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A REACTION NETWORK APPROACH TO THE CONVERGENCE

TO EQUILIBRIUM OF QUANTUM BOLTZMANN EQUATIONS FOR

BOSE GASES

Gheorghe Craciun1 and Minh-Binh Tran2,*

Abstract. When the temperature of a trapped Bose gas is below the Bose-Einstein transition tem-
perature and above absolute zero, the gas is composed of two distinct components: the Bose-Einstein
condensate and the cloud of thermal excitations. The dynamics of the excitations can be described by
quantum Boltzmann models. We establish a connection between quantum Boltzmann models and chem-
ical reaction networks. We prove that the discrete differential equations for these quantum Boltzmann
models converge to an equilibrium point. Moreover, this point is unique for all initial conditions that
satisfy the same conservation laws. In the proof, we then employ a toric dynamical system approach,
similar to the one used to prove the global attractor conjecture, to study the convergence to equilibrium
of quantum kinetic equations.
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1. Introduction

Several years after the invention of the Boltzmann–Nordheim equation, which is the quantum version of
the classical Boltzmann one, to describe the evolution of dilute quantum gases (cf. [40, 51]), a renewal in the
kinetic theory of bosons has started by the pioneering work of Kirkpatrick and Dorfman [34, 35]. This work of
Kirkpatrick and Dorfman was later extended by Zaremba, Nikuni and Griffin [54], in which the full coupling
system of a quantum Boltzmann equation for the density function of the normal fluid/thermal cloud and a
Gross–Pitaevskii equation for the wavefunction of the BEC has been introduced. In an independent work, the
same model was derived by Pomeau et al. [52]. We prefer to [26, 41] for further discussions on the topic. In the
models by Zaremba, Nikuni and Griffin and Pomeau, Brachet, Métens and Rica, there are two type of collisional
processes.
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– The 1 ↔ 2 interactions between the condensate and the excited atoms, described by the C12 collision
operator.

– The C22 collision operator describes The 2 ↔ 2 interactions between the excited atoms themselves,
described by the C22 collision operator.

A third collisional process, previously missing, was proposed by Reichl and Gust [28, 44]. This process takes into
account 1↔3 type collisions between the excitations and is described by the collision operator C31. However,
the derivation of the new collision operator C31 was very complicated, since it involves the computations of
around 40000 individual terms. As a result, a concise mathematical justification for the existence of the missing
collision operator C31 had been open for many years, and has been solved only until recently in [49].

The spatial homogeneous kinetic equation for the evolution of the density function f(t, p) of the thermal
cloud, derived in Section I of [49], takes the form

∂tf(p) = C12[f ](p) + C22[f ](p) + C31[f ](p), (1.1)

in which the forms of C12, C22, C31 are given explicitly below

C12[f ](t, p) = 4π
g2n

V

∑
p1,p2,p3 6=0

(δ(p− p1)− δ(p− p2)

− δ(p− p3))

× δ(ω(p1)− ω(p2)− ω(p3))(K12
123)2δ(p1 − p2 − p3)

×
[
f(p2)f(p3)(f(p1) + 1)− f(p1)(f(p2) + 1)(f(p3) + 1)

]
,

(1.2)

C22[f ](t, p) =
g2π

V 2

∑
p1,p2,p3,p4 6=0

(δ(p− p1) + δ(p− p2)

− δ(p− p3)− δ(p− p4))(K22
1234)2

× δ(p1 + p2 − p3 − p4)δ(ω(p1) + ω(p2)− ω(p3)− ω(p4))

×
[
f(p3)f(p4)(f(p2) + 1)(f(p1) + 1)

− f(p1)f(p2)(f(p3) + 1)(f(p4) + 1)
]
,

(1.3)

and

C31[f ](t, p) =
3g2π

V

∑
p1,p2,p3,p4 6=0

(δ(p− p1)− δ(p− p2)

− δ(p− p3)− δ(p− p4))

× (K31
1234)2δ(p1 − p2 − p3 − p4)

× δ(ω(p1)− ω(p2)− ω(p3)− ω(p4))

×
[
f(p3)f(p4)f(p2)(f(p1) + 1)

− f(p1)(f(p2) + 1)(f(p3) + 1)(f(p4) + 1)
]
,

(1.4)

in which n is the density of the condensate, t ∈ R+ is the time variable, p ∈ (Z/L)d\{O} is the d-dimensional

non-zero momentum variable, V is proportional to the volume of the periodic box
[
−L2 ,

L
2

]d
, m is the particle
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mass, ω is the Bogoliubov dispersion relation defined as

ωp =

[
gn

m
p2 +

(
p2

2m

)2
] 1

2

(1.5)

and g is the interacting constant. We have normalized the Plank constant to be 1. In the above collision
operators, the kernels are defined as follows

K1,2
1,2,3 = up1up2up3 − vp1vp2vp3 − up1up2vp3

+ vp1vp2up3 − up1vp2up3 + vp1up2vp3 ,
(1.6)

K2,2
1,2,3,4 = up1up2up3up4 + up1vp2up3vp4 + up1vp2vp3up4

+ vp1up2vp3up4 + vp1up2up3vp4 + vp1vp2vp3vp4 ,
(1.7)

and

K3,1
1,2,3,4 = 2

[
up1up2vp3up4 + vp1vp2up3vp4

]
, (1.8)

with up and vp being defined as

up, vp =

(
εp + gn

2ωp
± 1

2

) 1
2

. (1.9)

In the setting of [49], we could fix n as a constant, under the assumption that the thermal could fraction is quite
small, in comparison to the condensate. Moreover, in the sum on the momenta

∑
p 6=0, the origin is removed due

to the fact that the condensate has been factored out in the Bogoliubov diagonalization (cf. [49, 50]).

Remark 1.1. As it has been discussed in [49], the BEC is in a cubic box with periodic boundary conditions,
the quantum Boltzmann equation is then in the discrete form. In order for the conservations of momentum and
energy to be satisfied, the following system needs to have solutions on the lattice

p1 = p2 + p3 + p4, ω(p1) = ω(p2) + ω(p3) + ω(p4),

p′1 + p′2 = p′3 + p′4, ω(p′1) + ω(p′2) = ω(p′3) + ω(p′4),

p′′1 = p′′2 + p′′3 , ω(p′′1) = ω(p′′2) + ω(p′′3).

(1.10)

At the first sign, the system does have solutions due to the complicated form of the Bogoliubov dispersion
relation (1.5). However, it has been pointed out in [49, 50] that when the temperature of the system is lower
but closed to the Bose-Einstein condensation transition temperature, the Bogoliubov dispersion relation can
be replaced by the Hatree-Fock energy (ω(p) ≈ c|p|2). In this regime, the two collision operators C12 and C22

dominate the collisional processes. The contribution of third collision operator C31 becomes non-trivial when
both up and vp are large, corresponding to significantly low temperatures. In this low temperature regime,
the excitations are phonon-like and the Bogoliubov dispersion relation (1.5) can be replaced by the phonon
dispersion relation (1.16). The replacement of (1.5) by (1.16) guarantees the existence of solutions to (1.10),
and thus, the conservation laws are satisfied.
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Simplified Quantum Boltzmann model of the thermal cloud. In our work, we try to provide a deeper
understanding of the property of the system derived in [49] by studying a simplified version of it. If we denote

f1 = f(t, p1), f2 = f(t, p2), f3 = f(t, p3), f4 = f(t, p4),

then our simplified system for f1 writes

∂f1

∂t
= C12[f1] + C22[f1] + C13[f1], (1.11)

where

C22[f1] :=

∫
R9

K22
p1,p2,p3,p4δ(p1 + p2 − p3 − p4)δ(Ep1 + Ep2 − Ep3 − Ep4) (1.12)

×[(1 + f1)(1 + f2)f3f4 − f1f2(1 + f3)(1 + f4)]dp2dp3dp4, (1.13)

C12[f1] :=

∫
R6

K12
p1,p2,p3δ(p1 − p2 − p3)δ(Ep1 − Ep2 − Ep3)

×[(1 + f1)f2f3 − f1(1 + f2)(1 + f3)]dp2dp3 (1.14)

−2

∫
R6

K12
p1,p2,p3δ(p2 − p1 − p3)δ(Ep2 − Ep1 − Ep3)

×[(1 + f2)f1f3 − f2(1 + f1)(1 + f3)]dp2dp3,

and

C13[f1] =

∫
R3×3

K13
p1,p2,p3,p4δ(p1 − p2 − p3 − p4)δ(Ep1 − Ep2 − Ep3 − Ep4)

× [(1 + f1)f2f3f4 − f1(1 + f2)(1 + f3)(1 + f4)]dp2dp3dp4

− 3

∫
R3×3

K13
p1,p2,p3,p4δ(p2 − p1 − p3 − p4)δ(Ep2 − Ep1 − Ep3 − Ep4)

× [(1 + f2)f1f3f4 − f2(1 + f1)(1 + f3)(1 + f4)]dp2dp3dp4,

(1.15)

The quantities K22
p1,p2,p3,p4 ,K

12
p1,p2,p3 ≥ 0 are the collision kernels, which are radially symmetric, and symmetric

with respect to the permutation of p1, p2, p3, and p4:

K22
p1,p2,p3,p4 = K22

|p1|,|p2|,|p3|,|p4| = K22
|p2|,|p1|,|p3|,|p4| = K22

|p3|,|p2|,|p1|,|p4|

= K22
|p4|,|p2|,|p3|,|p1| = K22

|p1|,|p3|,|p2|,|p4| = K22
|p1|,|p4|,|p3|,|p2| = K22

|p1|,|p2|,|p4|,|p3|,

and

K12
p1,p2,p3 = K12

|p1|,|p2|,|p3| = K12
|p2|,|p1|,|p3| = K12

|p3|,|p2|,|p1| = K12
|p1|,|p3|,|p2|,

where |p| denotes the length of the vector p. and K13
p1,p2,p3,p4 is positive, radially symmetric, and symmetric with

respect to the permutation of p1, p2, p3, p4

K13
p1,p2,p3,p4 = K13

|p1|,|p2|,|p3|,|p4| = K13
|p2|,|p1|,|p3|,|p4| = K13

|p3|,|p2|,|p1|,|p4|

= K13
|p4|,|p2|,|p3|,|p1| = K13

|p1|,|p3|,|p2|,|p4| = K13
|p1|,|p4|,|p3|,|p2| = K13

|p1|,|p2|,|p4|,|p3|.
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We make a further simplification by supposing that the temperature is very low compared to the Bose-Einstein
critical temperature. As a result, the energy Ep = E(p) is given by the phonon dispersion law (cf. [42]):

E(p) = c|p|, c =

√
gnc
m

. (1.16)

Reaction networks and a toric dynamical system approach for the relaxation to equilibrium
problem. The study of the relaxation of BECs to thermodynamic equilibrium has played very important role
in the theory of Bose gases [25, 28, 29, 43, 54]. Our main tool is to convert these equations into chemical reaction
systems and use an extension of the theory of toric dynamical systems (cf. [15]).

In general, there is great interest in understanding the qualitative behavior of deterministically modeled
chemical reaction systems, including the existence of positive equilibria, stability properties of equilibria, and
the non-extinction, or persistence, of species, which are the constituents of these systems [2–4, 8, 13, 15, 21, 22,
24, 31, 53]. Toric dynamical systems – originally called complex-balanced systems (cf. [15, 32]) – are models used
to describe an important class of chemical kinetics. The complex-balanced condition was first introduced by
Boltzmann [11] for modeling collisions in kinetic gas theory. Based on this condition, it was shown by Horn and
Jackson [20, 27, 30, 32] that a complex-balanced system has a unique locally stable equilibrium within each linear
invariant subspace. To underline the tight connection to the algebraic study of toric varieties, the name “toric
dynamical system” was proposed in [15]. The most important problem in the theory of toric dynamical systems
is the Global Attractor Conjecture, which says that the complex balanced equilibrium of a toric dynamical
system is a globally attracting point within each linear invariant subspace. This global attractor question is
strongly related to the convergence to equilibrium problem in the study of kinetic equations. A proof to the
Global Attractor Conjecture for small dimensional systems has been supplied in [17], for strongly connected
networks in [2], and a complete proof has been proposed in [14].

Our goal is to use the tools developed in [14, 17] to prove the relaxation to equilibrium of Discrete Velocity
Models of a model of (1.11), whose collision operator is C12. Similarly, we will prove the relaxation to equilibrium
of another model of (1.11), whose collision operator is C12 +C22, and modified quantum Boltzmann model of the
thermal cloud (1.11), whose collision operator is C12 + C22 + C13. A related approach for the study of acoustic
wave turbulence has been used in [48]. Let us also mention that some mathematical results of similar kinetic
models have been obtained in [1, 5–7, 9, 10, 12, 18, 19, 23, 33, 36–39, 45–47].

The plan of our paper is the following:

– In Section 2, we show that the discrete version of a simplified version of (1.11), that contains only C12,
could be rewritten as a chemical reaction network. By using an approach inspired by the theory of toric
dynamical system, we prove in Theorem 2.2 that the solution of the discrete version of a simplified version
of (1.11), that contains only C12, converges to the equilibrium exponentially in time.

– In Section 3, we generalize Theorem 2.2 to collision operators of the forms C13 and C22. We prove that
the solutions of the discrete versions of these equations, associated with the collision operators C13 and
C22 converge to equilibria exponentially in Theorems 3.1 and 3.2. In the case of C22, we consider a
one-dimensional version of the model.

– In Theorem 4.1 of Section 4, we extend Theorem 3.2 to a simplified version of (1.11), that contains only
C12 + C22, and the modified quantum Boltzmann model of the thermal cloud (1.11), that contains only
C12 + C22 + C31.

2. A reaction network approach for the case of C12

2.1. The dynamical system associated to C12

As mentioned in the introduction, the model derived from physics to describe the system that couples BEC-
excitations at very low temperature is the discrete version of a simplified version of (1.11), that contains only
C12, described below.
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Let LR denote the lattice of integer points

LR = {p ∈ Z3, |p| < R}.

The discrete version of the simplified version of (1.11), that contains only C12, reads

ḟp1 =
∑

p2,p3∈LR,
p1−p2−p3=0,

E(p1)−E(p2)−E(p3)=0

K12
p1,p2,p3 {(fp1 + 1)fp2fp3 − fp1(fp2 + 1)(fp3 + 1)}

− 2
∑

p2,p3∈LR,
p1+p2−p3=0,

E(p1)+E(p2)−E(p3)=0

K12
p1,p2,p3 {(fp3 + 1)fp1fp2 − fp3(fp1 + 1)(fp2 + 1)} ,

(2.1)

for all p1 in LR, where E(p) is defined in (1.16).

2.2. Decoupling the quantum Boltzmann equation associated to C12

Note that when p1 = 0, K12
p1,p2,p3 is also 0, and therefore, we get

ḟ0 = 0, (2.2)

which says that f0(t) is a constant for all time t. Moreover, fp1 does not depend on f0 for all p1 6= 0. Therefore,
without loss of generality, we can suppose that f0(0) = 0, which leads to f0(t) = 0 for all t.

Taking into account the fact E(p) = c|p|, note that if p1, p2, p3 ∈ LR are different from 0 and p3 = p1 + p2

and |p3| = |p1|+ |p2| (like in the second sum of (2.1)), then p1, p2, p3 must be collinear and on the same side of
the origin. Therefore, we infer that there exists a vector P and k1, k2, k3 > 0, k1, k2, k3 ∈ Z such that

p1 = k1P ; p2 = k2P ; p3 = k3P, k1 + k2 = k3.

Since LR is bounded, it follows that k1, k2, k3 belong to a finite set of integer indices I = {1, . . . , I}. Arguing
similarly for the first sum in (2.1), we deduce that (2.1) is equivalent with the following system for k1 ∈ I

ḟPk1 =
∑

k2,k3∈I,
k1−k2−k3=0

K12
Pk1,Pk2,Pk3 {(fPk1 + 1)fPk2fPk3 − fPk1(fPk2 + 1)(fPk3 + 1)}

− 2
∑

k2,k3∈I,
k1+k2−k3=0

K12
Pk1,Pk2,Pk3 {(fPk3 + 1)fPk1fPk2 − fPk3(fPk1 + 1)(fPk2 + 1)} .

(2.3)

Note that the system of equations (2.3) shows a decoupling of the system of equations (2.1) along a ray {kP0}
with k > 0 (see Fig. 1). As a consequence, it is sufficient to study the system of equations (2.3) for a fixed value
of P0, instead of the system of equations (2.1).
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Figure 1. We decouple the system (2.1) into rays.

If we denote fk1P0
by f̄k1 (with k1 ∈ I) and K12

k1P0,k2P0,k3P0
by K12

k1,k2,k3
, we obtain the following new system

for the ray {k1P0|k1 > 0}:

˙̄fk1 =
∑

k2,k3∈I,
k1=k2+k3

K12
k1,k2,k3{(f̄k1 + 1)f̄k2 f̄k3 − f̄k1(f̄k2 + 1)(f̄k3 + 1)}

− 2
∑

k2,k3∈I,
k1+k2=k3

K12
k1,k2,k3{(f̄k3 + 1)f̄k1 f̄k2 − f̄k3(f̄k1 + 1)(f̄k2 + 1)}, ∀k1 ∈ I.

(2.4)

A simple calculation leads to the following conservation of energy

I∑
k=1

k ˙̄fk = 0, (2.5)

or equivalently

I∑
k=1

kf̄k = const. (2.6)

We denote this discrete version of C12 by

C12[f̄k1 ] :=
∑

k2+k3=k1

K12
k1,k2,k3 [(f̄k1 + 1)f̄k2 f̄k3 − f̄k1(f̄k2 + 1)(f̄k3 + 1)]

− 2
∑

k1+k3=k2

K12
k2,k1,k3 [(f̄k2 + 1)f̄k1 f̄k3 − f̄k2(f̄k1 + 1)(f̄k3 + 1)].

(2.7)

2.3. The chemical reaction network associated to C12

For x ∈ Rn>0 and α ∈ Rn≥0, we denote by xα the monomial Πn
i=1x

αi
i .
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Definition 2.1. Consider a chemical reaction of the form

α1X1 + α2X2 + · · ·+ αnXn
K−→ β1X1 + β2X2 + · · ·+ βnXn,

where K is a positive parameter, called reaction rate constant. Then the mass-action dynamical system generated
by this reaction is

ẋ = Kxα(β − α), (2.8)

where α = (α1, . . . , αn)T , β = (β1, . . . , βn)T , αi, βi ≥ 0 and x = (x1, . . . , xn)T , in which xi is the concentration
of the chemical species Xi. For the case of a network that contains several reactions

αj1X
j
1 + αj2X

j
2 + · · ·+ αjnX

j
n

Kj−→ β1X
j
1 + βj2X

j
2 + · · ·+ βjnX

j
n,

for 1 ≤ j ≤ m, its associated mass-action dynamical system is given by

ẋ =

m∑
j=1

Kjxα
j

(βj − αj). (2.9)

In this section, we will show that the system (2.4) has the form (2.9) for a well-chosen set of reactions.
If y → y′ and y′ → y are reactions, we combine them together into a “reversible” reaction y ↔ y′.
We will derive the system (2.4) from the network of chemical reactions of the form:

Xk2 +Xk3 ←→ Xk1 (2.10)

Xk2 +Xk1 −→ 2Xk2 +Xk3 , (2.11)

for all k1, k2, k3 in I such that k2 + k3 = k1. If we denote by Fk the concentration of the species Xk, we will
show that, for appropriate choices of the reaction rate constants in (2.10) and (2.11), the differential equations
satisfied by Fk according the mass-action kinetics are exactly the same as (2.4).

In order to describe the connection between the mass-action system given by reactions of the form (2.10)–
(2.11) and our system (2.4), we need to consider several cases.

Case 1: For k2 + k3 = k1, k2 6= k3, k1, k2, k3 ∈ I, we consider

Xk2 +Xk3

2K12
k1,k2,k3←→ Xk1 (2.12)

Xk2 +Xk1

2K12
k1,k2,k3−→ 2Xk2 +Xk3 , (2.13)

and for the reversible reaction (2.12) the forward and backward rate constants are the same, i.e., we choose the
reaction rate constants of the three reactions Xk2 +Xk3 → Xk1 , Xk1 → Xk2 +Xk3 , Xk2 +Xk1 → 2Xk2 +Xk3

to be 2K12
k1,k2,k3

.
For example, consider the reversible reaction (2.12): in this reaction, Xk1 is created from Xk2 +Xk3 with the

rate 2K12
k1,k2,k3

Fk2Fk3 and Xk1 is decomposed into Xk2 +Xk3 with the rate −2K12
k1,k2,k3

Fk1 . Therefore, the rate

of change of the species Xk1 due to this reaction is 2K12
k1,k2,k3

[Fk2Fk3 − Fk1 ].

For the irreversible reaction (2.13), Xk1 is lost with the rate −2K12
k1,k2,k3

Fk2Fk1 to create 2Xk2 +Xk3 . There-

fore the rate of change of the species Xk1 due to this reaction is −2K12
k1,k2,k3

Fk2Fk1 . By exchanging the roles of

Xk2 and Xk3 in (2.13), we obtain the rate −2K12
k1,k2,k3

[Fk2Fk1 + Fk3Fk1 ].
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Therefore, the total rate of change of Xk1 due to the reactions in (2.12)–(2.13) is

2K12
k1,k2,k3 [Fk2Fk3 − Fk1 − Fk2Fk1 − Fk3Fk1 ]. (2.14)

Case 2: For 2k2 = k1, k1, k2 ∈ I, we consider

2Xk2

K12
k1,k2,k3←→ Xk1 (2.15)

Xk2 +Xk1

2K12
k1,k2,k3−→ 3Xk2 . (2.16)

We choose the reaction rate constant of 2Xk2 → Xk1 and the reaction rate constant of Xk1 → 2Xk2 to be
K12
k1,k2,k3

. Also, we choose the reaction rate constant of Xk2 +Xk1 → 3Xk2 to be 2K12
k1,k2,k3

.

Consider the first reaction (2.15): In this reaction, Xk1 is created from 2Xk2 with the rate Kk1,k2,k2F 2
k2

and Xk1

is decomposed into 2Xk2 with the rate−K12
k1,k2,k2

Fk1 . The rate of change of the species Xk1 isK12
k1,k2,k2

[F 2
k2
−Fk1 ].

For the second reaction (2.16): Xk1 is lost with the rate −2K12
k1,k2,k2

Fk2Fk1 to create 3Xk2 .
As a result, the rate of change of Xk1 due to the reactions (2.15)–(2.16) is

K12
k1,k2,k3 [F 2

k2 − Fk1 − 2Fk2Fk1 ]. (2.17)

Case 3: Next, for k2 = k3 + k1, k1 6= k3, k1, k2, k3 ∈ I, let us look at the rate of change of Xk1 in

Xk1 +Xk3

2K12
k2,k1,k3←→ Xk2 (2.18)

Xk2 +Xk1

2K12
k2,k1,k3−→ 2Xk1 +Xk3 (2.19)

Xk2 +Xk3

2K12
k2,k1,k3−→ Xk1 + 2Xk3 , (2.20)

For (2.18), the rate of change of Xk1 is 2K12
k2,k1,k3

[Fk2 − Fk1Fk3 ]. For (2.19), the rate of change of Xk1 is

2K12
k2,k1,k3

Fk1Fk2 . By exchanging the roles of X1 and X3, we obtain the rate 2K12(k2, k1, k3)[Fk1Fk2 + Fk2Fk3 ].
Therefore, the rate of change of Xk1 due to reactions in (2.18)–(2.20) is

− 2K12
k2,k1,k3 [Fk1Fk3 − Fk2 − Fk2Fk3 − Fk1Fk2 ]. (2.21)

Case 4: Now, for k2 = 2k1, k1, k2 ∈ I, let us look at the rate of change of Xk1 in

2Xk1

K12
k2,k1,k1←→ Xk2 (2.22)

Xk2 +Xk1

2K12
k2,k1,k3−→ 3Xk1 , (2.23)

For (2.22), the rate of change of Xk1 is 2K12
k2,k1,k3

[Fk2 − F 2
k1

]. For (2.23), the rate of change of Xk1 is

4K12
k2,k1,k3

Fk1Fk2 . Therefore, the rate of change of Xk1 due to the reactions (2.22)–(2.23) is

− 2K12
k2,k1,k3 [F 2

k1 − Fk2 − 2Fk1Fk2 ]. (2.24)
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From (2.14), (2.17), (2.21), (2.24), the total rate of change of Xk1 is∑
k2+k3=k1,k2<k3

2K12
k1,k2,k3 [(Fk1 + 1)Fk2Fk3 − Fk1(Fk2 + 1)(Fk3 + 1)]

+
∑

2k2=k1

K12
k1,k2,k2 [(Fk1 + 1)Fk2Fk2 − Fk1(Fk2 + 1)(Fk2 + 1)]

−
∑

k1+k3=k2

2K12
k2,k1,k3 [(Fk2 + 1)Fk1Fk3 − Fk2(Fk1 + 1)(Fk3 + 1)],

(2.25)

which can be written as

Ḟk1 =
∑

k2+k3=k1

K12
k1,k2,k3 [(Fk1 + 1)Fk2Fk3 − Fk1(Fk2 + 1)(Fk3 + 1)]

− 2
∑

k1+k3=k2

K12
k2,k1,k3 [(Fk2 + 1)Fk1Fk3 − Fk2(Fk1 + 1)(Fk3 + 1)],

(2.26)

which shows that the system of differential equations satisfied by the concentrations Fk is exactly the same as
the system of differential equations (2.4) satisfied by the densities fk.

2.4. A change of variables

In this section, we introduce a change of variables that will help us to investigate the dynamics of the
system (2.26).

Define

Gk =
Fk

Fk + 1
,

then

Fk =
Gk

1−Gk
,

and

Fk3 + Fk1Fk3 + Fk2Fk3 − Fk1Fk2 =
Gk3 −Gk1Gk2

(1−Gk1)(1−Gk2)(1−Gk3)
,

Fk1 + Fk1Fk2 + Fk1Fk3 − Fk3Fk2 =
Gk1 −Gk2Gk3

(1−Gk1)(1−Gk2)(1−Gk3)
.

Notice that 0 < Fk <∞ and 0 < Gk < 1.
The system (2.26) is converted into

Ġk1
(1−Gk1)2

= C̃12[G](k1) := 2
∑

k1+k2=k3

K12
k1,k2,k3

Gk3 −Gk1Gk2
(1−Gk1)(1−Gk2)(1−Gk3)

+
∑

k1=k2+k3

K12
k1,k2,k3

−Gk1 +Gk2Gk3
(1−Gk1)(1−Gk2)(1−Gk3)

, ∀k1 ∈ I. (2.27)
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Suppose that G represents the column vector (G1, . . . , GI)
T . Let us also denote by X̄k, the vector

0
· · ·
1
· · ·
0

 ,

in which the only element that different from 0 is the k-th one.
Also, for k1 6= k2, we denote

KX̄k1+X̄k2→X̄k3
(G) := 2K12

k1,k2,k3

Gk1Gk2
(1−Gk1)(1−Gk2)(1−Gk3)

,

KX̄k3→Xk1+X̄k2
(G) := 2K12

k1,k2,k3

Gk3
(1−Gk1)(1−Gk2)(1−Gk3)

,

KX̄k1+X̄k2↔X̄k3
:= 2K12

k1,k2,k3 .

Otherwise, if k1 = k2, we denote

K2X̄k1→Xk3
(G) := K12

k1,k1,k3

Gk1Gk2
(1−Gk1)2(1−Gk3)

,

KX̄k3→2X̄k1
(G) := K12

k1,k1,k3

Gk3
(1−Gk1)2(1−Gk3)

,

K2X̄k1↔X̄k3
:= 2K12

k1,k1,k3 .

Using these notations, the system (2.27) could be rewritten as:

Ġ = diag

 (1−G1)2

· · ·
(1−GI)2

 (2.28)

×
∑

k1+k2=k3

[
KX̄k1+X̄k2→X̄k3

(G)−KX̄k3→X̄k1+X̄k2
(G)
]

(X̄k3 − X̄k1 − X̄k2).

Equivalently, we can also write

Ġ = diag

 (1−G1)2

· · ·
(1−GI)2

 ∑
y↔y′

[Ky→y′(G)−Ky′→y(G)] (y′ − y), (2.29)

where y ↔ y′ belongs to the set of reversible reactions

X̄k1 + X̄k2 ←→ X̄k3 , (2.30)
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with k1 + k2 = k3.

2.5. Convergence to equilibrium

Theorem 2.2. For any positive initial condition, the solution

f(t) = (fp(t))p∈LR

of the discrete quantum Boltzmann equation (2.1) converges to an equilibrium state f∗ = (f∗p )p∈LR . For each
ray {kP0}k≥1 there exists a positive constant ρ(P0) such that if p = kP0 then

f∗p =
1

ekρ(P0) − 1
.

Moreover, the solution f(t) of (2.1) converges to f∗ exponentially fast in the following sense: there exist positive
constants C1, C2 such that

max
p∈LR

|fp(t)− f∗p | < C1e
−C2t.

Proof. By using the decoupling and the change of variables discussed in the previous sections, for each ray
{kP0}k≥1, we can reduce the study of f to F , which satisfies (2.26). From F , we can switch to study G, which
is the solution of (2.29).

Step 1: The Lyapunov function. We recall that (2.27) could be rewritten under the form

Ġ = diag

 (1−G1)2

· · ·
(1−GI)2

 ∑
y↔y′

[Ky→y′(G)−Ky′→y(G)] (y′ − y). (2.31)

We define the function

L(G) =
I∑
k=1

(
log(1−Gk) +

Gk logGk
1−Gk

− logG∗k
1−Gk

)
, (2.32)

where G∗k = 1
ekρ

, for some ρ > 0, and we will show that L is a Lyapunov function for the system (2.27).
We have

∇L =


1

(1−G1)2 log G1

G∗1
· · ·

1
(1−GI)2 log GI

G∗I

 , (2.33)

which implies that

diag

 (1−G1)2

· · ·
(1−GI)2

 · (y′ − y) · ∇L = log

(
G

G∗

)y′−y
(2.34)

= log

(
G

G∗

)y′
− log

(
G

G∗

)y
.
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If we define

Hy,y′(G) =
Ky→y′(G)

Ky↔y′Gy
,

then Hy,y′ = Hy′,y for y and y′ as in (2.30). Moreover, we have

Ky→y′(G)−Ky′→y(G)

= Ky↔y′GyHy,y′(G)−Ky↔y′Gy
′
Hy,y′(G)

= Ky↔y′Hy,y′(G)[Gy −Gy
′
]

= Ky↔y′(G∗)yHy,y′(G)

[
Gy

(G∗)y
− Gy

′

(G∗)y′

]
,

(2.35)

since (G∗)y = (G∗)y
′
.

Combining (2.31), (2.34) and (2.35), we obtain

Ġ · ∇L

=
∑
y↔y′

[
log

(
G

G∗

)y′
− log

(
G

G∗

)y]
Ky↔y′(G∗)yHy,y′(G)

[
Gy

(G∗)y
− Gy

′

(G∗)y′

]
≤ 0,

(2.36)

since log is an increasing function. Also, note that the above inequality is strict unless

Gy

(G∗)y
=

Gy
′

(G∗)y′
, (2.37)

for all reactions y ↔ y′.
Since (G∗)y = (G∗)y

′
for all reactions y ↔ y′, this implies G∗k1 · G

∗
k2

= G∗k1+k2
for all k1 and k2 such that

k1 + k2 ≤ I. As a consequence G∗k = e−ρk, for some positive constant ρ. Moreover, (2.37) implies that at

equilibrium (G)y = (G)y
′

for all reactions y ↔ y′, which leads to Gk = e−ρ
′k, for some positive constant ρ′.

By the conservation relation

I∑
k=1

k
Gk

1−Gk
=

I∑
k=1

k
G∗k

1−G∗k
,

we deduce that

I∑
k=1

k
e−ρk

1− e−ρk
=

I∑
k=1

k
e−ρ

′k

1− e−ρ′k
.

By the monotonicity of the function ρ→ e−ρk

1−e−ρk , we conclude that ρ = ρ′, i.e., G∗ is the only equilibrium point
that satisfies the same conservation relation as the initial condition.
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Now, we will prove that there exists exactly one critical point of the Lyapunov function L within each
invariant set

Sc :=

{
I∑
k=1

k
Gk

1−Gk
= c

}
.

Since

∇L = diag

 1
(1−G1)2

· · ·
1

(1−GI)2

 [logG− logG∗],

the projection of ∇L on the tangent space to the set Sc is 0 if and only if there exists a constant % such that

∇L = % · ∇

(
I∑
k=1

k
Gk

1−Gk

)
,

which is equivalent with

diag

 1
(1−G1)2

· · ·
1

(1−GI)2

 [logG− logG∗] = %

 1
(1−G1)2

· · ·
I

(1−GI)2

 .

A direct consequence of the above is the following system of identities

logG1 − logG∗1 = %,

logG2 − logG∗2 = 2%,

· · ·
logGI − logG∗I = I%,

yielding

Gk
G∗k

= ek%, ∀k ∈ {1, . . . , I}.

Moreover, since Gk and G∗k satisfy the same conservation law then it follows that G = G∗. This implies that G∗

is the only critical point of L on the invariant set Sc.

Step 2: Differential inclusions and persistence. Now let us observe that (2.4) could be regarded as a K-variable
mass-action system for the reversible network (2.30). For this we write

Fk′′ + FkFk′′ + Fk′Fk′′ = (1 + Fk + Fk′)Fk′′ ,

and note that 1 + Fk + Fk′ is bounded below by 1 and above by 1 + 2C, where

C =

I∑
k=1

kFk.
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Therefore, the results of [14] about persistence of K-variable reversible mass-action systems can be applied
and we conclude that the system is persistent. Alternatively, we can also use the Petri net argument of [4],
to prove that the system is persistent, as follows. Note that Fk is the density function of the species Xk. It is
straightforward that each siphon is {X1, X2, . . . , XI}, which contains the support of the P -semiflow (see [4] for
the definition of siphons and P-semiflows) given by

I∑
k=1

kFk = constant.

As a result, the Petri net theory developed in [4] can be applied and it follows that the system is persistent.
Therefore, by using the existence of the globally defined strict Lyapunov function L, and the LaSalle invari-

ance principle, it follows that all trajectories converge to the unique positive equilibrium G∗ that we discussed
in Step 1.

Step 3: Exponential rate of convergence. Define

R(G)

= diag

 (1−G1)2

· · ·
(1−GI)2

 ∑
y↔y′

[Ky→y′(G)−Ky′→y(G)] (y′ − y) (2.38)

= diag

 (1−G1)2

· · ·
(1−GI)2

 ∑
y↔y′

[Ky↔y′Gy −Ky↔y′Gy
′
]Hy,y′(G)(y′ − y),

and define

S(G) =
∑
y↔y′

[Ky↔y′Gy −Ky↔y′Gy
′
]Hy,y′(G)(y′ − y).

Following [16], we compute the Jacobian of S at the equilibrium point G∗, applied to an arbitrary vector δ 6= 0
that belongs to the span of the vectors y′ − y

Jac(S(G∗))δ =
∑
y↔y′

Ky↔y′(G∗)y((y − y′) ∗ δ)Hy,y′(G∗)(y − y′), (2.39)

in which the inner product ∗ is defined as

y ∗ δ =
I∑
1

ykδk
Gk

.

Therefore

[Jac(S(G∗))δ] ∗ δ (2.40)

=
∑
y↔y′

Ky↔y′(G∗)yHy,y′(G∗)[(y − y′) ∗ δ][(y′ − y) ∗ δ] < 0.
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Now, we compute the Jacobian of R at the equilibrium point G∗,

Jac(R(G∗))

= diag

∂G1
(1−G∗1)2S(G∗)1

· · ·
∂GI (1−G∗I)2S(G∗)I

+ diag

(1−G∗1)2

· · ·
(1−G∗I)2

 Jac(S(G∗))

= diag

(1−G∗1)2

· · ·
(1−G∗I)2

 Jac(S(G∗)),

where the second equality is due to the fact that since G∗ is an equilibrium we have that S(G∗) = 0.
Since

D := diag

(1−G∗1)2

· · ·
(1−G∗I)2


is a diagonal matrix and A := Jac(S(G∗)) is negative definite, then D1/2AD1/2 is also negative definite with
respect to this inner product. Since

det(DA− λId) = det(D1/2AD1/2 − λId), ∀λ ∈ R,

it follows that D1/2AD1/2 and DA have the same eigenvectors, so DA is negative definite. In other words,
Jac(R(G∗)) is negative definite. The exponential rate of convergence

max{|G1(t)−G∗1|, . . . , |GI(t)−G∗I |} ≤ C1e
−C2t.

then follows from the fact that the Jacobian above is negative definite. This leads to the conclusion of the
theorem.

Remark 2.3. The Lyapunov function (2.32) in the variable F reads

L(F ) =
I∑
k=1

[Fk logFk − (1 + Fk) log(1 + Fk) + (log(F ∗k + 1)− logF ∗k )(Fk + 1)], (2.41)

and it is a strictly convex function.

Remark 2.4. If the intersection between the ray {kP0}k≥1 and LR contains a single point, then the solution
f(t) of (2.1) has fP0

≡ 0, so fP0
≡ constant.

3. A reaction network approach for the case of C13 and C22

3.1. The dynamical system associated to C13

As we discussed in the Introduction, we are also interested in the dynamics given by the discrete model of
the collision operator C13, described in (1.15).

Let LR denote the lattice of integer points

LR = {p ∈ Z3 | |p| < R}.
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The discretized quantum Boltzmann equation for C13 reads

ḟp1 = CD13[fp1 ]

:=
∑

p2,p3,p4∈LR,
p1=p2+p3+p4,

E(p1)=E(p2)+E(p3)+E(p4)

K13
p1,p2,p3,p4{(fp1 + 1)fp2fp3fp4 − (fp2 + 1)(fp3 + 1)(fp4 + 1)fp1}

− 3
∑

p2,p3,p4∈LR,
p2=p1+p3+p4,

E(p2)=E(p1)+E(p3)+E(p4)

K13
p2,p1,p3,p4 {(fp2 + 1)fp1fp3fp4 − (fp1 + 1)(fp3 + 1)(fp4 + 1)fp2} ,

(3.1)

for all p1 in LR, where E(p) is defined in (1.16).
Similar to the C12 case, when p = 0, K13

p1,p2,p3,p4 = 0, and we obtain

ḟ0 = 0,

which means f0(t) is a constant for all time t, and we can assume f0(t) = 0 for all t.
Since in the first sum of (3.1), we consider (p1, p2, p3, p4) satisfying

p1 = p2 + p3 + p4, E(p1) = E(p2) + E(p3) + E(p4), (3.2)

we infer that there exists a vector P and k1, k2, k3, k4 ≥ 0, k1, k2, k3, k4 ∈ Z such that

p1 = k1P ; p2 = k2P ; p3 = k3P ; p4 = k4P ; k1 = k2 + k3 + k4.

Using the same arguments as the case of C12, we can deduce that equation (3.1) for C13 is equivalent with the
following family of decoupled systems for k1 ∈ I = {1, 2, . . . , I} where P is the closest point to the origin among
the lattice points on its ray:

ḟk1P

=
∑

k2,k3,k4∈I,
k1=k2+k3+k4

K13
k1P,k2P,k3P,k4P {(fk1P + 1)fk2P fk3P fk4P

− fk1P (fk2P + 1)(fk3P + 1)(fk4P + 1)}

− 3
∑

k2,k3,k4∈I,
k2=k1+k3+k4

K13
k2P,k1P,k3P,k4P {(fk2P + 1)fk1P fk3P fk4P

− fk2P (fk1P + 1)(fk3P + 1)(fk4P + 1)}.

(3.3)

Denoting fkP by Fk (with k ∈ I) and K12
k1P,k2P,k3P,k4P

by K12
k1,k2,k3,k4

, we obtain

Ḟk1 = C13[F ](k1) =
∑

k1=k2+k3+k4

K13
k1,k2,k3,k4{(Fk1 + 1)Fk2Fk3Fk4

− Fk1(Fk2 + 1)(Fk3 + 1)(Fk4 + 1)}

− 3
∑

k1+k2+k3=k4

K13
k1,k2,k3,k4{(Fk4 + 1)Fk1Fk2Fk3

− Fk4(Fk1 + 1)(Fk2 + 1)(Fk3 + 1)}, ∀k1 ∈ I.

(3.4)
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In order to ensure that all the variables Fk are coupled with each other, let us assume that I ≥ 4. We have the
following conservation of energy for C13

I∑
k=1

kḞk = 0, (3.5)

or equivalently

I∑
k=1

kFk = const. (3.6)

Similar to the case of C12, we define

Gk =
Fk

Fk + 1
,

and then we have

Fk =
Gk

1−Gk
.

Note that, similar to the previous section, 0 < Fk <∞ and 0 < Gk < 1.
The system (3.4) can be now written

Ġk1
(1−Gk1)2

= C13[G]

:= K13
k1,k2,k3,k4

∑
k1=k2+k3+k4,

|k1|=|k2|+|k3|+|k4|

Gk2Gk3Gk4 −Gk1
(1−Gk1)(1−Gk2)(1−Gk3)(1−Gk4)

− 3K13
k2,k1,k3,k4

∑
k2=k1+k3+k4,

|k2|=|k1|+|k3|+|k4|

Gk1Gk3Gk4 −Gk2
(1−Gk1)(1−Gk2)(1−Gk3)(1−Gk4)

.

(3.7)

This system can also be rewritten as

Ġ = diag

 (1−G1)2

· · ·
(1−GI)2


×

∑
k1=k2+k3+k4,

|k1|=|k2|+|k3|+|k4|

[
KX̄k2+X̄k3+X̄k4→X̄k1

(G)−KX̄k1→X̄k2+X̄k3+X̄k4
(G)
]
(X̄k1 − X̄k2 − X̄k3 − X̄k4).

(3.8)

where X̄k is, as mentioned earlier, the vector 
0
· · ·
1
· · ·
0

 ,
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in which the only element that is 1 is the k-th one, and

KX̄k2+X̄k3+X̄k4→X̄k1
(G) := K13

k1,k2,k3,k4

Gk1
(1−Gk1)(1−Gk2)(1−Gk3)(1−Gk4)

,

KX̄k1→X̄k2+X̄k3+X̄k4
(G) := K13

k1,k2,k3,k4

Gk2Gk3Gk4
(1−Gk1)(1−Gk2)(1−Gk3)(1−Gk4)

.

We can also write

Ġ = diag

 (1−G1)2

· · ·
(1−GI)2

 ∑
y↔y′

[Ky→y′(G)−Ky′→y(G)] (y′ − y),

where y ↔ y′ rang over the reversible reactions shown above.

Theorem 3.1. For any initial condition, the solution

f(t) = (fp(t))p∈LR

of the quantum Boltzmann equation (3.1) converges to an equilibrium state f∗ = (f∗p )p∈LR . For each ray
{kP0}k≥1 that intersects LR in at least 4 points there exists a constant ρP0 such that if p = kP0 then

f∗p =
1

ekρP0 − 1
.

Moreover, the solution f(t) of (3.1) converges to f∗ exponentially fast in the following sense: there exists positive
constants C1, C2 such that

max
p∈LR

|fp(t)− f∗p | < C1e
−C2t.

Proof. The proof of Theorem 3.2 then follows exactly from the same Lyapunov function (2.32) and arguments
as in Theorem 2.2.

3.2. The dynamical system associated to C22

Let us consider a discretized version of the quantum Boltzmann model associated to the collision operator
given by C22:

Let LR denote the lattice of integer points

LR = {p | |p| ∈ Z3, |p| < R}.

The discretized quantum Boltzmann equation associated to C22 reads ∀p1 ∈ LR

ḟp1 = CD22[fp1 ]

:=
∑

p2,p3,p4∈LR,
p1+p2=p3+p4,

E(p1)+E(p2)=E(p3)+E(p4)

K13
p1,p2,p3,p4{(fp1 + 1)(fp2 + 1)fp3fp4 − fp1fp2(fp3 + 1)(fp4 + 1)}, (3.9)
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where E(p) is defined in (1.16).
Similar to the C12 case, when p = 0, K22

p1,p2,p3,p4 = 0, and we obtain

ḟ0 = 0,

which means f0(t) is a constant for all time t. As a consequence, we can suppose that f0(0) = 0, which implies
f0(t) = 0 for all t.
In (3.9), the sums for C22 are taken over (p1, p2, p3, p4) satisfying

p1 + p2 = p3 + p4, and E(p1) + E(p2) = E(p3) + E(p4). (3.10)

In this case, unlike in the case of C12 and C13, we cannot infer from (3.10) that there exists a vector P and k1,
k2, k3, k4 ≥ 0, k1, k2, k3, k4 ∈ Z such that

p1 = k1P ; p2 = k2P ; p3 = k3P ; p4 = k4P, k1 + k2 = k3 + k4.

However, let us consider the following simplified version of (3.9) for C22

Ḟk1 = C22[F ](k1) :=
∑

k1+k2=k3+k4
k2,k3,k4∈I

K13
k1,k2,k3,k4{(Fk1 + 1)(Fk2 + 1)Fk3Fk4

− Fk1Fk2(Fk3 + 1)(Fk4 + 1)}, ∀k1 ∈ I.

(3.11)

Recall that I = {1, . . . , I}. We also suppose that I ≥ 3. We have the following conservation of energy

I∑
k=1

kḞk = 0, (3.12)

or equivalently

I∑
k=1

kFk = const. (3.13)

For C22, the following “conservation of mass” also holds

I∑
k=1

Ḟk = 0, (3.14)

or equivalently

I∑
k=1

Fk = const. (3.15)

Similar to the case of C12, define

Gk =
Fk

Fk + 1
,
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then

Fk =
Gk

1−Gk
,

and the system (3.9) can be now written

Ġk1
(1−Gk1)2

= C22[G]

:= K13
k1,k2,k3,k4

∑
k1+k2=k3+k4,

|k1|+|k2|=|k3|+|k4|

Gk3Gk4 −Gk1Gk2
(1−Gk1)(1−Gk2)(1−Gk3)(1−Gk4)

.
(3.16)

This system can be rewritten as

Ġ = diag

 (1−G1)2

· · ·
(1−GI)2


×

∑
k1+k2=k3+k4,

|k1|+|k2|=|k3|+|k4|

[
KX̄k3+X̄k4→X̄k2+X̄k1

(G)

−KX̄k2+X̄k1→X̄k3+X̄k4
(G)
]
(X̄k1 + X̄k2 − X̄k3 − X̄k4).

(3.17)

where X̄k is, the vector 
0
· · ·
1
· · ·
0

 ,

in which the only element that is 1 is the k-th one, and

KX̄k3+X̄k4→X̄k2+X̄k1
(G) = K13

k1,k2,k3,k4

Gk1Gk2
(1−Gk1)(1−Gk2)(1−Gk3)(1−Gk4)

,

KX̄k2+X̄k1→X̄k3+X̄k4
(G) = K13

k1,k2,k3,k4

Gk3Gk4
(1−Gk1)(1−Gk2)(1−Gk3)(1−Gk4)

.

We can also write

Ġ = diag

 (1−G1)2

· · ·
(1−GI)2

 ∑
y↔y′

[Ky→y′(G)−Ky′→y(G)] (y′ − y),

where y ↔ y′ range over the reversible reactions shown above.
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Theorem 3.2. For any initial condition, the solution

F (t) = (Fk(t))k∈I

of the quantum Boltzmann equation (3.11) converges to an equilibrium state F ∗ = (F ∗k )k∈I, where

F ∗k =
1

eρ2(k−1)−ρ1(k−2) − 1
.

Moreover, the solution F (t) of (3.11) converges to F ∗ exponentially fast in the following sense: there exist
positive constants C1, C2 such that

max
k∈I
|Fk(t)− F ∗k | < C1e

−C2t.

Proof. We set

G∗k =
F ∗k

F ∗k + 1
.

By the same argument used to obtain (2.37), we deduce that

Gy

(G∗)y
=

Gy
′

(G∗)y′
(3.18)

holds true for all reactions y ↔ y′, which implies Gy = Gy
′

since (G∗)y = (G∗)y
′

for all reactions y ↔ y′. In the
case of C22, we obtain the relation G∗k1 ·G

∗
k2

= G∗k3 ·G
∗
k4

for all k1, k2, k3, k4 such that k1 + k2 = k3 + k4 ≤ I.
From the relation Gk1 ·Gk2 = Gk3 ·Gk4 and the fact that k + (k − 2) = 2(k − 1), the following identity holds
true

Gk(G1)k−2 = (G2)k−1.

We then obtain Gk = (G2)k−1/(G1)k−2, which leads to Gk = eρ
′
2(k−1)−ρ′1(k−2) for some numbers ρ′1, ρ

′
2.

Since

I∑
k=1

kGk
1−Gk

=

I∑
k=1

kG∗k
1−G∗k

,

we then have

I∑
k=1

keρ
′
2(k−1)−ρ′1(k−2)

1− eρ′2(k−1)−ρ′1(k−2)
=

I∑
k=1

keρ2(k−1)−ρ1(k−2)

1− eρ2(k−1)−ρ1(k−2)
.

We can proceed like in [32] to obtain ρ̃′ = ρ̃ and ρ̄ = ρ̄′, yielding ρ1 = ρ′1 and ρ2 = ρ′2.
We can still use the Petri net argument of [4] or the result in [14], to prove that the system is persistent.

For example, to use the method from [4], we note that we have two siphons {X1, X2, . . . , XI}, {X2, . . . , XI}.
However, we also have the conservations of mass and energy∑

k=1

Fk = constant,
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k=1

kFk = constant,

that leads to the P -semiflow ∑
k=2

(k − 1)Fk = constant.

Therefore, similar to the case of C12, it follows that the system is persistent, and we can use the same Lyapunov
function as in the proof of Theorem 2.2 to obtain the desired convergence result.

Remark 3.3. If I < 3 then F ∗k ≡ 0. If I = 3 then F ∗2 ≡ 0 and F ∗1 = 1
eρ−1 , F ∗3 = 1

e3ρ−1 for some ρ = ρ(P0).

4. A reaction network approach for the sum of C12, C22, C13

Let us consider the following equations

Ḟk1 = C12[F ](k1) + C22[F ](k1), (4.1)

and

Ḟk1 = C12[F ](k1) + C22[F ](k1) + C13[F ](k1), (4.2)

where C12, C22, C13 are the operators defined in (2.7), (3.4), (3.11).
The following theorem then follows by exactly the same argument as in Theorem 3.2

Theorem 4.1. For any initial condition, the solution

F (t) = (Fk(t))k∈I

of the quantum Boltzmann equation (4.1) or (4.2) converges to an equilibrium state F ∗ = (F ∗k )k∈I, where F ∗k =
1

eρk−1
for some constant ρ. Moreover, the solution F (t) of (3.4) converges to F ∗ exponentially fast in the

following sense: there exists positive constants C1, C2 such that

max
k∈I
|Fk(t)− F ∗k | < C1e

−C2t.

5. Conclusion

In this work, we point out a connection between quantum Boltzmann models derived in [49] and chemical
reaction network models. We prove that the discrete, simplified versions of some differential equations for these
quantum Boltzmann models relax to an equilibrium point, by a toric dynamical system approach, similar to
the one used in a recently proposed proof of the global attractor conjecture [14].
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