

1 **Ecology under lake ice**

2

3 Stephanie E. Hampton¹, Aaron W. E. Galloway², Stephen M. Powers¹, Ted Ozersky³, Kara H.
4 Woo¹, Ryan D. Batt⁴, Stephanie G. Labou¹, Catherine M. O'Reilly⁵, Sapna Sharma⁶, Noah R.
5 Lottig⁷, Emily H. Stanley⁸, Rebecca L. North⁹, Jason D. Stockwell¹⁰, Rita Adrian¹¹, Gesa A.
6 Weyhenmeyer¹², Lauri Arvola¹³, Helen M. Baulch^{9, 14}, Isabella Bertani¹⁵, Larry L. Bowman,
7 Jr.¹⁶, Cayelan C. Carey¹⁷, Jordi Catalan¹⁸, William Colom-Montero¹², Leah M. Domine¹⁹,
8 Marisol Felip²⁰, Ignacio Granados²¹, Corinna Gries⁸, Hans-Peter Grossart^{22, 23}, Juta
9 Haberman²⁴, Marina Haldna²⁴, Brian Hayden²⁵, Scott N. Higgins²⁶, Jeff C. Jolley²⁷, Kimmo K.
10 Kahilainen²⁸, Enn Kaup²⁹, Michael J. Kehoe^{9, 14}, Sally MacIntyre³⁰, Anson W. Mackay³¹,
11 Heather L. Mariash³², Robert M. McKay³³, Brigitte Nixdorf³⁴, Peeter Nõges²⁴, Tiina Nõges²⁴,
12 Michelle Palmer³⁵, Don C. Pierson¹², David M. Post¹⁶, Matthew J. Pruett¹, Milla Rautio³⁶,
13 Jordan S. Read³⁷, Sarah L. Roberts³⁸, Jacqueline Rücker³⁴, Steven Sadro³⁹, Eugene A. Silow⁴⁰,
14 Derek E. Smith⁴¹, Robert W. Stern³, George E. A. Swann³⁸, Maxim A. Timofeyev⁴⁰, Manuel
15 Toro⁴², Michael R. Twiss⁴³, Richard J. Vogt⁴⁴, Susan B. Watson⁴⁵, Erika J. Whiteford⁴⁶, and
16 Marguerite A. Xenopoulos⁴⁴

17

18 1. Center for Environmental Research, Education and Outreach, Washington State University, Pullman WA,
19 USA

20 2. Oregon Institute of Marine Biology, University of Oregon, Charleston OR, USA

21 3. Department of Biology & Large Lakes Observatory, University of Minnesota Duluth, Duluth MN, USA

22 4. Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick NJ, USA

23 5. Department of Geography-Geology, Illinois State University, Normal IL, USA

24 6. Department of Biology, York University, Toronto ON, Canada

25 7. Center for Limnology, University of Wisconsin, Boulder Junction WI, USA

26 8. Center for Limnology, University of Wisconsin, Madison WI, USA

27 9. Global Institute for Water Security, University of Saskatchewan, Saskatoon SK, Canada

28 10. Rubenstein Ecosystem Science Laboratory, University of Vermont, Burlington VT, USA

29 11. Department of Ecosystem Research, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany

30 12. Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden

31 13. Lammi Biological Station, University of Helsinki, Lammi, Finland

32 14. School of Environment and Sustainability, University of Saskatchewan, Saskatoon SK, Canada

33 15. Water Center, Graham Sustainability Institute, University of Michigan, Ann Arbor MI, USA

34 16. Department of Ecology and Evolutionary Biology, Yale University, New Haven CT, USA

35 17. Department of Biological Sciences, Virginia Tech, Blacksburg VA, USA

36 18. CREAF, Consejo Superior de Investigaciones Científicas, Cerdanyola, Spain

37 19. Department of Biology, University of St. Thomas, St. Paul MN, USA

38 20. Department of Ecology, Universitat de Barcelona, Barcelona, Spain

39 21. Centre for Research, Monitoring and Evaluation, Sierra de Guadarrama National Park, Rascafría, Spain

40 22. Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany

41 23. Institute for Biochemistry and Biology, Potsdam University, Potsdam, Germany

42 24. Centre for Limnology, Estonian University of Life Sciences, Tartu, Estonia

43 25. Department of Biology, University of New Brunswick, Fredericton NB, Canada

44 26. IISD Experimental Lakes Area, Winnipeg MB, Canada

45 27. Columbia River Fisheries Program Office, U.S. Fish & Wildlife Service, Vancouver WA, USA

46 28. Department of Environmental Sciences, University of Helsinki, Helsinki, Finland

47 29. Institute of Geology, Department of Isotope Paleoclimatology, Tallinn University of Technology, Tallinn, Estonia

48 30. Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara CA, USA

53 31. Department of Geography, University College London, London, UK

54 32. National Wildlife Research Centre, Science and Technology Division, Environment and Climate Change

55 Canada, Ottawa ON, Canada

56 33. Department of Biological Sciences, Bowling Green State University, Bowling Green OH, USA

57 34. Department of Freshwater Conservation, Brandenburg University of Technology Cottbus - Senftenberg,

58 Bad Saarow, Germany

59 35. Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment and Climate

60 Change, Toronto ON, Canada

61 36. Department of Fundamental Sciences, Université du Québec à Chicoutimi, Chicoutimi QC, Canada

62 37. Office of Water Information, U.S. Geological Survey, Middleton WI, USA

63 38. School of Geography, University of Nottingham, Nottingham, UK

64 39. Department of Environmental Science and Policy, University of California Davis, Davis CA, USA

65 40. Institute of Biology, Irkutsk State University, Irkutsk, Russian Federation

66 41. Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora CO, USA

67 42. Department of Aquatic Environment, Centre for Hydrographic Studies CEDEX, Madrid, Spain

68 43. Department of Biology, Clarkson University, Potsdam NY, USA

69 44. Department of Biology, Trent University, Peterborough ON, Canada

70 45. Canada Centre for Inland Waters, Environment and Climate Change Canada, Burlington ON, Canada

71 46. Department of Geography, Loughborough University, Loughborough, UK

72

73

74

75

76

77

78

79

80 **Statement of Authorship**

81

82 SEH conceived of the project idea. SEH, AWEG, and KHW initiated the project and provided
83 oversight during data collection, integration, and aggregation. SEH, EHS, and TO served on
84 the steering committee. KHW, AWEG, and SGL led QA/QC on the submitted data sets. SMP,
85 TO, RDB, CMO, SS, NRL, EHS, RLN, JDS, RA, and GAW performed exploratory analyses and
86 helped determine scope and structure of manuscript. SMP, SEH, and SGL performed final
87 analyses and designed figures and tables. All other listed authors aggregated data for
88 submission to this project and contributed to interpretation of results and final manuscript
89 text.

90

91 **Manuscript summary**

92 Abstract: 198 words

93 Main body: 6876 words

94 Tables: 2

95 Figures: 4

96 References: 101

97 Keywords: lake, aquatic ecosystem, freshwater, winter ecology, seasonal, data synthesis,
98 plankton, limnology, long-term, time series

99

100

101 **Abstract**

102 Winter conditions are rapidly changing in temperate ecosystems, particularly for those that
103 experience periods of snow and ice cover. Relatively little is known of winter ecology in
104 these systems, due to a historical research focus on summer "growing seasons." We
105 executed the first global quantitative synthesis on under-ice lake ecology, including 36
106 abiotic and biotic variables from 42 research groups and 101 lakes, examining seasonal
107 differences and connections as well as how seasonal differences vary with geophysical
108 factors. Plankton were more abundant under ice than expected; mean winter values were
109 42.8% of summer values for chlorophyll *a*, 15.8% of summer phytoplankton biovolume,
110 and 34.4% of summer zooplankton density. Dissolved nitrogen concentrations were
111 typically higher during winter, and these differences were exaggerated in smaller lakes.
112 Lake size also influenced winter-summer patterns for dissolved organic carbon (DOC), with
113 higher winter DOC in smaller lakes. At coarse levels of taxonomic aggregation,
114 phytoplankton and zooplankton community composition showed few systematic
115 differences between seasons, although literature suggests that seasonal differences are
116 frequently lake-specific, species-specific, or occur at the level of functional group. Within
117 the subset of lakes that had longer time-series, winter influenced the subsequent summer
118 for some nutrient variables and zooplankton biomass.

119

120

121

122

123 **Introduction**

124

125 Reduced ice cover on lakes and rivers worldwide (Magnuson et al. 2000; Benson et
126 al. 2012) highlights an urgent need for research focused on under-ice ecosystem dynamics
127 and their contributions to whole-ecosystem processes. Recently a global synthesis of
128 summer lake temperature trends in lakes (O'Reilly et al. 2015) revealed that winter ice
129 cover is a major force in determining the characteristics of summer warming trends,
130 demonstrating the cascading effects between seasons. Cross-seasonal cascades can involve
131 both abiotic and biotic variables, such as when winter ice characteristics influence spring
132 and summer algal growth (e.g., Gerten & Adrian 2000; Straile 2002; Adrian et al. 2006;
133 Blenckner et al. 2007). Consequently, in water bodies that freeze, the timing and physical
134 characteristics of ice cover are likely to drive some of the most important biological
135 changes for lakes overall (Salonen et al. 2009; Moore et al. 2009; Benson et al. 2012).

136 Marine research is ahead of freshwater research in studies of under-ice ecology,
137 providing compelling evidence that winter conditions and changes in ice phenology play an
138 important role in sea-ice system dynamics (Arrigo & Thomas 2004; Arrigo et al. 2008;
139 Meier et al. 2014). The presence of ice in marine systems drives primary productivity that
140 is critical for food webs (Lizotte 2001; Grebmeier 2012); for example, ice-associated algae
141 in the Antarctic contribute 25-30% of total annual productivity for the region (Arrigo &
142 Thomas 2004). But for lakes, there is very little information about the physics,
143 geochemistry, and biology under ice, and this knowledge gap severely limits our ability to
144 predict how changes in winter conditions will affect the ecology and productivity of inland
145 waters. A recent study reported that only 2% of peer-reviewed freshwater literature has

146 included under-ice lake processes (Hampton et al. 2015). The paucity of under-ice research
147 in freshwater systems is especially surprising when one considers that half of the world's
148 lakes periodically freeze, i.e. slightly more than 50 million lakes (Verpoorter et al. 2014).
149 Also, the majority of lakes in the world are located between 60° and 66° N where annual ice
150 cover duration currently averages more than 150 days (Weyhenmeyer et al. 2011).

151 The initial and highly influential model of the plankton ecology group (the PEG
152 model; Sommer et al. 1986) hypothesized that winter in ice-covered lakes is a time of
153 limited, if any, activity by primary or secondary producers. The widespread use of the term
154 "growing season" to describe summer months in temperate lakes reflects the prevailing
155 viewpoint of winter as an inactive period. In general, freshwater scientists have assumed
156 that overall biological activity under lake ice is inconsequential or that under-ice primary
157 producers resort to heterotrophy or dormancy, as has been observed in some studies (e.g.,
158 McKnight et al. 2000; Leppäranta 2015), particularly for high-latitude systems with heavy
159 snow coverage. While the PEG model has since been revised (Sommer et al. 2012) with a
160 call for additional winter work, areas of uncertainty range from the identity and activity of
161 plankton to ecosystem-level processes such as whole-lake metabolism and greenhouse gas
162 emissions. The lake studies that have included under-ice work strongly suggest that winter
163 food webs and physical processes are both active and complex, but with few patterns that
164 are readily generalizable (reviewed in Salonen et al. 2009; Bertilsson et al. 2013;
165 Bruesewitz et al. 2015; Hampton et al. 2015).

166 Prior work indicates that winter under-ice conditions can be very similar to, or very
167 different from, the ice-free summer conditions. Depending upon snow characteristics, ice
168 can allow for up to 95% of photosynthetically active radiation (PAR) transmission

169 (Bolsenga & Verderploeg 1992), fueling winter algal blooms that rival those of summer
170 (e.g., Jewson et al. 2009). In Lake Erie, phytoplankton growth and loss rates during winter
171 can be similar to those of summer (Twiss et al. 2014). For certain lakes, the composition of
172 phytoplankton communities is different under ice, dominated by smaller species (e.g.,
173 Wetzel 2001), or conversely dominated by large ice-associated filamentous diatoms (e.g.,
174 Katz et al. 2015; Beall et al. 2016), whereas other lakes do not appear to have distinct
175 seasonal changes in phytoplankton community composition (Dokulil et al. 2014). Although
176 zooplankton biomass generally appears to be lower under ice, changes in community
177 composition can be highly variable across lakes (Dokulil et al. 2014). Even more scarce is
178 information about nutrient and dissolved organic carbon concentrations under the ice that
179 may help to drive many of these plankton dynamics (but see Özkundakci et al. 2016).

180 The pathways through which winter conditions may affect lake ecology throughout
181 the year are similarly diverse. Winter ice conditions have been observed to alter
182 phytoplankton biomass and composition in the subsequent ice-free season (Weyhenmeyer
183 et al. 2008). For zooplankton, early emergence from diapause, synchronized with the
184 timing of warming at the end of winter can be associated with higher summer density for
185 zooplankton grazers (Gerten & Adrian 2000; Adrian et al. 2006). Such carry-over between
186 seasons is not restricted to winter's influence on summer, of course, and there is evidence
187 that under-ice zooplankton dynamics can depend in part on late summer zooplankton
188 biomass (Dokulil et al. 2014). The diversity of responses found by under-ice studies
189 suggests that a synthesis of existing knowledge is greatly needed and would help identify
190 key next steps in winter limnology as well as promote productive collaborations (Hampton
191 et al. 2015).

192 Research that builds a knowledge base about the processes occurring over nearly
193 half the annual cycle for approximately half of the world's lakes is a worthy challenge, with
194 potentially global repercussions. Here we explore differences between winter and summer
195 conditions both across and within lakes, focusing on dynamics of phytoplankton,
196 zooplankton, nutrients, and dissolved organic carbon. We address two overarching
197 questions on under-ice ecology: 1) What is the magnitude and direction of ecological
198 change from winter to summer; and 2) For which variables and to what extent are winter
199 and summer seasons connected, i.e., what is the influence of winter conditions on the
200 following summer season, and the influence of summer conditions on the following winter?
201 We hypothesized that winter biomass and density of phytoplankton and zooplankton are
202 significantly lower than that of summer, due to a low-light environment unfavorable for
203 emergence or growth (e.g., Vincent & Vincent 1982; Cáceres & Schwalbach 2001; Jewson et
204 al. 2009), low temperature (e.g., Özkundakci et al. 2016), or nutrient limitation (e.g.,
205 O'Brien et al. 1992; Özkundakci et al. 2016), and that these differences would be modified
206 by geophysical characteristics of lakes. Further, we hypothesize that lake conditions can
207 carry over across seasons, as suggested in the revised PEG model (Sommer et al. 2012;
208 Domis et al. 2013), such that an understanding of winter conditions will improve
209 understanding of summer conditions, and vice versa. The presence of seasonal carry-over
210 would indicate that winter is not simply a "reset" that leads back to similar spring ice-out
211 conditions year after year, and would suggest revisions to current field and laboratory
212 approaches currently focused on "growing season" dynamics.
213
214

215

216 **Methods**

217 *Data Acquisition*

218 Data were acquired from both an initial literature review to provide baseline
219 expectations for ecological patterns and, much more comprehensively, from a collation of
220 primary data.

221 Literature review. As an initial step toward synthesizing knowledge, we compiled
222 under-ice data for chlorophyll *a* (chl *a*) concentration from a literature survey. We found 14
223 papers for which data would be readily compared to those solicited from primary data
224 contributors (based on criteria in Supplemental Information). From these papers, we
225 compiled data from 17 lakes (Fig. 1), extracting data from text, tables, or from figures. For
226 the literature review effort, we were unable to compare ice-on (winter) and ice-off
227 (summer) data, as only 7 of the lakes in these papers also included biological data during
228 the summer season.

229 Primary data collation. The scientific community was solicited for data on physical,
230 chemical, and biological variables of lakes and reservoirs (hereafter together called “lakes”)
231 during ice cover. We used an open call for participation through electronic mailing lists and
232 professional networks, and then interacted extensively with data contributors. In total, we
233 collated winter under-ice and summer observations between 1940 and 2015 for 101 lakes
234 at 135 unique sampling locations across wide gradients of latitudes, production, and
235 trophic status (Fig. 1). For the Laurentian Great Lakes, most sampling stations were located
236 nearshore or in bays.

237 Contributors of primary data used a structured template to report values from
238 winter periods when the lake had complete ice cover (hereafter “winter”), and summer
239 periods when the lake was completely open and, in dimictic systems, stratified (hereafter
240 “summer”). For 10 lakes that were polymictic or lack reliable summer stratification,
241 summer data are from a representative open water period chosen by the primary data
242 contributors, usually midsummer. We asked researchers to provide data aggregated from
243 the photic zone, for each lake and season. Across all lakes, the median sample depth during
244 winter was 2.0 m, and the mean ratio of sample depths (winter:summer) was 1.01. We did
245 not include winter data from those years that did not have ice cover (e.g., Müggelsee
246 sometimes does not freeze). Each seasonal value used in our analysis was computed by the
247 individual data providers (Box S1; Fig. S1). The number of within-season sampling events
248 was reported by researchers for 71% of our compiled seasonal averages; of these, 64% of
249 the winter averages and 79% of the summer averages were based on 3 or more sampling
250 events. When a lake had multiple sampling stations, the stations were generally treated
251 independently. Exceptions were cases where researchers specified multiple stations that
252 were functionally similar and could be pooled in aggregate. After pooling the functionally
253 similar stations, the majority of lakes (84 of 101 lakes) did not retain multiple distinct
254 stations for analyses (see SI).

255 Data availability differed among lakes and variables. For several major variables,
256 paired winter and summer observations were present in at least 30 stations, often over 10
257 years. All stations had at least one variable with both winter and summer data, and the
258 variable-specific sample sizes and periods of record are in Table S1. The median period of
259 record for most variables was 2-3 years. Variables included water temperature (107

unique stations with paired winter-summer data), chlorophyll *a* (chl *a* as $\mu\text{g L}^{-1}$; 118 stations), total phosphorous (TP as $\mu\text{g L}^{-1}$; 106 stations), total dissolved phosphorus (TDP as $\mu\text{g L}^{-1}$; 72 stations), total nitrogen (TN as $\mu\text{g L}^{-1}$; 75 stations), total dissolved nitrogen (TDN as $\mu\text{g L}^{-1}$; 73 stations), TN:TP (atomic ratio; 74 stations), TDN:TDP (atomic ratio; 66 stations), and dissolved organic carbon (DOC as mg L^{-1} ; 81 stations). Our reported values for TDP and TDN are conservative, because not all researchers performed the digestion step. Nonetheless, because common nutrient methods were usually used at a given lake, our approach still captures the relative difference between seasons (winter-summer), except in lakes where the dissolved organic fraction varies substantially between seasons. In addition, 36 stations had data for total zooplankton density (individuals L^{-1}). Group-specific zooplankton counts (proportion of total abundance) for calanoid, cyclopoid, *Daphnia*, rotifer, other cladoceran, and unspecified other zooplankton were also available. Methodology for zooplankton data collection differs across programs to a degree that complicates comparisons across lakes for rotifers and unspecified other zooplankton, such that those data were not analyzed here and total zooplankton densities were accordingly adjusted as well. Subsequent references to zooplankton density include *Daphnia*, other cladocerans, cyclopoid and calanoid copepods for all 36 stations. For phytoplankton biovolume $\text{mm}^{-3} \text{L}^{-1}$, there were data for 17 stations. Group-specific phytoplankton counts (proportion of total abundance) for chlorophyte, cryptophyte, cyanophyte, bacillariophyte, dinoflagellate, and other phytoplankton were available at 17 stations. Specific ultraviolet absorbance (SUVA, $\text{L mg C}^{-1} \text{m}^{-1}$), and color (platinum units) were also available at some stations. Although we solicited benthic data, only a few researchers provided data for any type of benthic variable, suggesting a widespread lack of benthic winter sampling. The lake-

283 specific averages for winter and summer conditions, by variable, are shown in Table S2. For
284 chl *a*, TP, TDP, TN, TDN, DOC, and zooplankton density, more than 25% of stations had a
285 period of record ≥ 10 years. The complete dataset is available in the Knowledge Network
286 for Biocomplexity (<https://knb.ecoinformatics.org/>).

287 *Data analysis*

288 We approached data analysis in two ways. The first approach was to quantify the
289 average winter-summer differences across all lakes in the data set, identifying major
290 physical features of lakes that affect the magnitude of observed winter-summer differences.
291 The second approach was to examine univariate seasonal dynamics within lakes, including
292 winter-summer differences and winter-summer correlations, using the subset of lakes
293 where longer-term (≥ 10 years) time series were available.

294 Winter-summer differences across lakes. We calculated the mean winter value and
295 the mean summer value for every station and variable, and examined mean winter-summer
296 differences across all lakes in the data set. Magnitude, direction and significance of
297 differences between winter and summer were determined using linear mixed effect (LME)
298 modeling with year as a random intercept (Bates et al. 2015). For the multivariate plankton
299 compositional data, we used permutational analysis of variance (PERMANOVA; Anderson
300 2001) from the vegan package in R ("adonis" function, Oksanen et al. 2016; R Core Team
301 2016) on sites that had complete cases for both winter and summer communities. To
302 discern major physical variables correlated with the magnitude and sign of winter-summer
303 differences, we used a regression tree approach (rpart package in R, Therneau et al. 2015,
304 with applications from Breiman et al. 1984). We used the variable-specific average winter-
305 summer difference as the response variable; the candidate explanatory variables were lake

306 area, lake maximum depth, latitude (absolute), and elevation. Trees were cross-validated
307 and pruned using the complexity parameter value which minimized the cross-validated
308 error. Mean winter-summer difference and standard error of the difference were
309 calculated for each branch of the regression trees. We also used a regression tree approach
310 to analyze average winter-summer difference in plankton community composition as a
311 matrix response (mvpard package in R, Therneau et al. 2014), for both the crustacean
312 zooplankton community and the phytoplankton community data. Candidate explanatory
313 variables included the same four variables as previous trees, as well as winter-summer
314 difference in water temperature and, for zooplankton, the summer chl *a*.

315 Due to differences in the available period of record, the overall winter average can
316 represent 30+ years for some lakes and variables, while for others the overall average
317 represents only one year of data. We expected that variation in sample size might create
318 noise that could obscure differences (Type 2 error), but not suggest differences that do not
319 exist (Type 1 error).

320 Winter-summer differences within lakes. For time series that were available, we
321 examined within-lake differences between winter and summer. For this we used only time
322 series that had ≥ 10 winter values, meaning at least 10 years of data and 20 values overall.
323 To allow a robust examination of winter-summer correlations (below), we used contiguous
324 portions of each time series, allowing no more than 1 data gap. Before examining
325 differences, every time series was detrended using a 7-point moving average filter (3.5
326 years) to account for longer-term trends, and we confirmed that no significant linear trends
327 remained after filtering. With each detrended time series, summer-winter differences were
328 examined using a simple seasonal model

329 $y_t = b_{ice} * D + b_0 + e$ (1)

330 where b_{ice} is the coefficient describing the winter-summer difference, D is a dummy
331 variable (1 in winter, 0 in summer) that employs the b_{ice} coefficient, b_0 is the intercept
332 (representing the mean summer value), and e is the error term. We then compared the
333 seasonal model (2 parameters) to the simple intercept model (1 parameter, b_0 ,
334 representing the overall mean) using the Akaike Information Criterion corrected for small
335 sample sizes (AIC_c) (Burnham & Anderson 2002). If the seasonal model differed from the
336 simple intercept model by $\Delta AIC_c \geq 2$, we interpreted this result to mean that the time series
337 showed a seasonal difference. Detailed diagnostic plots including raw and detrended time
338 series are provided in Figure S4 for one example lake (Big Muskellunge Lake, chl *a*). For
339 194 of the 238 available time series (82%), residuals from eq. 1 were not autocorrelated at
340 lag 1 according to the Box-Ljung test, and this is demonstrated by the partial
341 autocorrelation plot of the detrended+deseasoned data (Fig. S4). For the other 44 time
342 series, we added a first-order autocorrelated error structure to eq. 1. The percent of time
343 series having winter values greater than summer values, or vice versa, was tabulated by
344 variable.

345 Winter-summer correlations within lakes. Using the same univariate, contiguous,
346 moving-average detrended time series as above (those with >10 winter values), we
347 examined temporal correlations between winter and summer. These included: i)
348 correlations between winter and the previous summer season ($summer_{t-1}$), or summer-
349 into-winter (*SW*) correlations; and ii) correlations between winter and the subsequent
350 summer ($summer_{t+1}$), or winter-into-summer (*WS*) correlations. We determined the sign of
351 seasonal correlations, if present, using a simple model of the detrended data

352
$$Y_{winter,t} = b_{SW} * Y_{summer,t-1} + b_0 + e \quad (2)$$

353 where t is the index of the time series and b_{SW} is the slope of the relationship between
354 winter and the previous summer. If this SW correlation model did not show AIC_c
355 improvement > 2 AIC_c units compared to the intercept model (1 parameter, b_0 , representing
356 the overall mean), the time series was interpreted as not seasonally correlated. We then
357 separately evaluated the corresponding WS correlation model, $Y_{summer,t+1} = b_{WS} * Y_{winter,t} + b_0$
358 $+ e$, also using AIC_c . A minority of these SW and WS correlation models produced
359 autocorrelated residuals, and to these we added a first-order autocorrelated error
360 structure, although this modification did not change the model selection nor the sign of b_{SW}
361 or b_{WS} for any time series. Here a positive WS correlation indicates that high summer values
362 follow high winter values, or low summer values follow low winter values. Alternatively, a
363 negative WS correlation indicates anti-persistence, such that low summer values follow
364 high winter values, or high summer values follow low winter values. As examples, we
365 illustrate the presence/absence of winter-summer correlations for every chl a time series,
366 including SW correlations (Fig. S5) and WS correlations (Fig. S6). The percent of time series
367 having positive/negative SW correlations or positive/negative WS correlations was
368 tabulated by variable (Table S5).

369 **Results**

370 *Seasonal differences across lakes*

371 Indicators of plankton biomass were lower in the winter than during the summer.
372 Across lakes and latitude, average winter chlorophyll a (\pm SE) ($5.87 \pm 0.88 \mu\text{g L}^{-1}$, Fig. 2) in
373 the primary data ranged much more widely than in those from our literature survey
374 (Supplemental Fig. S2), although still significantly lower than that of summer (13.6 ± 2.84

375 $\mu\text{g L}^{-1}$, $p < 0.0001$, Table 1). Using the regression tree approach, the shallowest lakes (max
376 depth < 2.93 m, $n = 13$ lakes) showed greatest disparity in chlorophyll, with summers
377 higher than winters by $52.3 \pm 18.2 \mu\text{g L}^{-1}$ (R^2 for chl a tree = 0.330). Under-ice
378 phytoplankton biovolume averaged about 1/6th that of the summer average ($n=17$,
379 $p < 0.001$ by LME, Table 1). However, at our coarse level of taxonomic aggregation,
380 phytoplankton community composition did not differ significantly between winter and
381 summer when examined across all lakes (PERMANOVA, $p=0.77$; Fig. 3). Across lakes,
382 average zooplankton density ($\pm \text{SE}$) was significantly lower under ice (27.8 ± 11.2
383 individuals L^{-1}) than during summer (110 ± 30.8 individuals L^{-1} ; $p < 0.001$), and winter
384 crustacean zooplankton community composition differed significantly from that of summer
385 (PERMANOVA; $p=0.05$), with cladocerans generally more abundant in summer (Fig. 3).
386 Regression trees did not provide further insights into plankton community shifts,
387 differentiating only two lakes out of 17, and are not discussed further here. The complete
388 list of summary statistics, for every variable, is shown in Table S3. The PERMANOVA
389 statistical outputs are in Table S4.

390 Dissolved N concentrations tended to be higher during winter, and seasonal
391 differences were more prominent for dissolved N than for dissolved P. Across lakes,
392 average ($\pm \text{SE}$) TDN was approximately 2-fold higher under ice ($707 \pm 129 \mu\text{g L}^{-1}$, Fig. 2)
393 than in summer ($375 \pm 62.2 \mu\text{g L}^{-1}$; $p < 0.001$ by lme). The pattern of higher winter TDN
394 appeared particularly pronounced as maximum depth decreased. Regression trees showed
395 that the 7 shallowest lakes (< 2.10 m) had $2070 \mu\text{g L}^{-1}$ higher TDN on average in winter
396 than summer, 7 lakes of intermediate depths ($5.20 < \text{max depth} > 2.10$ m) had TDN winter
397 values that were $758 \mu\text{g L}^{-1}$ higher than summer on average, while the 59 deeper lakes

398 (>5.2m) showed winter TDN values 123 $\mu\text{g L}^{-1}$ higher than summer on average (tree R² =
399 0.722, Fig. S7). TN was also higher during winter ($p < 0.001$, LME-fitted difference of
400 +161 $\mu\text{g L}^{-1}$), likely as a reflection of higher dissolved N, which typically accounted for the
401 majority of the N pool (winter TDN:TN = 0.807 compared to summer TDN:TN = 0.592).
402 Winter and summer did not differ significantly for TP or TDP according to LME models
403 ($p > 0.2$). DOC concentrations did not differ seasonally ($p = 0.863$ by LME). Interestingly,
404 these DOC patterns clearly varied with lake area and elevation (tree R² = 0.538, Fig. S7).
405 Regression trees demonstrated that larger ($\geq 0.373 \text{ km}^2$) lakes had 0.145 mg L⁻¹ lower
406 DOC in winter compared to summer, while smaller ($< 0.373 \text{ km}^2$), low elevation ($< 366 \text{ m}$)
407 lakes (n=19) had 6.69 mg L⁻¹ higher DOC in winter, and similarly small lakes at higher
408 elevations also had 0.810 mg L⁻¹ higher DOC in winter. Regression tree analyses did not
409 produce significant models for plankton density or phosphorus variables.

410 *Winter-summer differences within lakes*

411 In general, within-lake differences between summer and winter were consistent
412 with differences observed across lakes. For example, chl *a* was lower in winter at 17 of the
413 34 sites (50%) that met our longer-term data criteria (Table 2). The summary statistics for
414 each individual time series are in Table S5. Phytoplankton density was also lower in winter
415 compared to summer in 4 of 4 sites. Similarly, zooplankton densities were significantly
416 lower during winter at 10 of 11 sites (91%); the one exception was a bog lake, Trout Bog
417 (USA), which had a relatively low summer zooplankton density and no detectable winter-
418 summer difference. For nutrients, patterns again differed between N and P. Over 70% of
419 the sites had higher winter TDN (11 of 14) and TN (21 of 30), whereas only 14% of sites
420 had higher winter TDP (2 of 14) and 21% had higher TP (7 of 33). Allequash Lake (Fig. 4)

421 provides an example where TP concentration was lower during winter. DOC was lower
422 during winter at 6 of 26 sites (23%), and higher in winter at 3 sites including Trout Bog,
423 USA, with no differences between winter and summer at the other 17 sites (65%). Three
424 variables lacked differences between summer and winter values at >50% of sites (TP, TDP,
425 DOC).

426 *Winter-summer correlations within lakes*

427 From a total of 238 time series for different lakes and variables (Table S5), after
428 accounting for trends, our AIC-based approach detected 94 time series (39%) with some
429 form of correlation between winter and the previous summer, or between winter and the
430 following summer. Several individual variables had seasonal correlations in $\geq 33\%$ of the
431 available time series, including chl *a*, phytoplankton density, TDN, TN, and TDP (Table 2).
432 Negative correlations outnumbered the positive correlations, suggesting seasonal anti-
433 persistence. Positive seasonal correlations were absent for chl *a*, zooplankton density, DOC,
434 TP, TDN, and TDP. For chl *a*, negative winter-into-summer (*WS*) correlations (26% of time
435 series) and summer-into-winter (*SW*) correlations (32%) were both relatively common.
436 For TDN, negative *SW* correlations outnumbered negative *WS* correlations (43% vs. 0%),
437 suggesting summer carry over. Overall, the frequency of these winter-summer negative
438 correlations ranged widely among variables.

439 **Discussion**

440 This global synthesis of under-ice ecology underscores the importance of winter
441 conditions for lake ecology throughout the year. Using multiple approaches, our cross-lake
442 synthesis revealed several clear differences between winter and summer conditions,
443 offering generalizations about winter ecology that have been difficult to infer from prior

444 studies involving one or a few lakes. We also provide new evidence that interseasonal
445 connections are common for several ecological and biogeochemical variables, linking
446 winter to both the previous and subsequent summers. Among our clearest results, primary
447 producers (algae) and consumers (zooplankton) are typically less abundant under ice than
448 in summer, but they maintain substantial populations in winter. Arguably, this may be
449 interpreted as evidence of high winter productivity, and we explore the possibility below.
450 Also clear was the result that winter dissolved nitrogen was consistently higher than
451 summer. While crustacean zooplankton composition showed some general seasonal
452 differences, we found no generalizable differences in phytoplankton community
453 composition between winter and summer at the coarse level of taxonomic aggregation
454 used here. As long-term climate change alters thermal regimes across globally distributed
455 lakes in both summer (O'Reilly et al. 2015) and winter (Magnuson et al. 2000), it is
456 increasingly important to understand how under-ice physical and ecological conditions
457 influence ecology throughout the year. Overall, this work represents an important step
458 towards understanding winter ecology in lakes broadly, as well as the connections to year-
459 round dynamics and whole-lake functionality.

460 Our results indicate seasonal differences in chl *a*, plankton biomass and biovolume,
461 and dissolved nitrogen between winter and summer, both across and within lakes. Despite
462 lower under-ice values, particularly for the shallowest lakes, on average chl *a* was relatively
463 high (42.8% of summer chl *a*) given the shorter photoperiod and variable physical
464 conditions of winter. Indeed, winter levels exceeded those of summer in multiple cases
465 such as Lake Simcoe (Canada), Lake Scharmüetzelsee (Germany), and Fish Lake (USA)
466 which all had more than 10 years of winter data. Previous under-ice lake studies have

467 reported chlorophyll values as high as 154 $\mu\text{g L}^{-1}$ (Twiss et al. 2012). Conversely some
468 lakes have undetectable chlorophyll levels under ice (e.g., Hawes 1985). While the available
469 winter limnology literature provides evidence that lakes can support an abundance of algae
470 under ice - as demonstrated by genetic (e.g., Bashenkhaeva et al. 2015), pigment (e.g.,
471 Catalan et al. 2002), and cell count (e.g., Phillips & Fawley 2002; Katz et al. 2015) data - it is
472 also important to remember that estimates of algal biomass or primary productivity based
473 on chlorophyll can be skewed seasonally. Intracellular pigment content can change with
474 temperature and light conditions (Kirk 2011), such that smaller seasonal differences in
475 chlorophyll could in part be due to light adaptation leading to increased cellular pigment
476 concentrations.

477 In general, light can be the limiting factor for photosynthesis under ice, with ice
478 conditions and overlying snow producing spatially (e.g., Cloern et al. 1992, Arrigo and
479 Thomas 2004) and temporally (e.g., Tanabe et al. 2008; Bruesewitz et al. 2015)
480 heterogeneous transmission of light and altered spectral distribution (Roulet & Adams
481 1986). The timing and characteristics of winter precipitation, wind, temperature variation,
482 and solar radiation influence variability in under-ice light conditions, including the
483 formation of clear congelation ice which can have higher light transmittance than lake
484 water (Leppäranta 2010). When light is sufficient for photosynthesis, the under-ice
485 environment can be hospitable for algal growth; complex under-ice convection can keep
486 nutrients and algae mixed in the photic zone (Kelley 1997; but see Vehmaa & Solonen
487 2009), and in Lake Baikal the ice itself can provide a vast habitat for attached algae to
488 maintain access to light (Timoshkin 2001; Bondarenko et al. 2012). In relatively dark
489 conditions with low primary production, we might anticipate lower oxygen conditions,

490 greater winter accumulation and subsequent contributions of greenhouse gases to the
491 atmosphere, smaller algal and grazer populations available to initiate population growth at
492 ice-out (Sommer et al. 2012), and less ice-associated algae sloughing off to feed the benthos
493 as summer begins (Bondarenko et al. 2006). Because increased intracellular chlorophyll
494 content may be an adaptation to low light conditions, exhibited by many but not all (Felip &
495 Catalan 2000) phytoplankton, we recommend measuring primary productivity directly, if
496 that is the variable of interest, or measuring both cell density and community composition
497 in order to characterize plankton biomass and identity.

498 Phytoplankton biovolume was lower under ice than in the summer on average,
499 consistent with chl *a* values, when all lakes were considered together. However, we did not
500 detect systematic seasonal differences in phytoplankton community composition that
501 could be generalized among all lakes. The lack of detectable difference does not imply that
502 algal communities in each lake did not change from season to season; rather, this result
503 suggests that generalizations about “winter” or “summer” taxa are difficult to make at the
504 coarse level of taxonomic grouping we used. Moreover, it is rare for monitoring programs
505 to quantify picoplankton, which constitute substantial portions of algal communities in
506 summer and winter (Callieri & Stockner 2002; Bondarenko et al. 2012), such that their
507 contributions to our results are unknown. Previous studies indicate that many if not all
508 lakes do harbor relatively distinct winter and summer algae, frequently with differences
509 occurring at species level (Kozhova & Izmest'eva 1998; Dokulil et al. 2014; Özkundakci et
510 al. 2016), division level (Carey et al. 2016), or by functional traits (Özkundakci et al. 2016)
511 with winter assemblages characterized by taxa that are more tolerant to cold and low-light
512 conditions. Despite constraints by cold temperature, light limitation or altered mixing

513 under the ice, winter species diversity has been found to be rather high (Salonen et al.
514 2009). Moreover, for Müggelsee, a lake located in a geographical transition phase of
515 becoming ice-free more frequently with current and projected climate warming
516 (Livingstone and Adrian 2009) it has been shown that different phytoplankton
517 communities were favored across a gradient of mild to strong winter severity, associated
518 with the key functional traits of motility, nutritional mode (autotrophy, heterotrophy,
519 mixotrophy) and the ability to form resting stages (Özkundakci et al. 2016).

520 As algal communities adjust to ice cover, seasonal shifts in higher trophic levels such
521 as zooplankton would also be anticipated. In this study, average winter zooplankton
522 density declined to roughly one third that of summer - lower but still substantial enough to
523 suggest that many of these relatively short-lived grazers actively feed and reproduce under
524 ice. In the absence of live primary producers or residual producer biomass, presence of
525 zooplankton under the ice can be explained by the consumption of other carbon sources
526 such as chemolithotrophs (e.g., methane-oxidizing bacteria), or detritus. For example,
527 planktonic heterotrophs and phototrophs, and benthic algae under the ice can provide
528 alternative diet sources throughout winter for zooplankton in some lakes (Karlsson &
529 Säwström 2009; Rautio et al. 2011; Hampton et al. 2015), while cyclopoids may prey on
530 other zooplankton (Ventura & Catalan 2008). Further, as in marine systems (Lee et al.
531 2006), some freshwater grazers may be able to use lipid stores accumulated in prior
532 seasons; lipid percentage in zooplankton samples collected from a lake in northern Finland
533 varied from over 60% in early winter to approximately 20% in late winter (Syväraanta &
534 Rautio 2010).

535 The composition of crustacean zooplankton differed across seasons, with summer
536 characterized by more cladocerans such as *Daphnia*. These taxa are generally associated
537 with greater presence in summer months, with temperature and photoperiod offering cues
538 for hatching, and growth fueled by higher temperature and food availability (Adrian et al.
539 2006). Even so, as we observed for phytoplankton, it seems likely that many differences
540 between summer and winter zooplankton community composition may be lake-specific,
541 species-specific or better captured by functional trait grouping. Many zooplankton are
542 strict diapausing species that disappear from the water column into sediments during
543 winter (Nilssen & Elgmork 1977; Ventura & Catalan 2005; Larsson & Wathne 2006), but
544 several copepod species in high-latitude lakes of Europe and Canada have been shown to
545 reach peak density in mid-winter (Rigler et al. 1974; Rautio et al. 2000; Scharfenberger et
546 al. 2013) undergoing diapause during summer. Further, a variety of rotifers are well known
547 to proliferate under ice (e.g., Pennak 1968; Dokulil & Herzig 2009; Virro et al. 2009; Melnik
548 et al. 2008). Other studies also report persisting populations of *Daphnia* under the ice
549 (Snow 1972; Larsson & Wathne 2006; Slusarczyk 2009) but data are still somewhat scarce.
550 Our study suggests that when aggregating species to coarse taxonomic groups we may see
551 some expected differences, but will miss out on the complexity of plankton composition,
552 dynamics and functionality illustrated in the few detailed single-lake winter studies. It is
553 not necessarily the overall abundance or biomass of major taxonomic groups which differ
554 between seasons or change with global warming – but the species *per se* and the relative
555 species composition (reviewed in Adrian et al. 2009). While this is well known for summer,
556 information on species and functional trait composition during winter is indeed scarce.
557 Given that the ice itself provides a vast potential substrate for attached algae and an

558 associated community of metazoans (Bonderenko et al. 2012), and that common sampling
559 methods do not target this microhabitat, a major advance in winter limnology would be the
560 broader assessment of primary producers at this ice-water interface where some lakes
561 have shown extraordinarily high algal biomass and activity (e.g. Timoshkin 2001;
562 Bondarenko et al. 2012; Twiss et al. 2012). Further, shifts from autotrophy to mixotrophy
563 and heterotrophy clearly occur in some communities under ice (e.g. Rhode 1955,
564 Özkundakci et al. 2016), and examining how this trait varies from winter to summer likely
565 will yield important insights for ecosystem-level carbon cycles.

566 TDN and TN were higher under ice based on both our cross-lakes approach (Table
567 1) and a within-lakes time series approach (Table 2), while winter DOC was variable but
568 more similar to that of summer. The higher concentrations of dissolved N likely reflect
569 winter nutrient mineralization (Cornett & Rigler 1979; Nürnberg et al. 1986, Catalan 1992)
570 providing continued N inputs, while dissolved N uptake may be lower under winter
571 conditions due to low temperature and light, and possibly less denitrification. More
572 specifically, these results indicate that within the first few meters of the water column,
573 dissolved N accumulates disproportionately under ice relative to P, especially in shallower
574 lakes according to the regression tree analysis. A possible explanation is that benthic N
575 mineralization and nitrification dominate winter N cycles in shallow lakes, whereas the
576 higher water volume:surface area ratios in deeper lakes may limit N mineralization per
577 unit volume and perhaps increase the role of pelagic uptake by phytoplankton. While the
578 cross-lakes approach (Table 1) suggested that winter DOC was similar to summer on
579 average, the regression tree analysis indicated DOC was unique among our variables, with
580 opposing patterns in two distinct lake groups. More specifically, larger lakes ($>0.373 \text{ km}^2$)

581 had lower DOC in winter, while smaller lakes (<0.373 km²) had higher DOC in winter,
582 especially those occurring at lower elevation (<366 m). These smaller, lower elevation
583 lakes also tended to have higher DOC overall, possibly resulting in especially dark
584 conditions under ice. The dynamics of DOC can be influenced by multiple interacting
585 factors such as lower terrestrial carbon input during cold winters (Lepistö et al. 2014),
586 sustained benthic metabolism, uptake of DOC by bacteria (Tulonen et al. 1994), and
587 photodegradation (Wetzel 2001), but few studies have partitioned DOC sources and
588 processing during winter. DOC dynamics under ice clearly represent a key area for future
589 research.

590 In revising the PEG model, Sommer et al. (2012) speculate that winter activity
591 should have effects on phytoplankton and zooplankton in the subsequent season; indeed,
592 we found evidence for strong winter-summer linkage for some lakes and variables. In lakes
593 that had longer time series, such as the Laurentian Great Lakes, northern Wisconsin lakes,
594 northern Europe lakes, and Canadian lakes, the influence of winter conditions on the
595 following summer's value differed among variables. Winter and summer were often
596 negatively related, such that high winter values were associated with low values from the
597 adjacent summer, or low winter values were associated with high values from the adjacent
598 summer (Fig. S5, Fig. S6, Table S5). Among variables in our analysis, these negative cross-
599 seasonal relationships were particularly frequent for zooplankton density and chl *a*,
600 although several other variables also had negative winter-summer correlations in >20% of
601 the available time series. In the case of chl *a*, one explanation for antagonistic winter-
602 summer dynamics is that high winter production may reduce the pelagic nutrient pool,
603 strengthening P limitation or Si limitation in the following summer, in turn reducing

604 summer production. For zooplankton, one possible explanation for negative winter-
605 summer correlations could be that high prior zooplankton abundance or composition
606 reduces the availability of readily-ingestible phytoplankton at the beginning of the next
607 season. Many studies have suggested that overwintering populations can boost summer
608 populations and vice versa (e.g. Sommer et al. 2012). A clear next step would be to examine
609 temporal trends at the population level for zooplankton. Overall, evidence is increasing
610 among independent studies for the prevalence of carryover between seasons. Coherent
611 responses in algal and zooplankton phenology associated with conditions related to the
612 winter North Atlantic Oscillation, which determines winter weather conditions across large
613 parts of Europe, provide well studied examples (Weyhenmeyer et al. 1999; Gerten & Adrian
614 2000; Straile et al. 2003; Blenckner et al. 2007; Straile et al. 2012). Similarly, the severity of
615 winter influenced spring nutrient concentrations in Lake Peipsi (Blank et al. 2009).
616 Altogether such seasonal connections strongly favor previous calls to “close the loop”
617 (Salonen et al. 2009) and study the full annual cycle in order to understand lake dynamics,
618 particularly as lake temperature rises worldwide (O'Reilly et al. 2015). Though winter
619 conditions often present logistical challenges to field sampling, we should dismiss
620 opportunities that are within reach and could greatly increase our basic understanding of
621 winter ecology.

622

623 *Implications*

624 We are losing ice without a deep understanding of what ecological processes are at
625 stake. Our synthesis demonstrates that under-ice environments in lakes are biologically
626 dynamic, and that in some cases understanding winter can help to predict summer

627 conditions, highlighting the importance of expanding our knowledge of under-ice
628 dynamics. Climate change is already altering lake conditions by increasing summer water
629 temperatures (O'Reilly et al. 2015) and decreasing winter ice duration (Magnuson et al.
630 2000; Benson et al. 2012; Shuter et al. 2013). While our study identifies some of these basic
631 patterns across and within lakes, how climate change will influence seasonal differences
632 and connections, as well as the nature of any feedbacks associated with these potential
633 changes, remains unclear. Long-term changes in lake ice already have been associated with
634 shifts in the timing of under-ice phytoplankton blooms (Adrian et al. 1999; Blenckner et al.
635 2007). Here, paleolimnology may offer useful insights into how lakes responded during
636 periods of warming, through the analysis of microfossils in sedimentary records. For
637 example, Smol et al. (2005) show that global warming over the past 150 years has resulted
638 in wide-scale reorganization of circumpolar lake ecosystems through shortening of the
639 winter season, with highest changes in beta-diversity occurring at the most northern
640 latitudes. Over longer timescales, declining winter ice conditions, inferred from
641 chrysophyte cysts, suggest that European Pyrenees lakes gradually warmed from the early
642 Holocene to c. 4000 years ago (Pla & Catalan 2005). While in ancient lakes such as Baikal,
643 we can look to previous warm periods such as the Last Interglacial (125,000 years ago)
644 which reveal a decline in ice-associated diatoms, but greater abundance in species that
645 require either strong mixing conditions or extended summer stratification (Rioual &
646 Mackay 2005).

647 Effects of shortening ice duration may present the most straight-forward scenarios
648 to consider. Predicting the influence of climate change on other ice characteristics, such as
649 clarity, may be a more difficult task. Observed and anticipated shifts in precipitation, wind,

650 and solar radiation patterns associated with climate change are heterogeneous across and
651 within regions, and can greatly alter the under-ice environment by changing the amount of
652 incident light that penetrates the ice. Surface snow accumulation of as little as 10 cm can
653 reduce light penetration to levels insufficient for photosynthesis and convective mixing
654 that influences algal suspension as well as nutrient concentrations in the photic zone
655 (Granin et al. 2000; Mackay et al. 2006; Jewson et al. 2009; Salmi & Salonen 2016). As with
656 many aspects of climate change, the extremes and the timing of shifts, in addition to
657 average changes, are important (reviewed in Adrian et al. 2012).

658 **Conclusion**

659 Our results suggest two principles that should motivate future work: 1) knowledge
660 of under-ice conditions within lake ecosystems may help to refine expectations of how lake
661 conditions, dynamics and functionality will unfold over the next season; 2) under-ice
662 observations, and measures of seasonal connectivity or dis-connectivity between seasons,
663 may enhance our ability to detect and understand ecological responses to lake warming,
664 especially when monitoring is sustained over the long-term. Both of these ideas are
665 testable, but only in the presence of long-term paired winter-summer lake data. Thus, while
666 most lakes can be expected to experience shorter winter ice duration and longer summers,
667 our capability to predict the ecosystem-wide impacts is constrained by our limited
668 knowledge of under-ice ecology and also accurate down-scaled climate predictions that
669 allow us to anticipate under-ice physical conditions. However, as our study demonstrates,
670 lake conditions are not the simple result of weather conditions during the current season
671 but can also depend upon external and internal forces operating on the ecosystem in
672 previous seasons. Our capacity to predict effects of warming waters and shortening ice

673 duration on lake ecosystems, and the resources they provide to society, will depend in part
674 on our ability to rapidly accumulate more knowledge of winter ecology and its influence on
675 ecological processes throughout the year. In the future, we predict that there will be no
676 more “off-seasons” for freshwater ecologists.

677 **Acknowledgements**

678 Funding was provided by the National Science Foundation (NSF DEB #1431428;
679 NSF DEB #1136637) and Washington State University. M. Timofeyev and E. Silow were
680 partially supported by Russian Science Foundation project No 14-14-00400. We are
681 grateful to Marianne Moore, Deniz Özkundakci, Chris Polashenski, and Paula Kankaala for
682 discussions that greatly improved this work. We also gratefully acknowledge the following
683 individuals for contributing to this project: John Anderson, Jill Baron, Rick Bourbonniere,
684 Sandra Brovold, Lluis Camarero, Sudeep Chandra, Jim Cotner, Laura Forsstöm, Guillaume
685 Grosbois, Chris Harrod, Klaus D. Joehnk, T.Y. Kim, Daniel Langenhaun, Reet Laugaste,
686 Suzanne McGowan, Virginia Panizzo, Giampaolo Rossetti, R.E.H. Smith, Sarah Spaulding,
687 Helen Tammert, Steve Thackeray, Kyle Zimmer, Priit Zingel, and two anonymous
688 reviewers. Any use of trade, product, or firm names is for descriptive purposes only and
689 does not imply endorsement by the US Government.

690

691

692

693

694

695

696

697 **References**

698

699 Adrian, R., Gerten, D., Huber, V., Wagner, C. & Schmidt, S.R. (2012). Windows of change:
700 temporal scale of analysis is decisive to detect ecosystem responses to climate change. *Mar
701 Biol*, 159, 2533–2542

702

703 Adrian, R., O'Reilly, C.M., Zagarese, H., Baines, S.B., Hessen, D.O., Keller, W., *et al.* (2009).
704 Lakes as sentinels of climate change. *Limnol. Oceanogr.*, 54, 2283–2297

705

706 Adrian, R., Walz, N., Hintze, T., Hoeg, S. & Rusche, R. (1999). Effects of ice duration on
707 plankton succession during spring in a shallow polymictic lake. *Freshwater Biology*, 41,
708 621–634

709

710 Adrian, R., Wilhelm, S. & Gerten, D. (2006). Life-history traits of lake plankton species may
711 govern their phenological response to climate warming. *Global Change Biology*, 12, 652–
712 661

713

714 Anderson, M.J. (2001). A new method for non-parametric multivariate analysis of variance.
715 *Austral Ecology*, 26, 32–46

716

717 Arrigo, K.R., van Dijken, G. & Pabi, S. (2008). Impact of a shrinking Arctic ice cover on
718 marine primary production. *Geophys. Res. Lett.*, 35, L19603

719

720 Arrigo, K.R. & Thomas, D.N. (2004). Large scale importance of sea ice biology in the
721 Southern Ocean. *Antarctic Science*, 16, 471–486

722

723 Bates, D., Maechler, M., Bolker, B., and Walker, S.C. 2015. Fitting linear mixed-effects models
724 using lme4. *Journal of Statistical Software*, 67, 1-48

725

726 Bashenkhaeva, M.V., Zakharova, Y.R., Petrova, D.P., Khanaev, I.V., Galachyants, Y.P. &
727 Likhoshway, Y.V. (2015). Sub-Ice Microalgal and Bacterial Communities in Freshwater Lake
728 Baikal, Russia. *Microb Ecol*, 70, 751–765

729

730 Beall, B.F.N., Twiss, M.R., Smith, D.E., Oyserman, B.O., Rozmarynowycz, M.J., Binding, C.E.,
731 *et al.* (2016). Ice cover extent drives phytoplankton and bacterial community structure in a large
732 north-temperate lake: implications for a warming climate. *Environ Microbiol*, 18, 1704–1719

733

734 Benson, B.J., Magnuson, J.J., Jensen, O.P., Card, V.M., Hodgkins, G., Korhonen, J., *et al.* (2012).
735 Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855–
736 2005). *Climatic Change*, 112, 299–323

737

738 Bertilsson, S., Burgin, A., Carey, C.C., Fey, S.B., Grossart, H.-P., Grubisic, L.M., *et al.* (2013).
739 The under-ice microbiome of seasonally frozen lakes. *Limnol. Oceanogr.*, 58, 1998–2012

740

741 Blank, K., Haberman, J., Haldna, M. & Laugaste, R. (2009). Effect of winter conditions on
742 spring nutrient concentrations and plankton in a large shallow Lake Peipsi
743 (Estonia/Russia). *Aquat Ecol*, 43, 745–753

744

745 Blenckner, T., Adrian, R., Livingstone, D.M., Jennings, E., Weyhenmeyer, G.A., George, D.G., *et*
746 *al.* (2007). Large-scale climatic signatures in lakes across Europe: a meta-analysis. *Global*
747 *Change Biology*, 13, 1314–1326

748

749 Bolsenga, S.J. & Vanderploeg, H.A. (1992). Estimating photosynthetically available radiation
750 into open and ice-covered freshwater lakes from surface characteristics; a high
751 transmittance case study. *Hydrobiologia*, 243–244, 95–104

752

753 Bondarenko, N.A., Belykh, O.I., Golobokova, L.P., Artemyeva, O.V., Logacheva, N.F.,
754 Tikhonova, I.V., *et al.* (2012). Stratified distribution of nutrients and extremophile biota
755 within freshwater ice covering the surface of Lake Baikal. *J. Microbiol.*, 50, 8–16

756

757 Bondarenko, N.A., Timoshkin, O.A., Röpstorf, P. & Melnik, N.G. (2006). The under-ice and
758 bottom periods in the life cycle of *Aulacoseira baicalensis* (K. Meyer) Simonsen, a principal
759 Lake Baikal alga. *Hydrobiologia*, 568, 107–109

760

761 Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). *Classification and Regression Trees*.
762 Wadsworth, Belmont

763

764 Bruesewitz, D.A., Carey, C.C., Richardson, D.C. & Weathers, K.C. (2015). Under-ice thermal
765 stratification dynamics of a large, deep lake revealed by high-frequency data. *Limnol.*
766 *Oceanogr.*, 60, 347–359

767

768 Burnham, K.P. & Anderson, D.R. (2002). *Model Selection and Multimodel Inference: A*
769 *Practical Information-Theoretic Approach*. Springer Science & Business Media
770
771 Cáceres, C.E. & Schwalbach, M.S. (2001). How well do laboratory experiments explain field
772 patterns of zooplankton emergence? *Freshwater Biology*, 46, 1179–1189
773
774 Callieri, C., & Stockner, J.G. (2002). Freshwater autotrophic picoplankton: a review. *Journal*
775 *of Limnology* 61, 1–14
776
777 Carey, C.C., Hanson, P.C., Lathrop, R.C. & Amand, A.L.S. (2016). Using wavelet analyses to
778 examine variability in phytoplankton seasonal succession and annual periodicity. *J.*
779 *Plankton Res.*, 38, 27–40
780
781 Catalan, J., Ventura, M., Brancelj, A., Granados, I., Thies, H., Nickus, U., *et al.* (2002). Seasonal
782 ecosystem variability in remote mountain lakes: implications for detecting climatic signals
783 in sediment records. *Journal of Paleolimnology*, 28, 25–46
784
785 Catalan, J. (1992). Evolution of Dissolved and Particulate Matter during the Ice-Covered
786 Period in a Deep, High-Mountain Lake. *Can. J. Fish. Aquat. Sci.*, 49, 945–955
787
788 Cloern, J.E., Alpine, A.E., Cole, B.E. & Heller, T. (1992). Seasonal changes in the spatial
789 distribution of phytoplankton in small, temperate-zone lakes. *J. Plankton Res.*, 14, 1017–
790 1024
791

792 Cornett, R.J. & Rigler, F.H. (1979). Hypolimnetic Oxygen Deficits: Their Prediction and
793 Interpretation. *Science*, 205, 580–581

794

795 Dokulil, M.T. & Herzig, A. (2009). An analysis of long-term winter data on phytoplankton
796 and zooplankton in Neusiedler See, a shallow temperate lake, Austria. *Aquat Ecol*, 43, 715–
797 725

798

799 Dokulil, M.T., Herzig, A., Somogyi, B., Vörös, L., Donabaum, K., May, L., *et al.* (2014). Winter
800 conditions in six European shallow lakes: a comparative synopsis. *Estonian Journal of
801 Ecology*, 63, 111–129

802

803 Domis, L.N.D.S., Elser, J.J., Gsell, A.S., Huszar, V.L.M., Ibelings, B.W., Jeppesen, E., *et al.* (2013).
804 Plankton dynamics under different climatic conditions in space and time. *Freshwater
805 Biology*, 58, 463–482

806

807 Felip, M. & Catalan, J. (2000). The relationship between phytoplankton biovolume and
808 chlorophyll in a deep oligotrophic lake: decoupling in their spatial and temporal maxima. *J.
809 Plankton Res.*, 22, 91–106

810

811 Gerten, D. & Adrian, R. (2000). Climate-driven changes in spring plankton dynamics and the
812 sensitivity of shallow polymictic lakes to the North Atlantic Oscillation. *Limnol. Oceanogr.*,
813 45, 1058–1066

814

815 Granin, N.G., Jewson, D.H., Gnatovskii, R.Y., Levin, L.A., Zhdanov, A.A., Gorbunova, L.A., *et al.*
816 (2000). Turbulent mixing under ice and the growth of diatoms in Lake Baikal.
817 *Internationale Vereinigung fur Theoretische und Angewandte Limnologie Verhandlungen*, 27,
818 812–2814
819
820 Grebmeier, J.M. (2012). Shifting Patterns of Life in the Pacific Arctic and Sub-Arctic Seas.
821 *Annual Review of Marine Science*, 4, 63–78
822
823 Hampton, S.E., Moore, M.V., Ozersky, T., Stanley, E.H., Polashenski, C.M. & Galloway, A.W.E.
824 (2015). Heating up a cold subject: prospects for under-ice plankton research in lakes. *J.*
825 *Plankton Res.*, fbv002
826
827 Hawes, I. (1985). Factors Controlling Phytoplankton Populations in Maritime Antarctic
828 Lakes. In: *Antarctic Nutrient Cycles and Food Webs* (eds. Siegfried, P.W.R., Condy, D.P.R. &
829 Laws, D.R.M.). Springer Berlin Heidelberg, pp. 245–252
830
831 Jewson, D.H., Granin, N.G., Zhdanov, A.A. & Gnatovsky, R.Y. (2009). Effect of snow depth on
832 under-ice irradiance and growth of *Aulacoseira baicalensis* in Lake Baikal. *Aquat Ecol*, 43,
833 673–679
834
835 Karlsson, J. & Säwström, C. (2009). Benthic algae support zooplankton growth during
836 winter in a clear-water lake. *Oikos*, 118, 539–544
837

838 Katz, S.L., Izmest'eva, L.R., Hampton, S.E., Ozersky, T., Shchapov, K., Moore, M.V., *et al.*
839 (2015). The “*Melosira* years” of Lake Baikal: Winter environmental conditions at ice onset
840 predict under-ice algal blooms in spring. *Limnol. Oceanogr.*, 60, 1950–1964
841
842 Kelley, D.E. (1997). Convection in ice-covered lakes: effects on algal suspension. *J. Plankton
843 Res.*, 19, 1859–1880
844
845 Kirk, J.T.O. (2011). *Light and Photosynthesis in Aquatic Ecosystems*. 3rd edn. Cambridge
846 University press
847
848 Kozhova, O.M. & Izmest'eva, L.R. (1998). *Lake Baikal: evolution and biodiversity*. 2nd edn.
849 Backhuys Publishers, Leiden, Netherlands
850
851 Larsson, P. & Wathne, I. (2006). Swim or rest during the winter – what is best for an alpine
852 daphnid? *Archiv für Hydrobiologie*, 167, 265–280
853
854 Lee, R.F., Hagen, W. & Kattner, G. (2006). Lipid storage in marine zooplankton. *Mar Ecol
855 Prog Ser*, 307, 273–306
856
857 Lepistö, A., Futter, M.N. & Kortelainen, P. (2014). Almost 50 years of monitoring shows that
858 climate, not forestry, controls long-term organic carbon fluxes in a large boreal watershed.
859 *Glob Change Biol*, 20, 1225–1237
860

861 Leppäranta, M. (2010). Modelling the Formation and Decay of Lake Ice. In: *The Impact of*
862 *Climate Change on European Lakes*, Aquatic Ecology Series (ed. George, G.). Springer
863 Netherlands, pp. 63–83

864

865 Leppäranta, M. (2015). Freezing of Lakes. In: *Freezing of Lakes and the Evolution of their Ice*
866 *Cover*. Springer Berlin Heidelberg, pp. 11–50

867

868 Livingstone, D.M. & Adrian, R. (2009). Modeling the duration of intermittent ice cover on a
869 lake for climate-change studies. *Limnology and Oceanography*, 54, 1709–1722

870

871 Lizotte, M.P. (2001). The Contributions of Sea Ice Algae to Antarctic Marine Primary
872 Production. *American Zoologist*, 41, 57–73

873

874 Mackay, A.W., Ryves, D.B., Morley, D.W., Jewson, D.H. & Rioual, P. (2006). Assessing the
875 vulnerability of endemic diatom species in Lake Baikal to predicted future climate change:
876 a multivariate approach. *Global Change Biology*, 12, 2297–2315

877

878 Magnuson, J.J., Robertson, D.M., Benson, B.J., Wynne, R.H., Livingstone, D.M., Arai, T., *et al.*
879 (2000). Historical Trends in Lake and River Ice Cover in the Northern Hemisphere. *Science*,
880 289, 1743–1746

881

882 McKnight, D.M., Howes, B.L., Taylor, C.D. & Goehringer, D.D. (2000). Phytoplankton
883 Dynamics in a Stably Stratified Antarctic Lake During Winter Darkness. *Journal of*
884 *Phycology*, 36, 852–861

885

886 Meier, W.N., Hovelsrud, G.K., van Oort, B.E.H., Key, J.R., Kovacs, K.M., Michel, C., *et al.* (2014).

887 Arctic sea ice in transformation: A review of recent observed changes and impacts on

888 biology and human activity. *Rev. Geophys.*, 52, 2013RG000431

889

890 Melnik, N.G., Lazarev, M.I., Pomazkova, G.I., Bondarenko, N.A., Obolkina, L.A., Penzina, M.M.,

891 *et al.* (2008). The cryophilic habitat of micrometazoans under the lake-ice in Lake Baikal.

892 *Fundamental and Applied Limnology / Archiv für Hydrobiologie*, 170, 315–323

893

894 Moore, M.V., Hampton, S.E., Izmest'eva, L.R., Silow, E.A., Peshkova, E.V. & Pavlov, B.K.

895 (2009). Climate Change and the World's "Sacred Sea"—Lake Baikal, Siberia. *BioScience*, 59,

896 405–417

897

898 Nilssen, J.P. & Elgmork, K. (1977). Cyclops abyssorum. Life-cycle dynamics and habitat

899 selection [lowland lake Lonavatn, western Norway]. *Memorie dell'Istituto Italiano di*

900 *Idrobiologia, Dott. Marco de Marchi Verbania Pallanza*, 34, 197–238

901

902 Nürnberg, G.K., Shaw, M., Dillon, P.J. & McQueen, D.J. (1986). Internal Phosphorus Load in

903 an Oligotrophic Precambrian Shield Lake with an Anoxic Hypolimnion. *Can. J. Fish. Aquat.*

904 *Sci.*, 43, 574–580

905

906 O'Brien, W.J., Hershey, A.E., Hobbie, J.E., Hullar, M.A., Kipphut, G.W., Miller, M.C., *et al.*

907 (1992). Control mechanisms of arctic lake ecosystems: a limnocorral experiment.

908 *Hydrobiologia*, 240, 143–188

909

910 Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., *et al.* (2016).
911 *vegan: Community Ecology Package*. R package version 2.4-0

912

913 O'Reilly, C.M., Sharma, S., Gray, D.K., Hampton, S.E., Read, J.S., Rowley, R.J., *et al.* (2015).
914 Rapid and highly variable warming of lake surface waters around the globe. *Geophys. Res.*
915 *Lett.*, 42, 2015GL066235

916

917 Özkundakci, D., Gsell, A.S., Hintze, T., Täuscher, H. & Adrian, R. (2016). Winter severity
918 determines functional trait composition of phytoplankton in seasonally ice-covered lakes.
919 *Glob Change Biol*, 22, 284–298

920

921 Pennak, R.W. (1968). Field and Experimental Winter Limnology of Three Colorado
922 Mountain Lakes. *Ecology*, 49, 505–520

923

924 Phillips, K.A. & Fawley, M.W. (2002). Winter phytoplankton community structure in three
925 shallow temperate lakes during ice cover. *Hydrobiologia*, 470, 97–113

926

927 Pla, S. & Catalan, J. (2005). Chrysophyte cysts from lake sediments reveal the submillennial
928 winter/spring climate variability in the northwestern Mediterranean region throughout
929 the Holocene. *Clim Dyn*, 24, 263–278

930

931 R Core Team. (2016). *R: A language and environment for statistical computing*. R
932 Foundation for Statistical Computing, Vienna, Austria

933

934 Rautio, M., Mariash, H. & Forsström, L. (2011). Seasonal shifts between autochthonous and
935 allochthonous carbon contributions to zooplankton diets in a subarctic lake. *Limnol.*
936 *Oceanogr.*, 56, 1513–1524

937

938 Rautio, M., Sorvari, S. & Korhola, A. (2000). Diatom and crustacean zooplankton
939 communities, their seasonal variability and representation in the sediments of subarctic
940 Lake Saanajärvi. *Journal of Limnology*, 59, 81-96

941

942 Rhode, W. (1955). Can plankton production proceed during winter darkness in subarctic
943 lakes? *Verh. Int. Ver. Limnol.*, 12, 117–122.

944

945 Rigler, F.H., MacCallum, M.E. & Roff, J.C. (1974). Production of Zooplankton in Char Lake. *J.*
946 *Fish. Res. Bd. Can.*, 31, 637–646

947

948 Rioual, P. & Mackay, A.W. (2005). A diatom record of centennial resolution for the
949 Kazantsevo Interglacial stage in Lake Baikal (Siberia). *Global and Planetary Change*,
950 Progress towards reconstructing past climate in Central Eurasia, with special emphasis on
951 Lake Baikal, 46, 199–219

952

953 Roulet, N.T. & Adams, W.P. (1986). Spectral distribution of light under a subarctic winter
954 lake cover. *Hydrobiologia*, 134, 89–95

955

956 Salmi, P. & Salonen, K. (2016). Regular build-up of the spring phytoplankton maximum
957 before ice-break in a boreal lake. *Limnol. Oceanogr.*, 61, 240–253

958

959 Salonen, K., Leppäranta, M., Viljanen, M. & Gulati, R.D. (2009). Perspectives in winter
960 limnology: closing the annual cycle of freezing lakes. *Aquat Ecol*, 43, 609–616

961

962 Scharfenberger, U., Mahdy, A. & Adrian, R. (2013). Threshold-driven shifts in two copepod
963 species: Testing ecological theory with observational data. *Limnol. Oceanogr.*, 58, 741–752

964

965 Shuter, B.J., Minns, C.K. & Fung, S.R. (2013). Empirical models for forecasting changes in the
966 phenology of ice cover for Canadian lakes. *Can. J. Fish. Aquat. Sci.*, 70, 982–991

967

968 Slusarczyk, M. (2009). Extended lifespan traded for diapause in Daphnia. *Freshwater
969 Biology*, 54, 2252–2262

970

971 Smol, J.P., Wolfe, A.P., Birks, H.J.B., Douglas, M.S.V., Jones, V.J., Korhola, A., *et al.* (2005).
972 Climate-driven regime shifts in the biological communities of arctic lakes. *PNAS*, 102, 4397–
973 4402

974

975 Snow, N.B. (1972). The Effect of Season and Animal Size on the Caloric Content of *Daphnia
976 pulicaria* Forbes 1,2. *Limnol. Oceanogr.*, 17, 909–912

977

978 Sommer, U., Adrian, R., Domis, L.D.S., Elser, J.J., Gaedke, U., Ibelings, B., *et al.* (2012). Beyond
979 the Plankton Ecology Group (PEG) Model: Mechanisms Driving Plankton Succession.
980 *Annual Review of Ecology, Evolution, and Systematics*, 43, 429–448
981
982 Sommer, U., Gliwicz, Z.M., Lampert, W. & Duncan, A. (1986). The PEG-model of seasonal
983 succession of planktonic events in fresh waters. *Arch. Hydrobiologia*, 106, 433–471
984
985 Straile, D. (2002). North Atlantic Oscillation synchronizes food-web interactions in central
986 European lakes. *Proceedings of the Royal Society of London B: Biological Sciences*, 269, 391–
987 395
988
989 Straile, D., Adrian, R. & Schindler, D.E. (2012). Uniform Temperature Dependency in the
990 Phenology of a Keystone Herbivore in Lakes of the Northern Hemisphere. *PLOS ONE*, 7,
991 e45497
992
993 Straile, D., Livingstone, D.M., Weyhenmeyer, G.A. & George, D.G. (2003). The Response of
994 Freshwater Ecosystems to Climate Variability Associated with the North Atlantic
995 Oscillation. In: *The North Atlantic Oscillation: Climatic Significance and Environmental*
996 *Impact* (eds. Hurrell, J.W., Kushnir, Y., Ottersen, G. & Visbeck, rtin). American Geophysical
997 Union, pp. 263–279
998
999 Syväranta, J. & Rautio, M. (2010). Zooplankton, lipids and stable isotopes: importance of
1000 seasonal, latitudinal, and taxonomic differences. *Can. J. Fish. Aquat. Sci.*, 67, 1721–1729
1001

1002 Tanabe, Y., Kudoh, S., Imura, S. & Fukuchi, M. (2008). Phytoplankton blooms under dim and
1003 cold conditions in freshwater lakes of East Antarctica. *Polar Biol.*, 31, 199–208

1004

1005 Therneau, T., Atkinson, B. & Ripley, B. (2015). *rpart: Recursive Partitioning and Regression*

1006 *Trees*. R package version 4.1-10

1007

1008 Therneau, T., Atkinson, B., Ripley, B., Oksanen, J. & De'ath, G. (2014). *mvpart: Multivariate*
1009 *partitioning*. R package version 1.6-2

1010

1011 Timoshkin, O.A. (2001). Lake Baikal: diversity of fauna, problems of its immiscibility and
1012 origin, ecology and “exotic” communities. In: *Index of Animal Species Inhabiting Lake Baikal*
1013 *and Its Catchment Area*. Nauka Publishers, Novosibirsk, Russia, pp. 74–113

1014

1015 Tulonen, T., Kankaala, P., Ojala, A. & Arvola, L. (1994). Factors controlling production of
1016 phytoplankton and bacteria under ice in a humic, boreal lake. *J. Plankton Res.*, 16, 1411–
1017 1432

1018

1019 Twiss, M.R., McKay, R.M.L., Bourbonniere, R.A., Bullerjahn, G.S., Carrick, H.J., Smith, R.E.H., *et*
1020 *al.* (2012). Diatoms abound in ice-covered Lake Erie: An investigation of offshore winter
1021 limnology in Lake Erie over the period 2007 to 2010. *Journal of Great Lakes Research*, 38,
1022 18–30

1023

1024 Twiss, M.R., Smith, D.E., Cafferty, E.M. & Carrick, H.J. (2014). Phytoplankton growth
1025 dynamics in offshore Lake Erie during mid-winter. *Journal of Great Lakes Research*, 40,
1026 449–454

1027

1028 Vehmaa, A. & Salonen, K. (2009). Development of phytoplankton in Lake Pääjärvi (Finland)
1029 during under-ice convective mixing period. *Aquat Ecol*, 43, 693–705

1030

1031 Ventura, M. & Catalan, J. (2005). Reproduction as one of the main causes of temporal
1032 variability in the elemental composition of zooplankton. *Limnol. Oceanogr.*, 50, 2043–2056

1033

1034 Ventura, M. & Catalan, J. (2008). Incorporating life histories and diet quality in stable
1035 isotope interpretations of crustacean zooplankton. *Freshwater Biology*, 53, 1453–1469

1036

1037 Verpoorter, C., Kutser, T., Seekell, D.A. & Tranvik, L.J. (2014). A global inventory of lakes
1038 based on high-resolution satellite imagery. *Geophys. Res. Lett.*, 41, 2014GL060641

1039

1040 Vincent, W.F. & Vincent, C.L. (1982). Factors Controlling Phytoplankton Production in Lake
1041 Vanda (77°S). *Can. J. Fish. Aquat. Sci.*, 39, 1602–1609

1042

1043 Virro, T., Haberman, J., Haldna, M. & Blank, K. (2009). Diversity and structure of the winter
1044 rotifer assemblage in a shallow eutrophic northern temperate Lake Võrtsjärv. *Aquat Ecol*,
1045 43, 755–764

1046

1047 Wetzel, R.G. (2001). *Limnology: Lake and River Ecosystems*. Gulf Professional Publishing

1048

1049 Weyhenmeyer, G.A., Blenckner, T. & Pettersson, K. (1999). Changes of the plankton spring
1050 outburst related to the North Atlantic Oscillation. *Limnol. Oceanogr.*, 44, 1788–1792

1051

1052 Weyhenmeyer, G.A., Livingstone, D.M., Meili, M., Jensen, O., Benson, B. & Magnuson, J.J.
1053 (2011). Large geographical differences in the sensitivity of ice-covered lakes and rivers in
1054 the Northern Hemisphere to temperature changes. *Global Change Biology*, 17, 268–275

1055

1056 Weyhenmeyer, G.A., Westöö, A.-K. & Willén, E. (2008). Increasingly ice-free winters and
1057 their effects on water quality in Sweden's largest lakes. *Hydrobiologia*, 599, 111–118

1058

1059

1060 Table 1. Winter-summer differences expressed across lakes. Linear mixed models were used, with a random intercept for year.

1061

Variable	# winter obvs	# paired obvs	Fitted difference (+ = higher in winter)	s.e. of difference	Intercept (typical summer value)	s.e. of intercept	p-value of difference	p-value of intercept
chl <i>a</i> (µg/L)	119	118	-5.06	0.661	9.13	0.612	<<0.001	<<0.001
phyto biovolume (mm ³ /L)	17	17	-12.8	1.85	14.7	1.31	<<0.001	<<0.001
crustacean zoop density (no./L)	36	36	-41.8	5.82	54.8	4.15	<<0.001	<<0.001
DOC (mg/L)	82	81	-0.0559	0.324	5.53	0.418	0.863	<<0.001
TDN (µg/L)	78	73	262	44.0	300	38.8	<<0.001	<<0.001
TDN:TDP (as atoms)	71	66	27.5	40.6	161	29.6	0.498	<<0.001
TDP (µg/L)	73	72	3.97	3.18	11.8	2.83	0.213	<<0.001
TN (µg/L)	76	75	161	23.1	552	23.7	<<0.001	<<0.001
TN:TP (as atoms)	75	74	24.0	6.44	88.3	4.89	<<0.001	<<0.001
TP (µg/L)	107	106	-1.35	1.95	27.1	1.98	0.488	<<0.001
water temp (°C)	113	107	-15.1	0.19	16.2	0.202	<<0.001	<0.001

1062

1063 Table 2. Summary of winter-summer differences and winter-summer correlations from
 1064 univariate time series of individual lakes. Correlations for summer-into-winter (*SW*) and
 1065 winter-into-summer (*WS*) are both shown. Zooplankton groups are referenced here as
 1066 counts L⁻¹ (calculated from reported proportion of total zooplankton density). Note that for
 1067 chl *a* and phytoplankton density only 3 lakes reported both variables with sufficient data to
 1068 include in our time series analysis, such that patterns are not readily compared between
 1069 these variables.

1070

Variable	# of time series	Seasonal difference present (% of time series)		Sign of summer-winter slope* (% of time series)					
		winter>summer	winter<summer	SW pos	SW neg	WS pos	WS neg	Any pos or neg	
chl <i>a</i>	34	9	50	0	32	0	26	47	
phyto density	4	0	100	25	0	25	0	50	
crustacean zooplankton density	11	0	91	0	18	0	9	18	
DOC	26	12	23	0	15	0	4	19	
TDN	14	79	7	0	43	0	0	43	
TDP	14	14	0	0	21	0	14	36	
TN	30	70	3	0	33	3	10	47	
TP	33	21	21	0	18	0	12	30	
water temp	20	0	100	5	0	5	5	15	

1071

1072 * Sign of the summer-winter slope determined using detrended data and AIC selection.

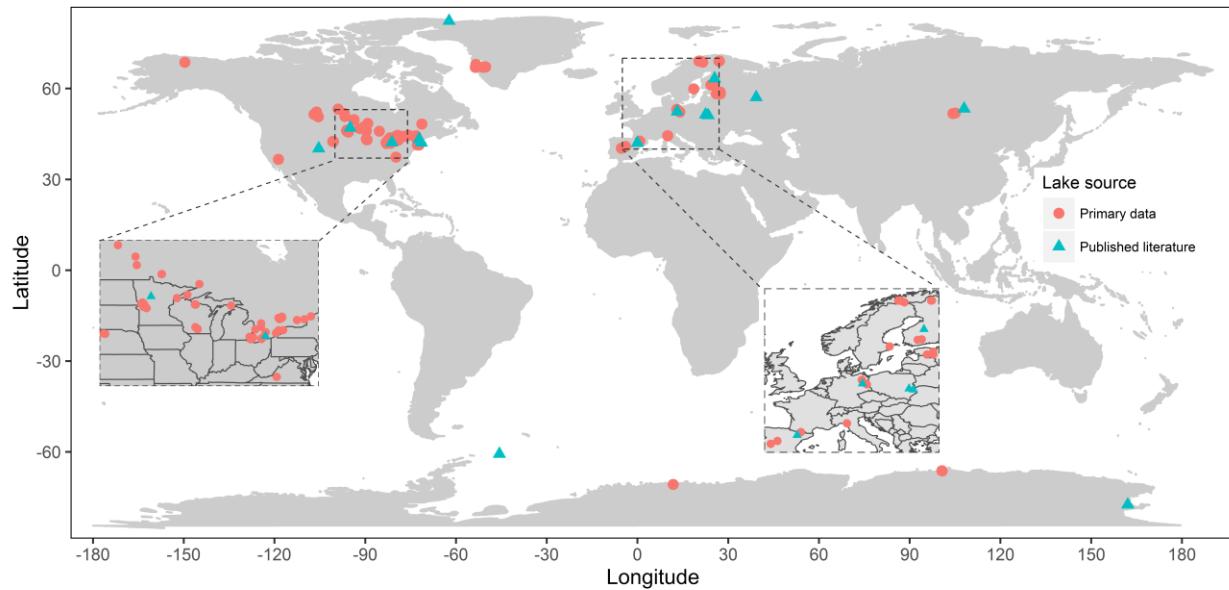
1073

1074

1075

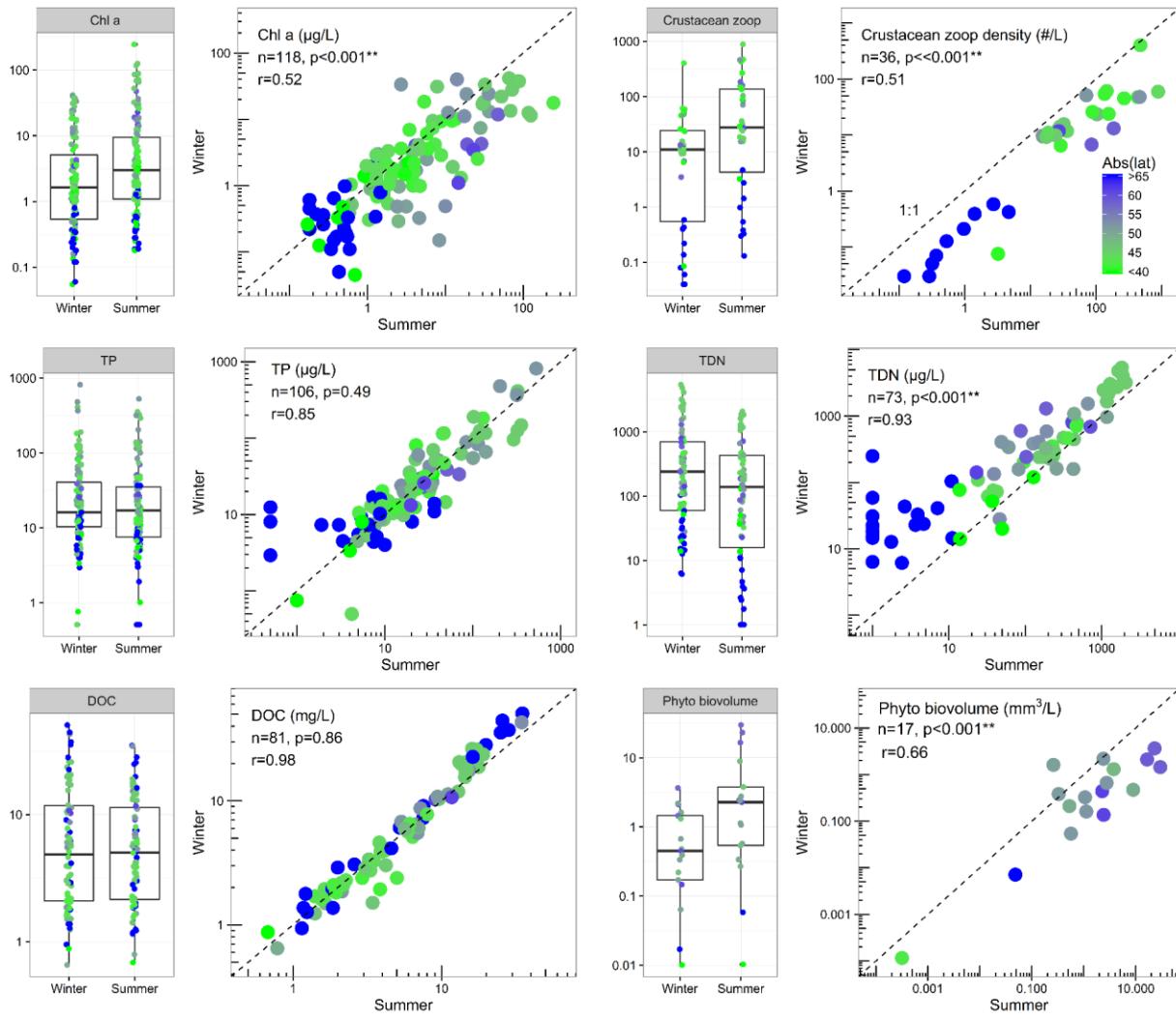
1076

1077


1078

1079

1080

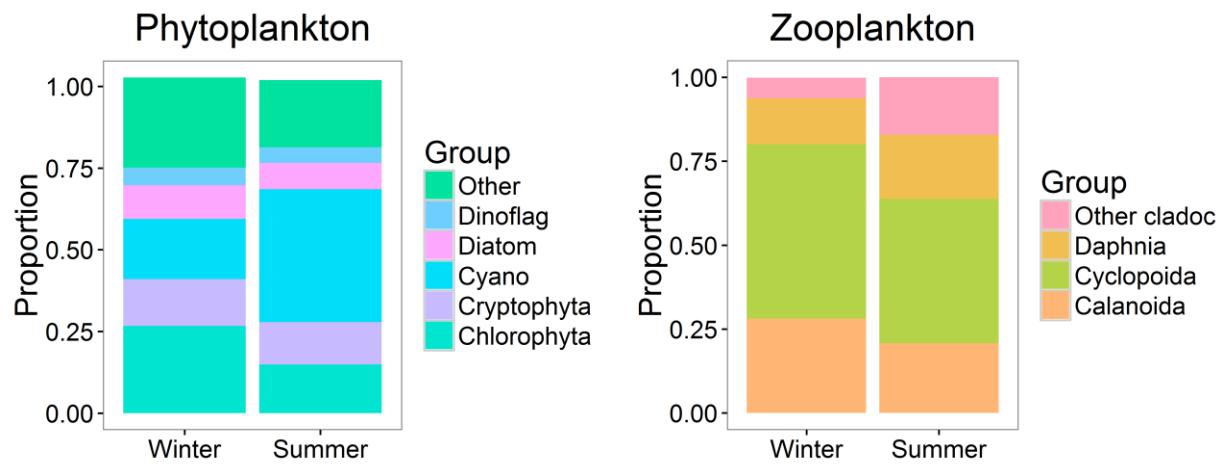

1081

1082 Figures
1083

1084
1085
1086 Figure 1. Map of lakes/sampling stations included in the full synthesis under-ice dataset
1087 (i.e., “primary data”) and the published literature review. See Figure S2 for comparison of
1088 aggregated chl *a* between primary data and published literature samples.

1089
1090
1091
1092
1093
1094
1095
1096
1097
1098

1099

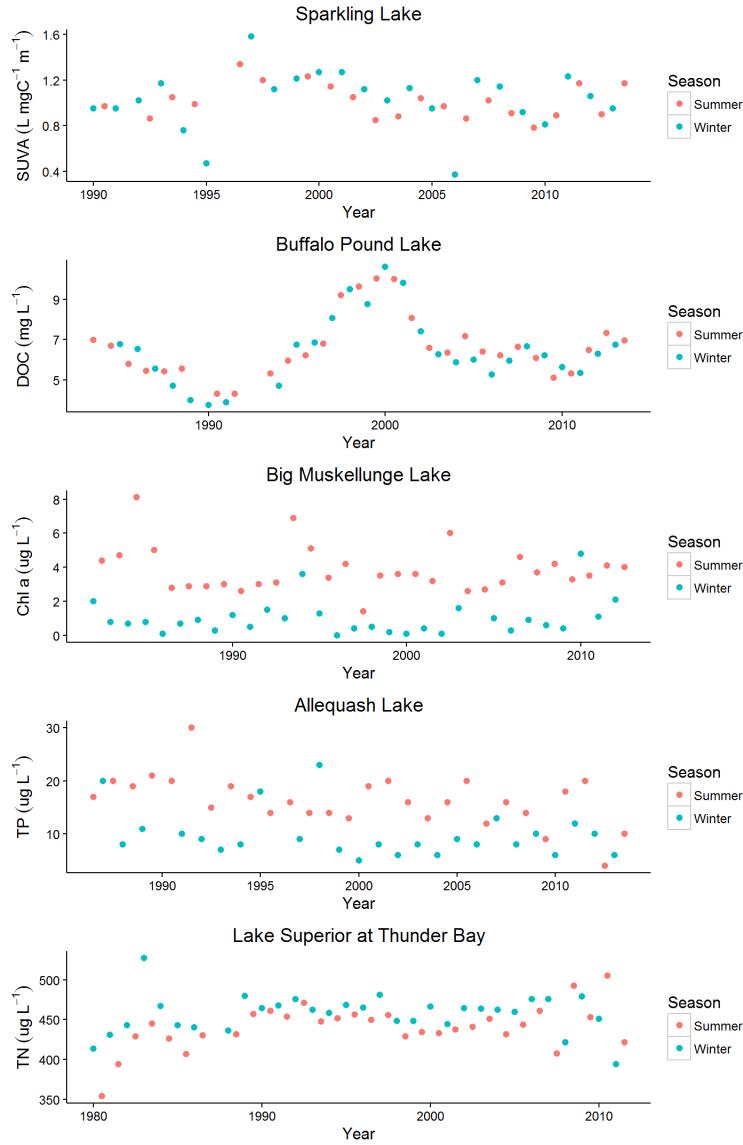

1100

1101 Figure 2. Average ice-on (winter) versus ice-off (summer) conditions across lakes for major
 1102 limnological variables. Boxplots show all reported available ice-on and ice-off data. Each
 1103 point represents the cross-year average from one sampling location; color indicates
 1104 latitude (absolute). Scatterplots show the paired ice-on-ice-off values at a given each
 1105 location. P-values are from lme models. Scales are logarithmic.

1106

1107

1108


1109

1110

1111 Figure 3. Average community composition for major phytoplankton and crustacean
1112 zooplankton groups during the winter and summer seasons, expressed as a proportion of
1113 total density.

1114

1115

1116

1117 Figure 4. Example time series that demonstrate the temporal patterns encountered for
 1118 different lakes and variables. Panel 1: first order autoregressive structure, SUVA in
 1119 Sparkling Lake, Wisconsin, USA; 2: first order autoregressive structure with moving
 1120 average, DOC in Buffalo Pound Lake, Saskatchewan, Canada; 3: seasonal difference, chl *a* in
 1121 Big Muskellunge Lake, Wisconsin, USA; 4: seasonal difference with moving average, TP in
 1122 Allequash Lake, Wisconsin, USA; 5: seasonal difference with first order autocorrelation
 1123 structure and moving average, TN in Lake Superior at Thunder Bay, Ontario, Canada.