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ABSTRACT: In this paper, we compare the ability of different quasiclassical | Fenna-Matthews-Olson |[— NP_mLSC/¢24?
mapping Hamiltonian methods to accurately simulate the absorption spectra of (FMO) complex ——- HEOM
multiexcitonic molecular systems. Two distinctly different approaches for L | ' ;
simulating the absorption spectra are considered: (1) a perturbative approach, |I‘
which relies on the first-order perturbation theory with respect to the field-matter BRI IT
interaction; (2) a nonperturbative approach, which mimics the experimental [REIRIEEY X N
measurement of the absorption spectra from the free-induction decay that follows
a short laser pulse. The methods compared are several variations of the linearized semiclassical (LSC) method, the symmetrical
quasiclassical (SQC) method, and the mean-field (Ehrenfest) method. The comparison is performed in the context of a biexcitonic
model and a seven-excitonic model of the Fenna—Matthews—Olson (FMO) complex. The accuracy of the various methods is tested
by comparing their predictions to the quantum-mechanically exact results obtained via the hierarchy of the equations of motion
(HEOM) method, as well as to the results based on the Redfield quantum master equation. The results show that the LSC-based
quasiclassical mapping Hamiltonian methods can yield the accurate and robust absorption spectra in the high-temperature and/or
slow-bath limit, where the nuclear degrees of freedom can be treated as classical.

1. INTRODUCTION Hamiltonians and is straightforward to apply to complex
molecular systems, would be highly desirable,'"'*'7!%240=43
In this paper, we consider such an approach, which is based on
the quasiclassical mapping Hamiltonian (QC/MH) methods.
QC/MH methods** ™ are based on representing the

Optical spectroscopy has long been recognized as a sensitive
probe of molecular structure and dynamics.' >’ Arguably, the
ultimate goal is to translate the spectra into as detailed as
possible description of the underlying molecular structure and

dynamics. To this end, it is necessary to compare the electronic population and coherence operators, whose expect-
experimental spectra with the simulated spectra obtained ation values correspond to the diagonal and off-diagonal
based on a model of the molecular system. electronic density matrix elements, respectively, in terms of

In the case of electronic spectroscopy, the spectra are often mapping operators. The latter have the same commutation
simulated based on models with electronic potential energy relations as the original electronic operators. However, unlike
surfaces (PESs) that are harmonic and identical, except for shifts the original operators, they are given in terms of auxiliary
in equilibrium geometry and energy."**~** Within such models, position and momentum operators, and as such have a well-
the entire information regarding the underlying molecular defined classical limit. Within the QC approximation, one
structure and dynamics is given in terms of spectral density typically treats the nuclear coordinates and momenta, as well as
functions."”® The spectral density functions can be determined the above-mentioned auxiliary coordinates and momenta
in a variety of ways, including empirically (by ﬁttin§ to associated with the electronic degrees of freedom (DOF), as
experiment), via electronic structure calculations,”*”*> or classical-like. The dynamics of those phase-space variables is
based on transition frequency correlation functions obtained then dictated by classical-like Hamilton equations, with the

from equilibrium classical molecular dynamics (MD) simu-

QU Hamiltonian given by the classical limit of the mapped
lations.”” ™"

Hamiltonian in terms of the coordinates and momenta

Even though th.e above-mentioned harmoni.c modeI.s can associated with the nuclear and electronic DOF. It should be
often be parameterized so as to reproduce experimental signals

rather well and provide useful insight into their molecular ]
origins, they are still based on a rather restrictive set of Rece}ved: July 7, 2020 ]CTC
assumptions that at the very least need to be validated.”*>*"~>* Published: September 2, 2020 >
Furthermore, the spectral density functions represent a rather

indirect and nonintuitive connection to the underlying

molecular structure and dynamics. Thus, an approach for :
modeling the spectra, which is not limited to harmonic model

© 2020 American Chemical Society https://dx.doi.org/10.1021/acs.jctc.0c00709
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noted that such QC/MH methods are most useful for the study
oflarge systems, especially in the condensed phase, that involve a
large number of electronic and/or nuclear DOF, and for which
quantum-mechanically exact methods are not feasible due to
their exponential scaling with the system size.”®

Various QC/MH methods have been proposed, which differ
with respect to the choice of mapping variables, as well as the
sampling used to determine the values of the corresponding
electronic variables at different times throughout the dynamics.
The goal of this paper is to present a comprehensive comparison
of the ability of different QC/MH methods to accurately
simulate the absorption spectra of the multiexcitonic molecular
systems. It should be noted that several related recent papers
have already considered the aspects of this question. One recent
study by Provazza and Coker provided an analysis of the ability
of the symmetrical quasiclassical (SQC) QC/MH meth-
0d*' 7% to simulate the linear absorption spectra of a
biexciton model using a perturbative strategy with respect to
the field-matter interaction.*’ Other recent studies by Polley and
Loring were based on combining SQC with their optimized
mean trajectory approximation to simulate the two-dimensional
vibronic spectra.*”** In the current paper, we extend the analysis
to other QC/MH methods using both perturbative and
nonperturbative approaches.

The remainder of this paper is organized as follows. The
theory underlying the dynamics of the multiexcitonic systems,
QC/MH methods, and the simulation of the absorption spectra
is outlined in Section 2. The biexciton and seven-exciton
benchmark models are described in Section 3. The results are
presented and discussed in Section 4. A summary of the main
results is provided in Section 5.

2. THEORY

2.1. Preliminary Considerations. We consider a system
with a total Hamiltonian, H(t), given by a sum of a time-
independent field-free molecular term, Hy, and a time-
dependent field-matter interaction term, W(t)

H(t) = Hy + W (1) (1)

We assume that the molecular system comprises of M coupled
two-state chromophores with similar excitation energies (in the
sense that the difference between the excitation energies of
different chromophores is much smaller than the excitation
energies themselves). The corresponding field-free multi-
excitonic molecular Hamiltonian is given by (in what follows,
boldfaced variables, for example A, indicate vector quantities,
and a hat over a variable, for example B, indicates an operator

quantity)

Hy = Hy(R, B)I0)(0l + Y H(R, B)Ij)j
j=1

M
+ 2 VR

jhi=1 @)
Here, M is the number of chromophores; R= {IAQI, IAZZ,...,IAQNH} and
P = {131, IA’Z,...,IA)NW} are the mass-weighted coordinates and
momenta operators of the N, nuclear DOF; 10) =10,0,...,0) is the
uncoupled electronic ground state (all chromophores are in
their ground state); lj) =10,...,0,1,0..,,0), with 1 in the jth place, is
the uncoupled singly excited electronic state, where the jth
chromophore is excited and the rest of the chromophores are in

6466

the ground state; Hy(R, P) = P2/2 + V(R) are the nuclear
Hamiltonians that correspond to the ground electronic state;
{I:I}(f{, P) = P?/2 + V}(li)} are the nuclear Hamiltonians that
correspond to the uncoupled singly excited electronic states (j =
1,..,M); {VH(IA{A)} are the coupling terms between the
chromophores (R-independent if the Condon approximation
is applicable).

The field-matter interaction term is given by

W(t) = —fi-E(t)cos[wt — kr] (3)
Here, E(t), k, and @ are the pulse envelope, wave vector, and
leading frequency of the driving field and ji = (ji,, iy i) is the
dipole moment vector operator of the molecular system.
Assuming that the laser frequency is in resonance with the
ground state-to-singly excited-band transitions, the dipole
moment operator is assumed to be given by

A

;

M=

1y |0) 1 + (0]
1 4)

-
]

Here, {[loj} are the transition dipole moments (assumed to be R-
independent within the Condon approximation).

Substituting eq 4 into eq 3 and performing the rotating wave
approximation (RWA)," we can rewrite the field-matter
interaction term in the following form

> h < iot—il . —iwt+ikr) .
W) = - D Lty (D) 10) (i + 7, (£)e™ 11 (ol
j=1

©)

Here, {fy,;(t) = hy§(t) = poE(t)} are the Rabi frequencies
associated with the transitions between the uncoupled ground
and the singly excited states.

It should be noted that the uncoupled electronic basis states,
{l0), 11),...,IM)}, are assumed to be R-independent and that
writing the dipole operator in terms of transitions between them
represents one choice. Another reasonable choice could be
based on writing the dipole operator in terms of the R-
dependent eigenstates of the molecular Hamiltonian (the
adiabatic basis). Physically meaningful observables such as
spectra should be clearly independent of the choice of electronic
basis. It should be noted that while calculating the transition
dipole moments of the individual chromophores is more
convenient in practice, the appropriateness of such an approach
becomes questionable in the case of strong coupling (i.e., when
V“(IAI) becomes comparable to the transition frequencies of the
individual chromophores), where writing the dipole operators in
terms of transitions between the eigenstates of the molecular
Hamiltonian would be more appropriate. Thus, the form of the
transition dipole in eq 4 implicitly assumes that the coupling
between the chromophores is weak enough to make this an
appropriate description.

2.2. Mixed Quantum-Classical Dynamics in the
Rotating Frame. The QC/MH methods under consideration
in this paper correspond to a subset of mixed quantum-classical
methods, which are based on treating the nuclear DOF as
classical-like. To this end, we assume that the dynamics of the
electronic DOF is governed by a quantum-mechanical
Hamiltonian of the following form

https://dx.doi.org/10.1021/acs.jctc.0c00709
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Hy(R, 1) = Vy(RYI0) 01+ D VI(RIj){jl+

j=1
M

V(R
ji=1

Nl:\-

Z (t)elwt 1kr|0> (]|+Zo(t)e—1wt+1k:|]><0|
j=1 (6)

Here, R, are the nuclear coordinates, which are now described as
classical-like and explicitly time-dependent. The actual classical
nuclear trajectory, R, depends on the choice of the mixed
quantum-classical method. Furthermore, obtaining a physically
meaningful result typically requires averaging over an ensemble

. . . 66,70
of such classical trajectories.”

In the next step, we define the electronic density operator in

the rotating frame, 5(t)

—iA, t/h

rot

5(t) = et/ M5(1)e

- h’wZ/ 1|]><]|

that oy, = 6, except for o) = Gjpe

(7)

hw[1 — 10)(0l]. It should be noted

—iwt

Here,
and 6y = Gore'™" when j,k #
0, respectively. The equation of motion for 5(t) is given by

_G(t) - el(Rtl t); G(t)]

(8)
where
Hy(R, 1) = Vy(R)I0) (O1+ DX AA R+
j=1
¥ v @)
jhi=1
_h D [y, (e 10) (i1, ()™ )(01]
2= )

Here, A(R,) = V(R,)/% — @ is the instantaneous detuning (the
deviation of the transition frequency between the ground and
excited states of the jth chromophore from resonance with the
leading frequency of the laser pulse). The main reason for
working in the rotating frame is the elimination of the rapidly
oscillating factors in the field-matter interaction term, e*'!
(compare egs 6 and (9)).

Several interesting limits of the Hamiltonian in eq 9 are
noteworthy:

e In the case of a laser pulse with a square envelope, y; is
constant while the pulse is on.

e The weak impulsive limit® corresponds to the case where
the pulse is much shorter than the time scale of nuclear
motion, such that R, does not change during the time that
the pulse is on. Thus, if the time origin, t = 0, coincides
with the time that the pulse is turned on
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M
Hy(R, 1) = Vo(RpI0) (O1+ ) AA(Ry)Ij){jl+

>y

V(R
jhi=1

h \ —il p ikr| .
-7 E Ly, (D)e710) (jl-+77, ()™ 1101}
(10)

so that the only time dependence of H, comes from E(t).

The strong impulsive limit°® corresponds to the case where
in addition to the pulse being much shorter than the time
scale of nuclear motion, the pulse amplitude, E(¢), is large
enough so that the dynamics is dominated by the field-
matter interaction term. In this case, the Hamiltonian
while the pulse is on is given by

ARy 0 = =2 3 11, (0 10)
j:l

+}(10(t)elkr|]><0|] (11)

2.3. Mapping Hamiltonian (MH) Approach and
Quasiclassical (QC) Approximation. For the purpose of
this paper, we can restrict ourselves to an initial state of the
overall system (electronic + nuclear DOF) of the single-product

form
i (12)

£(0)
Here, 5(0) = Y, 6;,(0)lj’"){jl and ,,(0) are the initial electronic
and nuclear density operators, respectively. Given this initial
state, the electronic reduced density matrix elements at a later
time t are given by

%8) = X aa QTR ORI O)G10(0)

=50 ®3(0) = Y. 6,04, )

= ¥ 64 (0)Cyy i ()
kK

(13)
where U(t) is the time evolution operator, = lj){j’ |, and
Cas(t) = Tr{p, (VAT ()BU(r)) (14)

It should be noted that A and B in eq 14 are purely electronic
operators. Thus, calculating 6(t) calls for calculating the
correlation functions {Ci, i1, (£)}. It should also be noted that

{Mﬁ} correspond to electronic population operators and {Mﬁ/},
with j # j', correspond to electronic coherence operators. Thus,
there are four kinds of correlation functions: (1) population—
population (k=k’ and j =j); (2) coherence—coherence (k # k’
and j # j'); (3) coherence—population (k # k' and j = j'); and
(4) population—coherence (k = k" and j #j').

{o/;(t)} can also be written in terms of other sets of
correlation functions. One such alternative set, which is
particularly useful in the context of the MH/QC rnethods, is
based on writing the electronic population operator M;; = Ij)(jl as
the sum of the identity operator, 1, and the traceless operator

Q;§7 58

https://dx.doi.org/10.1021/acs.jctc.0c00709
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Table 1. Five LSC-Based QC/MH Methods Used in This Paper”

methods based on set #1 in eq 20

Clit 1t 1, (D)
method [Mkk’] w mapping [M '] mapping
LSCI M, ”’(q, p) M W(a p)
LSCII 12 p) (31, 1%, )
methods based on set #2 in eq 20
Crag i, ()
method [Alw (Blw
[i]w mapping [Qk]w mapping [QJW mapping [Mu ] mapping
mLSC/¢'! 1 [QJf(a p) [Q)(a ) (3,1 (q, p)
mLSC/¢'p? 1 [Qk](“ (ap) [Q1%(q, p) [M, ](“ (g, p)
mLSC/¢p*p* 2h4/(q, p) (@)W (g, p) [Q1V(q p) (M, 137 (q, p)

M ](1) is given in eq 25, [ ]
23.

{0 js given in eq 26, [Q]W is given in eq 28, ¢)(q, p) is given in eq 27, and the general form of C4, ,(t) is given in eq

A 1 4 ~
M, =—(1+Q)
7N, ! (18)
where N, = M + 1 (the overall number of the electronic states)
and

M
Q= NM; = 3] My

j'= (16)
This then gives rise to the following alternative expressions for
the population—population, population—coherence, and coher-
ence—population correlation functions (the coherence—coher-
ence correlation function remains the same as CMkk,'My,(t) since it

does not involve a population operator)

1

CMkk,M”(t) = F[Ne + Ci‘Q/(t) + CQk'Qj(t)] (1)
1

Coitg a1, () = E[CI,M”,(t) + Cq, i ()] (9
1

Mu(r (t) =N CMk"’Qi(t) (19)

Thus, 6(t) can be obtained from two different sets of correlation
functions

set #1: {Cyy, i1 (6), Cuynin (), Cn i (6, Cayin, ()}

set #2: {Ciq (1), Ca,0,(8)) Crreq (), Coigyin, (D))
(20)

Both sets will yield the exact quantum results if the correlation
functions are calculated fully quantum mechanically. However,
this need not be the case when approximations methods are used
to evaluate the correlation functions (see below).

2.3.1. Methods Based on the Linearized Semiclassical (LSC)
Approximation. The MH methods are based on casting the
population and coherence operators, {M = lj){j’l}, onto an
isomorphic set of operators, {M;;(q,p

i) <].,|_’ij’("\1; p) (21)

with {]\/14 (q, )} satlsfyln the same commutation relations as
{i) ('3 4,40,50,57-63,65,69,77-77 Here, {q, p} are a set of auxiliary
Cartesian coordinates and momenta operators. Thus, in terms of
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the mapping operators, the correlation function C;3(t) (see eq

14) is given by
Can(t) = Tr{5,(0)A(4, p)B(4, B)} (22)

where, §, = U'(t) qU(t) and p, = UT(£)pU(1).
Applying the LSC approximation" * to a correlation
function in eq 22 results in the following QC approximation

for C;3(t)
0= far, fan, [aa,

[p:,(o)]w (R, Po)Aw(qo; PO)Bw(qt; Pt) (23)

Here, F = N, + N,, is the total number of DOF of the overall
system; [, (0)](Ry, Py) is the Wigner transform of the nuclear
operator p,(0); Aw(qe po) and By(q, p;) are the Wigner
transforms of the electronic operators A and B, respectively. The
general forms of the Wigner transforms of a nuclear operator D
and an electronic operator G are given by

y Z| a o« Z
D, (R, P) = /dZe ‘ZI’/"‘<R+ E‘D(R, P)‘R— ;>,

_ £>
1 2
(24)

Applying the QC approximation to the two sets of correlation
functions in eq 20 then leads to two alternative implementations
of the QC/MH approximation.’”**

The actual choice of the mapping variables is not unique and
multiple choices of the ma%)pmg variables have been proposed
and employed.*>*>**7%7781 I this paper, we consider two such
choices, which are based on the Stock—Thoss—Meyer—Miller
mapping " (the reader is referred to refs 66 and 82 for a more
detailed discussion of these two choices). The first choice, which
we refer to as mapping #1, leads to the following QC mapping
variables

(31,15 (q, p) =

GW(qJ P) = fdze_izp/h<q + %’G((’i, p

Lo, 2

74 e = h)

51,1, p) = —(q-ip)(q, + ip,)
jiw A 2h TN i (25)

where j # j’. The second choice, which we refer to as mapping

#2, leads to the following QC mapping variables

https://dx.doi.org/10.1021/acs.jctc.0c00709
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(M1 (a, p) = b(q p)(qf +p - 5) H(R P, q p) = — + V(R)

3,15 (a, p) = ¢(a, p)(a=ip)(q, + ip,) (26)

where j # j’ and

N+l

n

M

_ _i 2 2

#(q, p) = ——exp| —— z(:) (q; +p)
pm

27)

We also note that the QC mapping #1 and mapping #2

A

approximations for Q;, eq 16, are given by

M
[Q, 1 (a, p) = NIMI (a, p) = D7 M1 (a, ),
o

'=0

M
[Q,1 (g p) = NIV (g, p) — D5 [M,107(q, p)
j'=0

(28)
Applying the above-mentioned QC/MH approximations to the

two sets of correlation functions in eq 20 yields the five different
LSC-based methods shown in Table 1 (see refs 57, 58, 66 for a
more detailed discussion). The first two methods, LSCI (also
referred to as PBME’®) and LSCII (also referred to as LSC-
IVR*®), are based on set #1 of correlation functions (see eq 20).
Both LSCI and LSCII use mapping #2 for [Mkk]w and [Mkk/]w,
but differ from each other in the mapping used for [Mj;-]w and
[ij’]w: with LSCI using mapping #1 and LSCII using mapping
#2. The third through fifth LSC-based methods are based on set
#2 of correlation functions (see eq 20).>” For the correlation
functions Criy, g1, Critutitlw Craduale and Cra,ti), all
three methods use mapping #2 for [Qj]wand [Mj]—/]wbut differ in
how they map the unity operator and in the mapping used for
[Qu]w- The third method, referred to as mLSC/¢'¢, maps the
unity operator onto 1 and uses mapping #1 for [Q.]w- The
fourth method, referred to as mLSC/¢'¢? maps the unity
operator onto 1 and uses mapping #2 for [Q]y The fifth
method, referred to as mLSC/¢?@?* maps the unity operator
onto 2¢h(q, p) [with ¢(q, p) given in eq 27] and uses mapping
#2 for [Qk] W

To obtain the correlation functions in eq 20, the nuclear and
electronic coordinates and momenta at time ¢, {R, P, q, p,},
need to be obtained from the initial state {Rg, Py, qq, po}- The
initial nuclear coordinates and momenta, {Ry,P,}, are sampled
from the Wigner transform of the initial nuclear density matrix.
The initial electronic coordinates and momenta, {qq, p,}, are
sampled based on the phase-space density ¢(qo, po) or ¢*(qo
po) (see Table 1). {R, P, q, p,} is obtained from {Ry, Py, qo, Po}

via classical dynamics as dictated by the following symmetrized

mapping Hamiltonian***°
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1 _
+E[VOM— V](R)(qoz +P02)
+ % Z (A - V](R)(qu + sz)

j=1

M
1 . .
s Z V;(R)(q~ip)(q, + ip,)
7

M
= X Uty (9™ (a, = i) (g, + i)
j=1

+20 ()™ (4, = ip)(q, + ip,)]
(29)

It should be noted that the symmetrized form of the mapping
Hamiltonian, eq 29, is obtained by shifting the diagonal

. e = 1 M
elements in the Hamiltonian by V = E[VB + Zi= . hAj] and

using the closure relation, Y ¥lj){jl = 1.

2.3.2. Symmetrical Quasiclassical (SQC) Method. The SQC
method can be viewed as an alternative implementation of the
LSC approximation.”' ~*° Within SQC, each electronic state Ij)
is associated with a classical harmonic mode whose state is
described by an action variable, 1, and an angle variable, u}-.44’69
The QC mapping variables for the electronic density matrix

elements in terms of action—angle (aa) variables are given by

M
[ij]%tS/QC) (n; u) = 5(”;’ - l) H 6(”,5) )

£=0

E#j

[V, 15%) (n, w)

= ei(ui'_ui) 5(71] —

M

1 1

—|o|n, — = o(n

2) ( / 2) g (7
E#j (30)

where n = (ng,..,ny) and u = (ug...,u5;). The SQC method is

based on replacing the delta function §(n; — a) with the prelimit

delta function h(y — In; — al)/2y, where.

h(x)={1 x>0

0 x<0 (31)

is the Heaviside function and y is the window width parameter
(set to 0.366, as recommended in ref 51).

It should be noted that the above prescription corresponds to
the implementation of SQC in terms of fixed square samgpling
windows. Other implementations in terms of triangularS\ and
adjustable® windows have also been proposed, but will not be
considered here for the sake of brevity.

Within SQC, initial nuclear coordinates and momenta are
sampled based on [,(0)],(Ry, P,) (the same as in the LSC-
based methods). Initial sampling of the action variable, , is
done randomly within the corresponding square sampling
window. Initial sampling of the angle variables, {w}, is done
randomly within the interval (0, 27).

The dynamics of the a—a variables within SQC is identical to
that in the LSC-based methods when translated into Cartesian

https://dx.doi.org/10.1021/acs.jctc.0c00709
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coordinates and momenta. The relationship between the a—a
variables and the Cartesian coordinates and momenta is given by

q,= \/mcos(uj),
pj = \/msin(u}-) (32)

Similar to LSC, the correlation function C;3(t) in SQC is
calculated based on the following QC approximation

1V
CAwa(t) = (ﬁ) deo /dpo /dno /duo

X[/;,,(O)]w (R By)Ay (ng, ug)Byy(n, u,) (33)

2.3.3. Mean-Field (Ehrenfest) Method. The mean-field (MF)
method can also be cast as a QC/MH-type method.”* More
specifically, assuming that the initial electronic state corresponds
to a pure state, ly(0)), for a given nuclear trajectory R, the
electronic state at a later time ¢ is given by

M

hy(t; Rt)> = Z a;(t5 Rt)lj>

j=0 (34)

It should be noted that even though the initial electronic state is
given by Iy(0)) for all nuclear trajectories, different nuclear
trajectories will give rise to different ly(t; R,)).

The corresponding electronic density matrix at time ¢ is then
obtained by averaging over the ensemble of the nuclear
trajectories, which is achieved by averaging over the initial
conditions of the nuclear coordinates and momenta based on
the Wigner distribution of the initial nuclear density operator

4(t) = (ﬁ)N f dR, / dB[ ()] (R, B)

Y a(t R (5 R (K

jk=0

(35)

Expressing the expansion coeflicients in terms of the Cartesian
coordinates and momenta as follows

—_— 1 ;.
9= 74t (36)
it can then be shown that the MF (Ehrenfest) method is
equivalent to propagating {R, P, q, p} as classical variables
whose dynamics is governed by the QC Hamiltonian in eq 29.**
The initial nuclear coordinates and momenta within the MH
method are sampled in the same way as the LSC and SQC
methods. However, unlike the LSC and SQC methods, the
initial values of the electronic coordinates and momenta, {qq,
Po}, are uniquely determined by {a,(0)}.

It should be noted that the version of the MF method used
here requires that the initial electronic state is described by a
pure state. We will therefore limit the use of the MF method to
cases where the initial electronic state is of this form.

2.4. Linear Spectroscopy. In this section, we outline two
different approaches to calculating the absorption spectrum via
the QC/MH methods: (1) The perturbative approach, which is
commonly used for simulating the absorption spectrum, and is
based on explicitly treating the field-matter interaction as a small
perturbation within the first-order (linear) perturbation theory;
(2) The nonperturbative approach, which is based on mimicking
the experimental procedure used to measure the absorption
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lineshape. Ideally, the perturbative and nonperturbative
approaches would yield the same result if the calculation is
performed in a way that is quantum-mechanically exact and the
assumptions underlying the first-order perturbation theory are
valid. However, this is not necessarily the case when the
approximate methods, like the QC/MH methods described in
Section 2.3, are employed. Furthermore, validation of the
consistency of the assumptions underlying the first-order
perturbation theory calls for comparing the perturbative
prediction with a nonperturbative prediction. Both issues are
addressed by the protocols for calculating the linear spectra
outlined in this section and the comparison of the absorption
lineshapes that they give rise to when applied to the model
systems in the next section.

2.4.1. Perturbative Approach. The perturbative approach is
based on the following expression for the absorption cross
section in terms of the linear optical response function (ORF)"

2 © i
(@) = = Im f dtets(r)
n(w)  Jo (37)
Here, n(w) is the index of refraction and S!(¢) is the linear
OREF, which is given byl

s = 3200) 3 T, 40)12,)

a=x,y,z

(38)

where 6(t) is a Heaviside step function (6(t) =0 or 1 whent <0
or > 0, respectively), f1,(t) = e/ e /R 3nd Peq = e Pty
Tr(e ™). It should be noted that (1) (@) = & dte
SW(t) is the linear susceptibility, so that the absorption
spectrum is proportional to the imaginary part of ¥ (w); (2)
eq 38 assumes that the measurement is performed on an
isotropic ensemble of the molecular systems such that all
molecular orientations are equally probable; (3) traditionally,
the lineshape function is defined without the 1/n(w) factor and
is therefore proportional to Imy"(w); (4) in practice, the
relative height of the absorption peaks is of interest, rather than
their absolute values. Thus, when comparing different
approaches below, we will always normalize the results so that
the maxima of the lineshape are the same.

As is well known, the linear ORF can be written in terms of the
imaginar?r part of the equilibrium dipole—dipole correlation
function

Wy — _2

S (t)——ge(t)ImU(t)] (39)
where

10 =1 X TEOL04,) = TGO ROR,)

a=x,y,z

(40)
is the quantum-mechanical equilibrium dipole—dipole correla-
tion function. Thus, calculating the absorption lineshape within
the perturbative approach requires calculating Im[J(¢)] by the
QC/MH method of choice, substituting it into eq 39 to obtain
SW(£) and substituting S(#) into eq 37 to obtain the
absorption lineshape. Below, we will label the absorption
spectra calculated in this way by PT (for the perturbation
theory).

Assuming that the electronic excitation energies of the
molecular system under consideration in this paper are much
larger than kg T (i.e., fhiw > 1, see Section 2.1), the equilibrium
density operator is given by p.q = Zg Le=P)0)(0l, where Z, =

https://dx.doi.org/10.1021/acs.jctc.0c00709
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Tr(e ), Substituting this p,, and the dipole moment
operators from eq 4 into eq 40 and remembering that (0lk) =
(klo) = 5(k,0), we obtain the following expression for J(t)

M
1 iH, ./ ./
J(t) = S > Tr{elHM gy JO) (141 i) (OI]

a=x,y,z j,j'=1

(41)

Thus, calculating J(t) within PT calls for calculating the
coherence—coherence correlation functions of the form

—pH,

—iflyt/hyy & PHo
j0 7 ’

0

} (42)

As such, J(t) can be calculated using any of the LSC-based
methods and SQC (see Section 2.3). It should be noted that this
is not the case for calculating J(f) within PT via the MF method
since the initial electronic state does not correspond to a pure
state. We will therefore not present the results for the absorption
spectrum calculated using MF via the PT approach.

2.4.2. Nonperturbative Approach. The nonperturbative
approach mimics the commonly used experimental procedure
for obtaining the absorption spectra, which is based on
measuring the relaxation of the dipole moment expectation
values in response to a short laser pulse. To this end, the system
is assumed to start out at thermal equilibrium, which is described
by the density operator p.q = Zg Le™10)(0l. Applying a short
light pulse to the system then takes it out of equilibrium,
following which one measures the free-induction decay, which
corresponds to monitoring the expectation value of the dipole
moment operator as the system relaxes back to equilibrium. The
absorption spectrum is then given by the imaginary part of the
Fourier—Laplace transform of the free-induction decay signal.

For the sake of concreteness, we will assume that the short
light pulse has a square envelope, so that E(t) = Ey when —7 < ¢t
< 0 and zero otherwise. Thus, 7 is the pulse length and the free-
induction decay signal is measured at t > 0 (ie., following the
pulse). The expectation value of the dipole operator at time ¢
after the pulse is given by (see eq 4)

_ it/ hyy
CMo/,Mju(t) - Tr{el " MOJ"e

o PHs

_ it/ Ay  —iFt/ Ay
CM;'OYMJO(t) = Tr{e ‘M Mj’oe v Mj0 ~
0

M
1
D(t) = g Z z [/’tol"ao}o(t) + ﬂjo'ao-oj(t)]

a=x,y,z j=1

M
1
= Z z[ﬂoj,aCMoo,Moj(t) + g oty 1, ()]

a=a,y,z j=1 (43)
The absorption spectrum is therefore given by
[*)
(o =Im/ dtD(t)e™
@ =1m [ a0 »

It should be noted that the dynamics within the time intervals
(—7,0) and (0,t) is dictated by H(t) = Hy + W(t) and H,,
respectively.

In practice, it is convenient to work in the rotating frame since
the Hamiltonian during the time interval when the square
envelope pulse is on, (—7,0), is time-independent (see Section
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22). This implies simulating {5(t) = Cipi1,(t), Fo;(t) =
Cityyit, (1) } and using the identities 6,4() = G;o(t)e ™" and 6y(t)
= G;(t) e’ to obtain the expectation value of the dipole operator
at time ¢ in the Schrodinger picture. Importantly, calculating
D(t) calls for calculating the population—coherence correlation
function {Cyy,,i1,(t), City,ir, (1)} that can be calculated within

any of the QC/MH methods (including MF) outlined in
Section 2.3. It should be noted that within SQC, the correlation

function is further normalized in the following manner’°

M
Ca,5,(t) = Cy 5, )/ Z C[MOO]W,[MH]W(f)

j=0 (45)

D(t) needs to coincide with S!)(t) for the perturbative and
nonperturbative approaches to yield the same absorption
lineshape (see eqs 44 and 37). It can be shown that the two
conditions need to be satisfied for this to be the case:*** (1) The
strong impulsive limit, where the pulse is much shorter than the
time scale of nuclear motion and the pulse amplitude, [Ey, is
large enough so that the dynamics while the pulse is on is
dominated by the field-matter interaction term (see eq 11). (2)
The weak-field limit, according to which L NS %
For those two conditions to be satisfied simultaneously, the

following inequality needs to be valid

g > Ih;(jol > I5V,(R)], 1A, 1V, (46)
Thus, the Rabi frequency needs to be simultaneously smaller
than 7/7 (the weak-field limit) and larger compared to the
fluctuations in the ground state potential energy, 16V, (R)I,
detuning, |Aj, and electronic coupling, IV}l (the strong
impulsive limit). The field parameters used for the model
calculations reported in Section 4 were chosen so as to satisfy
those conditions.

3. MODELS

In the next section, we compare the absorption spectra
calculated by applying the above-mentioned seven methods
(LSCI, LSCII, mLSC/¢'¢', mLSC/¢' ¢, mLSC/¢p*¢* SQC,
and MF) to the following benchmark models, for which the
quantum-mechanically exact results are known: (1) A Frenkel
biexciton model; (2) A Frenkel seven-exciton model for the
Fenna—Matthews—Olson (FMO) complex. The Hamiltonian
of each system has the form of eq 2. In this section, we outline

the above-mentioned models.
3.1. Frenkel Biexciton Model. The Frenkel biexciton

model corresponds to the case where the molecular system
consists of M = 2 chromophores, so that there are N.=M+ 1=3
electronic states (one ground state, 10), and two singly excited
states, {I1),12)}). The PESs for the three electronic states and

electronic coupling are given by

https://dx.doi.org/10.1021/acs.jctc.0c00709
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&1 41
Vy(R) = z Ea)kZRIil + z Ewszkz,z
k=1 k=1

N N
1 1
V(R) =€ + Z Ewkz(Rk,l - Dk)2 + Z Ewszkz,z
k=1 k=1

N N
1 1
V,(R) =€, + z Ewszkz,l + Z Ea)kz(Rk,z - D)’
k=1 k=1

Vlz(R) = V21(R) =A
(47)

Here, €; denotes the minimum-to-minimum excitation energy of
the jth chromophore (j = 1,2) and A is the electronic coupling
coefficient (not to be confused with the detuning). Each
chromophore has its own set of N = 100 uncoupled harmonic
modes, R; = (R, ;,..,Ry;) and R, = (R;,,..,Ry,), so that the
optimal geometry is only displaced with respect to those modes
when the chromophore is excited. Thus, the overall number of
nuclear DOF is N, = M X N = 200. The displacements {D,} are
assumed to be the same for each chromophore and are given by
Dy = g/}, where {w,} and {g;} are obtained from the Debye
spectral density

N 2
/2 8 0o,
w=—§—5a)—a) - 22—
]( ) 2 - w, ( k) (}J2+(UCZ (48)

following the discretization approach outlined in ref 85. 1 and
correspond to the reorganization energy and cutoff frequency.

Below, we report the calculations for this model with €, = 50
em™, €, =—50cm™), A =100 cm™, 2 = 50 or 150 cm™ for (1)
w, = 18 cm™ and T = 300 K (the slow-bath and high-
temperature case); (2) @, = 200 cm™! and T = 72 K (the fast-
bath and low-temperature case). Thus, the ratio of the coupling
strength between the electronic and nuclear DOF, measured by
4, and the electronic coupling coeflicient, A, is given by 1/A =
0.5 and 1.5.

We also assume that the laser pulse has a square envelope with
leading frequency @ = 1050 cm™" and pulse duration 7 = 80 au =
1.935 fs. The two transition dipole vectors are assumed
antiparallel, with the ratio of their magnitude given by 14,/ fi0,
= 5. The Rabi frequencies are assumed to be given by y,, = o =
2000 cm™! and yo, = ¥y0 = —400 cm™'. For ug, = 1 au, this
corresponds to a field strength of ~1.17 X 10" W/cm™

3.2. Frenkel Seven-Exciton Model for FMO. The Frenkel
seven-exciton model for FMO was adoyted from ref 86 and has
been used extensively as a benchmark.”” = It corresponds to the
case where the molecular system consists of M 7
chromophores, so that there are N, = M + 1 = 8 electronic
states (one ground state, l0), and seven singly excited states, {|
1),..,17)}). The PESs for the 8 electronic states are given by

M

N
ORI

j=1 k=1

N M N
1 2 2 1 2p2
VR) = ¢+ ), “wi(R; ~ D + > iR,
k=1 4 k=1

G, j > 0)
(49)

The chromophores’ minimum-to-minimum excitation energies,
{e‘j}, electronic coupling coefficients, {Vylj,]/ = 1,.,7}, and
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transition dipole moments, {ﬂoj}, were adopted from refs 55, 86,
89, 90. Each chromophore has its own set of N = 200 uncoupled
harmonic modes, R; = (Ry j, ..,Ry;;), so that the over number of
nuclear DOF is N, = M X N =1400. All of the transition dipole
moment vectors are assumed to have the same magnitude, |ug,| =
|1os! = -lpgsl = lul, but are oriented in different directions. The
Rabi frequencies are assumed to be given by y = |ul Il = 700
cm™h

4. RESULTS AND DISCUSSION

In this section, we report the linear spectra for the above-
mentioned biexciton and seven-exciton models, calculated via
the perturbative and nonperturbative approaches, based on the
above-mentioned QC/MH methods (LSCI, LSCII, mLSC/
¢'¢p', mLSC/¢p'¢p*, mLSC/p*¢* SQC, and MF). The
converged results were obtained by averaging over 10°
trajectories, with a time step of 10 au & 0.24 fs during the
pulse and 40 au =~ 0.96 fs during the field-free dynamics that
follow it. For comparison, we also present the spectra calculated
based on the Redfield method (see Appendix 1).

All approximate methods are compared with the numerically
exact results obtained via the hierarchy of equations of motion
(HEOM) approach, either via the open-source package pyrho
for the biexciton model” or from ref 90 for FMO. For the
biexciton model, the converged HEOM results at T = 300 K
were obtained with zero Matsubara frequencies (K = 0) via the
high-temperature approximation and as many as L = 20 levels in
the hierarchy. To obtain the converged results at T = 72 K, a
finite truncation depth (L = 6) and a finite number of Matsubara
frequencies (K = 2) were used.

4.1. Frenkel Biexciton Model. For the biexciton model, we
start with the slow-bath and high-temperature case (w, = 18
ecm™, T = 300 K). The absorption spectra for this case as
obtained via the NP approach based on different QC/MH
methods are shown in Figure 1. Both the time-domain free-
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10 MA=051a wpmiscrts!
‘I 1.0 I—— NP_mLSC/p's?
o < NP_mLsC/p20
0.8 NP_SQC
NP_LSCI
0.6 le— np_LsCH
00 AL e NPMF
-~ Redfield
—— HEOM
-0.5
- 3
_ 1.00 =
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0.50
i
0.25f1
\
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-0.25
-0.50
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100
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time (fs)
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Figure 1. Absorption spectra for the biexciton model at the slow-bath
and high-temperature case (@, = 18 cm™, T = 300 K), as obtained via
the NP approach based on different QC/MH methods. Also shown are
the Redfield method and numerically exact HEOM method results.
Both the time-domain free-induction decay (left panels) and frequency-
domain absorption spectrum (right panels) are shown, for 1 = 50 cm™
(top panels) and 42 = 150 cm™ (bottom panels). The origin of the
frequency axis is set to coincide with the light pulse leading frequency.
The results were normalized so that the maximum is equal to 1.
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induction decay (left panels) and frequency-domain absorption
spectrum (right panels) are shown, for A = 50 cm™ (top panels)
and A = 150 cm™" (bottom panels), which correspond to weak
and strong coupling between the electronic and nuclear DOF,
respectively.

As expected, the free-induction decay is more damped and the
absorption spectrum is broader in the strong coupling case. The
absorption lineshape predicted by the Redfield method is seen to
be significantly broader in comparison to the exact result. This
can be traced back to the fact that the slow-bath limit is expected
to give rise to strong non-Markovian effects, which cannot be
captgged by the Markovian Redfield quantum master equa-
tion.

All QC/MH methods are seen to be able to reproduce the
exact absorption spectrum rather well in the slow-bath and high-
temperature case. This is consistent with the fact that treating
the nuclear DOF as classical is reasonable in the slow-bath and
high-temperature limit. Most QC/MH methods are seen to
quantitatively reproduce both the positions, widths, and relative
heights of the two peaks in the weak coupling limit. Those
correspond to transitions between the ground state and each of
the two singly excited eigenstates. Thus, their relative heights
correspond to the difference in the oscillator strength of those
two transitions. SQC is the only method that is unable to
correctly reproduce the relative heights of the two peaks. This
observation echoes previous observations that SQC with square
windows functions can become inaccurate in the weak coupling
limit>® and when used to calculate coherences, rather than
populations.* It should be noted that other implementations of
SQC that employ triangular windows or adjustable window
functions may be able to resolve those discrepancies.”®* It is
also interesting to note that the discrepancy between SQC and
the exact result is much more pronounced in the frequency
domain than in the time domain.

The absorption spectra for the slow-bath and high-temper-
ature case (@, = 18 cm™}, T = 300 K) as obtained via the PT
approach based on the different LSC-based QC/MH methods
are shown in Figure 2. The fact that the results obtained via the
PT approach are essentially indistinguishable in comparison to
the NP approach (see Figure 1) implies that the NP and PT
approaches coincide for the field parameters used in this paper.
This is not trivial, given that the two approaches use different
kinds of correlation functions (population—coherence in the
case of NP and coherence—coherence in the case of PT). Thus,
the fact that the same results are obtained despite of this is a
testimony of the robustness of the LSC-based QC/MH methods
and implies that the choice between the PT and NP approaches
is a matter of convenience.

Next, we consider the fast-bath and low-temperature case (@,
=200 cm™ and T = 72 K). The absorption spectra for this case
as obtained via the NP approach based on different QC/MH
methods are shown in Figure 3. Both the time-domain free-
induction decay (left panels) and frequency-domain absorption
spectrum (right panels) are shown, for A = 50 cm™" (top panels)
and 4 = 150 cm™" (bottom panels), which correspond to weak
and strong coupling between the electronic and nuclear DOF,
respectively.

As for the slow-bath and high-temperature case, the free-
induction decay is more damped and the absorption spectrum is
broader in the strong coupling case. Unlike the slow-bath and
high-temperature case, the absorption lineshape is predicted by
the Redfield method is seen to be in good agreement with the
exact result when A = 50 cm ™!, which implies that the Markovian
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Figure 2. Absorption spectra for the biexciton model at the slow-bath
and high-temperature case (@, = 18 cm™, T = 300 K), as obtained via
the PT approach based on different LSC-based QC/MH methods and
the HEOM method. Both the time-domain linear response function
(left panels) and frequency-domain absorption spectrum (right panels)
are shown, for A = 50 cm™ (top panels) and 4 = 150 cm™ (bottom
panels). The origin of the frequency axis is set to coincide with the light
pulse leading frequency. The results were normalized so that the
maximum is equal to 1.
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Figure 3. Absorption spectra for the biexciton model at the fast-bath
and low-temperature case (@, = 200 cm™, T = 72 K), as obtained via
the NP approach based on different QC/MH methods. Also shown are
the Redfield method and numerically exact HEOM method results.
Both the time-domain free-induction decay (left panels) and frequency-
domain absorption spectrum (right panels) are shown, for 1 = 50 cm™
(top panels) and 150 cm™' (bottom panels). The origin of the
frequency axis is set to coincide with the light pulse leading frequency.
The results were normalized so that the maximum is equal to 1.

approximation is valid in this case and is consistent with the fact
that the Redfield method assumes weak coupling between the
electronic and nuclear DOF. Indeed, the agreement between the
absorption lineshape predicted by the Redfield method and the
exact result is seen to deteriorate when A = 150 cm™), which
corresponds to stronger coupling between the electronic and
nuclear DOF. However, even in this case, the Redfield method is
seen to capture the peak positions and widths rather well, with

https://dx.doi.org/10.1021/acs.jctc.0c00709
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the main discrepancy between the two corresponding to the
relative heights of the two peaks.

In contrast, the various QC/MH methods are seen to be
significantly less accurate in the fast-bath and low-temperature
case in comparison to the slow-bath and high-temperature case.
Whereas the peak locations and widths are reproduced rather
well by the QC/MH methods, significant discrepancies are
observed with respect to the relative heights of the two peaks.
This is consistent with the fact that treating the nuclear DOF as
classical is less reasonable in the fast-bath and low-temperature
limit. It should be noted that here too, the discrepancies in the
frequency domain are more pronounced than in the time
domain.

The absorption spectra for the fast-bath and low-temperature
case (w. =200 cm™, T =72 K) as obtained via the PT approach
based on the different LSC-based QC/MH methods are shown
in Figure 4. The fact that the results obtained via the PT

15 12
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Figure 4. Absorption spectra for the biexciton model at the fast-bath
and low-temperature case (@, = 200 cm™, T = 72 K), as obtained via
the PT approach based on different LSC-based QC/MH methods and
the HEOM method. Both the time-domain linear response function
(left panels) and frequency-domain absorption spectrum (right panels)
are shown, for 1 = 50 cm™ (top panels) and 150 cm™ (bottom panels).
The origin of the frequency axis is set to coincide with the light pulse
leading frequency. The results were normalized so that the maximum is
equal to 1.

approach are essentially indistinguishable in comparison to the
NP approach (see Figure 3) implies that the NP and PT
approaches coincide for the field parameters used in this paper
and that the predictions of the LSC-based methods are robust,
even when they are less accurate.

4.2. Frenkel Seven-Exciton Model for FMO. The
absorption spectra for the seven-exciton model of FMO at T =
30, 77, and 300 K, as obtained via the NP approach, based on
different QC/MH methods, are shown in Figures 5-7,
respectively.

The peak locations and widths are seen to be captured rather
well by all QC/MH methods even at the lowest temperature (T
= 30 K, see Figure 5), which represents the most challenging
case for such methods. The main deviations are with respect to
the relative peak heights, although peak frequencies are also seen
to be visibly shifted. When it comes to relative peak heights, the
mLSC methods are observed to be the most accurate, while
SQC is observed to be the least accurate. When it comes to peak
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Figure S. Absorption spectra for the FMO model at T = 30 K, as
obtained via the NP approach, based on different QC/MH methods.
Also shown are the Redfield method and numerically exact HEOM
method results.”® The origin of the frequency axis is set to coincide with
the light pulse leading frequency. The results were normalized so that
the maximum is equal to 1.

positions, MF is seen to be the least accurate, while all of the
remaining QC/MH methods are observed to be of similar
accuracy. It should be noted that the Redfield method is in
excellent agreement with the exact result in this case. This
suggests that the assumptions of weak coupling between
electronic and nuclear DOF and Markovity underlying the
Redfield method are valid for FMO at 30 K.

The accuracy of all QC/MH methods improves as the
temperature increases from T = 30 to 77 K (see Figure 6). With
the exception of SQC, all LSC-based methods and the MF
method are observed to reproduce the relative peak heights
better then they did at T = 30 K. With the exception of MF, all
LSC-based methods and SQC are observed to reproduce the
exact peak location rather well. It should be noted the Redfield
method is still in excellent agreement with the exact result at 77
K.

Further increasing the temperature to T = 300 K (see Figure
7), the MF- and LSC-based methods all seem to reproduce the
exact absorption lineshape rather accurately. This however is not
the case for SQC, which can be attributed to its above-
mentioned inability to reproduce the correct relative peak
heights. The Redfield method is also seen to be less accurate in
this case, which we attribute to the emergence of non-Markovian
effects.

Finally, the absorption spectra calculated via the NP approach
are compared to those calculated via the PT approach. To this
end, we show the results obtained using mLSC/¢'¢', mLSC/
¢'¢* LSCland LSCII at T = 30, 77, and 300 K, in Figures 8—10,
respectively. As for the biexciton model, the fact that the results

https://dx.doi.org/10.1021/acs.jctc.0c00709
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Figure 6. Absorption spectra for the FMO model at T = 77 K, as
obtained via the NP approach based on different QC/MH methods.
Also shown are the Redfield method and numerically exact HEOM
method results.”® The origin of the frequency axis is set to coincide with
the light pulse leading frequency. The results were normalized so that
the maximum is equal to 1.

Figure 7. Absorption spectra for the FMO model at T = 300 K, as
obtained via the NP approach based on different QC/MH methods.
Also shown are the Redfield method and numerically exact HEOM
method results.”® The origin of the frequency axis is set to coincide with
the light pulse leading frequency. The results were normalized so that
the maximum is equal to 1.

obtained via the PT approach are essentially indistinguishable
from these obtained via the NP approach implies that the NP
and PT approaches coincide for the field parameters used in this
paper, and that the predictions of the LSC-based methods are
robust.

5. SUMMARY

The QC/MH methods represent a cost-effective computational
strategy for simulating the nonadiabatic dynamics of the
complex molecular systems characterized by a large number of
electronic and/or nuclear DOF. The optical spectra provide
some of the most sensitive probes of molecular structure and
dynamics of such systems. Thus, the development of the general-
purpose computational methods for simulating the optical
spectra within the framework of the QC/MH methods
represents a natural next step in the advancement of these
methods and the expansion of their range of applicability.
Recent studies by Provazza and Coker* and by Polley and
Loring*""** have taken first steps toward achieving this goal. In
the current paper, we extend the analysis to other QC/MH
methods as well as to a nonperturbative approach for calculating
the linear spectra of the multiexcitonic molecular systems.

To this end, we performed a comprehensive comparison of
the linear spectra obtained via seven different QC/MH
approaches (LSCI, LSCII, mLSC/¢'¢', mLSC/¢'¢* mLSC/
@*¢*, SQC, and MF) in the context two benchmark models for
which numerically exact HEOM results are available (biexciton
and seven-exciton models). Also included in the comparison
were the results obtained via the Redfield method, which is

6475

based on treating the nuclear DOF fully quantum mechanically
and assuming weak coupling between the electronic and nuclear
DOF and describing the dynamics of the electronic density
operator in terms of a Markovian quantum master equation.

It should be emphasized that while the benchmark models
used here involve harmonic electronic PESs, which are given in
terms of uncoupled harmonic modes, the QC/MH approach is
not limited to such systems and would in fact be most
advantageous for systems described by all-atom anharmonic
PESs, for which numerically exact results would not be feasible.

Another aspect considered in this paper is the comparison
between the perturbative and nonperturbative approaches to
simulating the linear spectra. More specifically, the perturbative
approach relies on the first-order perturbation theory with
respect to the field-matter interaction, while the nonperturbative
approach attempts to mimic the experimental measurement of
the absorption spectra from the free-induction decay that
follows a short laser pulse. The field parameters used in this
paper were chosen so that the results obtained via the PT and
NP approaches would coincide if the calculation was carried out
in a quantum-mechanically exact manner. The fact that they still
coincide when calculated via the approximate QC/MH methods
is not trivial, given that the two approaches use different kind of
correlation functions (population—coherence in the case of NP
and coherence—coherence in the case of PT), and is
demonstrative of the robustness of the QC/MH methods. It
also implies that the choice between the PT and NP approaches
is a matter of convenience, at least for the models under
consideration in this paper. However, the NP approach does

https://dx.doi.org/10.1021/acs.jctc.0c00709
J. Chem. Theory Comput. 2020, 16, 6465—6480
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Figure 8. Comparison of the absorption spectra for the FMO model at T = 30 K, as obtained via the PT and NP approaches, based on the indicated
QC/MH methods. Also shown numerically the exact HEOM method results obtained via the PT approach.”® The origin of the frequency axis is set to
coincide with the light pulse leading frequency. The results were normalized so that the maximum is equal to 1.
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Figure 9. Comparison of the absorption spectra for the FMO model at T = 77 K, as obtained via the PT and NP approaches, based on the indicated
QC/MH methods. Also shown numerically the exact HEOM method results obtained via the PT approach.”® The origin of the frequency axis is set to
coincide with the light pulse leading frequency. The results were normalized so that the maximum is equal to 1.

have several advantages over the PT approach: (1) It can
account for the nonperturbative effects that could give rise to a
dependence of the spectra on the width, shape, chirp, and
intensity of the light pulse; (2) Population—coherence
correlation functions calculated via the QC/MH methods are
expected to be more accurate than the coherence—coherence
correlation functions; and (3) The NP approach is particularly
straightforward to extend to the case of nonlinear multidimen-
sional spectroscopy.

The results show that among the QC/MH methods
considered, the LSC-based methods can yield accurate and
robust absorption spectra when treating the nuclear DOF as
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classical is a valid approximation. Within the LSC-based
methods, LSCII, mLSC/¢'¢? and mLSC/¢*¢* were observed
to be somewhat more accurate than LSCI and mLSC/¢'¢". It
was also observed that MF and SQC gave rise to larger
discrepancies in comparison to the exact results. More
specifically, peak positions were observed to be shifted when
MF was used, while relative peak heights were observed to be
challenging to reproduce via SQC. Thus, at least based on the
results presented in this paper, the LSC-based methods, and in
particular LSCII, mLSC/¢'¢?* and mLSC/¢*¢?, emerge as the
methods of choice. However, additional testing will have to be
conducted to determine the general validity of this statement.

https://dx.doi.org/10.1021/acs.jctc.0c00709
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Journal of Chemical Theory and Computation pubs.acs.org/JCTC
T=300 K
1.2 —- NP_mLSC/o'o! ==+ HEOM | —@— NP_mLSC/o'¢? ==+ HEOM
—— PT_mLSC/p'6! —— PT_mLSC/6'¢?

3
= 1of —* \PLscl —— HEOM [ = Np_LSCI == HEOM
“[ == PT_LSCI ——. PT_LSCII
0.9
0.6
0.3
0.0
=200 0 200 400 600 —200 0 200 400 600
w(ecm™1)

Figure 10. Comparison of the absorption spectra for the FMO model at T = 300 K, as obtained via the PT and NP approaches, based on the indicated
QC/MH methods. Also shown numerically the exact HEOM method results obtained via the PT approach.”® The origin of the frequency axis is set to
coincide with the light pulse leading frequency. The results were normalized so that the maximum is equal to 1.

Another interesting observation is the complementary nature
of the Redfield method and QC/MH methods. More
specifically, while the accuracy of the QC/MH methods
improves as the nuclear DOF becomes slower and/or
temperature is increased, that of the Redfield method improves
as the nuclear DOF becomes faster and the temperature is
decreased (as long as the coupling between nuclear and

electronic DOF is sufficiently weak).
We view the accuracy and robustness of the LSC-based

methods for calculating the absorption spectra presented in this
paper as encouraging and indicative of their potential usefulness
as general-purpose methods for simulating the spectra based on
the all-atom anharmonic models of the complex molecular
systems. The next natural step would be to extend the
methodology to the calculation of the nonlinear time-resolved
multidimensional spectra. Work on such an extension is
currently underway and will be presented in a forthcoming

separate publication.

B A. APPENDIX: REDFIELD METHOD FOR
CALCULATING THE LINEAR SPECTRA

The Redfield method for calculating the linear spectra used in
this paper is similar to that described in ref 15. Below, we outline

the main steps and assumptions underlying it.
The field-free dynamics within the Redfield method is

described by a Markovian quantum master equation, also
known as the Redfield equation. To this end, we cast the Frenkel

excitonic Hamiltonian in the following system-bath form
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equation is obtained via the second-order perturbation theory
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Here, ], K, M, and N stand for the eigenbasis of ﬁs (not to be
confused with j, k, m, and n, which correspond to the localized
basis).

In the case of a harmonic bath, as in the Frenkel exciton
models considered in this paper, C]K uy can be evaluated
analytically

https://dx.doi.org/10.1021/acs.jctc.0c00709
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Here, Ji(w) = 6;(1 — &;0)J(w). Applying the secular
approximation, all terms that are not of the form Ry y; are
neglected.

The pulses are assumed to be in the strong impulsive limit
with the field-matter interaction treated as a small perturbation
to first order, so that the dynamics during the time period (—7,
0) when the pulse is on is given by

5(0) = (1 - %Wr)é(—f)(l + éWT) (85)
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