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101 Abstract

102 Winter conditions are rapidly changing in temperate ecosystems, particularly for those that
103 experience periods of snow and ice cover. Relatively little is known of winter ecology in

104  these systems, due to a historical research focus on summer "growing seasons." We

105 executed the first global quantitative synthesis on under-ice lake ecology, including 36

106  abiotic and biotic variables from 42 research groups and 101 lakes, examining seasonal

107  differences and connections as well as how seasonal differences vary with geophysical

108 factors. Plankton were more abundant under ice than expected; mean winter values were
109  42.8% of summer values for chlorophyll a, 15.8% of summer phytoplankton biovolume,

110  and 34.4% of summer zooplankton density. Dissolved nitrogen concentrations were

111 typically higher during winter, and these differences were exaggerated in smaller lakes.

112 Lake size also influenced winter-summer patterns for dissolved organic carbon (DOC), with
113 higher winter DOC in smaller lakes. At coarse levels of taxonomic aggregation,

114  phytoplankton and zooplankton community composition showed few systematic

115  differences between seasons, although literature suggests that seasonal differences are

116  frequently lake-specific, species-specific, or occur at the level of functional group. Within
117 the subset of lakes that had longer time-series, winter influenced the subsequent summer
118  for some nutrient variables and zooplankton biomass.

119
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Introduction

Reduced ice cover on lakes and rivers worldwide (Magnuson et al. 2000; Benson et
al. 2012) highlights an urgent need for research focused on under-ice ecosystem dynamics
and their contributions to whole-ecosystem processes. Recently a global synthesis of
summer lake temperature trends in lakes (O’Reilly et al. 2015) revealed that winter ice
cover is a major force in determining the characteristics of summer warming trends,
demonstrating the cascading effects between seasons. Cross-seasonal cascades can involve
both abiotic and biotic variables, such as when winter ice characteristics influence spring
and summer algal growth (e.g., Gerten & Adrian 2000; Straile 2002; Adrian et al. 2006;
Blenckner et al. 2007). Consequently, in water bodies that freeze, the timing and physical
characteristics of ice cover are likely to drive some of the most important biological
changes for lakes overall (Salonen et al. 2009; Moore et al. 2009; Benson et al. 2012).

Marine research is ahead of freshwater research in studies of under-ice ecology,
providing compelling evidence that winter conditions and changes in ice phenology play an
important role in sea-ice system dynamics (Arrigo & Thomas 2004; Arrigo et al. 2008;
Meier et al. 2014). The presence of ice in marine systems drives primary productivity that
is critical for food webs (Lizotte 2001; Grebmeier 2012); for example, ice-associated algae
in the Antarctic contribute 25-30% of total annual productivity for the region (Arrigo &
Thomas 2004). But for lakes, there is very little information about the physics,
geochemistry, and biology under ice, and this knowledge gap severely limits our ability to
predict how changes in winter conditions will affect the ecology and productivity of inland

waters. A recent study reported that only 2% of peer-reviewed freshwater literature has
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included under-ice lake processes (Hampton et al. 2015). The paucity of under-ice research
in freshwater systems is especially surprising when one considers that half of the world’s
lakes periodically freeze, i.e. slightly more than 50 million lakes (Verpoorter et al. 2014).
Also, the majority of lakes in the world are located between 60° and 66° N where annual ice
cover duration currently averages more than 150 days (Weyhenmeyer et al. 2011).

The initial and highly influential model of the plankton ecology group (the PEG
model; Sommer et al. 1986) hypothesized that winter in ice-covered lakes is a time of
limited, if any, activity by primary or secondary producers. The widespread use of the term
“growing season” to describe summer months in temperate lakes reflects the prevailing
viewpoint of winter as an inactive period. In general, freshwater scientists have assumed
that overall biological activity under lake ice is inconsequential or that under-ice primary
producers resort to heterotrophy or dormancy, as has been observed in some studies (e.g.,
McKnight et al. 2000; Lepparanta 2015), particularly for high-latitude systems with heavy
snow coverage. While the PEG model has since been revised (Sommer et al. 2012) with a
call for additional winter work, areas of uncertainty range from the identity and activity of
plankton to ecosystem-level processes such as whole-lake metabolism and greenhouse gas
emissions. The lake studies that have included under-ice work strongly suggest that winter
food webs and physical processes are both active and complex, but with few patterns that
are readily generalizable (reviewed in Salonen et al. 2009; Bertilsson et al. 2013;
Bruesewitz et al. 2015; Hampton et al. 2015).

Prior work indicates that winter under-ice conditions can be very similar to, or very
different from, the ice-free summer conditions. Depending upon snow characteristics, ice

can allow for up to 95% of photosynthetically active radiation (PAR) transmission
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(Bolsenga & Verderploeg 1992), fueling winter algal blooms that rival those of summer
(e.g., Jewson et al. 2009). In Lake Erie, phytoplankton growth and loss rates during winter
can be similar to those of summer (Twiss et al. 2014). For certain lakes, the composition of
phytoplankton communities is different under ice, dominated by smaller species (e.g.,
Wetzel 2001), or conversely dominated by large ice-associated filamentous diatoms (e.g.,
Katz et al. 2015; Beall et al. 2016), whereas other lakes do not appear to have distinct
seasonal changes in phytoplankton community composition (Dokulil et al. 2014). Although
zooplankton biomass generally appears to be lower under ice, changes in community
composition can be highly variable across lakes (Dokulil et al. 2014). Even more scarce is
information about nutrient and dissolved organic carbon concentrations under the ice that
may help to drive many of these plankton dynamics (but see Ozkundakci et al. 2016).

The pathways through which winter conditions may affect lake ecology throughout
the year are similarly diverse. Winter ice conditions have been observed to alter
phytoplankton biomass and composition in the subsequent ice-free season (Weyhenmeyer
et al. 2008). For zooplankton, early emergence from diapause, synchronized with the
timing of warming at the end of winter can be associated with higher summer density for
zooplankton grazers (Gerten & Adrian 2000; Adrian et al. 2006). Such carry-over between
seasons is not restricted to winter’s influence on summer, of course, and there is evidence
that under-ice zooplankton dynamics can depend in part on late summer zooplankton
biomass (Dokulil et al. 2014). The diversity of responses found by under-ice studies
suggests that a synthesis of existing knowledge is greatly needed and would help identify
key next steps in winter limnology as well as promote productive collaborations (Hampton

et al. 2015).



192 Research that builds a knowledge base about the processes occurring over nearly
193 half the annual cycle for approximately half of the world’s lakes is a worthy challenge, with
194  potentially global repercussions. Here we explore differences between winter and summer
195  conditions both across and within lakes, focusing on dynamics of phytoplankton,

196  zooplankton, nutrients, and dissolved organic carbon. We address two overarching

197  questions on under-ice ecology: 1) What is the magnitude and direction of ecological

198  change from winter to summer; and 2) For which variables and to what extent are winter
199 and summer seasons connected, i.e., what is the influence of winter conditions on the

200  following summer season, and the influence of summer conditions on the following winter?
201  We hypothesized that winter biomass and density of phytoplankton and zooplankton are
202 significantly lower than that of summer, due to a low-light environment unfavorable for
203  emergence or growth (e.g., Vincent & Vincent 1982; Caceres & Schwalbach 2001; Jewson et
204 al. 2009), low temperature (e.g., Ozkundakci et al. 2016), or nutrient limitation (e.g.,

205  O’Brien et al. 1992; Ozkundakci et al. 2016), and that these differences would be modified
206 by geophysical characteristics of lakes. Further, we hypothesize that lake conditions can
207  carry over across seasons, as suggested in the revised PEG model (Sommer et al. 2012;

208  Domis et al. 2013), such that an understanding of winter conditions will improve

209  understanding of summer conditions, and vice versa. The presence of seasonal carry-over
210 would indicate that winter is not simply a “reset” that leads back to similar spring ice-out
211 conditions year after year, and would suggest revisions to current field and laboratory

212 approaches currently focused on “growing season” dynamics.

213
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Methods
Data Acquisition

Data were acquired from both an initial literature review to provide baseline
expectations for ecological patterns and, much more comprehensively, from a collation of

primary data.

Literature review. As an initial step toward synthesizing knowledge, we compiled
under-ice data for chlorophyll a (chl a) concentration from a literature survey. We found 14
papers for which data would be readily compared to those solicited from primary data
contributors (based on criteria in Supplemental Information). From these papers, we
compiled data from 17 lakes (Fig. 1), extracting data from text, tables, or from figures. For
the literature review effort, we were unable to compare ice-on (winter) and ice-off
(summer) data, as only 7 of the lakes in these papers also included biological data during
the summer season.

Primary data collation. The scientific community was solicited for data on physical,

chemical, and biological variables of lakes and reservoirs (hereafter together called “lakes”)
during ice cover. We used an open call for participation through electronic mailing lists and
professional networks, and then interacted extensively with data contributors. In total, we
collated winter under-ice and summer observations between 1940 and 2015 for 101 lakes
at 135 unique sampling locations across wide gradients of latitudes, production, and
trophic status (Fig. 1). For the Laurentian Great Lakes, most sampling stations were located

nearshore or in bays.
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Contributors of primary data used a structured template to report values from
winter periods when the lake had complete ice cover (hereafter “winter”), and summer
periods when the lake was completely open and, in dimictic systems, stratified (hereafter
“summer”). For 10 lakes that were polymictic or lack reliable summer stratification,
summer data are from a representative open water period chosen by the primary data
contributors, usually midsummer. We asked researchers to provide data aggregated from
the photic zone, for each lake and season. Across all lakes, the median sample depth during
winter was 2.0 m, and the mean ratio of sample depths (winter:summer) was 1.01. We did
not include winter data from those years that did not have ice cover (e.g., Miiggelsee
sometimes does not freeze). Each seasonal value used in our analysis was computed by the
individual data providers (Box S1; Fig. S1). The number of within-season sampling events
was reported by researchers for 71% of our compiled seasonal averages; of these, 64% of
the winter averages and 79% of the summer averages were based on 3 or more sampling
events. When a lake had multiple sampling stations, the stations were generally treated
independently. Exceptions were cases where researchers specified multiple stations that
were functionally similar and could be pooled in aggregate. After pooling the functionally
similar stations, the majority of lakes (84 of 101 lakes) did not retain multiple distinct
stations for analyses (see SI).

Data availability differed among lakes and variables. For several major variables,
paired winter and summer observations were present in at least 30 stations, often over 10
years. All stations had at least one variable with both winter and summer data, and the
variable-specific sample sizes and periods of record are in Table S1. The median period of

record for most variables was 2-3 years. Variables included water temperature (107
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unique stations with paired winter-summer data), chlorophyll a (chl a as pg L-1; 118
stations), total phosphorous (TP as pug L-1; 106 stations), total dissolved phosphorus (TDP
as pg L-1; 72 stations), total nitrogen (TN as pg L-1; 75 stations), total dissolved nitrogen
(TDN as pg L-1; 73 stations), TN:TP (atomic ratio; 74 stations), TDN:TDP (atomic ratio; 66
stations), and dissolved organic carbon (DOC as mg L-1; 81 stations). Our reported values
for TDP and TDN are conservative, because not all researchers performed the digestion
step. Nonetheless, because common nutrient methods were usually used at a given lake,
our approach still captures the relative difference between seasons (winter-summer),
except in lakes where the dissolved organic fraction varies substantially between seasons.
In addition, 36 stations had data for total zooplankton density (individuals L-1). Group-
specific zooplankton counts (proportion of total abundance) for calanoid, cyclopoid,
Daphnia, rotifer, other cladoceran, and unspecified other zooplankton were also available.
Methodology for zooplankton data collection differs across programs to a degree that
complicates comparisons across lakes for rotifers and unspecified other zooplankton, such
that those data were not analyzed here and total zooplankton densities were accordingly
adjusted as well. Subsequent references to zooplankton density include Daphnia, other
cladocerans, cyclopoid and calanoid copepods for all 36 stations. For phytoplankton
biovolume mm-3 L1, there were data for 17 stations. Group-specific phytoplankton counts
(proportion of total abundance) for chlorophyte, cryptophyte, cyanophyte, bacillariophyte,
dinoflagellate, and other phytoplankter were available at 17 stations. Specific ultraviolet
absorbance (SUVA, L mg C-1 m-1), and color (platinum units) were also available at some
stations. Although we solicited benthic data, only a few researchers provided data for any

type of benthic variable, suggesting a widespread lack of benthic winter sampling. The lake-
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specific averages for winter and summer conditions, by variable, are shown in Table S2. For
chl a, TP, TDP, TN, TDN, DOC, and zooplankton density, more than 25% of stations had a
period of record 210 years. The complete dataset is available in the Knowledge Network
for Biocomplexity (https://knb.ecoinformatics.org/).

Data analysis

We approached data analysis in two ways. The first approach was to quantify the
average winter-summer differences across all lakes in the data set, identifying major
physical features of lakes that affect the magnitude of observed winter-summer differences.
The second approach was to examine univariate seasonal dynamics within lakes, including
winter-summer differences and winter-summer correlations, using the subset of lakes
where longer-term (210 years) time series were available.

Winter-summer differences across lakes. We calculated the mean winter value and
the mean summer value for every station and variable, and examined mean winter-summer
differences across all lakes in the data set. Magnitude, direction and significance of
differences between winter and summer were determined using linear mixed effect (LME)
modeling with year as a random intercept (Bates et al. 2015). For the multivariate plankton
compositional data, we used permutational analysis of variance (PERMANOVA; Anderson
2001) from the vegan package in R (“adonis” function, Oksanen et al. 2016; R Core Team
2016) on sites that had complete cases for both winter and summer communities. To
discern major physical variables correlated with the magnitude and sign of winter-summer
differences, we used a regression tree approach (rpart package in R, Therneau et al. 2015,
with applications from Breiman et al. 1984). We used the variable-specific average winter-

summer difference as the response variable; the candidate explanatory variables were lake
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area, lake maximum depth, latitude (absolute), and elevation. Trees were cross-validated
and pruned using the complexity parameter value which minimized the cross-validated
error. Mean winter-summer difference and standard error of the difference were
calculated for each branch of the regression trees. We also used a regression tree approach
to analyze average winter-summer difference in plankton community composition as a
matrix response (mvpart package in R, Therneau et al. 2014), for both the crustacean
zooplankton community and the phytoplankton community data. Candidate explanatory
variables included the same four variables as previous trees, as well as winter-summer
difference in water temperature and, for zooplankton, the summer chl a.

Due to differences in the available period of record, the overall winter average can
represent 30+ years for some lakes and variables, while for others the overall average
represents only one year of data. We expected that variation in sample size might create
noise that could obscure differences (Type 2 error), but not suggest differences that do not
exist (Type 1 error).

Winter-summer differences within lakes. For time series that were available, we
examined within-lake differences between winter and summer. For this we used only time
series that had 210 winter values, meaning at least 10 years of data and 20 values overall.
To allow a robust examination of winter-summer correlations (below), we used contiguous
portions of each time series, allowing no more than 1 data gap. Before examining
differences, every time series was detrended using a 7-point moving average filter (3.5
years) to account for longer-term trends, and we confirmed that no significant linear trends
remained after filtering. With each detrended time series, summer-winter differences were

examined using a simple seasonal model
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yi=  bie*D +bo+e (D
where bice is the coefficient describing the winter-summer difference, D is a dummy
variable (1 in winter, 0 in summer) that employs the bice coefficient, bo is the intercept
(representing the mean summer value), and e is the error term. We then compared the
seasonal model (2 parameters) to the simple intercept model (1 parameter, by,
representing the overall mean) using the Akaike Information Criterion corrected for small
sample sizes (AICc) (Burnham & Anderson 2002). If the seasonal model differed from the
simple intercept model by AAIC.22, we interpreted this result to mean that the time series
showed a seasonal difference. Detailed diagnostic plots including raw and detrended time
series are provided in Figure S4 for one example lake (Big Muskellunge Lake, chl a). For
194 of the 238 available time series (82%), residuals from eq. 1 were not autocorrelated at
lag 1 according to the Box-Ljung test, and this is demonstrated by the partial
autocorrelation plot of the detrended+deseasoned data (Fig. S4). For the other 44 time
series, we added a first-order autocorrelated error structure to eq. 1. The percent of time
series having winter values greater than summer values, or vice versa, was tabulated by
variable.

Winter-summer correlations within lakes. Using the same univariate, contiguous,

moving-average detrended time series as above (those with >10 winter values), we
examined temporal correlations between winter and summer. These included: i)
correlations between winter and the previous summer season (Ssummert-1), Or summer-
into-winter (SW) correlations; and ii) correlations between winter and the subsequent
summer (summert+1), or winter-into-summer (WS) correlations. We determined the sign of

seasonal correlations, if present, using a simple model of the detrended data
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Ywinter, t= bsw*Ysummert-1 + bo + e (2)

where t is the index of the time series and bsw is the slope of the relationship between
winter and the previous summer. If this SW correlation model did not show AICc
improvement >2 AICc units compared to the intercept model (1 parameter, b, representing
the overall mean), the time series was interpreted as not seasonally correlated. We then
separately evaluated the corresponding WS correlation model, Ysummer, t+1= bws*Ywintere + bo
+ e, also using AICc. A minority of these SW and WS correlation models produced
autocorrelated residuals, and to these we added a first-order autocorrelated error
structure, although this modification did not change the model selection nor the sign of bsw
or bws for any time series. Here a positive WS correlation indicates that high summer values
follow high winter values, or low summer values follow low winter values. Alternatively, a
negative WS correlation indicates anti-persistence, such that low summer values follow
high winter values, or high summer values follow low winter values. As examples, we
illustrate the presence/absence of winter-summer correlations for every chl a time series,
including SW correlations (Fig. S5) and WS correlations (Fig. S6). The percent of time series
having positive/negative SW correlations or positive/negative WS correlations was
tabulated by variable (Table S5).
Results
Seasonal differences across lakes

Indicators of plankton biomass were lower in the winter than during the summer.
Across lakes and latitude, average winter chlorophyll a (+ SE) (5.87 + 0.88 pg L1, Fig. 2) in
the primary data ranged much more widely than in those from our literature survey

(Supplemental Fig. S2), although still significantly lower than that of summer (13.6 *+ 2.84
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ug L1, p<0.0001, Table 1). Using the regression tree approach, the shallowest lakes (max
depth < 2.93 m, n = 13 lakes) showed greatest disparity in chlorophyll, with summers
higher than winters by 52.3 + 18.2 pg L-1(R? for chl a tree = 0.330). Under-ice
phytoplankton biovolume averaged about 1/6th that of the summer average (n=17,
p<0.001 by LME, Table 1). However, at our coarse level of taxonomic aggregation,
phytoplankton community composition did not differ significantly between winter and
summer when examined across all lakes (PERMANOVA, p=0.77; Fig. 3). Across lakes,
average zooplankton density (* SE) was significantly lower under ice (27.8 + 11.2
individuals L-1) than during summer (110 * 30.8 individuals L-1; p<0.001), and winter
crustacean zooplankton community composition differed significantly from that of summer
(PERMANOVA; p=0.05), with cladocerans generally more abundant in summer (Fig. 3).
Regression trees did not provide further insights into plankton community shifts,
differentiating only two lakes out of 17, and are not discussed further here. The complete
list of summary statistics, for every variable, is shown in Table S3. The PERMANOVA
statistical outputs are in Table S4.

Dissolved N concentrations tended to be higher during winter, and seasonal
differences were more prominent for dissolved N than for dissolved P. Across lakes,
average (+ SE) TDN was approximately 2-fold higher under ice (707 £129 pg L-1, Fig. 2)
than in summer (375 * 62.2 pg L-1; p<0.001 by Ime). The pattern of higher winter TDN
appeared particularly pronounced as maximum depth decreased. Regression trees showed
that the 7 shallowest lakes (< 2.10 m) had 2070 pg L-1 higher TDN on average in winter
than summer, 7 lakes of intermediate depths (5.20 < max depth > 2.10 m) had TDN winter

values that were 758 pg L-1 higher than summer on average, while the 59 deeper lakes
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(>5.2m) showed winter TDN values 123 pg L-1 higher than summer on average (tree R2 =
0.722, Fig. S7). TN was also higher during winter (p<0.001, LME-fitted difference of
+161ug L1), likely as a reflection of higher dissolved N, which typically accounted for the
majority of the N pool (winter TDN:TN= 0.807 compared to summer TDN:TN= 0.592).
Winter and summer did not differ significantly for TP or TDP according to LME models
(p>0.2). DOC concentrations did not differ seasonally (p=0.863 by LME). Interestingly,
these DOC patterns clearly varied with lake area and elevation (tree R2 = 0.538, Fig. S7).
Regression trees demonstrated that larger (>= 0.373 km2) lakes had 0.145 mg L-1 lower
DOC in winter compared to summer, while smaller (< 0.373 km2), low elevation (< 366 m)
lakes (n=19) had 6.69 mg L-1 higher DOC in winter, and similarly small lakes at higher
elevations also had 0.810 mg L1 higher DOC in winter. Regression tree analyses did not
produce significant models for plankton density or phosphorus variables.
Winter-summer differences within lakes

In general, within-lake differences between summer and winter were consistent
with differences observed across lakes. For example, chl a was lower in winter at 17 of the
34 sites (50%) that met our longer-term data criteria (Table 2). The summary statistics for
each individual time series are in Table S5. Phytoplankton density was also lower in winter
compared to summer in 4 of 4 sites. Similarly, zooplankton densities were significantly
lower during winter at 10 of 11 sites (91%); the one exception was a bog lake, Trout Bog
(USA), which had a relatively low summer zooplankton density and no detectable winter-
summer difference. For nutrients, patterns again differed between N and P. Over 70% of
the sites had higher winter TDN (11 of 14) and TN (21 of 30), whereas only 14% of sites

had higher winter TDP (2 of 14) and 21% had higher TP (7 of 33). Allequash Lake (Fig. 4)
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421  provides an example where TP concentration was lower during winter. DOC was lower

422 during winter at 6 of 26 sites (23%), and higher in winter at 3 sites including Trout Bog,
423 USA, with no differences between winter and summer at the other 17 sites (65%). Three
424  variables lacked differences between summer and winter values at >50% of sites (TP, TDP,
425 DOCQ).

426  Winter-summer correlations within lakes

427 From a total of 238 time series for different lakes and variables (Table S5), after

428  accounting for trends, our AIC-based approach detected 94 time series (39%) with some
429  form of correlation between winter and the previous summer, or between winter and the
430  following summer. Several individual variables had seasonal correlations in 233% of the
431  available time series, including chl a, phytoplankton density, TDN, TN, and TDP (Table 2).
432 Negative correlations outnumbered the positive correlations, suggesting seasonal anti-

433 persistence. Positive seasonal correlations were absent for chl a, zooplankton density, DOC,
434 TP, TDN, and TDP. For chl g, negative winter-into-summer (WS) correlations (26% of time
435  series) and summer-into-winter (SW) correlations (32%) were both relatively common.
436 For TDN, negative SW correlations outnumbered negative WS correlations (43% vs. 0%),
437  suggesting summer carry over. Overall, the frequency of these winter-summer negative
438  correlations ranged widely among variables.

439  Discussion

440 This global synthesis of under-ice ecology underscores the importance of winter
441  conditions for lake ecology throughout the year. Using multiple approaches, our cross-lake
442 synthesis revealed several clear differences between winter and summer conditions,

443 offering generalizations about winter ecology that have been difficult to infer from prior
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studies involving one or a few lakes. We also provide new evidence that interseasonal
connections are common for several ecological and biogeochemical variables, linking
winter to both the previous and subsequent summers. Among our clearest results, primary
producers (algae) and consumers (zooplankton) are typically less abundant under ice than
in summer, but they maintain substantial populations in winter. Arguably, this may be
interpreted as evidence of high winter productivity, and we explore the possibility below.
Also clear was the result that winter dissolved nitrogen was consistently higher than
summer. While crustacean zooplankton composition showed some general seasonal
differences, we found no generalizable differences in phytoplankton community
composition between winter and summer at the coarse level of taxonomic aggregation
used here. As long-term climate change alters thermal regimes across globally distributed
lakes in both summer (O’Reilly et al. 2015) and winter (Magnuson et al. 2000), it is
increasingly important to understand how under-ice physical and ecological conditions
influence ecology throughout the year. Overall, this work represents an important step
towards understanding winter ecology in lakes broadly, as well as the connections to year-
round dynamics and whole-lake functionality.

Our results indicate seasonal differences in chl a, plankton biomass and biovolume,
and dissolved nitrogen between winter and summer, both across and within lakes. Despite
lower under-ice values, particularly for the shallowest lakes, on average chl a was relatively
high (42.8% of summer chl a) given the shorter photoperiod and variable physical
conditions of winter. Indeed, winter levels exceeded those of summer in multiple cases
such as Lake Simcoe (Canada), Lake Scharmiietzelsee (Germany), and Fish Lake (USA)

which all had more than 10 years of winter data. Previous under-ice lake studies have
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reported chlorophyll values as high as 154 pg L -1 (Twiss et al. 2012). Conversely some
lakes have undetectable chlorophyll levels under ice (e.g., Hawes 1985). While the available
winter limnology literature provides evidence that lakes can support an abundance of algae
under ice - as demonstrated by genetic (e.g., Bashenkhaeva et al. 2015), pigment (e.g.,
Catalan et al. 2002), and cell count (e.g., Phillips & Fawley 2002; Katz et al. 2015) data - it s
also important to remember that estimates of algal biomass or primary productivity based
on chlorophyll can be skewed seasonally. Intracellular pigment content can change with
temperature and light conditions (Kirk 2011), such that smaller seasonal differences in
chlorophyll could in part be due to light adaptation leading to increased cellular pigment
concentrations.

In general, light can be the limiting factor for photosynthesis under ice, with ice
conditions and overlying snow producing spatially (e.g., Cloern et al. 1992, Arrigo and
Thomas 2004) and temporally (e.g., Tanabe et al. 2008; Bruesewitz et al. 2015)
heterogeneous transmission of light and altered spectral distribution (Roulet & Adams
1986). The timing and characteristics of winter precipitation, wind, temperature variation,
and solar radiation influence variability in under-ice light conditions, including the
formation of clear congelation ice which can have higher light transmittance than lake
water (Lepparanta 2010). When light is sufficient for photosynthesis, the under-ice
environment can be hospitable for algal growth; complex under-ice convection can keep
nutrients and algae mixed in the photic zone (Kelley 1997; but see Vehmaa & Solonen
2009), and in Lake Baikal the ice itself can provide a vast habitat for attached algae to
maintain access to light (Timoshkin 2001; Bondarenko et al. 2012). In relatively dark

conditions with low primary production, we might anticipate lower oxygen conditions,
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greater winter accumulation and subsequent contributions of greenhouse gases to the
atmosphere, smaller algal and grazer populations available to initiate population growth at
ice-out (Sommer et al. 2012), and less ice-associated algae sloughing off to feed the benthos
as summer begins (Bondarenko et al. 2006). Because increased intracellular chlorophyll
content may be an adaptation to low light conditions, exhibited by many but not all (Felip &
Catalan 2000) phytoplankton, we recommend measuring primary productivity directly, if
that is the variable of interest, or measuring both cell density and community composition
in order to characterize plankton biomass and identity.

Phytoplankton biovolume was lower under ice than in the summer on average,
consistent with chl a values, when all lakes were considered together. However, we did not
detect systematic seasonal differences in phytoplankton community composition that
could be generalized among all lakes. The lack of detectable difference does not imply that
algal communities in each lake did not change from season to season; rather, this result
suggests that generalizations about “winter” or “summer” taxa are difficult to make at the
coarse level of taxonomic grouping we used. Moreover, it is rare for monitoring programs
to quantify picoplankton, which constitute substantial portions of algal communities in
summer and winter (Callieri & Stockner 2002; Bondarenko et al. 2012), such that their
contributions to our results are unknown. Previous studies indicate that many if not all
lakes do harbor relatively distinct winter and summer algae, frequently with differences
occurring at species level (Kozhova & Izmest’eva 1998; Dokulil et al. 2014; Ozkundakci et
al. 2016), division level (Carey et al. 2016), or by functional traits (Ozkundakci et al. 2016)
with winter assemblages characterized by taxa that are more tolerant to cold and low-light

conditions. Despite constraints by cold temperature, light limitation or altered mixing
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under the ice, winter species diversity has been found to be rather high (Salonen et al.
2009). Moreover, for Miiggelsee, a lake located in a geographical transition phase of
becoming ice-free more frequently with current and projected climate warming
(Livingstone and Adrian 2009) it has been shown that different phytoplankton
communities were favored across a gradient of mild to strong winter severity, associated
with the key functional traits of motility, nutritional mode (autotrophy, heterotrophy,
mixotrophy) and the ability to form resting stages (Ozkundakci et al. 2016).

As algal communities adjust to ice cover, seasonal shifts in higher trophic levels such
as zooplankton would also be anticipated. In this study, average winter zooplankton
density declined to roughly one third that of summer - lower but still substantial enough to
suggest that many of these relatively short-lived grazers actively feed and reproduce under
ice. In the absence of live primary producers or residual producer biomass, presence of
zooplankton under the ice can be explained by the consumption of other carbon sources
such as chemolithotrophs (e.g., methane-oxidizing bacteria), or detritus. For example,
planktonic heterotrophs and phototrophs, and benthic algae under the ice can provide
alternative diet sources throughout winter for zooplankton in some lakes (Karlsson &
Sawstrom 2009; Rautio et al. 2011; Hampton et al. 2015), while cyclopoids may prey on
other zooplankton (Ventura & Catalan 2008). Further, as in marine systems (Lee et al.
2006), some freshwater grazers may be able to use lipid stores accumulated in prior
seasons; lipid percentage in zooplankton samples collected from a lake in northern Finland
varied from over 60% in early winter to approximately 20% in late winter (Syvaranta &

Rautio 2010).
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The composition of crustacean zooplankton differed across seasons, with summer
characterized by more cladocerans such as Daphnia. These taxa are generally associated
with greater presence in summer months, with temperature and photoperiod offering cues
for hatching, and growth fueled by higher temperature and food availability (Adrian et al.
2006). Even so, as we observed for phytoplankton, it seems likely that many differences
between summer and winter zooplankton community composition may be lake-specific,
species-specific or better captured by functional trait grouping. Many zooplankton are
strict diapausing species that disappear from the water column into sediments during
winter (Nilssen & Elgmork 1977; Ventura & Catalan 2005; Larsson & Wathne 2006), but
several copepod species in high-latitude lakes of Europe and Canada have been shown to
reach peak density in mid-winter (Rigler et al. 1974; Rautio et al. 2000; Scharfenberger et
al. 2013) undergoing diapause during summer. Further, a variety of rotifers are well known
to proliferate under ice (e.g., Pennak 1968; Dokulil & Herzig 2009; Virro et al. 2009; Melnik
et al. 2008). Other studies also report persisting populations of Daphnia under the ice
(Snow 1972; Larsson & Wathne 2006; Slusarczyk 2009) but data are still somewhat scarce.
Our study suggests that when aggregating species to coarse taxonomic groups we may see
some expected differences, but will miss out on the complexity of plankton composition,
dynamics and functionality illustrated in the few detailed single-lake winter studies. It is
not necessarily the overall abundance or biomass of major taxonomic groups which differ
between seasons or change with global warming - but the species per se and the relative
species composition (reviewed in Adrian et al. 2009). While this is well known for summer,
information on species and functional trait composition during winter is indeed scarce.

Given that the ice itself provides a vast potential substrate for attached algae and an
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associated community of metazoans (Bonderenko et al. 2012), and that common sampling
methods do not target this microhabitat, a major advance in winter limnology would be the
broader assessment of primary producers at this ice-water interface where some lakes
have shown extraordinarily high algal biomass and activity (e.g. Timoshkin 2001;
Bondarenko et al. 2012; Twiss et al. 2012). Further, shifts from autotrophy to mixotrophy
and heterotrophy clearly occur in some communities under ice (e.g. Rhode 1955,
Ozkundakci et al. 2016), and examining how this trait varies from winter to summer likely
will yield important insights for ecosystem-level carbon cycles.

TDN and TN were higher under ice based on both our cross-lakes approach (Table
1) and a within-lakes time series approach (Table 2), while winter DOC was variable but
more similar to that of summer. The higher concentrations of dissolved N likely reflect
winter nutrient mineralization (Cornett & Rigler 1979; Niirnberg et al. 1986, Catalan 1992)
providing continued N inputs, while dissolved N uptake may be lower under winter
conditions due to low temperature and light, and possibly less denitrification. More
specifically, these results indicate that within the first few meters of the water column,
dissolved N accumulates disproportionately under ice relative to P, especially in shallower
lakes according to the regression tree analysis. A possible explanation is that benthic N
mineralization and nitrification dominate winter N cycles in shallow lakes, whereas the
higher water volume:surface area ratios in deeper lakes may limit N mineralization per
unit volume and perhaps increase the role of pelagic uptake by phytoplankton. While the
cross-lakes approach (Table 1) suggested that winter DOC was similar to summer on
average, the regression tree analysis indicated DOC was unique among our variables, with

opposing patterns in two distinct lake groups. More specifically, larger lakes (>0.373 km2)
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had lower DOC in winter, while smaller lakes (<0.373 km2) had higher DOC in winter,
especially those occurring at lower elevation (<366 m). These smaller, lower elevation
lakes also tended to have higher DOC overall, possibly resulting in especially dark
conditions under ice. The dynamics of DOC can be influenced by multiple interacting
factors such as lower terrestrial carbon input during cold winters (Lepisto et al. 2014),
sustained benthic metabolism, uptake of DOC by bacteria (Tulonen et al. 1994), and
photodegradation (Wetzel 2001), but few studies have partitioned DOC sources and
processing during winter. DOC dynamics under ice clearly represent a key area for future
research.

In revising the PEG model, Sommer et al. (2012) speculate that winter activity
should have effects on phytoplankton and zooplankton in the subsequent season; indeed,
we found evidence for strong winter-summer linkage for some lakes and variables. In lakes
that had longer time series, such as the Laurentian Great Lakes, northern Wisconsin lakes,
northern Europe lakes, and Canadian lakes, the influence of winter conditions on the
following summer’s value differed among variables. Winter and summer were often
negatively related, such that high winter values were associated with low values from the
adjacent summer, or low winter values were associated with high values from the adjacent
summer (Fig. S5, Fig. S6, Table S5). Among variables in our analysis, these negative cross-
seasonal relationships were particularly frequent for zooplankton density and chl g,
although several other variables also had negative winter-summer correlations in >20% of
the available time series. In the case of chl g, one explanation for antagonistic winter-
summer dynamics is that high winter production may reduce the pelagic nutrient pool,

strengthening P limitation or Si limitation in the following summer, in turn reducing
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summer production. For zooplankton, one possible explanation for negative winter-
summer correlations could be that high prior zooplankton abundance or composition
reduces the availability of readily-ingestible phytoplankton at the beginning of the next
season. Many studies have suggested that overwintering populations can boost summer
populations and vice versa (e.g. Sommer et al. 2012). A clear next step would be to examine
temporal trends at the population level for zooplankton. Overall, evidence is increasing
among independent studies for the prevalence of carryover between seasons. Coherent
responses in algal and zooplankton phenology associated with conditions related to the
winter North Atlantic Oscillation, which determines winter weather conditions across large
parts of Europe, provide well studied examples (Weyhenmeyer et al. 1999; Gerten & Adrian
2000; Straile et al. 2003; Blenckner et al. 2007; Straile et al. 2012). Similarly, the severity of
winter influenced spring nutrient concentrations in Lake Peipsi (Blank et al. 2009).
Altogether such seasonal connections strongly favor previous calls to “close the loop”
(Salonen et al. 2009) and study the full annual cycle in order to understand lake dynamics,
particularly as lake temperature rises worldwide (O’Reilly et al. 2015). Though winter
conditions often present logistical challenges to field sampling, we should dismiss
opportunities that are within reach and could greatly increase our basic understanding of

winter ecology.

Implications
We are losing ice without a deep understanding of what ecological processes are at
stake. Our synthesis demonstrates that under-ice environments in lakes are biologically

dynamic, and that in some cases understanding winter can help to predict summer
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conditions, highlighting the importance of expanding our knowledge of under-ice
dynamics. Climate change is already altering lake conditions by increasing summer water
temperatures (O’Reilly et al. 2015) and decreasing winter ice duration (Magnuson et al.
2000; Benson et al. 2012; Shuter et al. 2013). While our study identifies some of these basic
patterns across and within lakes, how climate change will influence seasonal differences
and connections, as well as the nature of any feedbacks associated with these potential
changes, remains unclear. Long-term changes in lake ice already have been associated with
shifts in the timing of under-ice phytoplankton blooms (Adrian et al. 1999; Blenckner et al.
2007). Here, paleolimnology may offer useful insights into how lakes responded during
periods of warming, through the analysis of microfossils in sedimentary records. For
example, Smol et al. (2005) show that global warming over the past 150 years has resulted
in wide-scale reorganization of circumpolar lake ecosystems through shortening of the
winter season, with highest changes in beta-diversity occurring at the most northern
latitudes. Over longer timescales, declining winter ice conditions, inferred from
chrysophyte cysts, suggest that European Pyrenees lakes gradually warmed from the early
Holocene to c. 4000 years ago (Pla & Catalan 2005). While in ancient lakes such as Baikal,
we can look to previous warm periods such as the Last Interglacial (125,000 years ago)
which reveal a decline in ice-associated diatoms, but greater abundance in species that
require either strong mixing conditions or extended summer stratification (Rioual &
Mackay 2005).

Effects of shortening ice duration may present the most straight-forward scenarios
to consider. Predicting the influence of climate change on other ice characteristics, such as

clarity, may be a more difficult task. Observed and anticipated shifts in precipitation, wind,
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and solar radiation patterns associated with climate change are heterogeneous across and
within regions, and can greatly alter the under-ice environment by changing the amount of
incident light that penetrates the ice. Surface snow accumulation of as little as 10 cm can
reduce light penetration to levels insufficient for photosynthesis and convective mixing
that influences algal suspension as well as nutrient concentrations in the photic zone
(Granin et al. 2000; Mackay et al. 2006; Jewson et al. 2009; Salmi & Salonen 2016). As with
many aspects of climate change, the extremes and the timing of shifts, in addition to
average changes, are important (reviewed in Adrian et al. 2012).
Conclusion

Our results suggest two principles that should motivate future work: 1) knowledge
of under-ice conditions within lake ecosystems may help to refine expectations of how lake
conditions, dynamics and functionality will unfold over the next season; 2) under-ice
observations, and measures of seasonal connectivity or dis-connectivity between seasons,
may enhance our ability to detect and understand ecological responses to lake warming,
especially when monitoring is sustained over the long-term. Both of these ideas are
testable, but only in the presence of long-term paired winter-summer lake data. Thus, while
most lakes can be expected to experience shorter winter ice duration and longer summers,
our capability to predict the ecosystem-wide impacts is constrained by our limited
knowledge of under-ice ecology and also accurate down-scaled climate predictions that
allow us to anticipate under-ice physical conditions. However, as our study demonstrates,
lake conditions are not the simple result of weather conditions during the current season
but can also depend upon external and internal forces operating on the ecosystem in

previous seasons. Our capacity to predict effects of warming waters and shortening ice
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duration on lake ecosystems, and the resources they provide to society, will depend in part
on our ability to rapidly accumulate more knowledge of winter ecology and its influence on
ecological processes throughout the year. In the future, we predict that there will be no
more “off-seasons” for freshwater ecologists.
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1060  Table 1. Winter-summer differences expressed across lakes. Linear mixed models were used, with a random intercept for year.

1061
Variable # winter  # paired Fitted difference s.e. of Intercept (typical s.e. of p-value of  p-value of
obvs obvs (+=higher in winter) difference summer value) intercept  difference intercept
chla (png/L) 119 118 -5.06 0.661 9.13 0.612 <<0.001 <<0.001
phyto biovolume 17 17 -12.8 1.85 14.7 1.31 <<0.001 <<0.001
(mm3/L)
crustacean zoop 36 36 -41.8 5.82 54.8 4.15 <<0.001 <<0.001
density(no./L)
DOC (mg/L) 82 81 -0.0559 0.324 5.53 0.418 0.863 <<0.001
TDN (pg/L) 78 73 262 44.0 300 38.8 <<0.001 <<0.001
TDN:TDP (as atoms) 71 66 27.5 40.6 161 29.6 0.498 <<0.001
TDP (ug/L) 73 72 3.97 3.18 11.8 2.83 0.213 <<0.001
TN (ng/L) 76 75 161 231 552 23.7 <<0.001 <<0.001
TN:TP (as atoms) 75 74 24.0 6.44 88.3 4.89 <<0.001 <<0.001
TP (pg/L) 107 106 -1.35 1.95 27.1 1.98 0.488 <<0.001
water temp (°C) 113 107 -15.1 0.19 16.2 0.202 <<0.001 <0.001
1062



1063  Table 2. Summary of winter-summer differences and winter-summer correlations from
1064  univariate time series of individual lakes. Correlations for summer-into-winter (SW) and
1065  winter-into-summer (WS) are both shown. Zooplankton groups are referenced here as

1066  counts L1 (calculated from reported proportion of total zooplankton density). Note that for
1067  chl a and phytoplankton density only 3 lakes reported both variables with sufficient data to
1068  include in our time series analysis, such that patterns are not readily compared between
1069  these variables.

1070
Seasonal difference Sign of summer-winter slope*
present (% of time series)
(% of time series)
Variable # of time winter> winter<  SW pos SW neg WS pos WSneg  Any pos
series summer summer or neg

chla 34 9 50 0 32 0 26 47
phyto density 4 0 100 25 0 25 0 50
crustacean 11 0 91 0 18 0 9 18
zooplankton
density
DOC 26 12 23 0 15 0 4 19
TDN 14 79 7 0 43 0 0 43
TDP 14 14 0 0 21 0 14 36
TN 30 70 3 0 33 3 10 47
TP 33 21 21 0 18 0 12 30
water temp 20 0 100 5 0 5 5 15

1071

1072 * Sign of the summer-winter slope determined using detrended data and AIC selection.
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1086  Figure 1. Map of lakes/sampling stations included in the full synthesis under-ice dataset
1087  (i.e., “primary data”) and the published literature review. See Figure S2 for comparison of
1088  aggregated chl a between primary data and published literature samples.
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Figure 2. Average ice-on (winter) versus ice-off (summer) conditions across lakes for major
limnological variables. Boxplots show all reported available ice-on and ice-off data. Each
point represents the cross-year average from one sampling location; color indicates
latitude (absolute). Scatterplots show the paired ice-on-ice-off values at a given each

location. P-values are from Ime models. Scales are logarithmic.
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Figure 3. Average community composition for major phytoplankton and crustacean

zooplankton groups during the winter and summer seasons, expressed as a proportion of

total density.
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Figure 4. Example time series that demonstrate the temporal patterns encountered for
different lakes and variables. Panel 1: first order autoregressive structure, SUVA in
Sparkling Lake, Wisconsin, USA; 2: first order autoregressive structure with moving
average, DOC in Buffalo Pound Lake, Saskatchewan, Canada; 3: seasonal difference, chl a in
Big Muskellunge Lake, Wisconsin, USA; 4: seasonal difference with moving average, TP in
Allequash Lake, Wisconsin, USA; 5: seasonal difference with first order autocorrelation

structure and moving average, TN in Lake Superior at Thunder Bay, Ontario, Canada.



