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Abstract 101 

Winter conditions are rapidly changing in temperate ecosystems, particularly for those that 102 

experience periods of snow and ice cover. Relatively little is known of winter ecology in 103 

these systems, due to a historical research focus on summer "growing seasons." We 104 

executed the first global quantitative synthesis on under-ice lake ecology, including 36 105 

abiotic and biotic variables from 42 research groups and 101 lakes, examining seasonal 106 

differences and connections as well as how seasonal differences vary with geophysical 107 

factors. Plankton were more abundant under ice than expected; mean winter values were 108 

42.8% of summer values for chlorophyll a, 15.8% of summer phytoplankton biovolume, 109 

and 34.4% of summer zooplankton density. Dissolved nitrogen concentrations were 110 

typically higher during winter, and these differences were exaggerated in smaller lakes. 111 

Lake size also influenced winter-summer patterns for dissolved organic carbon (DOC), with 112 

higher winter DOC in smaller lakes. At coarse levels of taxonomic aggregation, 113 

phytoplankton and zooplankton community composition showed few systematic 114 

differences between seasons, although literature suggests that seasonal differences are 115 

frequently lake-specific, species-specific, or occur at the level of functional group. Within 116 

the subset of lakes that had longer time-series, winter influenced the subsequent summer 117 

for some nutrient variables and zooplankton biomass. 118 

 119 

 120 

 121 

  122 



 6 

Introduction 123 

 124 

Reduced ice cover on lakes and rivers worldwide (Magnuson et al. 2000; Benson et 125 

al. 2012) highlights an urgent need for research focused on under-ice ecosystem dynamics 126 

and their contributions to whole-ecosystem processes. Recently a global synthesis of 127 

summer lake temperature trends in lakes (O’Reilly et al. 2015) revealed that winter ice 128 

cover is a major force in determining the characteristics of summer warming trends, 129 

demonstrating the cascading effects between seasons. Cross-seasonal cascades can involve 130 

both abiotic and biotic variables, such as when winter ice characteristics influence spring 131 

and summer algal growth (e.g., Gerten & Adrian 2000; Straile 2002; Adrian et al. 2006; 132 

Blenckner et al. 2007). Consequently, in water bodies that freeze, the timing and physical 133 

characteristics of ice cover are likely to drive some of the most important biological 134 

changes for lakes overall (Salonen et al. 2009; Moore et al. 2009; Benson et al. 2012). 135 

Marine research is ahead of freshwater research in studies of under-ice ecology, 136 

providing compelling evidence that winter conditions and changes in ice phenology play an 137 

important role in sea-ice system dynamics (Arrigo & Thomas 2004; Arrigo et al. 2008; 138 

Meier et al. 2014). The presence of ice in marine systems drives primary productivity that 139 

is critical for food webs (Lizotte 2001; Grebmeier 2012); for example, ice-associated algae 140 

in the Antarctic contribute 25-30% of total annual productivity for the region (Arrigo & 141 

Thomas 2004). But for lakes, there is very little information about the physics, 142 

geochemistry, and biology under ice, and this knowledge gap severely limits our ability to 143 

predict how changes in winter conditions will affect the ecology and productivity of inland 144 

waters. A recent study reported that only 2% of peer-reviewed freshwater literature has 145 
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included under-ice lake processes (Hampton et al. 2015). The paucity of under-ice research 146 

in freshwater systems is especially surprising when one considers that half of the world’s 147 

lakes periodically freeze, i.e. slightly more than 50 million lakes (Verpoorter et al. 2014). 148 

Also, the majority of lakes in the world are located between 60° and 66° N where annual ice 149 

cover duration currently averages more than 150 days (Weyhenmeyer et al. 2011). 150 

The initial and highly influential model of the plankton ecology group (the PEG 151 

model; Sommer et al. 1986) hypothesized that winter in ice-covered lakes is a time of 152 

limited, if any, activity by primary or secondary producers. The widespread use of the term 153 

“growing season” to describe summer months in temperate lakes reflects the prevailing 154 

viewpoint of winter as an inactive period. In general, freshwater scientists have assumed 155 

that overall biological activity under lake ice is inconsequential or that under-ice primary 156 

producers resort to heterotrophy or dormancy, as has been observed in some studies (e.g., 157 

McKnight et al. 2000; Leppäranta 2015), particularly for high-latitude systems with heavy 158 

snow coverage. While the PEG model has since been revised (Sommer et al. 2012) with a 159 

call for additional winter work, areas of uncertainty range from the identity and activity of 160 

plankton to ecosystem-level processes such as whole-lake metabolism and greenhouse gas 161 

emissions. The lake studies that have included under-ice work strongly suggest that winter 162 

food webs and physical processes are both active and complex, but with few patterns that 163 

are readily generalizable (reviewed in Salonen et al. 2009; Bertilsson et al. 2013; 164 

Bruesewitz et al. 2015; Hampton et al. 2015). 165 

Prior work indicates that winter under-ice conditions can be very similar to, or very 166 

different from, the ice-free summer conditions. Depending upon snow characteristics, ice 167 

can allow for up to 95% of photosynthetically active radiation (PAR) transmission 168 
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(Bolsenga & Verderploeg 1992), fueling winter algal blooms that rival those of summer 169 

(e.g., Jewson et al. 2009). In Lake Erie, phytoplankton growth and loss rates during winter 170 

can be similar to those of summer (Twiss et al. 2014). For certain lakes, the composition of 171 

phytoplankton communities is different under ice, dominated by smaller species (e.g., 172 

Wetzel 2001), or conversely dominated by large ice-associated filamentous diatoms (e.g., 173 

Katz et al. 2015; Beall et al. 2016), whereas other lakes do not appear to have distinct 174 

seasonal changes in phytoplankton community composition (Dokulil et al. 2014). Although 175 

zooplankton biomass generally appears to be lower under ice, changes in community 176 

composition can be highly variable across lakes (Dokulil et al. 2014). Even more scarce is 177 

information about nutrient and dissolved organic carbon concentrations under the ice that 178 

may help to drive many of these plankton dynamics (but see Özkundakci et al. 2016). 179 

The pathways through which winter conditions may affect lake ecology throughout 180 

the year are similarly diverse. Winter ice conditions have been observed to alter 181 

phytoplankton biomass and composition in the subsequent ice-free season (Weyhenmeyer 182 

et al. 2008). For zooplankton, early emergence from diapause, synchronized with the 183 

timing of warming at the end of winter can be associated with higher summer density for 184 

zooplankton grazers (Gerten & Adrian 2000; Adrian et al. 2006). Such carry-over between 185 

seasons is not restricted to winter’s influence on summer, of course, and there is evidence 186 

that under-ice zooplankton dynamics can depend in part on late summer zooplankton 187 

biomass (Dokulil et al. 2014). The diversity of responses found by under-ice studies 188 

suggests that a synthesis of existing knowledge is greatly needed and would help identify 189 

key next steps in winter limnology as well as promote productive collaborations (Hampton 190 

et al. 2015). 191 
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Research that builds a knowledge base about the processes occurring over nearly 192 

half the annual cycle for approximately half of the world’s lakes is a worthy challenge, with 193 

potentially global repercussions. Here we explore differences between winter and summer 194 

conditions both across and within lakes, focusing on dynamics of phytoplankton, 195 

zooplankton, nutrients, and dissolved organic carbon. We address two overarching 196 

questions on under-ice ecology: 1) What is the magnitude and direction of ecological 197 

change from winter to summer; and 2) For which variables and to what extent are winter 198 

and summer seasons connected, i.e., what is the influence of winter conditions on the 199 

following summer season, and the influence of summer conditions on the following winter? 200 

We hypothesized that winter biomass and density of phytoplankton and zooplankton are 201 

significantly lower than that of summer, due to a low-light environment unfavorable for 202 

emergence or growth (e.g., Vincent & Vincent 1982; Cáceres & Schwalbach 2001; Jewson et 203 

al. 2009), low temperature (e.g., Özkundakci et al. 2016), or nutrient limitation (e.g., 204 

O’Brien et al. 1992; Özkundakci et al. 2016), and that these differences would be modified 205 

by geophysical characteristics of lakes. Further, we hypothesize that lake conditions can 206 

carry over across seasons, as suggested in the revised PEG model (Sommer et al. 2012; 207 

Domis et al. 2013), such that an understanding of winter conditions will improve 208 

understanding of summer conditions, and vice versa. The presence of seasonal carry-over 209 

would indicate that winter is not simply a “reset” that leads back to similar spring ice-out 210 

conditions year after year, and would suggest revisions to current field and laboratory 211 

approaches currently focused on “growing season” dynamics. 212 

 213 

 214 
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 215 

Methods 216 

Data Acquisition 217 

Data were acquired from both an initial literature review to provide baseline 218 

expectations for ecological patterns and, much more comprehensively, from a collation of 219 

primary data. 220 

Literature review. As an initial step toward synthesizing knowledge, we compiled 221 

under-ice data for chlorophyll a (chl a) concentration from a literature survey. We found 14 222 

papers for which data would be readily compared to those solicited from primary data 223 

contributors (based on criteria in Supplemental Information). From these papers, we 224 

compiled data from 17 lakes (Fig. 1), extracting data from text, tables, or from figures. For 225 

the literature review effort, we were unable to compare ice-on (winter) and ice-off 226 

(summer) data, as only 7 of the lakes in these papers also included biological data during 227 

the summer season. 228 

Primary data collation. The scientific community was solicited for data on physical, 229 

chemical, and biological variables of lakes and reservoirs (hereafter together called “lakes”) 230 

during ice cover. We used an open call for participation through electronic mailing lists and 231 

professional networks, and then interacted extensively with data contributors. In total, we 232 

collated winter under-ice and summer observations between 1940 and 2015 for 101 lakes 233 

at 135 unique sampling locations across wide gradients of latitudes, production, and 234 

trophic status (Fig. 1). For the Laurentian Great Lakes, most sampling stations were located 235 

nearshore or in bays. 236 
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Contributors of primary data used a structured template to report values from 237 

winter periods when the lake had complete ice cover (hereafter “winter”), and summer 238 

periods when the lake was completely open and, in dimictic systems, stratified (hereafter 239 

“summer”). For 10 lakes that were polymictic or lack reliable summer stratification, 240 

summer data are from a representative open water period chosen by the primary data 241 

contributors, usually midsummer. We asked researchers to provide data aggregated from 242 

the photic zone, for each lake and season. Across all lakes, the median sample depth during 243 

winter was 2.0 m, and the mean ratio of sample depths (winter:summer) was 1.01. We did 244 

not include winter data from those years that did not have ice cover (e.g., Müggelsee 245 

sometimes does not freeze). Each seasonal value used in our analysis was computed by the 246 

individual data providers (Box S1; Fig. S1). The number of within-season sampling events 247 

was reported by researchers for 71% of our compiled seasonal averages; of these, 64% of 248 

the winter averages and 79% of the summer averages were based on 3 or more sampling 249 

events.  When a lake had multiple sampling stations, the stations were generally treated 250 

independently. Exceptions were cases where researchers specified multiple stations that 251 

were functionally similar and could be pooled in aggregate. After pooling the functionally 252 

similar stations, the majority of lakes (84 of 101 lakes) did not retain multiple distinct 253 

stations for analyses (see SI).  254 

Data availability differed among lakes and variables. For several major variables, 255 

paired winter and summer observations were present in at least 30 stations, often over 10 256 

years. All stations had at least one variable with both winter and summer data, and the 257 

variable-specific sample sizes and periods of record are in Table S1. The median period of 258 

record for most variables was 2-3 years. Variables included water temperature (107 259 
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unique stations with paired winter-summer data), chlorophyll a (chl a as µg L-1; 118 260 

stations), total phosphorous (TP as µg L-1; 106 stations), total dissolved phosphorus (TDP 261 

as µg L-1; 72 stations), total nitrogen (TN as µg L-1; 75 stations), total dissolved nitrogen 262 

(TDN as µg L-1; 73 stations), TN:TP (atomic ratio; 74 stations), TDN:TDP (atomic ratio; 66 263 

stations), and dissolved organic carbon (DOC as mg L-1; 81 stations). Our reported values 264 

for TDP and TDN are conservative, because not all researchers performed the digestion 265 

step. Nonetheless, because common nutrient methods were usually used at a given lake, 266 

our approach still captures the relative difference between seasons (winter-summer), 267 

except in lakes where the dissolved organic fraction varies substantially between seasons. 268 

In addition, 36 stations had data for total zooplankton density (individuals L-1). Group-269 

specific zooplankton counts (proportion of total abundance) for calanoid, cyclopoid, 270 

Daphnia, rotifer, other cladoceran, and unspecified other zooplankton were also available. 271 

Methodology for zooplankton data collection differs across programs to a degree that 272 

complicates comparisons across lakes for rotifers and unspecified other zooplankton, such 273 

that those data were not analyzed here and total zooplankton densities were accordingly 274 

adjusted as well. Subsequent references to zooplankton density include Daphnia, other 275 

cladocerans, cyclopoid and calanoid copepods for all 36 stations. For phytoplankton 276 

biovolume mm-3 L-1, there were data for 17 stations. Group-specific phytoplankton counts 277 

(proportion of total abundance) for chlorophyte, cryptophyte, cyanophyte, bacillariophyte, 278 

dinoflagellate, and other phytoplankter were available at 17 stations.  Specific ultraviolet 279 

absorbance (SUVA, L mg C-1 m-1), and color (platinum units) were also available at some 280 

stations. Although we solicited benthic data, only a few researchers provided data for any 281 

type of benthic variable, suggesting a widespread lack of benthic winter sampling. The lake-282 
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specific averages for winter and summer conditions, by variable, are shown in Table S2. For 283 

chl a, TP, TDP, TN, TDN, DOC, and zooplankton density, more than 25% of stations had a 284 

period of record ≥10 years. The complete dataset is available in the Knowledge Network 285 

for Biocomplexity (https://knb.ecoinformatics.org/). 286 

Data analysis 287 

We approached data analysis in two ways. The first approach was to quantify the 288 

average winter-summer differences across all lakes in the data set, identifying major 289 

physical features of lakes that affect the magnitude of observed winter-summer differences. 290 

The second approach was to examine univariate seasonal dynamics within lakes, including 291 

winter-summer differences and winter-summer correlations, using the subset of lakes 292 

where longer-term (≥10 years) time series were available. 293 

Winter-summer differences across lakes. We calculated the mean winter value and 294 

the mean summer value for every station and variable, and examined mean winter-summer 295 

differences across all lakes in the data set. Magnitude, direction and significance of 296 

differences between winter and summer were determined using linear mixed effect (LME) 297 

modeling with year as a random intercept (Bates et al. 2015). For the multivariate plankton 298 

compositional data, we used permutational analysis of variance (PERMANOVA; Anderson 299 

2001) from the vegan package in R (“adonis” function, Oksanen et al. 2016; R Core Team 300 

2016) on sites that had complete cases for both winter and summer communities. To 301 

discern major physical variables correlated with the magnitude and sign of winter-summer 302 

differences, we used a regression tree approach (rpart package in R, Therneau et al. 2015, 303 

with applications from Breiman et al. 1984). We used the variable-specific average winter-304 

summer difference as the response variable; the candidate explanatory variables were lake 305 
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area, lake maximum depth, latitude (absolute), and elevation. Trees were cross-validated 306 

and pruned using the complexity parameter value which minimized the cross-validated 307 

error.  Mean winter-summer difference and standard error of the difference were 308 

calculated for each branch of the regression trees. We also used a regression tree approach 309 

to analyze average winter-summer difference in plankton community composition as a 310 

matrix response (mvpart package in R, Therneau et al. 2014), for both the crustacean 311 

zooplankton community and the phytoplankton community data. Candidate explanatory 312 

variables included the same four variables as previous trees, as well as winter-summer 313 

difference in water temperature and, for zooplankton, the summer chl a. 314 

Due to differences in the available period of record, the overall winter average can 315 

represent 30+ years for some lakes and variables, while for others the overall average 316 

represents only one year of data. We expected that variation in sample size might create 317 

noise that could obscure differences (Type 2 error), but not suggest differences that do not 318 

exist (Type 1 error).  319 

Winter-summer differences within lakes. For time series that were available, we 320 

examined within-lake differences between winter and summer. For this we used only time 321 

series that had ≥10 winter values, meaning at least 10 years of data and 20 values overall. 322 

To allow a robust examination of winter-summer correlations (below), we used contiguous 323 

portions of each time series, allowing no more than 1 data gap. Before examining 324 

differences, every time series was detrended using a 7-point moving average filter (3.5 325 

years) to account for longer-term trends, and we confirmed that no significant linear trends 326 

remained after filtering. With each detrended time series, summer-winter differences were 327 

examined using a simple seasonal model 328 
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 yt= bice*D   + b0 + e               (1) 329 

where bice is the coefficient describing the winter-summer difference, D is a dummy 330 

variable (1 in winter, 0 in summer) that employs the bice coefficient, b0 is the intercept 331 

(representing the mean summer value), and e is the error term. We then compared the 332 

seasonal model (2 parameters) to the simple intercept model (1 parameter, b0, 333 

representing the overall mean) using the Akaike Information Criterion corrected for small 334 

sample sizes (AICc) (Burnham & Anderson 2002). If the seasonal model differed from the 335 

simple intercept model by ΔAICc≥2, we interpreted this result to mean that the time series 336 

showed a seasonal difference. Detailed diagnostic plots including raw and detrended time 337 

series are provided in Figure S4 for one example lake (Big Muskellunge Lake, chl a).  For 338 

194 of the 238 available time series (82%), residuals from eq. 1 were not autocorrelated at 339 

lag 1 according to the Box-Ljung test, and this is demonstrated by the partial 340 

autocorrelation plot of the detrended+deseasoned data (Fig. S4). For the other 44 time 341 

series, we added a first-order autocorrelated error structure to eq. 1. The percent of time 342 

series having winter values greater than summer values, or vice versa, was tabulated by 343 

variable. 344 

Winter-summer correlations within lakes. Using the same univariate, contiguous, 345 

moving-average detrended time series as above (those with >10 winter values), we 346 

examined temporal correlations between winter and summer. These included: i) 347 

correlations between winter and the previous summer season (summert-1), or summer-348 

into-winter (SW) correlations; and ii) correlations between winter and the subsequent 349 

summer (summert+1), or winter-into-summer (WS) correlations. We determined the sign of 350 

seasonal correlations, if present, using a simple model of the detrended data 351 
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Ywinter, t = bSW*Ysummer,t-1 + b0 + e       (2) 352 

where t is the index of the time series and bSW is the slope of the relationship between 353 

winter and the previous summer. If this SW correlation model did not show AICc 354 

improvement >2 AICc units compared to the intercept model (1 parameter, b0, representing 355 

the overall mean), the time series was interpreted as not seasonally correlated. We then 356 

separately evaluated the corresponding WS correlation model, Ysummer, t+1 =   bWS*Ywinter,t  + b0 357 

+ e, also using AICc. A minority of these SW and WS correlation models produced 358 

autocorrelated residuals, and to these we added a first-order autocorrelated error 359 

structure, although this modification did not change the model selection nor the sign of bSW 360 

or bWS for any time series. Here a positive WS correlation indicates that high summer values 361 

follow high winter values, or low summer values follow low winter values. Alternatively, a 362 

negative WS correlation indicates anti-persistence, such that low summer values follow 363 

high winter values, or high summer values follow low winter values. As examples, we 364 

illustrate the presence/absence of winter-summer correlations for every chl a time series, 365 

including SW correlations (Fig. S5) and WS correlations (Fig. S6). The percent of time series 366 

having positive/negative SW correlations or positive/negative WS correlations was 367 

tabulated by variable (Table S5). 368 

Results 369 

Seasonal differences across lakes 370 

Indicators of plankton biomass were lower in the winter than during the summer. 371 

Across lakes and latitude, average winter chlorophyll a (± SE) (5.87 ± 0.88 µg L-1, Fig. 2) in 372 

the primary data ranged much more widely than in those from our literature survey 373 

(Supplemental Fig. S2), although still significantly lower than that of summer (13.6 ± 2.84 374 
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µg L-1, p<0.0001, Table 1). Using the regression tree approach, the shallowest lakes (max 375 

depth < 2.93 m, n = 13 lakes) showed greatest disparity in chlorophyll, with summers 376 

higher than winters by 52.3 ± 18.2 µg L-1(R2 for chl a tree = 0.330). Under-ice 377 

phytoplankton biovolume averaged about 1/6th that of the summer average (n=17, 378 

p<0.001 by LME, Table 1). However, at our coarse level of taxonomic aggregation, 379 

phytoplankton community composition did not differ significantly between winter and 380 

summer when examined across all lakes (PERMANOVA, p=0.77; Fig. 3). Across lakes, 381 

average zooplankton density (± SE) was significantly lower under ice (27.8 ± 11.2 382 

individuals L-1) than during summer (110 ± 30.8 individuals L-1; p<0.001), and winter 383 

crustacean zooplankton community composition differed significantly from that of summer 384 

(PERMANOVA; p=0.05), with cladocerans generally more abundant in summer (Fig. 3). 385 

Regression trees did not provide further insights into plankton community shifts, 386 

differentiating only two lakes out of 17, and are not discussed further here. The complete 387 

list of summary statistics, for every variable, is shown in Table S3. The PERMANOVA 388 

statistical outputs are in Table S4. 389 

Dissolved N concentrations tended to be higher during winter, and seasonal 390 

differences were more prominent for dissolved N than for dissolved P. Across lakes, 391 

average (± SE) TDN was approximately 2-fold higher under ice (707 ±129 µg L-1, Fig. 2) 392 

than in summer (375 ± 62.2 µg L-1; p<0.001 by lme). The pattern of higher winter TDN 393 

appeared particularly pronounced as maximum depth decreased. Regression trees showed 394 

that the 7 shallowest lakes (< 2.10 m) had 2070 µg L-1  higher TDN on average in winter 395 

than summer, 7 lakes of intermediate depths (5.20 < max depth > 2.10 m) had TDN winter 396 

values that were 758 µg L-1 higher than summer on average, while the 59 deeper lakes 397 
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(>5.2m) showed winter TDN values 123 µg L-1 higher than summer on average (tree R2 = 398 

0.722, Fig. S7).  TN was also higher during winter (p<0.001, LME-fitted difference of 399 

+161µg L-1), likely as a reflection of higher dissolved N, which typically accounted for the 400 

majority of the N pool (winter TDN:TN= 0.807 compared to summer TDN:TN= 0.592). 401 

Winter and summer did not differ significantly for TP or TDP according to LME models 402 

(p>0.2). DOC concentrations did not differ seasonally (p=0.863 by LME). Interestingly, 403 

these DOC patterns clearly varied with lake area and elevation (tree R2 = 0.538, Fig. S7). 404 

Regression trees demonstrated that larger (>= 0.373 km2) lakes had 0.145 mg L-1 lower 405 

DOC in winter compared to summer, while smaller (< 0.373 km2), low elevation (< 366 m) 406 

lakes (n=19) had 6.69 mg L-1 higher DOC in winter, and similarly small lakes at higher 407 

elevations also had 0.810 mg L-1 higher DOC in winter. Regression tree analyses did not 408 

produce significant models for plankton density or phosphorus variables.  409 

Winter-summer differences within lakes 410 

In general, within-lake differences between summer and winter were consistent 411 

with differences observed across lakes. For example, chl a was lower in winter at 17 of the 412 

34 sites (50%) that met our longer-term data criteria (Table 2). The summary statistics for 413 

each individual time series are in Table S5. Phytoplankton density was also lower in winter 414 

compared to summer in 4 of 4 sites. Similarly, zooplankton densities were significantly 415 

lower during winter at 10 of 11 sites (91%); the one exception was a bog lake, Trout Bog 416 

(USA), which had a relatively low summer zooplankton density and no detectable winter-417 

summer difference. For nutrients, patterns again differed between N and P. Over 70% of 418 

the sites had higher winter TDN (11 of 14) and TN (21 of 30), whereas only 14% of sites 419 

had higher winter TDP (2 of 14) and 21% had higher TP (7 of 33). Allequash Lake (Fig. 4) 420 
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provides an example where TP concentration was lower during winter. DOC was lower 421 

during winter at 6 of 26 sites (23%), and higher in winter at 3 sites including Trout Bog, 422 

USA, with no differences between winter and summer at the other 17 sites (65%). Three 423 

variables lacked differences between summer and winter values at >50% of sites (TP, TDP, 424 

DOC). 425 

Winter-summer correlations within lakes 426 

From a total of 238 time series for different lakes and variables (Table S5), after 427 

accounting for trends, our AIC-based approach detected 94 time series (39%) with some 428 

form of correlation between winter and the previous summer, or between winter and the 429 

following summer. Several individual variables had seasonal correlations in ≥33% of the 430 

available time series, including chl a, phytoplankton density, TDN, TN, and TDP (Table 2). 431 

Negative correlations outnumbered the positive correlations, suggesting seasonal anti-432 

persistence. Positive seasonal correlations were absent for chl a, zooplankton density, DOC, 433 

TP, TDN, and TDP. For chl a, negative winter-into-summer (WS) correlations (26% of time 434 

series) and summer-into-winter (SW) correlations (32%) were both relatively common. 435 

For TDN, negative SW correlations outnumbered negative WS correlations (43% vs. 0%), 436 

suggesting summer carry over. Overall, the frequency of these winter-summer negative 437 

correlations ranged widely among variables. 438 

Discussion 439 

This global synthesis of under-ice ecology underscores the importance of winter 440 

conditions for lake ecology throughout the year. Using multiple approaches, our cross-lake 441 

synthesis revealed several clear differences between winter and summer conditions, 442 

offering generalizations about winter ecology that have been difficult to infer from prior 443 
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studies involving one or a few lakes. We also provide new evidence that interseasonal 444 

connections are common for several ecological and biogeochemical variables, linking 445 

winter to both the previous and subsequent summers. Among our clearest results, primary 446 

producers (algae) and consumers (zooplankton) are typically less abundant under ice than 447 

in summer, but they maintain substantial populations in winter. Arguably, this may be 448 

interpreted as evidence of high winter productivity, and we explore the possibility below. 449 

Also clear was the result that winter dissolved nitrogen was consistently higher than 450 

summer.  While crustacean zooplankton composition showed some general seasonal 451 

differences, we found no generalizable differences in phytoplankton community 452 

composition between winter and summer at the coarse level of taxonomic aggregation 453 

used here. As long-term climate change alters thermal regimes across globally distributed 454 

lakes in both summer (O’Reilly et al. 2015) and winter (Magnuson et al. 2000), it is 455 

increasingly important to understand how under-ice physical and ecological conditions 456 

influence ecology throughout the year. Overall, this work represents an important step 457 

towards understanding winter ecology in lakes broadly, as well as the connections to year-458 

round dynamics and whole-lake functionality. 459 

Our results indicate seasonal differences in chl a, plankton biomass and biovolume, 460 

and dissolved nitrogen between winter and summer, both across and within lakes. Despite 461 

lower under-ice values, particularly for the shallowest lakes, on average chl a was relatively 462 

high (42.8% of summer chl a) given the shorter photoperiod and variable physical 463 

conditions of winter. Indeed, winter levels exceeded those of summer in multiple cases 464 

such as Lake Simcoe (Canada), Lake Scharmüetzelsee (Germany), and Fish Lake (USA) 465 

which all had more than 10 years of winter data. Previous under-ice lake studies have 466 
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reported chlorophyll values as high as 154 µg L -1 (Twiss et al. 2012). Conversely some 467 

lakes have undetectable chlorophyll levels under ice (e.g., Hawes 1985). While the available 468 

winter limnology literature provides evidence that lakes can support an abundance of algae 469 

under ice - as demonstrated by genetic (e.g., Bashenkhaeva et al. 2015), pigment (e.g., 470 

Catalan et al. 2002), and cell count (e.g., Phillips & Fawley 2002; Katz et al. 2015) data - it is 471 

also important to remember that estimates of algal biomass or primary productivity based 472 

on chlorophyll can be skewed seasonally. Intracellular pigment content can change with 473 

temperature and light conditions (Kirk 2011), such that smaller seasonal differences in 474 

chlorophyll could in part be due to light adaptation leading to increased cellular pigment 475 

concentrations. 476 

In general, light can be the limiting factor for photosynthesis under ice, with ice 477 

conditions and overlying snow producing spatially (e.g., Cloern et al. 1992, Arrigo and 478 

Thomas 2004) and temporally (e.g., Tanabe et al. 2008; Bruesewitz et al. 2015) 479 

heterogeneous transmission of light and altered spectral distribution (Roulet & Adams 480 

1986). The timing and characteristics of winter precipitation, wind, temperature variation, 481 

and solar radiation influence variability in under-ice light conditions, including the 482 

formation of clear congelation ice which can have higher light transmittance than lake 483 

water (Leppäranta 2010). When light is sufficient for photosynthesis, the under-ice 484 

environment can be hospitable for algal growth; complex under-ice convection can keep 485 

nutrients and algae mixed in the photic zone (Kelley 1997; but see Vehmaa & Solonen 486 

2009), and in Lake Baikal the ice itself can provide a vast habitat for attached algae to 487 

maintain access to light (Timoshkin 2001; Bondarenko et al. 2012). In relatively dark 488 

conditions with low primary production, we might anticipate lower oxygen conditions, 489 
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greater winter accumulation and subsequent contributions of greenhouse gases to the 490 

atmosphere, smaller algal and grazer populations available to initiate population growth at 491 

ice-out (Sommer et al. 2012), and less ice-associated algae sloughing off to feed the benthos 492 

as summer begins (Bondarenko et al. 2006). Because increased intracellular chlorophyll 493 

content may be an adaptation to low light conditions, exhibited by many but not all (Felip & 494 

Catalan 2000) phytoplankton, we recommend measuring primary productivity directly, if 495 

that is the variable of interest, or measuring both cell density and community composition 496 

in order to characterize plankton biomass and identity.  497 

Phytoplankton biovolume was lower under ice than in the summer on average, 498 

consistent with chl a values, when all lakes were considered together. However, we did not 499 

detect systematic seasonal differences in phytoplankton community composition that 500 

could be generalized among all lakes. The lack of detectable difference does not imply that 501 

algal communities in each lake did not change from season to season; rather, this result 502 

suggests that generalizations about “winter” or “summer” taxa are difficult to make at the 503 

coarse level of taxonomic grouping we used. Moreover, it is rare for monitoring programs 504 

to quantify picoplankton, which constitute substantial portions of algal communities in 505 

summer and winter (Callieri & Stockner 2002; Bondarenko et al. 2012), such that their 506 

contributions to our results are unknown. Previous studies indicate that many if not all 507 

lakes do harbor relatively distinct winter and summer algae, frequently with differences 508 

occurring at species level (Kozhova & Izmest’eva 1998; Dokulil et al. 2014; Özkundakci et 509 

al. 2016), division level (Carey et al. 2016), or by functional traits (Özkundakci et al. 2016) 510 

with winter assemblages characterized by taxa that are more tolerant to cold and low-light 511 

conditions. Despite constraints by cold temperature, light limitation or altered mixing 512 
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under the ice, winter species diversity has been found to be rather high (Salonen et al. 513 

2009). Moreover, for Müggelsee, a lake located in a geographical transition phase of 514 

becoming ice-free more frequently with current and projected climate warming 515 

(Livingstone and Adrian 2009) it has been shown that different phytoplankton 516 

communities were favored across a gradient of mild to strong winter severity, associated 517 

with the key functional traits of motility, nutritional mode (autotrophy, heterotrophy, 518 

mixotrophy) and the ability to form resting stages (Özkundakci et al. 2016). 519 

As algal communities adjust to ice cover, seasonal shifts in higher trophic levels such 520 

as zooplankton would also be anticipated. In this study, average winter zooplankton 521 

density declined to roughly one third that of summer - lower but still substantial enough to 522 

suggest that many of these relatively short-lived grazers actively feed and reproduce under 523 

ice. In the absence of live primary producers or residual producer biomass, presence of 524 

zooplankton under the ice can be explained by the consumption of other carbon sources 525 

such as chemolithotrophs (e.g., methane-oxidizing bacteria), or detritus. For example, 526 

planktonic heterotrophs and phototrophs, and benthic algae under the ice can provide 527 

alternative diet sources throughout winter for zooplankton in some lakes (Karlsson & 528 

Säwström 2009; Rautio et al. 2011; Hampton et al. 2015), while cyclopoids may prey on 529 

other zooplankton (Ventura & Catalan 2008). Further, as in marine systems (Lee et al. 530 

2006), some freshwater grazers may be able to use lipid stores accumulated in prior 531 

seasons; lipid percentage in zooplankton samples collected from a lake in northern Finland 532 

varied from over 60% in early winter to approximately 20% in late winter (Syväranta & 533 

Rautio 2010). 534 
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The composition of crustacean zooplankton differed across seasons, with summer 535 

characterized by more cladocerans such as Daphnia. These taxa are generally associated 536 

with greater presence in summer months, with temperature and photoperiod offering cues 537 

for hatching, and growth fueled by higher temperature and food availability (Adrian et al. 538 

2006). Even so, as we observed for phytoplankton, it seems likely that many differences 539 

between summer and winter zooplankton community composition may be lake-specific, 540 

species-specific or better captured by functional trait grouping. Many zooplankton are 541 

strict diapausing species that disappear from the water column into sediments during 542 

winter (Nilssen & Elgmork 1977; Ventura & Catalan 2005; Larsson & Wathne 2006), but 543 

several copepod species in high-latitude lakes of Europe and Canada have been shown to 544 

reach peak density in mid-winter (Rigler et al. 1974; Rautio et al. 2000; Scharfenberger et 545 

al. 2013) undergoing diapause during summer. Further, a variety of rotifers are well known 546 

to proliferate under ice (e.g., Pennak 1968; Dokulil & Herzig 2009; Virro et al. 2009; Melnik 547 

et al. 2008). Other studies also report persisting populations of Daphnia under the ice 548 

(Snow 1972; Larsson & Wathne 2006; Slusarczyk 2009) but data are still somewhat scarce. 549 

Our study suggests that when aggregating species to coarse taxonomic groups we may see 550 

some expected differences, but will miss out on the complexity of plankton composition, 551 

dynamics and functionality illustrated in the few detailed single-lake winter studies. It is 552 

not necessarily the overall abundance or biomass of major taxonomic groups which differ 553 

between seasons or change with global warming – but the species per se and the relative 554 

species composition (reviewed in Adrian et al. 2009). While this is well known for summer, 555 

information on species and functional trait composition during winter is indeed scarce. 556 

Given that the ice itself provides a vast potential substrate for attached algae and an 557 
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associated community of metazoans (Bonderenko et al. 2012), and that common sampling 558 

methods do not target this microhabitat, a major advance in winter limnology would be the 559 

broader assessment of primary producers at this ice-water interface where some lakes 560 

have shown extraordinarily high algal biomass and activity (e.g. Timoshkin 2001; 561 

Bondarenko et al. 2012; Twiss et al. 2012). Further, shifts from autotrophy to mixotrophy 562 

and heterotrophy clearly occur in some communities under ice (e.g. Rhode 1955, 563 

Özkundakci et al. 2016), and examining how this trait varies from winter to summer likely 564 

will yield important insights for ecosystem-level carbon cycles.  565 

TDN and TN were higher under ice based on both our cross-lakes approach (Table 566 

1) and a within-lakes time series approach (Table 2), while winter DOC was variable but 567 

more similar to that of summer. The higher concentrations of dissolved N likely reflect 568 

winter nutrient mineralization (Cornett & Rigler 1979; Nürnberg et al. 1986, Catalan 1992) 569 

providing continued N inputs, while dissolved N uptake may be lower under winter 570 

conditions due to low temperature and light, and possibly less denitrification. More 571 

specifically, these results indicate that within the first few meters of the water column, 572 

dissolved N accumulates disproportionately under ice relative to P, especially in shallower 573 

lakes according to the regression tree analysis. A possible explanation is that benthic N 574 

mineralization and nitrification dominate winter N cycles in shallow lakes, whereas the 575 

higher water volume:surface area ratios in deeper lakes may limit N mineralization per 576 

unit volume and perhaps increase the role of pelagic uptake by phytoplankton. While the 577 

cross-lakes approach (Table 1) suggested that winter DOC was similar to summer on 578 

average, the regression tree analysis indicated DOC was unique among our variables, with 579 

opposing patterns in two distinct lake groups. More specifically, larger lakes (>0.373 km2) 580 
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had lower DOC in winter, while smaller lakes (<0.373 km2) had higher DOC in winter, 581 

especially those occurring at lower elevation (<366 m). These smaller, lower elevation 582 

lakes also tended to have higher DOC overall, possibly resulting in especially dark 583 

conditions under ice. The dynamics of DOC can be influenced by multiple interacting 584 

factors such as lower terrestrial carbon input during cold winters (Lepistö et al. 2014), 585 

sustained benthic metabolism, uptake of DOC by bacteria (Tulonen et al. 1994), and 586 

photodegradation (Wetzel 2001), but few studies have partitioned DOC sources and 587 

processing during winter. DOC dynamics under ice clearly represent a key area for future 588 

research.  589 

In revising the PEG model, Sommer et al. (2012) speculate that winter activity 590 

should have effects on phytoplankton and zooplankton in the subsequent season; indeed, 591 

we found evidence for strong winter-summer linkage for some lakes and variables. In lakes 592 

that had longer time series, such as the Laurentian Great Lakes, northern Wisconsin lakes, 593 

northern Europe lakes, and Canadian lakes, the influence of winter conditions on the 594 

following summer’s value differed among variables. Winter and summer were often 595 

negatively related, such that high winter values were associated with low values from the 596 

adjacent summer, or low winter values were associated with high values from the adjacent 597 

summer (Fig. S5, Fig. S6, Table S5). Among variables in our analysis, these negative cross-598 

seasonal relationships were particularly frequent for zooplankton density and chl a, 599 

although several other variables also had negative winter-summer correlations in >20% of 600 

the available time series. In the case of chl a, one explanation for antagonistic winter-601 

summer dynamics is that high winter production may reduce the pelagic nutrient pool, 602 

strengthening P limitation or Si limitation in the following summer, in turn reducing 603 
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summer production. For zooplankton, one possible explanation for negative winter-604 

summer correlations could be that high prior zooplankton abundance or composition 605 

reduces the availability of readily-ingestible phytoplankton at the beginning of the next 606 

season. Many studies have suggested that overwintering populations can boost summer 607 

populations and vice versa (e.g. Sommer et al. 2012). A clear next step would be to examine 608 

temporal trends at the population level for zooplankton. Overall, evidence is increasing 609 

among independent studies for the prevalence of carryover between seasons. Coherent 610 

responses in algal and zooplankton phenology associated with conditions related to the 611 

winter North Atlantic Oscillation, which determines winter weather conditions across large 612 

parts of Europe, provide well studied examples (Weyhenmeyer et al. 1999; Gerten & Adrian 613 

2000; Straile et al. 2003; Blenckner et al. 2007; Straile et al. 2012). Similarly, the severity of 614 

winter influenced spring nutrient concentrations in Lake Peipsi (Blank et al. 2009). 615 

Altogether such seasonal connections strongly favor previous calls to “close the loop” 616 

(Salonen et al. 2009) and study the full annual cycle in order to understand lake dynamics, 617 

particularly as lake temperature rises worldwide (O’Reilly et al. 2015). Though winter 618 

conditions often present logistical challenges to field sampling, we should dismiss 619 

opportunities that are within reach and could greatly increase our basic understanding of 620 

winter ecology. 621 

 622 

Implications 623 

We are losing ice without a deep understanding of what ecological processes are at 624 

stake. Our synthesis demonstrates that under-ice environments in lakes are biologically 625 

dynamic, and that in some cases understanding winter can help to predict summer 626 
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conditions, highlighting the importance of expanding our knowledge of under-ice 627 

dynamics. Climate change is already altering lake conditions by increasing summer water 628 

temperatures (O’Reilly et al. 2015) and decreasing winter ice duration (Magnuson et al. 629 

2000; Benson et al. 2012; Shuter et al. 2013). While our study identifies some of these basic 630 

patterns across and within lakes, how climate change will influence seasonal differences 631 

and connections, as well as the nature of any feedbacks associated with these potential 632 

changes, remains unclear. Long-term changes in lake ice already have been associated with 633 

shifts in the timing of under-ice phytoplankton blooms (Adrian et al. 1999; Blenckner et al. 634 

2007). Here, paleolimnology may offer useful insights into how lakes responded during 635 

periods of warming, through the analysis of microfossils in sedimentary records. For 636 

example, Smol et al. (2005) show that global warming over the past 150 years has resulted 637 

in wide-scale reorganization of circumpolar lake ecosystems through shortening of the 638 

winter season, with highest changes in beta-diversity occurring at the most northern 639 

latitudes. Over longer timescales, declining winter ice conditions, inferred from 640 

chrysophyte cysts, suggest that European Pyrenees lakes gradually warmed from the early 641 

Holocene to c. 4000 years ago (Pla & Catalan 2005). While in ancient lakes such as Baikal, 642 

we can look to previous warm periods such as the Last Interglacial (125,000 years ago) 643 

which reveal a decline in ice-associated diatoms, but greater abundance in species that 644 

require either strong mixing conditions or extended summer stratification (Rioual & 645 

Mackay 2005). 646 

Effects of shortening ice duration may present the most straight-forward scenarios 647 

to consider. Predicting the influence of climate change on other ice characteristics, such as 648 

clarity, may be a more difficult task. Observed and anticipated shifts in precipitation, wind, 649 
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and solar radiation patterns associated with climate change are heterogeneous across and 650 

within regions, and can greatly alter the under-ice environment by changing the amount of 651 

incident light that penetrates the ice. Surface snow accumulation of as little as 10 cm can 652 

reduce light penetration to levels insufficient for photosynthesis and convective mixing 653 

that influences algal suspension as well as nutrient concentrations in the photic zone 654 

(Granin et al. 2000; Mackay et al. 2006; Jewson et al. 2009; Salmi & Salonen 2016). As with 655 

many aspects of climate change, the extremes and the timing of shifts, in addition to 656 

average changes, are important (reviewed in Adrian et al. 2012). 657 

Conclusion 658 

Our results suggest two principles that should motivate future work: 1) knowledge 659 

of under-ice conditions within lake ecosystems may help to refine expectations of how lake 660 

conditions, dynamics and functionality will unfold over the next season; 2) under-ice 661 

observations, and measures of seasonal connectivity or dis-connectivity between seasons, 662 

may enhance our ability to detect and understand ecological responses to lake warming, 663 

especially when monitoring is sustained over the long-term. Both of these ideas are 664 

testable, but only in the presence of long-term paired winter-summer lake data. Thus, while 665 

most lakes can be expected to experience shorter winter ice duration and longer summers, 666 

our capability to predict the ecosystem-wide impacts is constrained by our limited 667 

knowledge of under-ice ecology and also accurate down-scaled climate predictions that 668 

allow us to anticipate under-ice physical conditions. However, as our study demonstrates, 669 

lake conditions are not the simple result of weather conditions during the current season 670 

but can also depend upon external and internal forces operating on the ecosystem in 671 

previous seasons. Our capacity to predict effects of warming waters and shortening ice 672 
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duration on lake ecosystems, and the resources they provide to society, will depend in part 673 

on our ability to rapidly accumulate more knowledge of winter ecology and its influence on 674 

ecological processes throughout the year. In the future, we predict that there will be no 675 

more “off-seasons” for freshwater ecologists. 676 
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 1 

Table 1. Winter-summer differences expressed across lakes. Linear mixed models were used, with a random intercept for year.  1060 

 1061 

Variable # winter 

obvs 

# paired 

obvs 

Fitted difference 

(+=higher in winter) 

s.e. of 

difference 

Intercept (typical 

summer value) 

s.e. of 

intercept 

p-value of 

difference 

p-value of 

intercept 

chl a (µg/L) 119 118 -5.06 0.661 9.13 0.612 <<0.001 <<0.001 

phyto biovolume 

(mm3/L) 

17 17 -12.8 1.85 14.7 1.31 <<0.001 <<0.001 

crustacean zoop 

density(no./L) 

36 36 -41.8 5.82 54.8 4.15 <<0.001 <<0.001 

DOC (mg/L) 82 81 -0.0559 0.324 5.53 0.418 0.863 <<0.001 

TDN (µg/L) 78 73 262 44.0 300 38.8 <<0.001 <<0.001 

TDN:TDP (as atoms) 71 66 27.5 40.6 161 29.6 0.498 <<0.001 

TDP (µg/L) 73 72 3.97 3.18 11.8 2.83 0.213 <<0.001 

TN (µg/L) 76 75 161 23.1 552 23.7 <<0.001 <<0.001 

TN:TP (as atoms) 75 74 24.0 6.44 88.3 4.89 <<0.001 <<0.001 

TP (µg/L) 107 106 -1.35 1.95 27.1 1.98 0.488 <<0.001 

water temp (°C) 113 107 -15.1 0.19 16.2 0.202 <<0.001 <0.001 

1062 



 1 

Table 2. Summary of winter-summer differences and winter-summer correlations from 1063 

univariate time series of individual lakes. Correlations for summer-into-winter (SW) and 1064 

winter-into-summer (WS) are both shown. Zooplankton groups are referenced here as 1065 

counts L-1 (calculated from reported proportion of total zooplankton density). Note that for 1066 

chl a and phytoplankton density only 3 lakes reported both variables with sufficient data to 1067 

include in our time series analysis, such that patterns are not readily compared between 1068 

these variables. 1069 

  1070 

    Seasonal difference 

present 
(% of time series) 

Sign of summer-winter slope* 
(% of time series) 

Variable # of time 
series 

winter> 

summer 
winter< 
summer 

  SW pos SW neg WS pos WS neg Any pos 

or neg 

chl a 34 9 50 0 32 0 26 47 

phyto density 4 0 100 25 0 25 0 50 

crustacean 

zooplankton 

density  

11 0 91 0 18 0 9 18 

DOC 26 12 23 0 15 0 4 19 

TDN 14 79 7 0 43 0 0 43 

TDP 14 14 0 0 21 0 14 36 

TN 30 70 3 0 33 3 10 47 

TP 33 21 21 0 18 0 12 30 

water temp 20 0 100 5 0 5 5 15 

  1071 

* Sign of the summer-winter slope determined using detrended data and AIC selection. 1072 
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Figures 1082 

 1083 

 1084 

 1085 

Figure 1. Map of lakes/sampling stations included in the full synthesis under-ice dataset 1086 

(i.e., “primary data”) and the published literature review. See Figure S2 for comparison of 1087 

aggregated chl a between primary data and published literature samples. 1088 
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 1099 

 1100 

Figure 2. Average ice-on (winter) versus ice-off (summer) conditions across lakes for major 1101 

limnological variables. Boxplots show all reported available ice-on and ice-off data. Each 1102 

point represents the cross-year average from one sampling location; color indicates 1103 

latitude (absolute). Scatterplots show the paired ice-on-ice-off values at a given each 1104 

location. P-values are from lme models. Scales are logarithmic. 1105 
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 1108 

 1109 

 1110 

Figure 3. Average community composition for major phytoplankton and crustacean 1111 

zooplankton groups during the winter and summer seasons, expressed as a proportion of 1112 

total density. 1113 

  1114 
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 1116 

Figure 4. Example time series that demonstrate the temporal patterns encountered for 1117 

different lakes and variables. Panel 1: first order autoregressive structure, SUVA in 1118 

Sparkling Lake, Wisconsin, USA; 2: first order autoregressive structure with moving 1119 

average, DOC in Buffalo Pound Lake, Saskatchewan, Canada; 3: seasonal difference, chl a in 1120 

Big Muskellunge Lake, Wisconsin, USA; 4: seasonal difference with moving average, TP in 1121 

Allequash Lake, Wisconsin, USA; 5: seasonal difference with first order autocorrelation 1122 

structure and moving average, TN in Lake Superior at Thunder Bay, Ontario, Canada.  1123 


