65g Zn(CH₃COO)₂
23 • 2H₂O (zinc acetate) to 300mL deionized/distilled water and adjusting to a final solution volume

1 of 500mL. All media components and the final media formulation were sterilized by filtration.
2 RK medium was supplemented with kanamycin (25 μ g/mL, Kan25) when necessary. Early
3 production experiments also used Terrific Broth, supplemented with 5 g/L glycerol or 25 g/L
4 glycerol.

5 **5.2 Plasmid construction.**

6 Most plasmids described in this work were constructed using Gibson assembly as
7 described previously (Gibson et al., 2009). The plasmids pNVLTv2-pvdIJD-Prha-pig,
8 pNVLTv2-pvdIJD-Prha-lum, and pNVLTv2-Prha-glb were constructed using RecET direct
9 cloning (Fu et al., 2012; Wang et al., 2016). Genomic DNA was purified from *S. marcescens*, *P.*
10 *luminescens*, and *S. brevitalea* using phenol:chloroform:isoamyl alcohol extraction as reported
11 previously (Cook et al., 2018; Lee et al., 2006). Pure genomic DNA was prepared from 10mL of
12 liquid culture, and the extraction protocol was scaled up accordingly. To “release” the BGC of
13 interest from genomic DNA, 20 μ g of genomic DNA was digested with up to two restriction
14 enzymes in 400- μ L reactions and then purified by ethanol precipitation. Capture vectors were
15 linearized by restriction digest in 100- μ L reactions containing 2 μ g of plasmid DNA and then
16 purified by gel extraction. Restriction digest reactions were incubated at 37°C for 2 hours. To
17 prepare DNA for construction of pNVLTv2-pvdIJD-Prha-pig, *S. marcescens* genomic DNA was
18 digested with AflII and the capture vector, pNVLTv2-pvdIJD-Prha-prepig, was digested with
19 KpnI-HF. For pNVLTv2-pvdIJD-Prha-lum, *P. luminescens* genomic DNA was digested with
20 PacI and MluI and the capture vector, pNVLTv2-pvdIJD-Prha-prelum, was digested with BsaI-
21 HFv2. For pNVLTv2-pvdIJD-Prha-glb, *S. brevitalea* genomic DNA was digested with DraI and
22 AvrII, and the capture vector, pNVLTv2-pvdIJD-Prha-preglb, was digested with BsaI-HFv2.

1 To prepare competent cells for RecET direct cloning, 5 mL of fresh LB were inoculated with 150
2 μ L of overnight culture of *E. coli* GB05-dir. Cultures were incubated at 37°C for about 2 hours,
3 and then induced with 100 μ L 20% (w/v) L-arabinose. Growth continued for another 45 minutes
4 and then the cultures were placed on ice. For every aliquot of competent cells needed, 1mL of
5 culture was centrifuged for 30 seconds at 11,000g and washed with 1mL 10% (v/v) glycerol. The
6 samples were washed with 1mL 10% glycerol two more times, and then resuspended in 20 μ L
7 10% glycerol. At least 500ng of linearized vector and 5 μ g digested genomic DNA was added to
8 each aliquot of competent cells to a total approximate volume of 50 μ L. The competent cells were
9 then added to chilled 1-mm electroporation cuvettes and electroporated with a voltage of 1.8kV.
10 After electroporation, cells were immediately mixed with 1mL SOC media and incubated at
11 37°C for 90 minutes. All of the recovered cells were plated on LB Kan25 supplemented with
12 0.5% (w/v) D-glucose. Plates were incubated overnight at 37°C.

13 **5.3 Genome editing in *P. putida*.**

14 For the 2-step λ Red/Cas9 recombineering protocol, pNVLTv2 integration vectors were
15 introduced into *P. putida* containing pCas9 by tri-parental conjugation, as described previously
16 (Choi and Schweizer, 2006). The helper strain was *E. coli* HB101 containing pRK600 and the
17 donor strain was *E. coli* DH5 α or GB2005 containing pNVLTv2. Conjugations were plated on
18 LB Gent30, Kan50, Irg25. Conjugants were inoculated in LB Gent30, Kan50 and grown
19 overnight at 30°C. The next day, the λ Red genes on pCas9 were induced by adding 0.6% w/v L-
20 arabinose to the cultures and incubating for another 45 minutes. To prepare electrocompetent
21 cells, 500 μ L of culture was washed twice with 1mL 10% glycerol and resuspended in 50 μ L 10%
22 glycerol. About 100ng pgRNAtet was added to each sample and the samples were added to
23 chilled 1-mm electroporation cuvettes. Samples were electroporated with a voltage of 1.8kV and

1 allowed to recover in 1 mL LB for 3 hours at 30°C. The recovered cells were selected on LB
2 Gent30, Tet25 plates covered with aluminum foil to limit light exposure. Some electroporations
3 were completed by washing and resuspending cells with 300 mM sucrose instead of 10%
4 glycerol.

5 For oligo recombineering, *P. putida* containing pCas9-beta or pCas9-beta-mmr was used
6 to prepare electrocompetent cells as described above. These cells were transformed with ~100 ng
7 pgRNA plasmid DNA and 1 µL of 100 µM oligo by electroporation. Cells were recovered in
8 1mL LB for 3 hours and selected on LB Gent30, Kan50 or Gent30, Tet25. Transformants from
9 all methods were screened for the desired knockout using colony PCR with primers flanking the
10 gene of interest.

11 **5.4 Prodigiosin production and extraction.**

12 Prodigiosin production cultures were prepared by inoculating 25mL of fresh media to
13 OD650 = 0.05 using overnight cultures. Pre-cultures were prepared in LB media and were
14 washed with PBS before inoculation. Production cultures were incubated at 30°C and while
15 shaking at 250 rpm until they reached an OD650 = 0.5. Prodigiosin production was then induced
16 by adding either 0.2% (w/v) L-rhamnose or 1mM IPTG. For samples requiring a dodecane
17 overlay, 10mL of dodecane was added at this time. The cultures were incubated at 30°C until up
18 to 48 hours after inoculation.

19 At the end of cultivation, cultures were transferred to 50-mL conical tubes of a known
20 weight. Samples were then centrifuged for 15 minutes at 3000g. If a dodecane overlay was used,
21 then the upper dodecane layer was aspirated and transferred to a 15-mL conical tube of a known
22 weight. The aqueous supernatant was decanted into a fresh 50-mL conical tube of known weight.
23 The remaining pellet was resuspended in 10mL acidified ethanol (4% (v/v) 1M HCl in ethanol).

1 The volume and weight of aqueous supernatant and dodecane was determined for each sample.
2 The pellets resuspended in acidified ethanol were then centrifuged for 15 minutes at 3000g. The
3 ethanol supernatant, the aqueous supernatant, and the dodecane were then diluted in acidified
4 ethanol until the absorbance at 535nm (A535) for each sample was within the linear range of
5 prodigiosin quantification. The molar extinction coefficient of prodigiosin ($\epsilon_{535} = 139,800 \text{ M}^{-1}$
6 cm^{-1} , as determined previously) was used to quantify the concentration of prodigiosin in the
7 dodecane overlay, the supernatant, and the pellet for each culture (Domröse et al., 2015). The
8 total prodigiosin production was calculated from the recorded volumes and weights of the
9 samples. The pellets were washed with 20mL sterile water and lyophilized overnight to
10 determine the dry cell weight for each culture.

11 Smaller prodigiosin cultures without a dodecane overlay were analyzed for production by
12 adding two volumes acidified ethanol directly to the culture. The extraction was mixed well by
13 pipetting and 1 mL was collected. The samples were vortexed for 10 minutes at 1500 rpm and
14 then centrifuged at 17,000g for 5 minutes. The supernatant was diluted in acidified ethanol and
15 prodigiosin was quantified by absorbance at 535 nm.

16 **5.5 Tn5 knockout library of prodigiosin producers.**

17 Tn5 transposition was used to create libraries of random knockouts in the genomes of *P.*
18 *putida* strains engineered to produce prodigiosin. The mini-transposon vector, pBAM1, was
19 introduced into these strains via bi-parental conjugation. The donor strains were *E. coli* S17-1
20 λ *pir* containing pBAM1 or *E. coli* BW29427 containing pBAM1 (Martínez-García et al., 2011)
21 Transposon libraries were created in *P. putida* PIG01 and *P. putida* PIG02. The selection media
22 for conjugation was LB Kan50 supplemented with 0.002-0.02% (w/v) L-rhamnose or RK Kan50
23 agar with 25g/L glycerol. In conjugations where *E. coli* S17-1 λ *pir* was the donor strain, the

1 selection media was supplemented with Irg25. The screens were designed so that the majority of
2 transformants would appear light pink on the selection media, and colonies of interest were
3 screened visually for an increase in pigmentation. Candidate colonies were re-streaked on
4 selection media to confirm their altered phenotype. The transposon location for each mutant was
5 determined by arbitrary priming PCR, as described previously (Das et al., 2005; Martínez-García
6 et al., 2011).

7 **5.6 Glidobactin A production and extraction.**

8 Strains that were engineered to produce glidobactin A were cultivated in RK medium
9 with glycerol or glucose. Production cultures were prepared by inoculating 25mL of fresh media
10 to OD600 = 0.05. The cultures were incubated at 30°C while shaking at 250 rpm until they
11 reached an OD600 = 0.5. Glidobactin A production was then induced with 0.2% (w/v) L-
12 rhamnose or 1mM IPTG. The cultures continued to grow for up to 48 hours after inoculation.

13 Glidobactin A was extracted by adding 1 volume butanol to whole production cultures.
14 After briefly shaking the culture/butanol mixtures by hand, solids were removed from the sides
15 of the flask/tube using a spatula. The samples were shaken for 1 hour at 20C, creating a butanol-
16 water emulsion. 1 mL of the emulsion was collected from each sample immediately after
17 swirling by hand and then transferred to centrifuge tubes. Samples were left on ice for at least 10
18 minutes and centrifuged for 10 minutes at 10,000g and 4C. The butanol phase was transferred to
19 a fresh tube and diluted 1:2 in butanol. This extract was filtered with a 0.22 μ m nylon membrane
20 in preparation for HPLC and LC-MS analysis. A second extraction protocol was initially used
21 until we observed that glidobactin A was depositing on the inside of the glassware used for
22 production cultures (Supplementary Methods).

23 **5.7 HPLC and LC-MS analysis of glidobactin A.**

1 HPLC analysis was completed with a Shimadzu HPLC system (Shimadzu Co., Columbia,
2 MD, USA) equipped with a quaternary pump, autosampler, vacuum degasser, and fluorescence
3 detector. HPLC separations were performed with an Agilent Eclipse Plus C18 column
4 (2.1x50mm, with guard column). The injection volume was 2 μ L and the flow rate was
5 0.4mL/min. Samples were eluted with a gradient elution; mobile phase A was H₂O with 0.1%
6 formic acid and mobile phase B was 100% acetonitrile with 0.1% formic acid. For each
7 injection, column was equilibrated with 95% mobile phase A and 5% mobile phase B for 1
8 minute, then switching over to 25% mobile phase B over 2 minutes. Mobile phase B was
9 increased to 75% over 12 minutes, and then increased to 100% over 2 minutes. The solvent was
10 held to 100% mobile phase B over the next 3 minutes before re-equilibrating the column in 95%
11 mobile phase A.

12 Samples were analyzed by LC-MS with a Vanquish UPLC coupled via electrospray
13 ionization operating in positive mode to a Q-Exactive orbitrap high-resolution mass spectrometer
14 (ThermoScientific). Separation was conducted on a 2.1 x 100mm Acquity UHPLC BEH C₁₈
15 column with 1.7 μ m particle size with a flow rate of 0.2ml/min. Solvent A was 95:5 H₂O-
16 acetonitrile with 0.1% formic acid. Solvent B was acetonitrile with 0.1% formic acid. The
17 following gradient was used: 0 to 2 min, 0% B; 2 to 14 min, linear gradient from 0 to 100% B;
18 14 to 16 min, 100% B; 16 to 17 min, linear gradient from 100 to 0% B; 17 to 22 min, 0% B. The
19 mass spectrometry parameters were: full MS-SIM (single ion monitoring) scanning between 450
20 and 600m/z at a resolution of 140000 full width at half maximum (FWHM), automatic control
21 gain (ACG) target of 1e6, and maximum injection time (IT) of 40ms. The MAVEN software
22 suite was used for data analysis (Clasquin et al., 2012; Melamud et al., 2010).

23

1 **Author Contributions**

2 TBC, TBJ, HH, DAN, MGT, and BFP designed the experiments. TBC, TBJ, MVV, HH
3 performed the experiments. TBC, TBJ, MVV, HH analyzed the data. TBC, TBJ, HH, MGT, BFP
4 wrote the paper.

5

6 **Conflicts of Interest**

7 The authors declare no conflicts of interest.

8

9 **Acknowledgements**

10 This study was supported by research grants from the National Science Foundation
11 (MCB-1716594). TBC and MVV are recipients of the NIH Biotechnology Training Program
12 Fellowships (NIGMS 5 T32 GM08349). MVV is the recipient of a NSF Graduate Research
13 Fellowship (DGE- 1256259). The Bruker Avance III HD 600 NMR spectrometer was supported
14 by grant NIH S10 OD012245. The authors would like to thank Víctor de Lorenzo for providing
15 the plasmid pSEVA2514-rec2-mutL_{E36K}^{PP} and Francis A. Stewart for providing the strains *E.*
16 *coli* GB2005 and *E. coli* GB05-dir. The authors would also like to thank William Cordell for his
17 assistance in designing the glidobactin extraction protocol.

18

19

1 **References**

3 Ankenbauer, A., Schäfer, R.A., Viegas, S.C., Pobre, V., Voß, B., Arraiano, C.M., Takors, R.,
4 2020. *Pseudomonas putida* KT2440 is naturally endowed to withstand industrial-scale stress
5 conditions. *Microb. Biotechnol.* 13, 1145–1161. <https://doi.org/10.1111/1751-7915.13571>

6 Aparicio, T., de Lorenzo, V., Martínez-García, E., 2018. CRISPR/Cas9-Based Counterselection
7 Boosts Recombineering Efficiency in *Pseudomonas putida*. *Biotechnol. J.* 13, 1700161.
8 <https://doi.org/10.1002/biot.201700161>

9 Aparicio, T., Nyerges, A., Martínez-García, E., de Lorenzo, V., 2020a. High-Efficiency Multi-
10 site Genomic Editing of *Pseudomonas putida* through Thermoinducible ssDNA
11 Recombineering. *iScience* 23, 100946. <https://doi.org/10.1016/j.isci.2020.100946>

12 Aparicio, T., Nyerges, A., Nagy, I., Pal, C., Martínez-García, E., Lorenzo, V., 2020b. Mismatch
13 repair hierarchy of *Pseudomonas putida* revealed by mutagenic ssDNA recombineering of
14 the *pyrF* gene. *Environ. Microbiol.* 22, 45–58. <https://doi.org/10.1111/1462-2920.14814>

15 Atanasov, A.G., Zotchev, S.B., Dirsch, V.M., Supuran, C.T., 2021. Natural products in drug
16 discovery: advances and opportunities. *Nat. Rev. Drug Discov.* 20, 200–216.
17 <https://doi.org/10.1038/s41573-020-00114-z>

18 Banerjee, D., Eng, T., Lau, A.K., Sasaki, Y., Wang, B., Chen, Y., Prahl, J., Singan, V.R.,
19 Herbert, R.A., Liu, Y., Tanjore, D., Petzold, C.J., Keasling, J.D., Mukhopadhyay, A., 2020.
20 Genome-scale metabolic rewiring improves titers rates and yields of the non-native product
21 indigoidine at scale. *Nat. Commun.* 11, 5385. <https://doi.org/10.1038/s41467-020-19171-4>

22 Bian, X., Huang, F., Wang, H., Klefisch, T., Müller, R., Zhang, Y., 2014. Heterologous
23 Production of Glidobactins/Luminmycins in *Escherichia coli* Nissle Containing the
24 Glidobactin Biosynthetic Gene Cluster from *Burkholderia* DSM7029. *ChemBioChem* 15,
25 2221–2224. <https://doi.org/10.1002/cbic.201402199>

26 Bian, X., Plaza, A., Zhang, Y., Müller, R., 2012. Luminmycins A–C, Cryptic Natural Products
27 from *Photorhabdus luminescens* Identified by Heterologous Expression in *Escherichia coli*.
28 *J. Nat. Prod.* 75, 1652–1655. <https://doi.org/10.1021/np300444e>

29 Bian, X., Tang, B., Yu, Y., Tu, Q., Gross, F., Wang, H., Li, A., Fu, J., Shen, Y., Li, Y., Stewart,
30 A.F., Zhao, G., Ding, X., Müller, R., Zhang, Y., 2017. Heterologous Production and Yield
31 Improvement of Epothilones in *Burkholderiales* Strain DSM 7029. *ACS Chem. Biol.* 12,
32 1805–1812. <https://doi.org/10.1021/acschembio.7b00097>

33 Blunt, J.W., Carroll, A.R., Copp, B.R., Davis, R.A., Keyzers, R.A., Prinsep, M.R., 2018. Marine
34 natural products. *Nat. Prod. Rep.* 35, 8–53. <https://doi.org/10.1039/C7NP00052A>

35 Chai, Y., Shan, S., Weissman, K.J., Hu, S., Zhang, Y., Müller, R., 2012. Heterologous
36 Expression and Genetic Engineering of the Tubulysin Biosynthetic Gene Cluster Using
37 Red/ET Recombineering and Inactivation Mutagenesis. *Chem. Biol.* 19, 361–371.
38 <https://doi.org/10.1016/j.chembiol.2012.01.007>

39 Chen, R., Zhang, Q., Tan, B., Zheng, L., Li, H., Zhu, Y., Zhang, C., 2017. Genome Mining and
40 Activation of a Silent PKS/NRPS Gene Cluster Direct the Production of Totopotensamides.
41 *Org. Lett.* 19, 5697–5700. <https://doi.org/10.1021/acs.orglett.7b02878>

42 Choi, K.-H., Schweizer, H.P., 2006. mini-Tn7 insertion in bacteria with single attTn7 sites:
43 example *Pseudomonas aeruginosa*. *Nat. Protoc.* 1, 153–161.
44 <https://doi.org/10.1038/nprot.2006.24>

45 Choi, K.R., Cho, J.S., Cho, I.J., Park, D., Lee, S.Y., 2018. Markerless gene knockout and
46 integration to express heterologous biosynthetic gene clusters in *Pseudomonas putida*.

1 Metab. Eng. 47, 463–474. <https://doi.org/10.1016/j.ymben.2018.05.003>

2 Clasquin, M.F., Melamud, E., Rabinowitz, J.D., 2012. LC-MS Data Processing with MAVEN: A
3 Metabolomic Analysis and Visualization Engine, in: Current Protocols in Bioinformatics.
4 John Wiley & Sons, Inc., Hoboken, NJ, USA, pp. 14.11.1-14.11.23.
5 <https://doi.org/10.1002/0471250953.bi1411s37>

6 Cook, T.B., Pfleger, B.F., 2019. Leveraging synthetic biology for producing bioactive
7 polyketides and non-ribosomal peptides in bacterial heterologous hosts. Medchemcomm 10,
8 668–681. <https://doi.org/10.1039/C9MD00055K>

9 Cook, T.B., Rand, J.M., Nurani, W., Courtney, D.K., Liu, S.A., Pfleger, B.F., 2018. Genetic
10 tools for reliable gene expression and recombineering in *Pseudomonas putida*. J. Ind.
11 Microbiol. Biotechnol. 45, 517–527. <https://doi.org/10.1007/s10295-017-2001-5>

12 D'Agostino, P.M., Gulder, T.A.M., 2018. Direct Pathway Cloning Combined with Sequence-
13 and Ligation-Independent Cloning for Fast Biosynthetic Gene Cluster Refactoring and
14 Heterologous Expression. ACS Synth. Biol. 7, 1702–1708.
15 <https://doi.org/10.1021/acssynbio.8b00151>

16 Danevčič, T., Borić Vezjak, M., Zorec, M., Stopar, D., 2016. Prodigiosin - A Multifaceted
17 *Escherichia coli* Antimicrobial Agent. PLoS One 11, e0162412.
18 <https://doi.org/10.1371/journal.pone.0162412>

19 Das, S., Noe, J.C., Paik, S., Kitten, T., 2005. An improved arbitrary primed PCR method for
20 rapid characterization of transposon insertion sites. J. Microbiol. Methods 63, 89–94.
21 <https://doi.org/10.1016/j.mimet.2005.02.011>

22 Dinamarca, M.A., Ruiz-manzano, A., Rojo, F., 2002. Inactivation of Cytochrome o Ubiquinol
23 Oxidase Relieves Catabolic Repression of the *Pseudomonas putida* GPo1 Alkane
24 Degradation Pathway. J. Bacteriol. 184, 3785–3793. <https://doi.org/10.1128/JB.184.14.3785>

25 Domröse, A., Klein, A.S., Hage-Hülsmann, J., Thies, S., Svensson, V., Classen, T., Pietruszka,
26 J., Jaeger, K.-E., Drepper, T., Loeschke, A., 2015. Efficient recombinant production of
27 prodigiosin in *Pseudomonas putida*. Front. Microbiol. 6, 972.
28 <https://doi.org/10.3389/fmicb.2015.00972>

29 Domröse, A., Weihmann, R., Thies, S., Jaeger, K.-E., Drepper, T., Loeschke, A., 2017. Rapid
30 generation of recombinant *Pseudomonas putida* secondary metabolite producers using
31 γ TREX. Synth. Syst. Biotechnol. 2, 310–319. <https://doi.org/10.1016/j.synbio.2017.11.001>

32 Dudnik, A., Bigler, L., Dudler, R., 2013. Heterologous expression of a *Photorhabdus*
33 luminescens syrbactin-like gene cluster results in production of the potent proteasome
34 inhibitor glidobactin A. Microbiol. Res. 168, 73–76.
35 <https://doi.org/10.1016/j.micres.2012.09.006>

36 Ebert, B.E., Kurth, F., Grund, M., Blank, L.M., Schmid, A., 2011. Response of *Pseudomonas*
37 *putida* KT2440 to Increased NADH and ATP Demand. Appl. Environ. Microbiol. 77,
38 6597–6605. <https://doi.org/10.1128/AEM.05588-11>

39 Eggink, G., Waard, P., Huijberts, G.N.M., 1992. The role of fatty acid biosynthesis and
40 degradation in the supply of substrates for poly(3-hydroxyalkanoate) formation in
41 *Pseudomonas putida*. FEMS Microbiol. Lett. 103, 159–163. <https://doi.org/10.1111/j.1574-6968.1992.tb05833.x>

42 Elmore, J.R., Dexter, G.N., Salvachúa, D., Martinez-Baird, J., Hatmaker, E.A., Huenemann,
43 J.D., Klingeman, D.M., Peabody, G.L., Peterson, D.J., Singer, C., Beckham, G.T., Guss,
44 A.M., 2021. Production of itaconic acid from alkali pretreated lignin by dynamic two stage
45 bioconversion. Nat. Commun. 12, 2261. <https://doi.org/10.1038/s41467-021-22556-8>

1 Elmore, J.R., Furches, A., Wolff, G.N., Gorday, K., Guss, A.M., 2017. Development of a high
2 efficiency integration system and promoter library for rapid modification of *Pseudomonas*
3 *putida* KT2440. *Metab. Eng. Commun.* 5, 1–8.
4 <https://doi.org/10.1016/j.meteno.2017.04.001>

5 Escapa, I.F., del Cerro, C., García, J.L., Prieto, M.A., 2013. The role of GlpR repressor in
6 *Pseudomonas putida* KT2440 growth and PHA production from glycerol. *Environ.*
7 *Microbiol.* 15, 93–110. <https://doi.org/10.1111/j.1462-2920.2012.02790.x>

8 Fan, H., Conn, A.B., Williams, P.B., Diggs, S., Hahm, J., Gamper, H.B., Hou, Y.-M., O’Leary,
9 S.E., Wang, Y., Blaha, G.M., 2017. Transcription–translation coupling: direct interactions
10 of RNA polymerase with ribosomes and ribosomal subunits. *Nucleic Acids Res.* 45, 11043–
11 11055. <https://doi.org/10.1093/nar/gkx719>

12 Farasat, I., Kushwaha, M., Collens, J., Easterbrook, M., Guido, M., Salis, H.M., 2014. Efficient
13 search, mapping, and optimization of multi-protein genetic systems in diverse bacteria. *Mol.*
14 *Syst. Biol.* 10, 731. <https://doi.org/10.15252/msb.20134955>

15 Fu, J., Bian, X., Hu, S., Wang, H., Huang, F., Seibert, P.M., Plaza, A., Xia, L., Müller, R.,
16 Stewart, a F., Zhang, Y., 2012. Full-length RecE enhances linear-linear homologous
17 recombination and facilitates direct cloning for bioprospecting. *Nat. Biotechnol.* 30, 440–
18 446. <https://doi.org/10.1038/nbt.2183>

19 Fu, J., Wenzel, S.C., Perlova, O., Wang, J., Gross, F., Tang, Z., Yin, Y., Stewart, A.F., Müller,
20 R., Zhang, Y., 2008. Efficient transfer of two large secondary metabolite pathway gene
21 clusters into heterologous hosts by transposition. *Nucleic Acids Res.* 36, e113–e113.
22 <https://doi.org/10.1093/nar/gkn499>

23 Gaida, S.M., Sandoval, N.R., Nicolaou, S.A., Chen, Y., Venkataraman, K.P., Papoutsakis,
24 E.T., 2015. Expression of heterologous sigma factors enables functional screening of
25 metagenomic and heterologous genomic libraries. *Nat. Commun.* 6, 7045.
26 <https://doi.org/10.1038/ncomms8045>

27 Gibson, D., Young, L., Chuang, R., 2009. Enzymatic assembly of DNA molecules up to several
28 hundred kilobases. *Nat. ...* 6, 12–17. <https://doi.org/10.1038/NMETH.1318>

29 Gomez-Escribano, J.P., Bibb, M.J., 2011. Engineering *Streptomyces coelicolor* for heterologous
30 expression of secondary metabolite gene clusters. *Microb. Biotechnol.* 4, 207–215.
31 <https://doi.org/10.1111/j.1751-7915.2010.00219.x>

32 Graf, N., Altenbuchner, J., 2011. Development of a Method for Markerless Gene Deletion in
33 *Pseudomonas putida*. *Appl. Environ. Microbiol.* 77, 5549–5552.
34 <https://doi.org/10.1128/AEM.05055-11>

35 Guss, A.M., Elmore, J.R., Huenemann, J.D., 2021. Engineered microbes for conversion of
36 organic compounds to medium chain length alcohols and methods of use. US 2021/024960
37 A1.

38 Han, S., Lee, C.W., Yoon, Y.D., Kang, J.S., Lee, K.H., Yoon, W.K., Kim, Y.K., Lee, K., Park,
39 S., Kim, H.M., 2005. Effective prevention of lethal acute graft-versus-host disease by
40 combined immunosuppressive therapy with prodigiosin and cyclosporine A. *Biochem.*
41 *Pharmacol.* 70, 1518–1526. <https://doi.org/10.1016/j.bcp.2005.08.017>

42 Harris, A.K.P., Williamson, N.R., Slater, H., Cox, A., Abbasi, S., Foulds, I., Simonsen, H.T.,
43 Leeper, F.J., Salmond, G.P.C., 2004. The *Serratia* gene cluster encoding biosynthesis of the
44 red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation.
45 *Microbiology* 150, 3547–3560. <https://doi.org/10.1099/mic.0.27222-0>

46 Hecht, A., Glasgow, J., Jaschke, P.R., Bawazer, L.A., Munson, M.S., Cochran, J.R., Endy, D.,

1 Salit, M., 2017. Measurements of translation initiation from all 64 codons in *E. coli*. *Nucleic*
2 *Acids Res.* 45, 3615–3626. <https://doi.org/10.1093/nar/gkx070>

3 Imker, H.J., Krahn, D., Clerc, J., Kaiser, M., Walsh, C.T., 2010. N-Acylation during Glidobactin
4 Biosynthesis by the Tridomain Nonribosomal Peptide Synthetase Module GlbF. *Chem.*
5 *Biol.* 17, 1077–1083. <https://doi.org/10.1016/j.chembiol.2010.08.007>

6 Incha, M.R., Thompson, M.G., Blake-Hedges, J.M., Liu, Y., Pearson, A.N., Schmidt, M., Gin,
7 J.W., Petzold, C.J., Deutschbauer, A.M., Keasling, J.D., 2020. Leveraging host metabolism
8 for bisdemethoxycurcumin production in *Pseudomonas putida*. *Metab. Eng. Commun.* 10,
9 e00119. <https://doi.org/10.1016/j.mec.2019.e00119>

10 Iost, I., Dreyfus, M., 1995. The stability of *Escherichia coli* lacZ mRNA depends upon the
11 simultaneity of its synthesis and translation. *EMBO J.* 14, 3252–3261.
12 <https://doi.org/10.1002/j.1460-2075.1995.tb07328.x>

13 Iost, I., Guillerez, J., Dreyfus, M., 1992. Bacteriophage T7 RNA polymerase travels far ahead of
14 ribosomes in vivo. *J. Bacteriol.* 174, 619–622. <https://doi.org/10.1128/JB.174.2.619-622.1992>

15 Jeske, M., Altenbuchner, J., 2010. The *Escherichia coli* rhamnose promoter rhaP BAD is in
16 *Pseudomonas putida* KT2440 independent of Crp-cAMP activation. *Appl. Microbiol.*
17 *Biotechnol.* 85, 1923–1933. <https://doi.org/10.1007/s00253-009-2245-8>

18 Keating, T.A., Walsh, C.T., 1999. Initiation, elongation, and termination strategies in polyketide
19 and polypeptide antibiotic biosynthesis. *Curr. Opin. Chem. Biol.* 3, 598–606.
20 [https://doi.org/10.1016/S1367-5931\(99\)00015-0](https://doi.org/10.1016/S1367-5931(99)00015-0)

21 Kim, J., Oliveros, J.C., Nikel, P.I., de Lorenzo, V., Silva-Rocha, R., 2013. Transcriptomic
22 fingerprinting of *Pseudomonas putida* under alternative physiological regimes. *Environ.*
23 *Microbiol. Rep.* 5, 883–891. <https://doi.org/10.1111/1758-2229.12090>

24 Lee, C.L., Ow, D.S.W., Oh, S.K.W., 2006. Quantitative real-time polymerase chain reaction for
25 determination of plasmid copy number in bacteria. *J. Microbiol. Methods* 65, 258–267.
26 <https://doi.org/10.1016/j.mimet.2005.07.019>

27 Lee, S.Y., Wong, H.H., Choi, J., Lee, S.H., Lee, S.C., Han, C.S., 2000. Production of medium-
28 chain-length polyhydroxyalkanoates by high-cell-density cultivation of *Pseudomonas putida*
29 under phosphorus limitation. *Biotechnol. Bioeng.* 68, 466–470.
30 [https://doi.org/10.1002/\(SICI\)1097-0290\(20000520\)68:4<466::AID-BIT12>3.0.CO;2-T](https://doi.org/10.1002/(SICI)1097-0290(20000520)68:4<466::AID-BIT12>3.0.CO;2-T)

31 Lee, T., Krupa, R.A., Zhang, F., Hajimorad, M., Holtz, W.J., Prasad, N., Lee, S., Keasling, J.D.,
32 2011. BglBrick vectors and datasheets: A synthetic biology platform for gene expression. *J.*
33 *Biol. Eng.* 5, 12. <https://doi.org/10.1186/1754-1611-5-12>

34 Li, Y., Weissman, K.J., Müller, R., 2010. Insights into Multienzyme Docking in Hybrid PKS-
35 NRPS Megasynthetases Revealed by Heterologous Expression and Genetic Engineering.
36 *ChemBioChem* 11, 1069–1075. <https://doi.org/10.1002/cbic.201000103>

37 Liu, X., Hua, K., Liu, D., Wu, Z.-L., Wang, Y., Zhang, H., Deng, Z., Pfeifer, B.A., Jiang, M.,
38 2020. Heterologous Biosynthesis of Type II Polyketide Products Using *E. coli*. *ACS Chem.*
39 *Biol.* 15, 1177–1183. <https://doi.org/10.1021/acschembio.9b00827>

40 Martin-Pascual, M., Batianis, C., Bruinsma, L., Asin-Garcia, E., Garcia-Morales, L., Weusthuis,
41 R.A., van Kranenburg, R., Martins dos Santos, V.A.P., 2021. A navigation guide of
42 synthetic biology tools for *Pseudomonas putida*. *Biotechnol. Adv.* 49, 107732.
43 <https://doi.org/10.1016/j.biotechadv.2021.107732>

44 Martínez-García, E., Calles, B., Arévalo-Rodríguez, M., de Lorenzo, V., 2011. pBAM1: an all-
45 synthetic genetic tool for analysis and construction of complex bacterial phenotypes. *BMC*
46

1 Microbiol. 11, 38. <https://doi.org/10.1186/1471-2180-11-38>

2 Melamud, E., Vastag, L., Rabinowitz, J.D., 2010. Metabolomic Analysis and Visualization
3 Engine for LC-MS Data. Anal. Chem. 82, 9818–9826. <https://doi.org/10.1021/ac1021166>

4 Mendez-Perez, D., Begemann, M.B., Pfleger, B.F., 2011. Modular Synthase-Encoding Gene
5 Involved in α -Olefin Biosynthesis in *Synechococcus* sp. Strain PCC 7002. Appl. Environ.
6 Microbiol. 77, 4264–4267. <https://doi.org/10.1128/AEM.00467-11>

7 Mi, J., Sydow, A., Schempp, F., Becher, D., Schewe, H., Schrader, J., Buchhaupt, M., 2016.
8 Investigation of plasmid-induced growth defect in *Pseudomonas putida*. J. Biotechnol. 231,
9 167–173. <https://doi.org/10.1016/j.jbiotec.2016.06.001>

10 Morales, G., Ugidos, A., Rojo, F., 2006. Inactivation of the *Pseudomonas putida* cytochrome o
11 ubiquinol oxidase leads to a significant change in the transcriptome and to increased
12 expression of the CIO and cbb3-1 terminal oxidases. Environ. Microbiol. 8, 1764–1774.
13 <https://doi.org/10.1111/j.1462-2920.2006.01061.x>

14 Newman, D.J., Cragg, G.M., 2012. Natural Products As Sources of New Drugs over the 30
15 Years from 1981 to 2010. J. Nat. Prod. 75, 311–335. <https://doi.org/10.1021/np200906s>

16 Nikel, P.I., de Lorenzo, V., 2018. *Pseudomonas putida* as a functional chassis for industrial
17 biocatalysis: From native biochemistry to trans-metabolism. Metab. Eng. 50, 142–155.
18 <https://doi.org/10.1016/j.ymben.2018.05.005>

19 Nikel, P.I., Kim, J., de Lorenzo, V., 2014. Metabolic and regulatory rearrangements underlying
20 glycerol metabolism in *Pseudomonas putida* KT2440. Environ. Microbiol. 16, 239–254.
21 <https://doi.org/10.1111/1462-2920.12224>

22 Niu, G., 2018. Genomics-Driven Natural Product Discovery in Actinomycetes. Trends
23 Biotechnol. 36, 238–241. <https://doi.org/10.1016/j.tibtech.2017.10.009>

24 Niu, W., Willett, H., Mueller, J., He, X., Kramer, L., Ma, B., Guo, J., 2020. Direct biosynthesis
25 of adipic acid from lignin-derived aromatics using engineered *Pseudomonas putida*
26 KT2440. Metab. Eng. 59, 151–161. <https://doi.org/10.1016/j.ymben.2020.02.006>

27 Oka, M., Nishiyama, Y., Ohta, S., Kamei, H., Konishi, M., Miyaki, T., Oki, T., Kawaguchi, H.,
28 1988. Glidobactins A, B and C, new antitumor antibiotics. I. Production, isolation, chemical
29 properties and biological activity. J. Antibiot. (Tokyo). 41, 1331–1337.
30 <https://doi.org/10.7164/antibiotics.41.1331>

31 Owen, J.G., Copp, J.N., Ackerley, D.F., 2011. Rapid and flexible biochemical assays for
32 evaluating 4'-phosphopantetheinyl transferase activity. Biochem. J. 436, 709–717.
33 <https://doi.org/10.1042/BJ20110321>

34 Park, D., Swayambhu, G., Pfeifer, B.A., 2020. Heterologous biosynthesis as a platform for
35 producing new generation natural products. Curr. Opin. Biotechnol. 66, 123–130.
36 <https://doi.org/10.1016/j.copbio.2020.06.014>

37 Petruschka, L., Burchhardt, G., Müller, C., Weihe, C., Herrmann, H., 2001. The cyo operon of
38 *Pseudomonas putida* is involved in carbon catabolite repression of phenol degradation. Mol.
39 Genet. Genomics 266, 199–206. <https://doi.org/10.1007/s004380100539>

40 Pfeifer, B.A., Admiraal, S.J., Gramajo, H., Cane, D.E., Khosla, C., 2001. Biosynthesis of
41 Complex Polyketides in a Metabolically Engineered Strain of *E. coli*. Science (80-.). 291,
42 1790–1792. <https://doi.org/10.1126/science.1058092>

43 Pogorevc, D., Tang, Y., Hoffmann, M., Zipf, G., Bernauer, H.S., Popoff, A., Steinmetz, H.,
44 Wenzel, S.C., 2019. Biosynthesis and Heterologous Production of Argyrins. ACS Synth.
45 Biol. 8, 1121–1133. <https://doi.org/10.1021/acssynbio.9b00023>

46 Prieto, A., Escapa, I.F., Martínez, V., Dinjaski, N., Herencias, C., de la Peña, F., Tarazona, N.,

1 L., Luhrs, A., Lubbe, A., Hoyt, D.W., Francavilla, C., Otani, H., Deutsch, S., Washton,
2 N.M., Rubin, E.M., Mouncey, N.J., Visel, A., Northen, T., Cheng, J., Bode, H.B.,
3 Yoshikuni, Y., 2019. CRAGE enables rapid activation of biosynthetic gene clusters in
4 undomesticated bacteria. *Nat. Microbiol.* 4, 2498–2510. <https://doi.org/10.1038/s41564-019-0573-8>

5 Wang, H., Li, Z., Jia, R., Hou, Y., Yin, J., Bian, X., Li, A., Müller, R., Stewart, A.F., Fu, J.,
6 Zhang, Y., 2016. RecET direct cloning and Red $\alpha\beta$ recombineering of biosynthetic gene
7 clusters, large operons or single genes for heterologous expression. *Nat. Protoc.* 11, 1175–
8 1190. <https://doi.org/10.1038/nprot.2016.054>

9 Wenzel, S.C., Gross, F., Zhang, Y., Fu, J., Stewart, A.F., Müller, R., 2005. Heterologous
10 Expression of a Myxobacterial Natural Products Assembly Line in Pseudomonads via
11 Red/ET Recombineering. *Chem. Biol.* 12, 349–356.
12 <https://doi.org/10.1016/j.chembiol.2004.12.012>

13 Williamson, N.R., Fineran, P.C., Leeper, F.J., Salmond, G.P.C., 2006. The biosynthesis and
14 regulation of bacterial prodiginines. *Nat. Rev. Microbiol.* 4, 887–899.
15 <https://doi.org/10.1038/nrmicro1531>

16 Wu, Z., Chen, Z., Gao, X., Li, J., Shang, G., 2019. Combination of ssDNA recombineering and
17 CRISPR-Cas9 for *Pseudomonas putida* KT2440 genome editing. *Appl. Microbiol.*
18 *Biotechnol.* 103, 2783–2795. <https://doi.org/10.1007/s00253-019-09654-w>

19 Zhang, J., Shen, Y., Liu, J., Wei, D., 2005. Antimetastatic effect of prodigiosin through
20 inhibition of tumor invasion. *Biochem. Pharmacol.* 69, 407–414.
21 <https://doi.org/10.1016/j.bcp.2004.08.037>

22 Zhang, Yuyang, Chen, H., Zhang, Yao, Yin, H., Zhou, C., Wang, Y., 2021. Direct RBS
23 Engineering of the biosynthetic gene cluster for efficient productivity of violaceins in *E.*
24 *coli*. *Microb. Cell Fact.* 20, 38. <https://doi.org/10.1186/s12934-021-01518-1>

25 Zhong, L., Diao, X., Zhang, N., Li, F., Zhou, H., Chen, H., Bai, X., Ren, X., Zhang, Y., Wu, D.,
26 Bian, X., 2021. Engineering and elucidation of the lipoinitiation process in nonribosomal
27 peptide biosynthesis. *Nat. Commun.* 12, 296. <https://doi.org/10.1038/s41467-020-20548-8>

28

29

30