This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics 1

Effect of actuation method on
hydrodynamics of elastic plates oscillating at
resonance

Ersan Demirer, Yu-Cheng Wang, Alper Erturk, Alexander Alexeev

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology,
Atlanta, GA 30332

(Received xx; revised xx; accepted xx)

In this work we investigate the effects of two distinct actuation methods on the hy-
drodynamics of elastic rectangular plates oscillating at resonance. Plates are driven by
plunging motion at the root or actuated by a distributed internal bending moment
at Reynolds numbers between 500 and 4000. The latter actuation method represents
internally actuated smart materials and emulates the natural ability of swimming ani-
mals to continuously change their shapes with muscles. We conduct experiments with
plunging elastic plates and piezoelectric plate actuators that are simulated using a fully-
coupled three-dimensional computational model based on the lattice Boltzmann method.
After experimental validation the computational model is employed to probe plate
hydrodynamics for a wide range of parameters, including large oscillation amplitudes
which prompts nonlinear effects. The comparison between the two actuation methods
reveals that, for the same level of tip deflection, externally actuated plates significantly
outperform internally actuated plates in terms of thrust production and hydrodynamic
efficiency. The reduced performance of internally actuated plates is associated with their
sub-optimal bending shapes which leads to a trailing edge geometry with enhanced
vorticity generation and viscous dissipation. Furthermore, the difference in actuation
methods impacts the inertia coefficient characterizing the plate oscillations, especially
for large amplitudes. It is found that the inertia coefficient strongly depends on the tip
deflection amplitude and the Reynolds number, and actuation method, especially for
larger amplitudes.

1. Introduction

Among different fluid-structure interaction problems, the problem of the unsteady
hydrodynamics of an elastic plate oscillating under water has been under the scrutiny of
numerous researchers due to its fundamental aspects and diverse practical applications
(Dowell & Hall 2001; Amabili & Paidoussis 2003; Shelley & Zhang 2011; Hou et al. 2012;
Chen et al. 2006; Sfakiotakis et al. 1999). The challenging physics in this problem arises
from the dynamic coupling between the elastic deformation of the plate and the unsteady
fluid motion. As an elastic plate oscillates in a fluid, it bends due to its own inertia, elastic
forces, and hydrodynamic forces, yielding complex dynamic shape changes. The plate
dynamics, in turn, imposes the motion on the viscous fluid surrounding the plate. Thus,
the coupling between the plate dynamic deformation and the unsteady hydrodynamic
loading needs to be resolved to understand the plate motion and to rationalize the
resulting hydrodynamic forces associated with complex three-dimensional flow structures
generated by the oscillating plate.

Most biological systems involved in flying or swimming consist of deformable surfaces
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actuated with muscle contractions and passive deformation due to the surrounding flow
(Fish & Lauder 2006). In the case of swimming, fish are able to achieve swimming veloc-
ities, maximum burst speeds and efficiencies far exceeding the best man-made designs of
comparable size (Scaradozzi et al. 2017). Elasticity is often used by animals to generate
complex deformation patterns using simple actuation (Jayne & Lauder 1995; Lauder
& Tytell 2005; McHenry et al. 1995). Multiple studies explored the movement of fish
fins that undergo complex and inherently three dimensional motion (Lauder & Tangorra
2015; Esposito et al. 2012; Flammang & Lauder 2009). Through this complex motion
and local change in elasticity, fish can achieve efficient swimming and manoeuvring.

Small and medium size fish measure up to 10 — 20 cm and reach swimming velocities
up to several body lengths per second leading to Reynolds number Re ~ 102 — 10°. In
this range of Reynolds numbers both inertial and viscous effects play a substantial role
in the physics of the problem. Although the Reynolds number in this range is close to
the critical value, Anderson et al. (2001) showed experimentally that the flow attached
to the fish remains laminar.

An oscillating plate is an efficient simplified model representing the complex fluid
mechanics of fish fins (Combes & Daniel 2001; Liu & Aono 2009; Kolomenskiy et al. 2011;
Alben et al. 2012). Exploring the hydrodynamics of oscillating plates enables researchers
to better understand fish locomotion and to create efficient and manoeuvrable designs
for bio-mimetic underwater swimmers. Early designs of fish-inspired robots include
passive rigid or moderately-elastic plates of various shapes actuated by servomotors
(Triantafyllou & Triantafyllou 1995; Anderson et al. 1998). Some designs successfully
mimicked the fish flexibility through a series of linked rigid sections coupled to actuators
(Su et al. 2014). Although such design proved to be successful to propel robots, not only
the manoeuvring was limited compared to what is seen in nature, but the efficiency was
far from what fish achieve (Hu et al. 2006; Kopman et al. 2015).

Recently, internally actuated smart materials have been developed and used to mimic
complex fish-like motion showing a great potential for the development of efficient bio-
mimetic swimming robots (Chen et al. 2009, 2011; Philen & Neu 2011). Among internally
actuated smart materials, piezoelectric materials have gained significant interest. Partic-
ularly, macro-fiber composite (MFC) piezoelectric actuators strike a balance between
the actuation force and deformation levels, in addition to offering robust design and
silent operation (Erturk & Delporte 2011). The use of smart materials significantly
simplifies the design of bio-inspired robotic swimmers. Cen & Erturk (2013) demonstrated
a robotic fish propelled by MFC bimorphs, which consists of two MFC laminates bonded
together by a layer of epoxy. While MFC bimorphs and other smart materials are highly
promising solutions for driving bio-inspired designs, they still yield somewhat limited
deflection magnitude during underwater actuation due to hydrodynamic loads unlike in
air operation. Furthermore, it is unclear at what hydrodynamic regimes such materials
need to be used to induce efficient locomotion and how their hydrodynamic performance
compares to more traditional propulsors actuated by external driving mechanisms.

The problem of elastic plates oscillating in fluid is not limited to the biological and
biomimetic locomotion. This fundamental problem has direct implications to a wide range
of engineering applications including energy harvesting (Erturk & Inman 2011; Cha et al.
2013; Sader et al. 2016), atomic force microscopy (Van Eysden & Sader 2007; Ghatkesar
et al. 2008), cooling of electronic devices (Bidkar et al. 2009), and the design of offshore
structures (Sarpkaya & Isaacson 1981) to name a few.

The intrinsic complexity of this problem led the researchers to investigate simplified
models. Morison et al. (1950) suggested that the hydrodynamics of a stationary body in
oscillating flow and an oscillating body in quiescent fluid can be represented as a sum
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of two contributions: the drag and inertial forces. These forces in the Morison equation
are characterized by two respective empirical coefficients. Keulegan (1958) and Sarpkaya
(1986, 1976) showed that the drag and inertia coefficients depend on the Keulegan-
Carpenter number, the aspect ratio, the Reynolds number, and the surface roughness.
These studies considered only rigid or moderately elastic bodies, yet the deformability is a
major parameter in the characterization of the plate hydrodynamic performance (Zhang
et al. 2010). Nonetheless the Morison equation is a widely used approach to describe
forces acting on a submerged elastic body (Kopman et al. 2015; De Rosis & Lévéque
2016; Shahab et al. 2015).

Lighthill (1960) and Wu (1961) studied two-dimensional inviscid flow induced by a
harmonically oscillating rigid plate. Their works laid the foundation of inviscid theory
applied to, respectively, slender bodies and infinite thin plates. Lighthill (1971, 1970)
studied the reactive forces between an oscillating slender body and a surrounding qui-
escent fluid. He suggested that the mean thrust depends on the tip angle, tip velocity,
and mass ratio of the body. Elmer & Dreier (1997) and Van Eysden & Sader (2006)
built approximate solutions for cantilevered beams in an inviscid fluid. While providing
important insights, the use of inviscid approximations is of limited use for small scale
problems, where the fluid viscosity cannot be neglected.

Forced resonance oscillations lead to enhanced deflection of elastic cantilevers beneficial
in practical applications. Sader (1998) considered resonance of a thin beam with a large
aspect ratio subjected to harmonic oscillations in a two-dimensional Stokes flow. His
work provided an a priori estimation of the beam frequency response and its dependence
on the Reynolds number. Aureli et al. (2012) used a two-dimensional numerical model
to examine the viscous effects on resonance oscillations of a cantilevered beam. Due
to the model limitations, this work was not able to capture three dimensional vortex
shedding that accounts for a significant amount of the drag created by the beam motion.
More recently, Facci & Porfiri (2013) extended Sader’s model to probe three-dimensional
non-linear effects of the fluid-solid coupling. They compared the numerical model to
experimental data for a cantilevered beam under harmonic base excitation in a viscous
fluid. Their work only considered a linear theory and, therefore, small deformations.
Alben et al. (2012) demonstrated the existence of resonant-like peaks in swimming
velocity through experiments and a high Reynolds number theoretical model of an elastic
plunging plate. Quinn et al. (2014) experimentally showed that these resonant peaks in
thrust occurred for discrete values of the effective flexibility, a non-dimensional parameter
measuring the ratio of added mass forces to internal bending forces.

Despite rapid progress in computational modeling, simulations of a three-dimensional
fish swimming in a viscous fluid remains a great challenge. Various simplifications are
commonly used such as inviscid fluid, rigid and simplified geometry, and prescribed body
kinematics (Borazjani & Sotiropoulos 2008; Li et al. 2014; Bhalla et al. 2013; Zhu et al.
2002; Yu et al. 2011; Mittal et al. 2008; Liu et al. 2017). To probe the fundamentals
of fish locomotion, single fin of abstraction is used in fully coupled studies probing
the hydrodynamics of heaving elastic fins (Eloy & Schouveiler 2011; Dai et al. 2012).
Such studies showed that resonance oscillations of elastic fins promote propulsion speed
and thrust generation (Paraz et al. 2016; Yeh & Alexeev 2014, 2016b). Furthermore,
elasticity can be used to optimize fin performance (Hoover et al. 2018). Comparison of
cruising speed of elastic plates with different shapes revealed that the contracting fin
shape facilities a faster swimming in comparison to fins with the diverging shape (Engels
et al. 2017). It was also reported that fins with tapered thickness yield greater efficiency
for a wider range of actuation frequencies than fins with uniform thickness (Yeh et al.
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Figure 1: Schematics of rectangular elastic plates with (a) external and (b) internal
actuation methods in the global and local reference frames. The externally actuated
plate is driven at the root by harmonic oscillations with an amplitude A(t). The internally
actuated plate is driven by a time-dependent distributed internal bending moment M (¢).

2017). Simulations of internally actuated fins with passive fin attachments revealed that
such attachments yield improved hydrodynamic performance (Yeh & Alexeev 2016a).

While different aspects of the hydrodynamic performance of heaving elastic fins have
been extensively studied, little progress has been achieved so far in understanding
the hydrodynamics of plates with internal actuation such as MFC and other smart
materials. In this work, we aim to reduce this gap by combining three-dimensional
computer simulations and experiments. We systematically investigate the hydrodynamic
performance of rectangular elastic plates with uniform thickness that are driven to
oscillate by a distributed time-varying internal bending moment and this is compared
against the performance of plates with similar mechanical and geometrical properties that
are actuated by an external force imposed at the root to undergo plunging motion (figure
1). We focus on resonance plate oscillations at moderate Reynolds numbers in the range
500 < Re < 4000. We first use the experiments to validate the kinematics predicted
by our fluid-structure model for internally and externally actuated plates with a tip
deflection 0;/L = 0.01, where L is the plate length. We then employ our simulations to
probe how the two distinct actuation mechanisms affect the emerging flow structures and
generated hydrodynamic forces for a wide range of tip deflections 0.001 < ¢;/L < 0.25
that covers both the linear and non-linear oscillation regimes. We consider plates with
different aspect ratios and vary the Reynolds number to probe its effect of the resonance
plate hydrodynamics. We also quantify the inertia coefficient characterizing resonance
oscillations of the internally and externally actuated plates and compared it to the
experimental data.

2. Problem Setup

We consider a thin elastic plate with length L, width W, and uniform thickness h < L
yielding an aspect ratio Ag = L/W shown in figure 1. The plate oscillates periodically
in an incompressible Newtonian fluid of density p and dynamic viscosity pu. We consider
two different configurations of the plate actuation. In the first configuration, referred as
an externally actuated plate, the elastic plate is actuated at its root with a harmonic
plunging pattern given by A(t) = Agsinwt, where w is the angular velocity, Ag is the
root displacement amplitude, and ¢ is time. In the second configuration, referred as an
internally actuated plate, the plate is driven by a harmonic internal bending moment
given by M (t) = My sinwt with My being the moment amplitude in the y direction. In
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the internally actuated configuration the plate root is clamped and fixed in place. In both
cases, the plate material is isotropic and homogeneous with the density ps, the bending
stiffness D, and the Poisson ratio v.

The plate oscillations in a fluid are governed by the Reynolds number Re = %

and the mass ratio y = /iTWh' Here, Uy = L/7 is the characteristic oscillation velocity
and 7 = 27/w is the actuation period. Additionally, we define a characteristic force
Fy = 1pW LUZ and power Py = 3pW LU;.

2
The added mass is characterized by an inertia coefficient ¢, = % (% — 1) that
1,f

is a function of the mass ratio and frequency ratio (see Appendix A). For small enough
oscillation amplitudes, the inertia coefficient only varies with the plate aspect ratio. We
refer to this regime as the linear regime. For greater amplitudes, non-linear hydrodynamic
effects make the inertia coefficient vary with the tip amplitude in addition to the aspect
ratio (Shahab et al. 2015; Tan & Erturk 2018). We refer to the latter behavior as the
non-linear regime.

The dynamic response of an oscillating elastic plate is a function of the proximity of the
driving frequency to the plate resonance frequency. The resonance frequency depends on
the properties of the plate material as well as the fluid surrounding the plate. In vacuum
and by neglecting internal dissipation (structural damping), small deflections of a beam
with bending rigidity D and mass per length M; = p;Wh can be modelled by

0w 0*w

—+D—=0. 2.1
ot? * Ox? (2.1)
This problem can be solved using Fourier decomposition (Weaver Jr et al. 1990) yielding
the natural frequencies wy, vac given by

A2 /D
n,vac — = — 5 2.2
“nvee = T\, (22)

where ), is an eigenvalue of the problem, n € N* and the first vibration mode, n = 1, is
of interest in this work. The natural frequency, corresponding to the condition when the
response and excitation are in quadrature of phase, yields the maximum tip deflection.
In the lightly damped problem, such as the vacuum case, the resonance frequency is
approximately the natural frequency. Fluid displaced by the oscillating plate acts as an
additional mass altering the dynamics of the plate. When the added mass is significantly
greater than the plate mass, the effective linear mass due to the displaced fluid can be
used instead of the plate mass. This leads to a dimensionless effective flexibility D* =

M,

(pW 2L/ D)% representing the ratio of added mass forces to internal bending forces
(Quinn et al. 2014).

When the plate is driven to oscillate in a fluid, the resonance frequency defines
the oscillation regime maximizing the tip deflection. Fluid viscosity affects the forced
resonance frequency, although for low fluid damping the resonance frequency overlays
with the natural (undamped) frequency. Note that Quinn et al. (2014) and Hoover et al.
(2018) have shown for elastic plates that the maxima of the thrust and tip deflection
occur for the same effective flexibility. Thus, the values of D* corresponding to the
maximum thrust match the forced resonance frequency. We also note that experimentally
the frequency sweep is performed by varying the actuation frequency. In our numerical
simulations, however, the actuation frequency is constant, whereas the stiffness is varied
to alter the proximity of the oscillating plate to the resonance frequency.
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3. Computational Setup

Our computational model is based on a fully coupled solver simulating the three-
dimensional hydrodynamics of an elastic plate submerged into an incompressible Newto-
nian fluid. The fluid mechanics of plate oscillations is captured using a lattice Boltzmann
(LB) model, while the solid mechanics is solved using a finite differences (FD) formula-
tion.

The lattice Boltzmann method is based on the solution of the discrete Boltzmann
equation. The computational domain is discretized using a cubic lattice of equally spaced
nodes. At each node, the flow is characterized by a velocity distribution function f;(r,t)
that represents the density of fluid particles at position r propagating at velocity ¢
in the direction i at time t. We use a D3Q19 lattice that maintains 19 directions
of the distribution functions in three spatial dimensions. The time evolution of the
distribution functions is computed by integrating the discrete Boltzmann equation (Ladd
& Verberg 2001). The macroscopic quantities characterizing the flow, such as the density
p, momentum pu and stress Il are retrieved by taking moments of the distribution
functions given by o

p:Zfi ,pg:Zfig,£:Zfig®g~

The plate elastic deformation is modeled using the Kirchhoff-Love approach (Timo-
shenko & Woinowsky-Krieger 1959) with the z, y, and z components of plate displacement
(figure 1) respectively defined as

ow
u(x,y,z) - _Z%(may) ;

v(gc,y,z) = _Z%(may) 3

w(z,y,z) = w(z,y,0) = w(x,y) .

For a differential plate element of size dx and dy, the forces and moments acting on
the element are given by

oM, = OM,,
Ox oy @a s (3.1)
OM,, oM,
5 9y Qy (3:2)
0Q. | 0Q, L Pw
9c " oy +a(x,y,t) = pshga - (3-3)

Here, @z, Qy and M, M, are the shear forces and bending moments in the respective
direction, M, is the twisting moment and ¢ is the transverse load acting on the plate.
For an isotropic material, the bending moments are given by

0w 0%w
0w 0%w
0%w

M,y =—-D(1—v)

0xdy ’
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where D = m is the bending stiffness of the plate, which is constant considering an

isotropic plate with constant thickness. By combining Eqgs. 3.1-3.6, we obtain an equation
for the transverse displacement of the elastic plate

0w 02w 0w 0w ow
h— = t N, N, N, DV* 4 )
Psh o = a(@.y, )+( 002 T Mvge T yaxay> Viw=9Vige . (37)

where V* is the bilaplacian operator, v > 0 is the Kelvin-Voigt damping coefficient and
Nz, Ny, Ny, are the in-plane shearing forces. The PDE is completed with the following
boundary conditions

ow
w(0,y,t) = BA — B (0,y) =0 : clamped root,

M, (L,y) =0AV,(L,y) =0 : free tip,
My(z,0) =0 A Vy(z,0) =0 : free side,
My(z,w) =0AV,(z,w) =0 : free side.

Here, B = A(t) for the externally actuated plate, whereas in the case of the internally

actuated plate, B = 0. Furthermore, V,(z,y) = Q.(z,y) + 6“’ (z,y) is the equivalent
shear force, which was introduced by Kirchhoff (1850) to reduce the number of boundary
conditions to two. The corner reaction is defined as

0%w
0x0y |, Y

We solve the plate equation of motion with relevant boundary conditions using finite
differences (FD). The time and space discretization is based on a central finite differences
scheme with ghost nodes at the boundaries. This choice of the discretization results in
a 13 points stencil. We validated the FD solid solver by modeling static deflection of
a cantilevered plate due to a load applied at the free end. The numerical solution is
compared with the deflection of an Euler-Bernoulli beam with a bending stiffness ET
described by the following boundary-value problem

R =2Myy(z,y) = —2D(1 —v) (3.8)

Vs €]0; 1], 8" (s) = —q(l)?lf cosf(s) , (3.9)
8(0)=0,6'(1) =0, (3.10)

where ¢ is the load, s is the arc length coordinate, L is the length of the beam and 6 is
the beam angle. The equation is solved using a fourth-order Runge-Kutta scheme.

In figure 2, we show the bending pattern of an end-loaded cantilevered plate of aspect
ratio Ax = 2 for a non-dimensional load of gy L?/EI = 0.2. Our finite differences solution
shows good agreement with the Runge-Kutta solution. In figure 2, the beam solution is
compared to our FD solution for various loads. We find close agreement between the
finite differences results and the Runge-Kutta solution with tip deflections reaching up
to 70% of the beam length for a mesh of 20 nodes in the length and 11 nodes in the
width.

To simulate the fluid flow, we use a grid with reduced density away from the moving
plate to decrease the compute time for this fully coupled fluid-structure interaction
problem. The coarse grid spacing is A, = 2 while the fine grid spacing is Ay = 1 in
LB units. Dimensions of the domains are shown in figure 3. The fine and coarse grids are
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Figure 2: (a) Bending deformation of the end-loaded cantilevered plate with aspect ratio
Ar = 2 and a non-dimensional load gyL? /EI = 0.2. The finite difference solution
using 20 node mesh deviates less than 1% from the non-linear BVP solution. (b) Static
deflection of the end-loaded cantilevered plate with aspect ratio Ar = 2 as a function
of the non-dimensional load qoL?/EI. The comparison between the non-linear Runge—
Kutta and the finite differences solutions shows good agreement including for moderate
to high deformation levels. The linear analytical solution only valid for relatively small
loads.

coupled at their boundaries to ensure the mass and momentum conservation (Masoud
& Alexeev 2010). The plate is located at the center of the fluid domain. The outer
boundaries of the computational domain are located far enough from the plate so that
the boundary conditions do not influence the flow field near the oscillating plate. Based
on the results of a mesh sensitivity study of the coupled LB/FD model, we use a FD mesh
of 21 nodes in the z—direction that corresponds to 50 LB grid units. Such mesh provides
sufficient accuracy compared to the solution with higher mesh resolution at reasonable
computational cost. To ensure that the plate reaches a steady state, the simulations are
performed for 40 periods of the plate oscillations.

The fluid and solid models are coupled at the fluid-solid boundaries using a two-way
coupling procedure (Alexeev et al. 2005; Alexeev & Balazs 2007). On the fluid side, a
linear interpolated bounce back rule is used that results in the no-slip and no-penetration
conditions on the moving solid surface (Bouzidi et al. 2001; Chun & Ladd 2007). The
rule is applied to all distribution functions crossing the solid boundary. On the other
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Figure 3: Schematic of the computational setup. The outer box represents the domain
with the coarse LBM grid while the inner box represents the domain with the fine LBM
grid centered around the oscillating elastic plate.
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Actuation period T 2000
Density p 1
Viscosity uwo 1.25%x1073
Reynolds number Re % = 1000
Mass ratio X ZTWh € {1;10}

Aspect ratio  Ar & € {2;4}

Table 1: Numerical parameters

hand, the momentum exchange approach (Alexeev et al. 2005) is used to account for the
momentum transferred to the solid boundary due to the reflection of the distribution
function. This momentum is distributed among neighboring FD nodes using a weighted
average conserving force and moment.

This fluid-solid interaction framework has been previously extensively validated and
used to study diverse problems involving coupling between viscous fluids and elastic
solids (Alexeev et al. 2006; Branscomb & Alexeev 2010; Masoud & Alexeev 2011; Masoud
et al. 2012; Yeh & Alexeev 2014; Mao & Alexeev 2014). Below we further validate the
coupled fluid-structure interaction solver by directly comparing the simulation results
with experimental measurements for externally and internally actuated plates.

4. Experimental setup

The experimental test samples (piezoelectric cantilevers) and the overall setup details
are shown in figure 4 along with close-up views of the relevant components. The flexible
piezoelectric structures were built by vacuum bonding a pair of the identical custom-
made waterproof MFC laminates using high strength epoxy (3M DP460) to fabricate
bimorph structures. Electrical wires were soldered to the electrodes of the MFCs and
the joint was fully waterproofed by multiple layers of liquid electrical tape (Star Brite
Liquid Electrical Tape). Two different excitation mechanisms of input energy are applied
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Figure 4: Picture of (a) an MFC laminate and (b) close-up schematic of a representative
volume element showing the interdigitated electrodes, piezoelectric fibers, and epoxy
matrix embedded in Kapton film. (¢) Bimorph cantilevers with two different aspect
ratios (each made from two MFC laminates for bending actuation). (d) Mechanical base
excitation (external actuation) setup and (e) electrical (internal) actuation setup. ()
Close-up view of an MFC bimorph cantilever.

to create persistent oscillations of the cantilevers: electrical (internal) actuation and
mechanical (external) base excitation.

First, in the piezoelectric actuation, the bimorphs were placed into an aluminum
clamp attached to a rigid mount to create a cantilevered structure and electrically
connected to a pair of high voltage amplifiers (Trek PA05039). Linear electrical actuation
experiments were conducted with the sample in a vacuum chamber to characterize the
dynamics of the structure in the absence of fluid loading. To do so, electrical noise
bursts were sent to the piezoelectric bimorphs while the mechanical response at the
tip of the cantilever was measured using a Laser Doppler Vibrometer (LDV) (OFV-
5000 with an OFV-505 sensor head). Once the linear response was well characterized
along with in vacuo structural damping, frequency sweeps were conducted around the
first resonant frequency to measure the amplitude-dependence between the piezoelectric
bimorph and the surrounding fluid. Later, the structure was submerged underwater to a
depth of 25 centimeters to avoid surface effects. Linear electrical actuation experiments
were repeated under water, being careful to divide the measured tip velocity underwater
by the index of refraction of water to determine the true velocity of the structure. By
comparing the dynamics of the structural modes from the in vacuo and underwater
experiments, empirical linear inertia coefficients were extracted from the data. Once the
linear tests were complete, the nonlinear response of the structure was again measured
via frequency sweeps underwater centered around the first resonant frequency of the
underwater structure.

For mechanical external actuation experiments, the bimorphs (along with the alu-
minum clamps) were fixed onto the testing platform of an APS-113 long-stroke shaker
which was connected to an APS-125 amplifier. For the sake of the characterization of the
dynamic response of the bimorphs under mechanical external actuation, linear vacuo tests
were again conducted in a vacuum chamber to have a reference for obtaining the inertia
coefficient. An LDV was used for obtaining the absolute tip velocity of the bimorphs,
and at the same time, another LDV was implemented to collect the velocity-to-actuation
voltage input frequency response from the fixed-end of the bimorphs. After the in vacuo
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Ar L(mm) W(mm) h(mm) ps(kg.m™3) D(N.m?) x

2 88.5 43.5 6.1 360 0.0163 20
4 83.5 21.5 6.1 360 0.087 10

Table 2: Experimental parameters

reference experiments, the bimorphs were immersed in water along with an aluminum
bar that one of its ends was attached to the shaker. Similarly, linear mechanical actuation
tests were done to characterize the dynamics of the bimorphs to characterize fluid loading
effects. Finally, large-amplitude frequency sweeps were conducted in the frequency range
centered around the first resonant frequency obtained from the prior tests. Note that
to keep the oscillation level at the fixed-end of the bimorphs constant within the entire
range of frequency sweeps, the velocity signals obtained from the second LDV were sent
into a controller to create a closed-loop feedback control system as required in nonlinear
vibration experiments. Typical characteristic velocities lead to a Reynolds number in the
range between 102 and 10%.

5. Results and Discussion
5.1. Resonance oscillations

In figures 5 and 6, we present simulation results and experimental data for internally
and externally actuated plates oscillating in water with a moderate tip deflection d;/L =
0.01. Close agreement between the simulations and experiments confirms the ability of
our coupled FSI solver to properly model such oscillations. Figure 5 shows the Bode
diagrams for plates with external and internal actuation. The phase Af is computed
as the lag between the root and tip displacements for the externally actuated plate. In
the case of the internally actuated plate, Af is computed as the lag between the tip
displacement and the input internal moment.

As the driving frequency approaches the resonance frequency of the plate, the tip
velocity magnitude and, therefore, tip displacement reach a maximum (figure 5a). The
resonance frequency can therefore be identified by inspecting the root mean square
tip velocity Viip frequency response. On the other hand the natural frequency can
be identified by investigating the phase difference between the driving source (root
displacement or internal moment) and the tip deflection. At the natural frequency the
driving source and tip displacement are in quadrature of phase (figure 5b). For relatively
small amplitude ¢;/L = 0.01, the natural and resonance frequency coincide, confirming
that the plate oscillates in the linear regime.

In this work, we focus on the hydrodynamics of resonance oscillations. In figure 6, we
show experimental and computational snapshots illustrating the plate bending pattern

5, 13/2
and corresponding plate curvature k(x) = 2"(z)/ {1 + 2 (:c)} for the internally and

externally actuated plates. The plate aspect ratio is Az = 2 and the actuation in both
cases yields §;/L = 0.01. In the case of an external actuation, the plate deformation in
the z—direction grows monotonically along the plate length with the maximum at the
plate free end (figure 6a). Such deformation is typical for resonance oscillations. This
is confirmed by inspecting the plate curvature (figure 6b). The curvature monotonically
decreases towards the plate tip from the maximum value at the root. The application
of the external force at the root yields the most significant plate bending that gradually
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Figure 5: Frequency response function for (a) the tip velocity Vi;, and (b) the phase for
0;/L =0.01, x =5 and Ag = 2. The numerical results are shown by the lines, whereas
the experimental data is shown by the symbols. The resonance is characterized by a
quadrature of phase Af = 7/2 between the root and the tip.

decreases towards the tip where the curvature is zero, indicating that near the tip the
plate remains straight during the entire oscillation cycle.

The resonance deformation of an internally actuated plate (figure 6¢) is noticeably
different from that of an externally actuated plate. In the case of the internal actuation,
the tip of the plate displays a non-zero curvature during most of the oscillation cycle
(figure 6d). Interestingly the maximum curvature occurs at the plate root for both types
of actuation. As we discuss below, the difference in the deformation patterns between
externally and internally actuated plates have a drastic effect on the plate hydrodynamics
and the generated hydrodynamic forces.

We further compare the plate bending patterns for the two actuation methods in
figure 7, where we show the simulated time histories of the plate deflection, the plate
rotational angle and the plate curvature. The instantaneous tip deflection d;(t) and center
of mass displacement d.4(t) are shown in figure 7a. The solid lines refer to the externally
actuated case while the dotted lines refer to the internally actuated plate. The maximum
tip deflection occurs at about ¢/7 = 0.5 for both the plates, since the plates oscillate at
resonance. In the case of the externally actuated plate the center of mass and the tip
displacement have a phase lag of A8 = /4, while the internally actuated plate center of
mass and tip are in phase.



13

(@) 15 (b) 1
— Numerical
1} O Experimental
0.5 F
8 g
Y £ 0
® £
—0.5F S
—0.5
1k
~15 . . L . -1 . . .
0.2 0.4 0.6 0.8 0 0.25 0.5 0.75 1
7/Tmax z/L
() L5 (d 1
— Numerical
1} O Experimental
0.5
0.5 2
g g
g 2 0
2 3
B g
5 =
—0.5F &)
—0.5F
1}
~15 . . . L 1 . . .
0.2 0.4 0.6 0.8 0 0.25 0.5 0.75 1
o/Tmax x/L

Figure 6: (a) Plate bending pattern and (b) bending curvature x for the externally
actuated plate at resonance. (c) Plate bending pattern and (d) bending curvature & for
the internally actuated plate at resonance. Numerical results are shown by the solid
lines, whereas experimental data is shown by the symbols. The plate tip displacement is
d:/L = 0.01, the aspect ratio is Ax =2, x =5 and Re = 1000.

In figure 7b, we present the time history of the local plate angle « at the plate center
of mass and tip. For the external actuation, we find that the angle is in phase at both
locations. Therefore at the maximum tip displacement, the angle is positive yielding a
slope that effectively transfers the fluid backwards and minimizes the relative motion
between the plate and the fluid. On the other hand, for the internally actuated plate,
the local angle shifts along the length of the plate so that at the tip the angle and
the deflection are out of phase. This change along the length results in relative motion
between the plate and the fluid leading to a greater vorticity generation as we discuss
below.

In figure 7c, we show the time history of the plate local curvature x at the center of mass
and at the tip. The externally actuated plate maintains zero curvature at the tip during
the entire oscillation period, whereas the curvature at the center of mass is maximized
at the maximum plate deflection. For the internal actuation case, the magnitude of
the curvature does not decrease with the distance from the root as it happens for
the externally actuated plate. Figure 7c shows that the curvature magnitude changes
insignificantly between the center of mass location and the trailing edge. Furthermore,
the maximum curvature at the tip coincides with the maximum input bending moment
to satisfy the respective boundary condition.

5.2. Flow structure

In figure 8, we show surfaces of constant vorticity magnitude generated at resonance
by externally and internally actuated plates as predicted by our simulations. Vorticity is
generated as a result of the relative motion of the plate with respect to the surrounding
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Figure 7: Time history of (a) the instantaneous deflection at the tip d; and at the center of
mass deg, (b) the angle at the tip a; and at the center of mass a.g4, and (c) the curvature
at the tip x; and at the center of mass k., for numerically simulated internally and
externally actuated plates with aspect ratio Agr =2, x = 5 and Re = 1000 at resonance.

fluid and, therefore, is the most significant along the trailing edge (TEVs) and the side
edges (SEVs) of the plate. During each stroke the combination of SEVs and TEVs
forms a characteristic horseshoe shaped set of vortices that are periodically shed from
the oscillating plate. The horseshoe vortices sharing common features are generated by
plates with both modes of actuation. However, there are also important differences in
the emerging flow structures associated with their distinct bending patterns.

Several theoretical and experimental studies highlight the key role of reverse Karman
streets for propulsion (Michelin & Llewellyn Smith 2009; Alben 2009; Nauen & Lauder
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(d)

Figure 8: Contours of normalized vorticity wr = £10 of the numerically simulated (a-
d) externally actuated plate and (e-h) internally actuated plate with Agx = 2, x = 5,
Re = 1000, and tip deflection d;/L = 0.25 at resonance at times t/7 = 0.25,0.5,0.75, 1,
respectively. Vortices represented in red are rotating counterclockwise while vortices
represented in blue are rotating clockwise.
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2002). Both actuation patterns lead to the generation of sets of vortices with opposite
rotation direction. In both instances, counterclockwise vortices are shed at the top while
clockwise rotating vortices are shed at the bottom. The sign of these vortices creates a
jet flowing away from the tip of the plate. This configuration leads to the production of
a net thrust. For the lowest actuation levels tested, the sign of these vortices flip which
corresponds to a net drag force on the plate (Michelin & Llewellyn Smith 2009; Anderson
et al. 1998; Nauen & Lauder 2002; Alben 2009; Paraz et al. 2016).

When considering the external actuation, the plunging motion of the plate leading edge
produces a leading edge vortex (LEV), however its strength is relatively weak compared
to SEVs and TEV. Since the plate is actuated in a quiescent fluid, the LEVs shed
close to the root and do not interact in the wake with TEVs and SEVs. Therefore, we
do not anticipate they play an important role in the thrust production for this setup.
Furthermore, SEVs extend along the entire plate length from the root to the tip. In the
case of the internal actuation, the root is immobilized. As a result, the internally actuated
plate does not produce LEVs, whereas significant SEVs develop only at halfway distance
from the root to the tip. Thus, one can expect the externally actuated plate that displaces
more fluid during each strokes would generate more vorticity compared to the internally
actuated plate with comparable trailing edge displacement.

To further characterize the flow field, figure 9 shows simulation snapshots of the flow
field around oscillating plates with different actuation types. The glyph demonstrates
the alternating vortical structure shed at the tip of the plate. A downstroke generates
counter-clockwise vortices, as shown in figures 9b, 9c, 9f, and 9g, whereas the upstroke
generates clockwise vortices, as shown in figures 9a, 9d, 9e, and 9h (see also SI). The
interaction of the vortices creates a jet in the z-direction leading to a net thrust. We
note that these flow structures are consistent with the literature (Facci & Porfiri 2013).

We quantified the vorticity generated by each actuation method by computing the
normalized enstrophy £ = w - w 72. Enstrophy is a measure of the intensity of viscous
dissipation (Weiss 1991). In figure 10, we show the time evolution of the volume averaged
enstrophy over one period of plate oscillations. For both plates the enstrophy displays
similar time dependent behavior with two peaks. However, the locations of the peaks are
somewhat different. Compared to the plates with external actuation, the peaks for the
internally actuated plate shifted towards the ends of the upstroke and the downstroke at,
t/T7 = 0.2 and t/7 = 0.7, respectively. Figure 10 also shows that throughout most of the
oscillation period, the internally actuated plate generates noticeable greater enstrophy
and, therefore, viscous dissipation compared to the externally actuated plate.

We find that, for the externally actuated plate, the maximum viscous dissipation
coincides with the maximum tip deflection, whereas the minimum enstrophy corresponds
to zero tip deflection (figure 7a). In the case of the internally actuated plate, however,
enstrophy production is related to the plate curvature at the trailing edge. Indeed,
comparing figure 7c and figure 10, we find that the maxima of enstrophy are close to
the maxima of tip curvature at ¢/7 = 0.25 and t/7 = 0.75, while the enstrophy minima
coincide with zero tip curvature at t/7 = 0.5 and ¢t/7 = 1. Thus, the “cupping” exhibited
by the internally actuated plate is a major contributor causing the increased enstrophy
production and, therefore, viscous dissipation.

5.3. Hydrodynamic forces

To further investigate the difference between the two actuation methods, we examine
time evolution of the hydrodynamic force generated by the plates. In figure 1la, we
show the simulation results for the instantaneous lift force F, over one oscillation period.
The input refers to the prescribed motion at the root and the internal moment for the
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Figure 9: Normalized velocity magnitude ||U||/Up of the numerically simulated (a-d)
externally and (e-h) internally actuated plate with Ag =2, x = 5, Re = 1000, and tip
deflection 0, /L = 0.25 at resonance at times (a-d) ¢/7 = 0.25,0.5,0.75, 1, respectively.

externally and internally actuated plates, respectively. We normalize the forces by the
characteristic force based on the plate length. The externally and internally actuated
plates yield comparable maximum lift. The maximum occurs close to 7/2 coinciding
with the phase of the maximum plate displacement at resonance. The mean lift force is
zero due to the symmetry of the periodic oscillations.

The thrust force F, generated by the plates is presented in figure 11b. The peak-to-
peak amplitude of the thrust force is similar for both cases. The difference is, however,
that the externally actuated plate generates a significantly greater period-averaged thrust
compared to the internally actuated plate. The figure shows that there is almost a two fold
difference in the value of the net thrust between the externally and internally plates. We
relate this difference to the bending patterns shown in figure 6, where the negative angle at
the tip or “cupping” of the internally actuated plate yields a plate shape that is ineffective
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Figure 10: Time history of the normalized bulk enstrophy &k for numerically simulated
internally and externally actuated plates with Ax = 2, x = 5, Re = 1000, and tip
deflection d§;/L = 0.25 at resonance.

for propelling fluid backwards. Thus, the externally actuated plate yields substantially
greater thrust than the internally actuated plate with the same tip displacement.

In figure 12a, we plot the dependence of the mean thrust force on the tip deflection
0¢ for the externally and internally actuated plates with two different aspect ratios.
Overall, the normalized thrust increases with the tip deflection. For relatively small é;/L
(up to about 0.05) that roughly corresponds to the linear regime of the plate oscillations,
the increase is almost linear with J; (see inset in figure 12a). For larger values of o,
the thrust scales as &7 indicating the influence of the non-linear effects. For the two
aspect ratios tested, the externally actuated plates generate greater thrust compared to
the internally actuated plates. This suggests that externally actuated plates outperform
internally actuated plates independently of the aspect ratio given that they have similar
trailing edge displacements.

Furthermore, for both the external and internal actuation methods, we find that wider
plates with Ax = 2 produce greater thrust than more narrow plates with Ar = 4.
This difference can be attributed to the effect of SEVs (Raspa et al. 2014; Yeh &
Alexeev 20160). It was shown using scaling arguments that SEVs increases with the
tip displacement, but not the plate width. Therefore, for the same tip displacement a
wider plate experiences a lower adverse effect of SEVs and generates more thrust per
plate unit width.

The power consumption by the internally and externally actuated plates is shown in
figure 12b as a function of the tip deflection §;. The power input increases monotonically
with the tip deflection for both actuation methods. For small deflection amplitudes
8:/L < 0.05, the power P increases proportionally to 62, whereas for larger §;, the
power increases as 6; (see inset in figure 12b). We find that the wider plates require
greater power input per unit width compared to the narrow plates independently of the
actuation method. This is consistent with the higher thrust produced by the wider plates
(figure 12a) and can be related to larger amount of fluid displaced by such plates per
unit width. Furthermore, we find that externally actuated plates require greater input
power to oscillate with the same tip deflection as internally actuated plates. This can
be in part attributed to the additional power required by externally actuated plate to
displace fluid near the oscillating plate root compared to the internally actuated plate
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Figure 11: Time histories of (a) the lift force and (b) the thrust force for numerically
simulated internally and externally actuated plates with A =2, x =5, Re = 1000 and
tip displacement d;/L = 0.25 at resonance.

with clamped root. Indeed, even at small levels of actuation the LEVs and SEVs have
comparable sizes (figure 8).

To further characterize the hydrodynamic performance of oscillating plates, we com-
%//11’:)0 in figure 12c¢ as a function d;. We find that the
efficiency is maximized for smaller é;, but rapidly decreases with increasing d; within the
linear regime. In the non-linear regime, the efficiency varies slightly with §;. Indeed, in
the linear regime F, ~ &; and P ~ 67 resulting in 7 ~ 1/d;. For greater &, characterized
by non-linear oscillations, both F, and P scale with §7, which in turn results in 7 nearly
independent of §;. Comparing the externally and internally actuated plates, we find
that the externally actuated plates exhibit higher efficiency than the internally actuated
plates, except for the lowest tip deflection conditions. This is because at small §; the
efficiency of the externally actuated plate is reduced due to the plunging motion at the
root that dissipates energy but does not contribute to the thrust. For larger values of d;,
externally actuated plates outperform internally actuated plates with the same aspect
ratio. The reduced efficiency of internally actuated plates is associated with the trailing
edge curvature disrupting the flow and generating an increased level of vorticity, as shown
in figure 10. We also find that wider plates are more efficient than narrow plates for the
entire range of §;. This is due to the lower contribution of SEVs into the overall energy
budget of the wider plates.

In figure 13, we use simulations to probe the effect of the flow regime by varying the

pute the thrust efficiency n =
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Reynolds number for the two actuation methods. Here, we consider plates with two values
of tip deflections and Agr = 2. In figure 13a, we show that the normalized thrust does
not change significantly with Re. As demonstrated by Lighthill (1970), at high enough
Re the thrust is mainly defined by the tip kinematics, supported by nearly constant
thrust for higher Re. Conversely at lower Re, the tip kinematics do not fully define the
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(c) efficiency 7 on the Reynolds number Re. The simulation results are for §,/L = 0.15,
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thrust production. This trend persists for both types of actuation, although the externally
actuated plates produce greater thrust.

In figure 13b, we show the evolution of the normalized power with Re. As the Reynolds
number increases the normalized power decreases and remains constant at higher Re. This
behavior can be attributed to the increase of viscous dissipation associated with a lower
Re. To generate the same tip deflection, the plate requires more power when the viscous
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effects are more significant. For both tested tip deflections, the internally actuated plates
consume less power compared to the externally actuated plates.

The change of the hydrodynamic efficiency of the plates with Re is shown in figure
13c. Over the entire range of Re we tested, the externally actuated plates outperform the
internally actuated plates. The difference in efficiency is more significant for the lower tip
deflection amplitude. This indicates that as the viscous effects become more important,
the hydrodynamic efficiency is more sensitive to the difference in bending patterns of the
internally and externally actuated plates. Conversely, at higher Reynolds number, the
hydrodynamic efficiency converges to a constant value. This behavior is consistent with
the potential flow solution predicting that the efficiency is set by the tip kinematics.

In figures 14a and 14b, we show the inertia coefficient c¢,, for plates with, respectively,
Ar = 2 and Ax = 4 as a function of the tip deflection §;. We find close agreement
between the experiments and simulations in spite that they use different values of
the mass ratio x. As shown in the inset in figure 14a, the inertia coefficient is nearly
independent of x for y > 2.5. This explains good agreement between simulations and
experiments in figures 14a and 14b, where the simulations are performed with x = 5,
whereas the experimental plates are respectively characterized by x = 20 and x = 10.

Our experiments are limited to relatively small tip deflections about d; = 0.05.
In the simulations, we explore significantly wider range of §; shown in the insets in
figures 14a and 14b. We find that the inertia coefficient plateaus with the increasing
tip deflection, consistent for both types of actuation. Although it can be expected that
the inertia coefficient is a sole function of the aspect ratio and the tip amplitude, our
results show that the actuation method strongly affects c¢,,. Not only ¢, increases
with the tip amplitude, but also the difference between c,, for two actuation methods
increases with d;. For larger J;, the inertia coefficient for the externally actuated plate
systematically exceeds c,, of the internally actuated plate. This result is in agreement
with the hydrodynamic loading acting on the plate shown in figure 12. The externally
actuated plate produces greater hydrodynamic forces and, therefore, is characterized by
a higher inertia coefficient than the internally actuated plate.

In figure 14c, we show simulation results for the inertia coefficient as a function of Re.
The simulations are performed for externally and internally actuated plates with two
values of the tip deflection. We find that ¢,, gradually decreases with Re. This result
agrees with the theory (Van Eysden & Sader 2007, 2006; Tuck 1969) suggesting that
as the viscous effects lessen and inertia dominates the inertia coefficient asymptotically
converges to 1. Thus, at sufficiently high Re the added mass effect saturates and is nearly
independent of the actuation method.

6. Conclusion

We systematically investigate and compare the hydrodynamics of elastic plates oscillat-
ing in an incompressible Newtonian fluid subjected to two distinct actuation methods. We
probe the resonance oscillations in linear and non-linear regimes of an externally actuated
plate and a plate with an internal actuation. We pinpoint the critical differences in
their bending patterns leading to different hydrodynamics performances. Specifically, the
internally actuated plates display “cupping” of the trailing edge due to a non-zero plate
curvature induced by the internal bending moment. Furthermore, internally actuated
plates exhibit a phase change of the plate angle along the plate length. Conversely,
externally actuated plates have a zero curvature at the tip and an in-phase plate
angle along the entire plate length. We show that this difference in bending pattern
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Figure 14: Dependence of inertia mass coefficient on the tip deflection in the linear
oscillation regime of internally and externally actuated plates for Re = 1000, x = 5
and aspect ratios (a) Agx = 2 and (b) Ag = 4. (¢) Dependence of the inertia mass
coefficient on Re for Agx = 2, x = 5, §;/L = 0.05 and ¢;/L = 0.25. The left inset in
(a) shows the dependence of the inertia coefficient on the mass ratio for §;/L = 0.01.
The right inset in (a) and inset in (b) show the inertia coefficient for non-linear range of
plate oscillations. In (a) and (b), the lines represent simulation results while the symbols
represent experimental data, whereas (c) is simulation results only.
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between internally and externally actuated plates leads to greater vorticity production
by internally actuated plates and therefore enhances the viscous dissipation.

We find that for the same level of trailing edge displacement externally actuated plates
outperform internally actuated plates in terms of the generated thrust and consumed
power. Furthermore, plates with external actuation are more efficient than plates with
internal actuation with exception of the smaller tip amplitudes, in which the efficiency of
the externally actuated plates is limited due to the root displacement. For both actuation
methods, we find that wider plates outperform more narrow plates due to the adverse
effects of the side edge vortexes. Additionally, we also probe the effect of the actuation
method on the plate inertia coefficient and find that the inertia coefficient is insensitive to
the mass ratio for ratios greater than 2.5. In the linear oscillation regime, both actuation
methods are characterized by similar values of the inertia coefficient. However, for larger
tip deflections, the inertia coefficient of the externally actuated plate significantly exceeds
that of internally actuated plates, which is related to the greater hydrodynamic forces
experienced by the externally actuated plates. Thus we show that the inertia coefficient is
not only a function of the aspect ratio and tip deflection, but also the actuation pattern.

We show that in the range 500 < Re < 4000, the Reynolds number has minor influence
on the thrust generated by the plate. We find that the plate kinematics defining the thrust
production does not change significantly in this Re range. Conversely, Re impacts the
power and, therefore, hydrodynamic efficiency of the plate. At lower Re, viscous effects
increase the input power that, in turn, negatively affects the efficiency. Increasing Re also
leads to a decrease of the inertia coefficient that converges to unity for higher Re. This
behavior is consistent with analytical solution for an inviscid fluid. We find that these
trends prevail for both actuation method. Nevertheless, for lower Re the dependence of
the plate hydrodynamics on the actuation method is more critical.

The results of our study provide useful guidelines for designing efficient biomimetic
underwater robotic vehicles that utilize internally actuated propulsors such as piezo-
electric actuators. Piezoelectric actuators are highly attractive due to a high degree of
control over the bending pattern including a combined twisting-bending motion, large
amplitude actuation, silent operation, and the ease of interaction into robotic swimmers.
Our study points to the need for improving the efficiency of internally actuated propulsors
to match or exceed the efficiency achievable with externally actuated elastic fins. Different
strategies can be explored to enhance the efficiency of piezoelectric propulsors including
the use of passive attachments (Yeh & Alexeev 2016a), complex actuation cycles, and a
combination of an external and internal actuation. These studies are currently underway.
Furthermore, the results of this work are useful for developing piezoelectric energy
harvesting devices. In the latter scenario, fluid motion is harnessed to include oscillations
of elastic structures with embedded piezoelectric transducers.
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Appendix A. Inertia Coefficient

We can rewrite equation 2.2 with an additional mass per area M as

X [ D
Wif= =] ——— .
LET T2 os + M

By comparing the two definitions, we can obtain

2
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For plates with moderate and high aspect ratios, the added mass can be expressed as

_z

M= ]

inertia coefficient as follows

Appendix B. Discretization
In discretized form (with v = 0), equation 3.7 yields
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PWCy = T X0sCm, With ¢y, being the inertia coefficient. We therefore evaluate the

(A2)

To constrain plate stretching during the deformation we impose the inextensibility
condition. This condition is enforced numerically by introducing a differential arc-length

ds? = dz? + dw? that is numerically approximated as

Tiy1 = T4 + \/AS2 — (wi+1 — wi)Q .

(B2)
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