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Abstract: Osteoarthritis (OA) is the most common form of arthritis and can often occur in the knee. 

While convolutional neural networks (CNNs) have been widely used to study medical images, the 

application of a 3-dimensional (3D) CNN in knee OA diagnosis is limited. This study utilizes a 3D 

CNN model to analyze sequences of knee magnetic resonance (MR) images to perform knee OA 

classification. An advantage of using 3D CNNs is the ability to analyze the whole sequence of 3D 

MR images as a single unit as opposed to a traditional 2D CNN, which examines one image at a 

time. Therefore, 3D features could be extracted from adjacent slices, which may not be detectable 

from a single 2D image. The input data for each knee were a sequence of double-echo steady-state 

(DESS) MR images, and each knee was labeled by the Kellgren and Lawrence (KL) grade of severity 

at levels 0–4. In addition to the 5-category KL grade classification, we further examined a 2-category 

classification that distinguishes non-OA (KL ≤ 1) from OA (KL ≥ 2) knees. Clinically, diagnosing a 

patient with knee OA is the ultimate goal of assigning a KL grade. On a dataset with 1100 knees, the 

3D CNN model that classifies knees with and without OA achieved an accuracy of 86.5% on the 

validation set and 83.0% on the testing set. We further conducted a comparative study between MRI 

and X-ray. Compared with a CNN model using X-ray images trained from the same group of pa-

tients, the proposed 3D model with MR images achieved higher accuracy in both the 5-category 

classification (54.0% vs. 50.0%) and the 2-category classification (83.0% vs. 77.0%). The result indi-

cates that MRI, with the application of a 3D CNN model, has greater potential to improve diagnosis 

accuracy for knee OA clinically than the currently used X-ray methods. 
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1. Introduction 

The most common form of joint disorder in the United States is osteoarthritis (OA) 

[1]. Knee OA can cause pain and is the number one disease at causing loss of ability to 

perform daily activities such as walking and stair climbing [2]. Knee OA is associated with 

age [3] and is characterized by the loss of articular cartilage volume [4]. OA is viewed as 

a “whole-organ” disorder, manifesting damage to a range of articular structures, espe-

cially the hyaline cartilage, meniscus, periarticular bone, ligaments, and tendons [5]. De-

spite its importance for public health, we have no interventions that effectively modify 

the OA disease process [6]. The absence of useful biomarkers to detect OA progression is 

a major technological obstacle to the development of treatment and prevention of knee 

OA [7]. 

While joint replacement is effective for treating end-stage OA, the evaluation of po-

tential disease-modifying treatments in populations meeting current clinical criteria for 

OA has had limited success [6]. In the past decade, early diagnosis and early treatment 

strategies in rheumatoid arthritis have reduced patient morbidity and associated costs [8]. 

The early diagnosis and treatment of OA conditions may similarly improve outcomes and 
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reduce disability and costs for OA. However, the absence of useful image biomarkers to 

detect OA progression has been a critical technology gap in the early diagnosis and treat-

ment of OA [9]. 

The conventional radiographs (X-rays) are commonly used for routine knee OA ex-

aminations. An X-ray of a joint with osteoarthritis typically shows a narrowing of the 

space between the bones of the knee joint where the cartilage has worn away. However, 

symptoms of knee OA may arise before the damage can be seen in standard X-rays. For 

example, Roemer et al. [10] described how X-rays are unable to show certain structural 

phenotypes of OA and cannot detect some detrimental findings which can indicate risk 

of disease that would progress rapidly. 

The advent of magnetic resonance imaging (MRI) offers the promise of addressing 

the critical technology gap by allowing quantification of structural damage in joints. For 

this reason, radiologists at hospitals often use the more sensitive magnetic resonance im-

aging (MRI) for OA early detection. Juras et al. [11] pointed out that OA needs early de-

tection, and MRI is a noninvasive way for detecting early biomarkers. To promote the 

evaluation of OA MRI biomarkers, the National Institutes of Health (NIH) launched the 

Osteoarthritis Initiative (OAI) cohort study, which includes four clinical centers that re-

cruited approximately 4800 men and women (ages 45–79 years) with or at risk for knee 

OA. The OAI collected a wealth of data on its participants over an eight-year span. The 

study included annual knee MRIs for the first four years and then biannual knee MRIs for 

the subsequent 4 years [12]. One of the goals of creating the OAI dataset was to discover 

the objective, measurable standards of disease diagnosis and progression, and to deter-

mine the predictive role of MRI changes for subsequent radiographic and clinical changes 

related to the development of knee OA. 

The 3-dimensional (3D) MR images allow for both viewing the knee as a “whole or-

gan” and depicting all of the tissues of the joint [13]. While cartilage degradation and other 

biomarkers can be manually detected, it is time-consuming to process the volume of 3D 

MR images. Thus, there is a need to automate these processes with machine learning tech-

niques. 

Convolutional neural networks (CNNs) are a class of deep learning techniques that 

are designed to work with images and can remove the need for handcrafted feature ex-

tractors [14]. CNNs have been used for various image classification tasks, with recent 

studies developing CNN models for medical image analysis. The early work of using 

CNNs to classify knee OA was mainly applied to radiographic (X-ray) images [15–18]. 

Anthony et al. employed the classical VGG-16 CNN architecture and transferred 

learning with X-ray images to determine the OA severity level [9]. These images were 

preprocessed using an SVM and Sobel edge detector in order to locate the knee joint area. 

Their study used X-ray images from the OAI. A set of 4446 X-rays were used in this study, 

representing a total of 8892 knees. When classifying the five Kellgren and Lawrence (KL) 

grades, they achieved an accuracy of 59.6%. Later, in another work, the same group up-

dated the preprocessing step to use a fully convolutional neural network (FCN) to deter-

mine the bounding box of the knee joint. The FCN method was found to be highly accurate 

in determining regions of interest (ROI), and when combined with a CNN for classifica-

tion, the method achieved an accuracy of 61.9% [10]. 

Unlike the two-stage frameworks developed in [15,16], a recent work [17] proposed 

an end-to-end CNN architecture for knee OA severity assessment without using a neural 

network for preprocessing. This method used branches in its CNN that are referred to as 

“attention modules”, which provide an unsupervised determination of the ROI of X-ray 

images. Another recent work added a long short-term memory (LSTM) classifying step 

following the CNN layers in their network [18]. Given the nature of LSTM for processing 

sequential data, additional images were generated in a preprocessing step by cropping a 

fixed ROI and rotating the cropped image by 5, 10, −5, and −10 degrees. The original image 

and augmented images were stacked, giving about 4600 images used for training and 
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about 480 for testing. Their work also used images from the OAI and achieved an accuracy 

of 75.28% for the 5-category classification. 

It can be seen that 3D CNNs have developed quickly and are attracting interest as a 

method for analyzing sequences of images or other volumetric data. In a recent study, a 

3D CNN was used for classifying real-world objects [19]. Depth information was used to 

create a 3D shape that was converted into a volumetric representation (voxels) to be clas-

sified by the 3D CNN. In addition, 3D CNNs have shown to be useful in medical image 

processing. When classifying lung nodules, working with 3D volumetric data in a 3D 

CNN outperformed 2D CNNs [20]. Wang et al. applied a 3D CNN model to calculate the 

probability of needing a total knee replacement (TKR) within the next nine years [21]. 

Their work demonstrated that the automated discovery of OA biomarkers from turbo spin 

echo (TSE) and double-echo steady-state (DESS) images could outperform models that 

use only demographic and clinical data. Another work explored this area using the pop-

ular 2D U-Net architecture for the segmentation of cartilage and meniscus in the knee, 

which were fed into a 3D CNN for classifying the severity of the cartilage and meniscus 

lesions [22]. Given the large amount of volumetric data, another recent work for classify-

ing knee lesions used cropping of 3 ROIs from knee MRI to reduce the dimensionality 

before processing by multiple 3D CNN [23]. Aside from these applications, 3D CNNs have 

also been applied to segmentation problems including knee cartilage segmentation [24] 

and segmentation of brain lesions [25]. 

For knee OA severity classification, while previous methods used 2D CNNs to ana-

lyze X-ray images, in this work we propose a method using a 3D CNN and MR images. 

The details of the proposed method is introduced in the next section. 

2. Materials and Methods 

2.1. Method Overview 

Knee MR imaging produces a 3D representation of the knee joint, utilizing a sequence 

of 2D images taken laterally across the knee. Given the 3D nature of MR images, 3D CNN 

can be advantageous in evaluating the whole sequence of images as one unit. Through the 

implementation of 3D kernels, information from adjacent slices could be integrated. 

Therefore, 3D features that may not be detectable using 2D CNN could be potentially cap-

tured. 

For this study, we built a machine-learning model capable of analyzing sequences of 

MR images for each knee as input, with output given as one of the five KL grades. We 

further trained another model by relabeling the samples into OA and non-OA categories 

according to the clinical standard, i.e., patients with KL ≤ 1 are diagnosed as non-OA cases 

while patients with KL ≥ 2 are considered as OA. An overview of the proposed models is 

described in Figure 1. 

In addition to MRI, we also studied traditional X-ray images, with an interest of find-

ing out which imaging modality coupled with the modern CNNs can achieve better accu-

racy for knee OA diagnosis. We employed several state-of-the-art 2D CNN models, in-

cluding VGG 16, ResNet50, DenseNet, etc. These models were trained to classify X-ray 

images into five KL categories. The one with the best accuracy was selected and further 

applied for the binary OA/non-OA classification. The pipelines for X-ray images are sim-

ilar to those illustrated in Figure 1, except the 3D CNN is replaced by a 2D CNN and the 

preprocessing step for X-ray is to cut each pair of knees into individual ones. The X-ray 

images and MR images were obtained from the same group of patients, and the separation 

of training, validation, and testing sets were kept the same at the patient level for all the 

models trained and compared in this work. 
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Figure 1. Overview of the models proposed in this study. The input data for each patient are a se-

quence of MR images. Each sequence is preprocessed by cropping and then removing slices. This 

reduced data are fed into a 3D CNN. The second pipeline applies the same 3D CNN architecture 

but is trained separately for the binary OA/non-OA classification. 

2.2. Dataset 

The dataset used in this study was from the public database Osteoarthritis Initiative 

(OAI). Most of the patient samples in the OAI dataset include an X-ray image; however, 

many do not have an accompanying MRI sequence. For this study, we used a subset of 

the OAI data with 1100 knees, with each knee having both MRI and X-ray available. The 

3D DESS MRI data for each knee contain a sequence of 160 2D images, while there is one 

X-ray image containing both knees from a patient. The dataset was selected with an equal 

distribution among different OA severity levels (0–4) measured by the Kellgren and Law-

rence (KL) grades. 

A common practice in machine learning is to split the available dataset into three 

subsets known as the training set, validation set, and testing set [26]. Machine learning 

models learn from the training set with the validation set being used during the training 

process to tune parameters [27]. The testing set is not seen during the training process but 

rather is held back until the end of the study. The available dataset was randomized and 

then split into groups balanced by the KL grade with 800 training samples, 200 validation 

samples, and 100 testing samples. Each set contains a balanced number of samples from 

each of the five KL categories. Table 1 shows the distribution of the data. 

Table 1. Distribution of 5 KL grade categories into training, validation, and testing sets. 

Set KL = 0 KL = 1 KL = 2 KL = 3 KL = 4 Total 

Training 160 160 160 160 160 800 

Validation 40 40 40 40 40 200 

Testing 20 20 20 20 20 100 

Total 220 220 220 220 220 1100 

2.3. Preprocessing: Subregion Selection 

Unlike natural images where useful information could appear anywhere, in medical 

images, features are usually located in fixed locations. As an example, the knee MR image 

shown in Figure 2 contains large bone areas and many other tissues. The important indi-

cators for knee OA are often observed near the cartilage and joint region of femur and 

tibia bones. Therefore, we can reduce the input dimensionality by cropping a subregion 

of the images. 
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Figure 2. A 2D slice from a 3D knee MR image sequence. The circled area is the cartilage region 

between the femur and tibia bones. 

We cropped each image as a preprocessing step that helps to keep the cartilage region 

while removing regions that are less informative for knee OA classification. We cropped 

the image (original size 384 × 384) from the center using both square and rectangular re-

gions. An example of cropping a knee MR image to various sizes is provided in Figure 3. 

Through various tests we discovered that the window size of 160 × 160 achieved the high-

est F-measure. 

 

Figure 3. A full 384 × 384 image and the results of cropping to various window sizes. 

2.4. Preprocessing: Slice Removal 

Each sample in the database contains a sequence of 160 MR images. After cropping, 

the input dimensions of 160 × 160 × 160 were still very high. To further reduce the input 

data dimensionality, we removed some of the outer and center slices. The reason for re-

moving a few beginning and ending slices is that they do not contain bone or cartilage 

information. Therefore, they are not likely to contain information related to OA. The rea-

son for removing the middle range slices is that they have ill-defined cartilage regions and 

blurry bone boundaries due to the transition of medial and lateral bone happening in this 

range. Example slices are provided in Figure 4. Slice #20 has a small bone region starting, 

while slice #40 and #60 have larger bones with clearly defined bone boundaries and carti-

lage. Slice #80 is in the transition range, and therefore the cartilage and bone boundaries 

are unclear. For each sequence, we excluded the first 10 slices (1–10), middle 20 slices (71–

90) and final 10 slices (151–160). The remaining 120 slices (11–70, 91–150) from the 160 

slices were fed into the 3D CNN model. This is about 13% of the original 384 × 384 × 160 

volume. 
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Figure 4. A selection of 4 slices from a set of 160 MR images for a single patient’s left knee. 

2.5. 3D CNN Model for MRI 

The architecture of the 3D CNN model proposed in this study is shown in Figure 5. 

The structure was inspired by the work performed by Wang et al. [21]. The most important 

difference between 3D CNNs and 2D CNNs is that 3D CNNs use 3D convolutional kernels 

to process a volumetric patch of a scan, while 2D CNNs process a single anatomical plane. 

The 3D convolutional kernels incorporate information from adjacent slices and are there-

fore able to extract 3D features, which are not detectable from 2D CNNs. As shown in 

Figure 5, three stages are included in the proposed 3D CNN model before the final soft-

max layer. The details of the model are discussed below. 

 

Figure 5. The architecture of the 3D CNN model used in this study. Details of the convolutional 

block and the identity block are shown in Figure 6. 

Stage 1 of the model began with a convolutional layer containing 32 kernels of size 7 

× 7 × 7 with a stride of 2 × 2 × 2. This was followed by batch normalization and an activation 

layer using the ReLU function. A max-pooling layer was added with a window size of 2 

× 2 × 2 and a stride of 2 × 2 × 2. Finally, a dropout layer was placed before the start of the 

residual blocks. We used dropout layers in each stage of our 3D CNN model to help re-

duce overfitting. Each dropout layer used a rate of 0.5, which gives each node a 50% 

chance of being set to 0. 

The second stage of the model contained a sequence of six residual blocks [28]. Each 

residual block featured a shortcut connection from the input to the output. There were 

two types of blocks used in this model as shown in Figure 6. The convolutional block 

features a convolutional layer in the shortcut path. This layer was used when the input 

dimensions were changed. The identity block did not have any layers in the shortcut path 

and was used when the input and output dimensions matched. This stage also ended with 

a dropout layer. 
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Figure 6. Details of the convolutional block and the identity block. 

The final stage of the model used global max pooling, followed by a fully connected 

layer of size 1024 and a dropout layer. The last layer of the model uses the softmax func-

tion, which outputs the possibilities of the sample belonging to each category. 

The model was implemented in Python using the Keras library with TensorFlow as 

a backend. The model was trained using a batch size of 15 with early stopping based on 

validation loss. The Adam optimization function was used with a learning rate 0.001. The 

training was performed on a high-performance computer with a NVIDIA Tesla V100 32G 

GPU. 

2.6. Classic 2D CNN Architectures for X-ray 

When building our dataset, we selected patients which had an MRI volume as well 

as an X-ray image of the same knees. To develop the model for X-ray, we employed a 

variety of state-of-the-art 2D CNN architectures. VGG16 [29] was one of the earlier deep 

learning models, and it showed superior performance in many applications. ResNet50 

[28] used the concept of residual blocks in which a shortcut connection is added after a 

series of layers. Our proposed 3D model utilizes a 3D variation of the ResNet50 convolu-

tional and residual blocks as well. Inception-v3 [30] is the representation of the deep learn-

ing networks with inception modules and one of the first models to make use of batch 

normalization. Inception-ResNet [31] is a hybrid of Inception-v3 with residual connec-

tions. DenseNet [32] implements dense blocks in which convolutional layers of the same 

size are connected to every other layer in front of them. 

While an MRI volume contains just one knee, an X-ray image contains both. These X-

ray images were split in half, and all the left knees were flipped so the right and left knees 

are aligned. The pretrained ImageNet weights were used for transfer learning. The last 

softmax layer was retrained using the X-ray data while the previous layers were not 

changed. Input images were scaled to a size of 224 × 224 or 299 × 299, depending on the 

architectures of different models. Since the pretrained networks were trained with RGB 

images, we duplicated each gray level X-ray image three times to feed it into the three 

input channels. 

3. Results 

3.1. 3D CNN Using MRI Data 

Table 2 shows the performance of our 3D CNN model in a confusion matrix of actual 

vs. predicted level for the 5-category classification. It should be noted that results pre-

sented in this subsection and the following two subsections are based on the validation 

set. The testing set was used once as a final evaluation step in Section 3.4 only. Observing 

the results in Table 2, we found that the two boundary categories, i.e., KL = 0 and KL = 4, 

are relatively easier to classify with a high accuracy of 70% and 90%, respectively. The 

middle categories are more difficult to classify. For category KL = 1, the accuracy is only 

45%. However, most misclassified cases (15 out of 22 misclassified ones) were for KL = 0, 

which is less severe than those misclassified into higher KL grades, since clinically, both 

KL = 0 and KL = 1 are considered as non-OA. Category KL = 2 had the lowest accuracy 
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37.5%, and most of these misclassified cases went to KL = 0 and KL = 1. It is worth further 

examining why this category was considered more similar to non-OA class by the model 

when clinically this category is considered as an OA class. 

Table 2. Confusion matrix for the 5-category KL classification by the 3D CNN model on the vali-

dation set. A0 denotes samples that are actually with KL = 0 and P0 denotes samples that are pre-

dicted as KL = 0 by the model. 

Act.\Pred. P0 P1 P2 P3 P4 Total Acc. 

A0 28 7 5 0 0 40 70.0% 

A1 15 18 2 5 0 40 45.0% 

A2 7 10 15 7 1 40 37.5% 

A3 0 2 2 24 12 40 60.0% 

A4 0 0 0 4 36 40 90.0% 

Total 50 37 24 40 49 200 60.5% 

Using the same 3D CNN architecture, we trained another model with the input da-

ta labeled as non-OA (KL ≤ 1) and OA (KL ≥ 2). Table 3 shows the confusion matrix of the 

2-category model. 

Table 3. Confusion matrix for the 2-category OA/non-OA classification by the 3D CNN model on 

the validation set. 

Act.\Pred. Non-OA OA Total Acc. 

Non-OA 71 9 80 88.8% 

OA 18 102 120 85.0% 

Total 89 111 200 86.5% 

3.2. Ablation Study 

The accuracy of our 3D CNN model is based on the preprocessing steps as well as 

the architecture. Table 4 demonstrates the effects of removing individual aspects of our 

model. The first row shows the accuracy of the model with all strategies used. While our 

final model used a cropped size of 160 × 160, for this ablation study we used a larger size 

of 224 × 224, which was the largest that could be used—given memory constraints—to 

generate the performance without cropping (second row in Table 4). It is worth noting 

that when we provided more information (larger crop), the accuracy dropped by 5%. To 

test the effect of slice removal, we removed the slice selection step and used all 160 slices. 

Similar to cropping, providing more information caused worse performance. Dropout 

layers are a common method to avoid overfitting, and in this study, it can be seen that 

removing these layers caused a drop in performance. Finally, we experimented with halv-

ing the number of our final residual layers. This caused the most significant drop in accu-

racy and demonstrates the need of a deep model for working with the 3D MR image data. 

Table 4. Effects on accuracy for preprocessing steps and architecture of the 3D CNN model.  

Crop Slice Removal Dropout Res Layers Acc 

√ √ √ √ 86.5% 

X √ √ √ 81.5% 

√ X √ √ 82.0% 

√ √ X √ 80.0% 

√ √ √ X 73.0% 

Note: “√” indicates the feature is included; “X” indicates the feature was removed. 

3.3. 2D CNN Using X-ray Data 
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For the same group of patients, we compared the performance of various 2D CNN 

architectures that use X-rays. Table 5 compares the performance of each architecture for 

the 5-category classification and the 2-category OA/non-OA classification. 

Table 5. Performance of 2D CNN architectures using X-ray data. 

Architecture 5-Category Accuracy 2-Category Accuracy 

VGG16 20.0% 60.0% 

VGG19 28.0% 60.0% 

ResNet50V2 49.5% 69.0% 

ResNet101V2 42.5% 77.5% 

ResNet152V2 20.0% 60.5% 

InceptionV3 54.0% 80.5% 

InceptionResNetV2 55.5% 80.0% 

DenseNet121 55.0% 70.0% 

DenseNet169 45.0% 78.0% 

DenseNet201 45.0% 81.0% 

Based on the above experiments, we selected InceptionResNetV2, given its best per-

formance for the averages of the 5-category and 2-category accuracy percentages. Tables 

6 and 7 show the confusion matrix for InceptionResNetV2 for the 5-category classification 

and the 2-category classification, respectively. 

Table 6. Confusion matrix for the 5-category KL classification using InceptionResNetV2 and X-

ray. 

Act.\Pred. P0 P1 P2 P3 P4 Total Acc. Acc. of 

MRI 

A0 26 3 11 0 0 40 65.0% 70.0% 

A1 22 3 14 1 0 40 7.5% 45.0% 

A2 7 1 26 5 1 40 65.0% 37.5% 

A3 1 1 11 18 9 40 45.5% 60.0% 

A4 0 0 0 2 38 40 95.0% 90.0% 

Total 56 8 62 26 48 200 55.5% 60.5% 

Table 7. Confusion matrix for the 2-category OA/non-OA classification using InceptionResNetV2 

and X-ray. 

Act.\Pred. Non-OA OA Total Acc. Acc. of MRI 

Non-OA 56 24 80 70.0% 88.8% 

OA 16 104 120 86.7% 85.0% 

Total 72 128 200 80.0% 86.5% 

The last columns of Tables 6 and 7 are the results of MR images with 3D CNN models 

copied from Tables 2 and 3 in order to make it easier to compare the two imaging modal-

ities. Overall, MRI outperformed X-ray in both the 5-category (60.5% vs. 55.5%) and 2-

category (86.5% vs. 80.0%) classifications. From Table 6, we can see that MRI has higher 

accuracy in classifying the categories of KL = 0, 1, and 3, but lower in the KL = 2 and 4 

categories. Correspondingly, in Table 7, the accuracy of MRI is much higher than X-ray in 

classifying the non-OA category (88.8% vs. 70.0%) while a little lower in classifying the 

OA category (85.0% vs. 86.7%). 
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3.4. Comparison and Further Evaluation with Testing Set 

The results presented in the above subsections are from the validation set. We set 

aside a testing set of 100 samples that has not been seen by any model yet. This testing set 

was balanced between the 5 KL grades. Table 8 shows the performance of our 3D model 

with MRI data as well as the best 2D CNN model (InceptionResNetV2) for X-ray, against 

both the validation set and the testing set. We can see that the 3D CNN model with MRI 

outperformed the 2D CNN model with X-ray significantly for the 5-category and 2-cate-

gory classifications on both the validation and testing sets. Table 9 further shows a group 

of different measures to evaluate OA and non-OA classification using the testing set. Our 

3D CNN model with MRI achieved a much higher specificity (0.850 vs. 0.650), F1 score 

(0.831 vs. 0.767), and AUC (area under ROC curve; 0.911 vs 0.867), while the sensitivity is 

lower than that of the X-ray model (0.817 vs. 0.850). Figure 7 plots the ROC curves for the 

two models in the OA/non-OA classification. 

Table 8. Accuracy for the 5-category and 2-category classifications for the 3D CNN model and 2D 

CNN model against the validation and testing sets. 

 Validation Set Testing Set 

 5-Category 2-Category 5-Category 2-Category 

2D CNN with X-ray 55.5% 80.0% 50.0% 77.0% 

3D CNN with MRI 60.5% 86.5% 54.0% 83.0% 

Table 9. More evaluation metrics for the 2-category non-OA/OA classification on the testing set. 

 Sensitivity Specificity F1 AUC 

2D CNN with X-ray 0.850 0.650 0.767 0.867 

3D CNN with MRI 0.817 0.850 0.831 0.911 

 

Figure 7. ROC curves for the OA/non-OA classification. 

4. Discussion 

Currently, X-ray is the basic routine imaging modality for examining a patient with 

OA potentials clinically. While X-ray is more cost-efficient than MRI, it is not as sensitive 

as MRI, which can show much more structure and tissue details. Therefore, MRI is con-

sidered as an alternative imaging tool, especially for detecting early osteoarthritis with 

slight structure change. 

In the 5-category results of this study we found that MRI had higher accuracy in clas-

sifying KL = 0 and KL = 1 (Table 6). This aligns with the previous studies that found MRI 
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to be better at capturing detailed and small structure change and therefore more sensitive 

to early signs of OA development. When classifying the category KL = 4, X-rays have 

higher accuracy than MRI, indicating that X-rays are better at detecting OA in a more 

severe situation. The 2-category results in this study were consistent with those in the 5-

category, in that X-ray has higher accuracy for detecting severe OA cases while MRI is 

more sensitive to small structure changes and early indicators of OA (Table 7). The com-

plementary performance of the two imaging modalities is interesting and indicates the 

possibility that they could be combined to develop a comprehensive and more accurate 

diagnosis system than using each individual imaging modality alone. 

A limitation of this study is that we have a limited number of samples. This is because 

we have to include patients with both MRI and X-ray scanned on the same knee. Another 

limitation is that MRI is not widely used in clinical diagnosis due to the cost. However, 

MRI is a new trend of imaging to study the pathology of knee OA in many clinical trials 

since MRI can offer a better view of soft tissues such as cartilage, bone marrow lesions, 

and effusions. 

Future work includes further examination of the KL categories with lower accuracy, 

e.g., the KL = 2 category, which was often misclassified into KL = 1 (non-OA) by the model. 

This may be solved with a weighting system during training. Additionally, our current 

preprocessing uses a fixed offset for cropping as well as a fixed range for slice removing. 

This could be updated as a dynamic setting for each sequence, which may retrieve more 

accurate information and therefore generate better classification performance. Combining 

the two imaging modalities for a comprehensive and more accurate model is also a prom-

ising direction. 

5. Conclusions 

In this study, we proposed a novel 3D CNN model coupled with 3D MRI for knee 

OA classification. Guided by clinical knowledge, we reduced the input dimensionality of 

each image sequence by using subregions of MR images and removing less informative 

slices. Our model achieved an 83.0% accuracy in the OA/non-OA classification and a 

54.0% accuracy in the 5-category KL grade classification. In addition, the F1 score and 

AUC for OA/non-OA classification are 0.831 and 0.911, respectively. Compared with us-

ing X-ray images coupled with classic 2D CNN architectures to classify knee OA for the 

same group of patients, the accuracy of both a 5-category KL grade classification and the 

2-category OA/non-OA classification greatly improved. This indicates that more accurate 

knee OA diagnosis can be achieved using MR images coupled with 3D CNN models than 

using the traditional X-ray images and 2D CNN models. 
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