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a b s t r a c t

In finance, economics and many other fields, observations in a matrix form are often
generated over time. For example, a set of key economic indicators are regularly
reported in different countries every quarter. The observations at each quarter neatly
form a matrix and are observed over consecutive quarters. Dynamic transport networks
with observations generated on the edges can be formed as a matrix observed over
time. Although it is natural to turn the matrix observations into long vectors, then
use the standard vector time series 2 models for analysis, it is often the case that
the columns and rows of the matrix represent different types of structures that are
closely interplayed. In this paper we follow the autoregression for modeling time series
and propose a novel matrix autoregressive model in a bilinear form that maintains
and utilizes the matrix structure to achieve a substantial dimensional reduction, as
well as more interpretability. Probabilistic properties of the models are investigated.
Estimation procedures with their theoretical properties are presented and demonstrated
with simulated and real examples.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Multivariate time series is a classical area in time series analysis, and has been extensively studied in the literature (see
Hannan, 1970; Lütkepohl, 2005; Tsay, 2014; Tiao and Box, 1981, for an overview). Recently there has been an emerging
interest in modeling high dimensional time series. Roughly speaking these works fall into two major categories: (i) vector
autoregressive modeling with regularization (Davis et al., 2012; Basu and Michailidis, 2015; Guo et al., 2015; Han et al.,
015, 2016; Nicholson et al., 2015; Song and Bickel, 2011; Kock and Callot, 2015; Negahban and Wainwright, 2011; Nardi
nd Rinaldo, 2011, among others), and (ii) statistical or dynamic factor models (Bai and Ng, 2002; Forni et al., 2005; Lam

et al., 2011; Lam and Yao, 2012; Fan et al., 2013; Wang et al., 2019, among others). In most of these studies, the multiple
observations at each time point are treated as a vector.

Although it has been conventional to treat multiple observations as a vector, often the inter-relationship among the
time series exhibits some more structure. For example, Hallin and Liška (2011) studied subpanel structures in multivariate
time series, and Tsai and Tsay (2010) considered group constraints among the time series. When the time series are
collected under the intersections of two classifications, they naturally form matrices.
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Fig. 1. Time series of four economic indicators: first differenced 3 month interbank interest rate, GDP growth (log difference), Total Manufacturing
roduction growth (log difference), and CPI core inflation growth (log difference) from five countries.

In Fig. 1, we plot four economic indicators from five countries, resulting in a 4× 5 matrix observed at each time point. In
this example, the rows and columns correspond to different classifications (economic indicators and countries). Univariate
time series analysis would deal with individual time series separately (e.g. US interest rate, or UK GDP). Panel time series
analysis deals with one row at a time (e.g. interest rates of the five countries), or one column at a time (e.g. all economic
indicators of US). Obviously every time series is related to all other time series in the matrix and we wish to model them
jointly. It is reasonable to assume that the same economic indicator from different countries (the rows) form a strong
relationship, and at the same time economic indicators from the same country (the columns) also naturally move together
closely. Hence there is a strong structure in the relationship among the time series. If the matrices are concatenated into
vectors, the underlying structure is lost with significant impacts on the model complexity and interpretations.

In this paper we propose to model the matrix-valued time series under the autoregressive framework with a bilinear
form. Specifically, in this model, the conditional mean of the matrix observation at time t is obtained by multiplying the
previous observed matrix at time t − 1 from both left and right by two autoregressive coefficient matrices. Let X t be the
m× n matrix observed at time t , our model takes the form

X t = AX t−1B′ + E t ,

It can be extended to involve the previous p observed matrices to form an order p autoregressive model. If it involves p
previously observed matrices, we call it the matrix autoregressive model of order p, with the acronym MAR(p). Compared
with the traditional vector autoregressive models, our approach has two advantages: (i) it keeps the original matrix
structure, and its two coefficient matrices have corresponding interpretations; and (ii) it reduces the number of parameters
in the model significantly.

Similar bilinear models have been used in regression settings. For instance, Wang et al. (2018) considered the regression
with matrix-valued covariates for low-dimensional data. Zhao and Leng (2014) studied the bilinear regression with sparse
oefficient vectors under high-dimensional setting. Zhou et al. (2013) and Raskutti et al. (2015) mainly addressed the
ulti-linear regression with general tensor covariates.
A major objective of our model is to take full advantage of the original matrix structure, so that the model is naturally

nterpretable. A similar concern has emerged in the econometrics literature when studying a large panel of data consisting
f blocks. Hierarchical or multi-level factor models have been introduced to capture both the within-block and between-
lock variations (Moench et al., 2013; Diebold et al., 2008; Giannone et al., 2008). Our model shares an interpretation as

the hierarchical autoregression, which will be detailed in Section 2.1.
Our model leads to a substantial dimension reduction as compared with a direct vector autoregressive model (m2

+n2

s m2n2). However, when the matrix observations themselves have large dimensions, it would be desirable to impose
urther constraints so that a greater dimension reduction can be achieved. There are a number of possible approaches.

irst, we may require both A and B to be sparse, and carryout the estimation with a ℓ1 penalty. Second, we can consider the
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additional assumption that both A and B are of low ranks. If we fix one of A and B and consider the other as the parameter,
the model can be viewed as a reduced rank regression (Anderson, 1951; Izenman, 1975). This second approach is also
related to the recent work (Wang et al., 2019), which studied the factor models for matrix-valued time series. These
extensions are beyond the scope of this paper, and we would leave them for further research.

Since the error term in the matrix AR model is also a matrix, its (internal) covariances form a 4-dimensional tensor.
Here we also consider to exploit the matrix structure to reduce the dimensionality of this covariance tensor, by separating
the row-wise and column-wise dependencies of the error matrix.

In this paper we investigate some probabilistic properties of the proposed model. Several estimators for MAR(1) model
are developed, with different computing algorithms, under different assumptions on the error covariance structure. Their
asymptotic properties are investigated. We also compare the efficiencies of the estimators. In addition, the finite sample
performances of the estimators are demonstrated through simulation studies. The matrix time series of four economic
indicators from five countries, shown in Fig. 1, is analyzed in detail.

The rest of the paper is organized as follows. We introduce the autoregressive model for matrix-valued time series in
Section 2, along with some of its probabilistic properties. The estimation procedures are presented in Section 3. Statistical
inferences and the asymptotic properties of the estimators will be considered in Section 4. Numerical studies are carried
out in Section 5. Section 6 contains a short summary. All the proofs are collected in Appendix.

. Autoregressive model for matrix-valued time series

Consider a time series of length T , in which at each time t , a m×n matrix X t is observed. Here we use X in boldface to
emphasize the fact that it is a matrix. Let vec(·) be the vectorization of a matrix by stacking its columns. The traditional
vector autoregressive model (VAR) of order 1 is directly applicable for vec(X t ). That is,

vec(X t ) = Φvec(X t−1)+ vec(E t ). (1)

It is immediately seen that the roles of rows and columns are mixed in the VAR model in (1). Using the example shown
n Fig. 1, the VAR model in (1) fails to recognize the strong connections within the columns (same country) and within
he rows (same indicator). The (large) mn×mn coefficient matrix Φ does not have any assumed structure; and the model
oes not fully utilize the matrix structure, or any prior knowledge of the potential relationship among the time series.
he coefficient matrix Φ is also very difficult to interpret.
To overcome the drawback of the direct VAR modeling that requires vectorization, and to take advantage of the original

atrix structure, we propose the matrix autoregressive model (of order 1), denoted by MAR(1), in the form

X t = AX t−1B′ + E t , (2)

here A = (aij) and B = (bij) are m× m and n× n autoregressive coefficient matrices, and E t = (et,ij) is a m× n matrix
hite noise. Clearly the model can be extended to an order p model in the form

X t = A1X t−1B′1 + · · · + ApX t−pB′p + E t .

e will defer the interpretations of A and B in (2) to Section 2.1.
The MAR(1) model in (2) can be represented in the form of a vector autoregressive model

vec(X t ) = (B⊗ A)vec(X t−1)+ vec(E t ), (3)

here ⊗ denotes the matrix Kronecker product. A thorough discussion of the Kronecker product and its relationship with
inear matrix equations can be found in Chapter 4 of Horn and Johnson (1994). In the Appendix, we collect some basic
roperties of the Kronecker product in Proposition 7. The representation (3) means that the MAR(1) model can be viewed
s a special case of the classical VAR(1) model in (1), with its autoregressive coefficient matrix given by a Kronecker
roduct. On the other hand, comparing (1) and (3), we see that the MAR(1) requires m2

+ n2 coefficients as the entries
f A and B, while an unrestricted VAR(1) needs m2n2 coefficients for Φ . Apparently the latter can be much larger when
oth m and n are large.
There is an obvious identifiability issue with the MAR(1) model in (2), regarding the two coefficient matrices A and

. The model remains unchanged if the two matrices A and B are divided and multiplied by the same nonzero constant
espectively. To avoid ambiguity, we use the convention that A is normalized so that its Frobenius norm is one. On the
ther hand, the uniqueness always holds for the Kronecker product B⊗ A.
The error matrix sequence {E t} is assumed to be a matrix white noise, i.e. there is no correlation between E t and Es as

ong as t ̸= s. But E t is still allowed to have concurrent correlations among its own entries. As a matrix, its covariances form
4-dimensional tensor, which is difficult to express. In the following we will discuss it in the form of Σ = Cov(vec(E t )),
(mn) × (mn) matrix. As the simplest case, we may assume the entries of E t are independent so that Cov(vec(E t )) is a
iagonal matrix; and in general, we allow them to have arbitrary correlations. We also consider a structured covariance
atrix

Cov(vec(E t )) = Σc ⊗Σr , (4)

here Σr and Σc arem×m and n×n symmetric positive definite matrices. Under normality, this is equivalent to assuming
t = Σ

1/2
r Z tΣ

1/2
c , where all the entries of Z t are independent, and following the standard Normal distribution. Therefore,

r corresponds to row-wise covariances and Σc introduces column-wise covariances.
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Remarks. There are many possible extensions of the model. For example, the model can be extended to have multiple
lag-one autoregressive terms. That is

X t = A1X t−1B′1 + · · · + AdX t−1B′d + E t . (5)

This is still an order-1 autoregressive model, but with more parallel terms. In the stacked vector form, it corresponds to

vec(X t ) =

(
d∑

i=1

Bi ⊗ Ai

)
vec(X t−1)+ vec(E t ).

Such a structure provides more flexibility to capture the different interactions among rows and columns of the matrix
time series, though it becomes more challenging, since there is obviously a more severe identifiability issue.

In this paper we focus on MAR(1) model (2) in all our discussions. Extensions will be investigated elsewhere.

2.1. Model interpretations

The MAR(1) model is not a straightforward model. A thorough discussion of the interpretations of its coefficient
matrices is needed. Here we offer interpretations from three different angles.

First, in model (2), the left matrix A reflects row-wise interactions, and the right matrix B′ introduces column-wise
dependence, and therefore the conditional mean in (2) combines the row-wise and column-wise interactions. It is easier
to see how the coefficient matrices A and B reflect the row and column structures by looking at a few special cases.

To isolate the effect from the bilinear form in (2), let us assume A = I . Then the model reduces to

X t = X t−1B′ + E t .

Consider the example shown in Fig. 1, using columns for countries and rows for economic indicators. The conditional
expectation of the first column of X t is given by

USA USA DEU CAN⎛⎜⎝ Int
GDP
Prod
CPI

⎞⎟⎠
t

= b11

⎛⎜⎝ Int
GDP
Prod
CPI

⎞⎟⎠
t−1

+ b12

⎛⎜⎝ Int
GDP
Prod
CPI

⎞⎟⎠
t−1

+ · · · + b1n

⎛⎜⎝ Int
GDP
Prod
CPI

⎞⎟⎠
t−1

,

which means that at time t , the conditional expectation of an economic indicator of one country is a linear combinations
of the same indicator from all countries at t−1, and this linear combination is the same for different indicators. Therefore,
this model (and B) captures the column-wise interactions, i.e. interactions among the countries. However, the interactions
are refrained within each indicator. There are no interactions among the indicators.

On the other hand, if we let B = I in model (2), then a similar interpretation can be obtained, where the matrix
A reflects the row-wise interactions, i.e. interactions among the economic indicators within each country. There are no
interactions among the countries.

Second, we can interpret the model from a row-wise and column-wise VAR model point of view. For example, if B = I ,
then the model becomes

X t = AX t−1 + E t .

In this case, each column of X t follows

X t,·j = AX t−1,·j + E t,·j, j = 1, . . . , n.

That is, each column of X t follows the same VAR(1) model of dimension m. Specifically, for the first two columns in the
example of Fig. 1, the models are

USA USA USA DEU DEU DEU⎛⎜⎝ Int
GDP
Prod
CPI

⎞⎟⎠
t

= A

⎛⎜⎝ Int
GDP
Prod
CPI

⎞⎟⎠
t−1

+

⎛⎜⎝ e_Int
e_GDP
e_Prod
e_CPI

⎞⎟⎠
t

and

⎛⎜⎝ Int
GDP
Prod
CPI

⎞⎟⎠
t

= A

⎛⎜⎝ Int
GDP
Prod
CPI

⎞⎟⎠
t−1

+

⎛⎜⎝ e_Int
e_GDP
e_Prod
e_CPI

⎞⎟⎠
t

In other words, for each country, its economic indicators follow a VAR(1) model (of its own past) of dimension m; and
ifferent countries would follow the same VAR(1) model.
If A = I , then

X t = X t−1B′ + E t .

n this case, each row of X t (same indicator from different countries) would follow a VAR(1) model. And the coefficient
atrices corresponding to different rows would be the same.
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Obviously both models X t = AX t−1+E t and X t = X t−1B′+E t are too restrictive. It is difficult to reason that Germany’s
conomic indicators follow the same model as the US’s, and there is no interaction between Germany and US. There are
wo possible ways to add flexibility. One can assume an additive interaction structure to make the model as

X t = AX t−1 + X t−1B′ + E t ,

hich is essentially a special case of the multi-term model in (5) with d = 2 and B1 = I and A2 = I . Or we can assume
a one-term multiplicative interaction structure, which leads to MAR(1). Of course, one can also use

X t = A1X t−1 + X t−1B′1 + A2X t−1B′2 + E t ,

imilar to the model with main effects plus two-way interactions. In this paper we choose to work on MAR(1) in (2).
The third way to interpret MAR(1) is through a defined hierarchical structure. Multi-level or hierarchical factor models

ave been introduced in the econometric literature to study a large panel of data consisting of blocks or even sub-
locks (Moench et al., 2013; Diebold et al., 2008; Giannone et al., 2008). Here we illustrate that our model shares a similar
nterpretation as hierarchical autoregression. Let Y t−1 = X t−1B′. It would be the prediction of X t (or the conditional
mean) if A = I . Since each column of Y t−1 is based on the linear combination of all columns of X t−1 with no row
(indicator) interaction, we can view each entry in Y t−1 as the globally adjusted indicator. For example, Y t−1,GDP,US is
a linear combination of the GDPs of all countries at time t − 1. Next, we consider Z t−1 = AY t−1. This would be the
prediction of X t if the model is X t = AY t−1 + E t . It replaces each entry (indicator) in X t−1 by its corresponding globally
adjusted indicator in Y t−1. Each entry in Z t−1 is a linear combination of the adjusted indicators from the same country.
For example, Z t−1,GDP,US is a linear combination of Y t−1,GDP,US , Y t−1,INT ,US etc. It can be viewed as a second adjustment by
other indicators (within the same country). Putting everything together, we have

X t = Z t−1 + E t = AY t−1 + E t = AX t−1B′ + E t .

Note that, if X t follows the MAR(1) in (2), each entry xt,ij in X t follows

xt,ij =
m∑

k1=1

n∑
k2=1

aik1xt−1,k1k2bjk2 + et,ij.

Hence xt,ij is controlled only by ith row of A and jth column of B′. In the example of Fig. 1, the ith row of A can be viewed as
the coefficient corresponding to ith indicator and the jth column of B′ as the coefficient corresponding to the jth country.
Their values can be interpreted, as we will demonstrate in the real example in Section 4.

The error covariance matrix Cov(vec(E t )) = Σc ⊗Σr in (4), which consists of all pairwise covariances Cov(et,ij, et,kl) =
σc,jlσr,ik, has a similar interpretation. For example, if Σr = I , then E t = ZΣ

1/2
c , which implies that the Σc matrix captures

the concurrent dependence of the columns of shocks in E t . Note that each row of E t in this case is E t,i· = Z t,i·Σ
1/2
c . Hence

ov(E t,i·) = Σc for all rows i = 1, . . . ,m, and therefore Σc captures the covariance among the (column) elements in each
ow. In parallel, Σr captures the concurrent dependence among the rows of shocks in E t .

.2. Probabilistic properties of MAR(1)

For any square matrix C , we use ρ(C ) to denote its spectral radius, which is defined as the maximum modulus of the
complex) eigenvalues of C . Since the MAR(1) model can be represented in the form (3), we see that (2) admits a causal
nd stationary solution if the spectral radius of B⊗A, which is the product of the spectral radii of A and B, is strictly less
han 1. Hence we have

roposition 1. If ρ(A) · ρ(B) < 1, then the MAR(1) model (2) is stationary and causal.

The detailed proof of the proposition is given in Appendix.
We remark that the property of being ‘‘stationary and causal’’ is referred to as being ‘‘stable’’ in Lütkepohl (2005).

ere we follow the terminology and definitions used in Brockwell and Davis (1991). The condition ρ(A) · ρ(B) < 1 will
e referred to as the causality condition in the sequel.
When the condition of Proposition 1 is fulfilled, the MAR(1) model in (2) has the following causal representation after

ectorization:

vec(X t ) =
∞∑
k=0

(
Bk
⊗ Ak)vec(E t−k). (6)

t follows that the autocovariance matrices of (2) are given by

Γk := Cov(vec(X t ), vec(X t−k)) =
∞∑(

Bk+l
⊗ Ak+l)Σ (

Bl
⊗ Al)′, k ≥ 0, (7)
l=0
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where Σ is the covariance matrix of vec(E t ). The condition ρ(A) · ρ(B) < 1 guarantees that the infinite matrix series is
bsolutely summable.
It is known that a causal and a non-causal VAR(1) can lead to equivalent models under Gaussianity (Hannan, 1970).

owever, if the parameter space of (1) is restricted to Θ := {(Φ, Σ) : ρ(Φ) < 1, and Σ is nonsingular}, then the
VAR(1) model (1) is identifiable in the sense that if two sets of parameters (Φ1, Σ1) ∈ Θ and (Φ2, Σ2) ∈ Θ generate the
same autocovariance functions (7), then they must be identical. To see this, first note that under causality, the best linear
prediction of vec(X t ) by vec(X t−1) is Φivec(X t−1), so the prediction error covariance matrices Σ1 and Σ2 must be the same.
Second, under causality, Γ1 = ΦiΓ0. Since Σ1 = Σ2 are nonsingular, so is Γ0. Therefore, both Φ1 and Φ2 would equal to
Γ1Γ

−1
0 . Now we consider the identifiability regarding A and B over the parameter space {(A,B) : ∥A∥F = 1, ∥B∥F > 0}.

If B1⊗A1 = B2⊗A2, then M := vec(A1)vec(B1)′ = vec(A2)vec(B2)′. Since M is a nonzero matrix, and ∥A1∥F = ∥A2∥F = 1,
the uniqueness of the singular value decomposition of M guarantees that (A1,B1) = ±(A2,B2), giving the desired
identifiability up to a sign change. When Σ is defined with the Kronecker product form (4), the identifiability regarding
parameters Σr and Σc can be similarly showed if we require both of them to be nonsingular, and ∥Σr∥F = 1.

We discuss the impulse response function with orthogonal innovations (oIRF) of the MAR(1) model. Since MAR(1) is
a special case of VAR(1), we follow the definition given in Section 2.10 of Tsay (2014). However, the standard approach
requires fixing the order under which the innovations are orthogonalized, which is specially difficult to determine for
matrix innovations. In this paper we adopt a simpler strategy. To obtain the oIRF with a shock at (i, j)th series, we will
put that series as the first series in the vectorized VAR model, and all other innovations will be orthogonalized with the
(i, j)th innovation fixed. The oIRF obtained this way actually does not depend on the order of the rest variables and its
formulation is simple without the need to perform Cholesky decomposition. We will call the oIRF obtained this way the
shock-first impulse response function with orthogonal innovations (s1-oIRF). Specifically, let Σ[ , i] be the ith column of Σ ,
and σij be the (i, j)th entry of Σ . Then the s1-oIRF of a unit standard deviation change in et,ij (which is σ

1/2
m(j−1)+i,m(j−1)+i)

is given by, in the vectorized form of the original matrix,

F i,j(k) =
(
Bk
⊗ Ak)Σ[ ,m(j− 1)+ i]. (8)

Note that the s1-oIRF in (8) depends on the series to which the shock occurs, just as the standard oIRF depends on the
order of variables. The accumulated s1-oIRF is in the form

F̃ i,j(K ) =

(
K∑

k=0

Bk
⊗ Ak

)
Σ[ ,m(j− 1)+ i].

This type of impulse response function exhibits a special structure if Σ has the Kronecker product form (4). Let Σr,·i
and Σc,·i be the ith columns of Σr and Σc , respectively. Then the effect of a unit standard deviation change in et,ij on the
future vec(X t+k) is given by (BkΣc,·j)⊗ (AkΣr,·i).

To see the impact of this formulation, consider the case that a one-standard deviation shock occurs at (1, 1) series.
Let f ci (k) = (BkΣc,·1)[i], the ith element of BkΣc,·1 and f rj (k) = (AkΣr,·1)[j], the jth element of AkΣr,·1. Then the impulse
response function of (i, j)th series at lag k is

fi,j(k) = f ri (k)f
c
j (k) = (AkΣr,·1)[i] · (BkΣc,·1)[j].

We further let f r (k) = [f r1 (k), . . . , f
r
m(k)]

′, and f c(k) = [f c1 (k), . . . , f
c
n (k)]

′. (We use the boldfaced f (·) here to emphasize
it is a vector of functions.) We can view f r (k) as the column response function and f c(k) as the row response function.
Using the example shown in Fig. 1, if there is a unit standard deviation shock in the interest rate of US (location (1, 1) in
the matrix), then its lag k effect on the four economic indicators for jth country is

[f1,j(k), f2,j(k), f3,j(k), f4,j(k)]′ = [f r1 (k), f
r
2 (k), f

r
3 (k), f

r
4 (k)]

′f cj (k) = f cj (k) · f
r (k),

which has the following interpretations. The effect of the shock on four economic indicators in the same jth country, a
4-dimensional vector [f1,j(k), f2,j(k), f3,j(k), f4,j(k)]′, is proportional to the vector f r (k), for all countries 1 ≤ j ≤ 5. Hence the
five (4-dimensional economic indicator) vectors corresponding to the five countries are parallel to each other and only
differ by the multiplier f cj (k). This form of impulse response function implies that the economies of different countries
have a co-movement as responses to a shock, but the impacts on different countries are of different scales. Similarly, we
have

[fi,1(k), . . . , fi,5(k)] = f ri (k) · [f
c
1 (k), . . . , f

c
5 (k)] = f ri (k) · [f

c(k)]′, 1 ≤ i ≤ 4.

That is, the effect on five countries regarding each economic indicator, which is a 5-dimensional row vector, is proportional
to f c(k), and the four vectors corresponding to four indicators only differ by lengths f ri (k).

In general, for a shock that occurs at location (i, j), the lag-k row and column response functions are f c,j(k) = BkΣc,·j
and f r,i(k) = AkΣr,·i, respectively. In fact, the response function in matrix form in this case is given by the rank-one
matrix:

Fi,j(k) = f r,i(k)[f c,j(k)]′.
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3. Estimation

3.1. Projection method

To estimate the coefficient matrices A and B, our first approach is to view the MAR(1) model in (2) as the structured
VAR(1) model in (3). We first obtain the maximum likelihood estimate or the least square estimate Φ̂ of Φ in (1) without
the structure constraint, then we find the estimators by projecting Φ̂ onto the space of Kronecker products under the
Frobenius norm:

(Â1, B̂1) = argmin
A,B
∥Φ̂ − B⊗ A∥2F . (9)

This minimization problem is called the nearest Kronecker product (NKP) problem in matrix computation (Van Loan and
Pitsianis, 1993; Van Loan, 2000). It turns out that an explicit solution exists, which can be obtained through a singular
value decomposition (SVD) of a rearranged version of Φ̂ .

Note that the set of all entries in B⊗ A is exactly the same as the set of all entries in vec(A)vec(B)′. The two matrices
have the same set of elements, and only differ by the placement of the elements in the matrices. Define a re-arrangement
operator G : Rmn

× Rmn
→ Rm2

× Rn2 such that

G(B⊗ A) = vec(A)vec(B)′.

It is easy to see that the operator is a linear operator such that G(C1+C2) = G(C1)+G(C2). We also note that the Frobenius
norm of a matrix only depends on the elements in the matrix, but not the arrangement, hence ∥G(C )∥F = ∥C∥F . Then we
have

min
A,B
∥Φ̂ − B⊗ A∥2F = min

A,B
∥G(Φ̂)− G(B⊗ A)∥2F

= min
A,B
∥G(Φ̂)− vec(A)vec(B)′∥2F

= min
A,B
∥Φ̃ − vec(A)vec(B)′∥2F ,

where Φ̃ = G(Φ̂) is the re-arranged Φ̂ . It follows that the solution of (9) can be obtained through

vec(Â)vec(B̂)′ = d1u1v
′

1,

where d1 is the largest singular value of Φ̃ , and u1 and v1 are the corresponding first left and right singular vectors,
respectively. By converting the vectors into matrices, we obtain corresponding estimators of A and B, denoted by Â1 and
B̂1, with the normalization that ∥Â1∥F = 1. We call them projection estimators, and will use the acronym PROJ for later
references.

We illustrate the re-arrangement operation with a special case of m = n = 2. We first rearrange the entries of the
Kronecker product B⊗ A:⎡⎢⎣ b11a11 b11a12 b12a11 b12a12

b11a21 b11a22 b12a21 b12a22
b21a11 b21a12 b22a11 b22a12
b21a21 b21a22 b22a21 b22a22

⎤⎥⎦ −→
⎡⎢⎣ b11a11 b21a11 b12a11 b22a11

b11a21 b21a21 b12a21 b22a21
b11a12 b21a12 b12a12 b22a12
b11a22 b21a22 b12a22 b22a22

⎤⎥⎦ .

We then rearrange the entries of Φ̂ in exactly the same way:

Φ̂ =

⎡⎢⎣ φ11 φ12 φ13 φ14
φ21 φ22 φ23 φ24
φ31 φ32 φ33 φ34
φ41 φ42 φ43 φ44

⎤⎥⎦ −→
⎡⎢⎣ φ11 φ31 φ13 φ33

φ21 φ41 φ23 φ43
φ12 φ32 φ14 φ34
φ22 φ42 φ24 φ44

⎤⎥⎦ =: Φ̃.

By abuse of notation, we omit the hat on each individual φ̂ij. Now it is clear that the NKP problem (9) is equivalent to
minA,B ∥Φ̃ − vec(A)vec(B)′∥2F .

In fact, by obtaining the first k largest singular values of Φ̃ = G(Φ̂) and their corresponding kth left and right singular
vectors uk and vk, respectively, and then converting the vectors into matrices, we obtain estimators of Ai and Bi in the
multi-term model (5), under proper model assumptions.

Note that this procedure requires the estimation of the mn×mn coefficient matrix Φ first. This task is often formidable
and inaccurate with moderately large m and n and a finite sample size. Hence the resulting projection estimator may not
be very accurate. However, it can serve as the initial value for a more elaborate iterative procedure.
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3.2. Iterated least squares

If we assume the entries of E t are i.i.d. normal with mean zero and a constant variance, the maximum likelihood
estimator, denoted by Â2 and B̂2, is the solution of the least squares problem

min
A,B

∑
t

∥X t − AX t−1B′∥2F . (10)

We refer to this estimator as LSE for the rest of this paper. If the error covariance matrix is arbitrary, the LSE is still an
intuitive and reasonable estimator. To see the connection between the two estimators PROJ and LSE, define

Y = [vec(X2), vec(X3), . . . , vec(X T )],
X = [vec(X1), vec(X2), . . . , vec(X T−1)].

(11)

The minimization problem (10) can be rewritten as

min
A,B
∥Y − (B⊗ A)X∥2F . (12)

omparing (12) and (9), we see the problem (12) can be viewed as an inverse NKP problem. Unfortunately it does not
ave an explicit SVD solution (Van Loan, 2000).
There is another way to understand the minimization problem (10). Define

Y′ = [X ′2,X
′

3, . . . ,X
′

T ],

X′A = [X
′

1A
′,X ′2A

′, . . . ,X ′T−1A
′
].

(13)

ith these notations, the least squares problem (10) is equivalent to

min
A

{
min
B
∥Y−XAB∥2F

}
. (14)

n other words, we aim to find the optimal A, so that the projection of the columns of Y on the column space of XA is
aximized.
Taking partial derivatives of (10) with respect to the entries of A and B respectively, we obtain the gradient condition

or the LSE∑
t

AX t−1B′BX ′t−1 −
∑
t

X tBX ′t−1 = 0∑
t

BX ′t−1A
′AX t−1 −

∑
t

X ′tAX t−1 = 0.
(15)

he function
∑

t ∥X t −AX t−1B′∥2F is guaranteed to have at least one global minimum, so solutions to (15) are guaranteed
o exist. On the other hand, if Â and B̂ solve the equations in (15), so are Ã := Â/c and B̃ := B̂ · c , where c is any nonzero
onstant. We should regard them as the same solution because they yield the same matrix product ÂX t−1B̂

′

= ÃX t−1B̃
′

.
quivalently, we say that (Â, B̂) and (Ã, B̃) are the same solution of (15), if B̂⊗ Â = B̃⊗ Ã. With this convention, we argue
hat with probability one, the global minimum of (10) is unique. For this purpose, we need the following condition.
Condition R:) The innovations E t are independent and identically distributed, and absolutely continuous with respect
o Lebesgue measure.

If Condition (R) is fulfilled, it holds that with probability one, the solutions of (15) have full ranks, and they have no
ero entries. Let us restrict our discussion to this event of probability one. Without loss of generality, we fix the first entry
f A at a11 = 1. Let us use Z to denote the set of entries of A and B:

Z := {aij, bkl : 1 ≤ i, j ≤ m, (i, j) ̸= (1, 1), 1 ≤ k, l ≤ n}.

he matrix equations in (15) involve m2
+ n2 individual equations, and each equation takes the form f (Z) = 0, where

(Z) is a multivariate polynomial in the polynomial ring C[Z] over the complex field C. The collection V of all solutions
f (15) is thus an affine variety in the space Cm2

+n2−1. By computing a Groebner basis for the ideal generated by the
olynomials in (15), we see that V is a finite set (see for example, Theorem 6, page 251 of Cox et al., 2015). Equivalently,
he equations in (15) have a finite number of solutions.

Now consider the uniqueness of the global minimum. Assume A1 and A2 are two nonzero m × m matrices such
hat A1 ̸= c · A2 for any constant c ∈ R. Define X1 and X2 as in (13) with A1 and A2 respectively. We further define
(c) = cX1 + (1− c)X2. The projection of Y on the column space of X(c) is given by X(c)[X(c)′X(c)]−1X(c)′Y, and its
robenius norm

trace
{
Y′X(c)[X(c)′X(c)]−1X(c)′Y

}
(16)

s a rational function of c ∈ R with random coefficients determined by X1,X2, . . . ,X T . With probability one, this rational
unction takes distinct values at different local minima. Combining this fact and the preceding argument, we see that with

robability one, the least squares problem (10) has a unique global minimum, and finitely many local minima.
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To solve (10), we iteratively update the two matrices Â and B̂, by updating one of them in the least squares (10) while
olding the other one fixed, starting with some initial A and B. By (15) the iteration of updating B given A is

B←

(∑
t

X ′tAX t−1

)(∑
t

X ′tA
′AX t−1

)−1
,

nd similarly by (15) the iteration of updating A given B is

A←

(∑
t

X tBX ′t−1

)(∑
t

X t−1B′BX ′t−1

)−1
.

e denote these estimators by Â2 and B̂2, with the name least squares estimators, and the acronym LSE.
The iterative least squares may converge to a local minimum. In practice, we suggest to use the PROJ estimators Â1 and

ˆ 1 as the starting values of the iterations. On the other hand, by permuting the entries of the corresponding matrices (Van
oan, 2000), the problem (10) can be rewritten as a problem of best rank-one approximation under a linear transform,
hich in turn can be viewed as a generalized SVD problem. The variable projection methods discussed in Golub and
ereyra (1973) and Kaufman (1975) may also be applicable here.

.3. MLE under a structured covariance tensor

When the covariance matrix of the error matrix E t assumes the structure in (4), it can be utilized to improve the
fficiency of the estimators. The log likelihood under normality can be written as

−m(T − 1) log |Σc | − n(T − 1) log |Σr | −
∑
t

tr
(
Σ−1r (X t − AX t−1B′)Σ−1c (X t − AX t−1B′)′

)
. (17)

our matrix parameters A,B, Σr , Σc are involved in the log likelihood function. The gradient condition at the MLE is given
y

A
∑
t

X t−1B′Σ−1c BX ′t−1 −
∑
t

X tΣ
−1
c BX ′t−1 = 0

B
∑
t

X ′t−1A
′Σ−1r AX t−1 −

∑
t

X ′tΣ
−1
r AX t−1 = 0

m(T − 1)Σc −
∑
t

(X t − AX t−1B′)′Σ−1r (X t − AX t−1B′) = 0

n(T − 1)Σr −
∑
t

(X t − AX t−1B′)Σ−1c (X t − AX t−1B′)′ = 0.

o find the MLE, we iteratively update one, while keeping the other three fixed. These iterations are given by

A←

(∑
t

X tΣ
−1
c BX ′t−1

)(∑
t

X t−1B′Σ−1c BX ′t−1

)−1

B←

(∑
t

X ′tΣ
−1
r AX t−1

)(∑
t

X ′t−1A
′Σ−1r AX t−1

)−1
Σc ←

∑
t R
′

tΣ
−1
r Rt

m(T − 1)
, where Rt = X t − AX t−1B′

Σr ←

∑
t RtΣ

−1
c R ′t

n(T − 1)
, where Rt = X t − AX t−1B′

The MLE for A and B under the covariance structure (4) will be denoted by Â3 and B̂3, with an acronym MLEs, where
the ‘‘s’’ emphasizes the fact that it is the MLE under the special structure (4) of the error covariance matrix. Due to the
unidentifiability of the pairs of A, B and Σc, Σr , to make sure the numerical computation is stable, after looping through
A, B, Σc and Σr in each iteration, we renormalize so that both ∥A∥F = 1 and ∥Σr∥F = 1.

Remark. Note that the three estimators do not impose the causality condition ρ(A)ρ(B) < 1 in the estimation procedure.
Hence the resulting estimators may not necessarily satisfy the condition, even the underlying process is stationary and
causal. For univariate ARMA modeling, a transformation of the estimator can be made to achieve causality, and the
transformed model and the original one are equivalent under Gaussianity (see for example, Brockwell and Davis, 1991,
Section 3.5). There is a similar result for VAR models (see for example Hannan, 1970, Section II.5). Unfortunately the
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approach does not work in general under the restricted form of MAR(1) model, because the autoregressive coefficient
matrix of the equivalent causal VAR(1) model no longer has the form of a Kronecker product. The hope is that if the
process is indeed causal, the consistencies of the estimators (see Section 4) guarantee that they will satisfy the causality
condition with large probabilities. On the other hand, to retain a MAR(1) model with possibly non-causal coefficient
matrices, non-causal vector autoregression may be considered (Davis and Song, 2012; Lanne and Saikkonen, 2013).

4. Asymptotics, efficiency and a specification test

4.1. Asymptotics and efficiency

Due to the identifiability issue regarding A and B, we make the convention that ∥A∥F = 1, and the three estimators
Âi, B̂i), 1 ≤ i ≤ 3 are rescaled so that ∥Âi∥F = 1. Since the Kronecker product B ⊗ A is unique, we also state the
symptotic distributions of the estimated Kronecker product B⊗ A, in addition to that of A and B.
We first present the central limit theorem for the projection estimators Â1 and B̂1. Following standard theory of

ultivariate ARMA models (Hannan, 1970; Dunsmuir and Hannan, 1976), the conditions of Theorem 2 guarantee that
ˆ converges to a multivariate normal distribution:

√
Tvec(Φ̂ − B⊗ A)⇒ N(0, Γ −10 ⊗Σ),

here Σ is the covariance matrix of vec(E t ), and Γ0 is given in (7). Let Φ̃ = G(Φ̂) be the rearranged version of Φ̂ , and
Ξ1 be the asymptotic covariance matrix of vec(Φ̃). The matrix Ξ1 is obtained by rearranging the entries of Γ −10 ⊗Σ , and
can be expressed using permutation matrices and Kronecker products, but we omit the explicit formula here.

Theorem 2. Consider model (2). Set α := vec(A), β1 := vec(B)/∥vec(B)∥, and

V 0 :=

(
∥B∥−1F [β

′

1 ⊗ (I − αα′)]
I ⊗ α′

)
,

V 1 := (β1β
′

1)⊗ I + I ⊗ (αα′)− (β1β
′

1)⊗ (αα′).

Note that both α and β1 are unit vectors. Assume that E1, . . . , ET are iid with mean zero and finite second moments. Also
assume the causality condition ρ(A) · ρ(B) < 1, and A, B and Σ are nonsingular. It holds that

√
T
(
vec(Â1 − A)
vec(B̂1 − B)

)
⇒ N(0,V 0Ξ1V ′0),

nd
√
T
[
vec(B̂1)⊗ vec(Â1)− vec(B)⊗ vec(A)

]
⇒ N(0,V 1Ξ1V ′1).

The proof of the theorem is presented in Appendix.
Note that although the projection estimator does not utilize the MAR(1) model structure, Theorem 2 requires that the

bserved matrix time series follows model (2).
Now we consider the least squares estimators (Â2, B̂2). Let α := vec(A), β := vec(B′), and γ := (α′, 0′)′ be a vector in

m2
+n2 . Note that β should not be confused with β1 defined in Theorem 2. In Theorem 2 we present the result for vec(B),

f which β1 is the normalized version; while here in Theorem 3, we give CLT for vec(B′), which is denoted by β. Recall
hat Σ is the covariance matrix of vec(E t ). We have the following result for Â2 and B̂2.

heorem 3. Consider model (2). Define W ′t := [(BX
′

t ) ⊗ I : I ⊗ (AX t )], and H := E(W tW ′t ) + γγ ′. Let Ξ2 :=
−1E(W tΣW ′t )H

−1, and V := [β ⊗ I, I ⊗ α]. In addition to the conditions of Theorem 2, we also assume (R). It holds
hat

√
T

(
vec(Â2 − A)
vec(B̂

′

2 − B′)

)
⇒ N(0, Ξ2);

and equivalently,
√
T
[
vec(B̂

′

2)⊗ vec(Â2)− vec(B′)⊗ vec(A)
]
⇒ N(0,VΞ2V ′).

The proof of the theorem is in Appendix.
With the additional assumption (4) on the covariance structure of E t , we have a similar result. Recall that W ′t =

[(BX ′t ) ⊗ I, I ⊗ (AX t )], and γ = (α′, 0′)′. Let H̃ := E(W tΣ
−1W ′t ) + γγ ′. Define Ξ3 := H̃

−1
E(W tΣ

−1W ′t )H̃
−1

. Note that
the covariance matrix Σ takes the form Σ = Σc ⊗Σr . The MLEs Â3 and B̂3 under the assumption (4) have the following
joint limiting distribution.
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Theorem 4. Under the same conditions of Theorem 3, and the additional assumption (4), it holds that

√
T

(
vec(Â3 − A)
vec(B̂

′

3 − B′)

)
⇒ N(0, Ξ3);

and equivalently,
√
T
[
vec(B̂

′

3)⊗ vec(Â3)− vec(B′)⊗ vec(A)
]
⇒ N(0,VΞ3V ′).

The proof of the theorem is in Appendix.
We remark that in these three versions of the central limit theorem, there may be zero diagonal entries in the

symptotic covariance matrix. For example, in Theorem 3, there may be a zero on the diagonal of the matrix VΞ2V ′. It
appens when the corresponding true values of the entries ai1j1 and bi2j2 are both zero; and in this situation, the product

estimator âi1j1 b̂i2j2 has a convergence rate of 1/T instead of 1/
√
T .

We now compare the efficiencies of the LSE and the MLEs, when the covariance matrix of vec(E t ) has the Kronecker
roduct structure (4). In Theorems 3 and 4, both asymptotic covariance matrices take the form VΞiV ′, i = 2, 3. The
ollowing corollary asserts that the MLEs is asymptotically more efficient under the structured covariance matrix (4).

orollary 5. Consider model (2), and assume the same conditions of Theorem 4, It holds that

Ξ2 ≥ Ξ3.

The proof of the Corollary is in Appendix.
Here the matrix relationship ≥ means that the difference of the two matrices is positive semi-definite. Consequently,

e see that when the covariance structure is correctly specified by (4), the MLEs Â3 and B̂3 are more efficient than the
LSE Â2 and B̂2 asymptotically. A comparison of the efficiencies of the projection estimators and least squares estimators
can also be made, where the least squares estimators are more efficient. However, we skip this result here, because in
practice we suggest to use either LSE or MLEs, and only use PROJ as initial values for the other two estimation methods.

4.2. A specification test

To assess the adequacy of the MAR(1) for a given dataset, it is natural to run some diagnostics based on the residuals.
Since the MAR(1) model can be viewed as a special case of the VAR(1) model, standard diagnostics can be applied.
Autocorrelation and cross correlation plots are useful to visualize the whiteness of the residual matrices. Portmanteau
tests (Hosking, 1980, 1981a; Li and McLeod, 1981; Poskitt and Tremayne, 1982), Lagrange multiplier test (Hosking, 1981b),
nd the likelihood ratio test (Tiao and Box, 1981) can all be applied to test for serial correlations among the residual
atrices.
On the other hand, the fact that the MAR(1) model is a VAR(1) of a special form also makes it interesting to compare

AR(1) with the unrestricted VAR(1), and to examine whether the special form (3) is supported by the data. We
ropose a specification test based on the projection estimators Â1, B̂1. We first state a corollary of Theorem 2, which
ill motivate the test statistic. The proof will be deferred to Appendix. Let M+ be the Moore–Penrose inverse of a matrix
. Recall that in Theorem 2, we define α := vec(A) and β1 := vec(B)/∥B∥F . Define the orthogonal projection matrix
:= (I − β1β

′

1)⊗ (I − αα′). Note that P = I − V 1, where V 1 is defined in Theorem 2.

orollary 6. Assume the same conditions, and adopt the same notations of Theorem 2. Let

D̂ :=
[
Φ̃ − vec(Â1)vec(B̂1)′

]
t holds that

T · vec(D̂)′ (P Ξ1 P)+ vec(D̂)⇒ χ2
(m2−1)(n2−1).

Recall the notations introduced before Theorem 2: Ξ1 is the asymptotic covariance matrix of vec(Φ̃), where Φ̃ = G(Φ̂)
s the rearranged version of Φ̂ . The matrix Ξ1 is obtained by rearranging the entries of Γ −10 ⊗Σ . Note that both Γ0 and
can be estimated by their sample versions. We denote by Ξ̂1 the corresponding estimator of the asymptotic covariance
atrix of vec(Φ̃). On the other hand, if α and β1 in the matrix P are substituted by vec(Â1) (note that we have made

he convention that ∥Â1∥F = 1) and vec(B̂1)/∥B̂1∥F respectively, we have the estimator P̂ for P . We consider the VAR(1)
odel (1) for vec(X t ), and test the hypothesis:

H0 : Φ takes the form B⊗ A vs H1 : Φ cannot be expressed as B⊗ A.

otivated by Corollary 6, we use the test statistic

T · vec(D̂)′ (P̂ Ξ̂1P̂)+ vec(D̂).

s an immediate consequence of Corollary 6, the test statistic also has the limiting distribution χ2
(m2−1)(n2−1)

, based on

hich we are able to calculate the p-value.
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Fig. 2. Comparison of four estimators, PROJ, LSE, MLEs, and VAR, under Setting I. The three rows correspond to (m, n) = (3, 2), (6, 4) and (9, 6)
espectively, and the four columns T = 100, 200, 400 and 5000 respectively.

. Numerical results

.1. Simulations

In this section, we compare the performances of the aforementioned estimators and the stacked VAR(1) estimator
nder different settings for various choices of the matrix dimensions m and n, as well as the length of the time series T .
Specifically, for given dimensions m and n, the observed data X t are simulated according to model (2), where the

ntries of A and B are generated randomly and then rescaled so that ρ(A)ρ(B) = .5 to guarantee the fulfillment of
he causality condition and the constraint ∥A∥F = 1. For a particular simulation setting with multiple repetitions, the
oefficient matrices A and B remain fixed.
In what follows, we perform six experiments: the first three experiments demonstrate the finite-sample comparisons

nder three settings of the covariance structure of the innovation matrix E t respectively, the fourth one compares the
symptotic properties of all estimators when T → ∞ under these three settings, the fifth one studies the finite-sample
ehavior of the asymptotic variance of the estimators, and the sixth one investigates the performance of the specification
est.

• Setting I: The covariance matrix Cov(vec(E t )) is set to Σ = I.
• Setting II: The covariance matrix Cov(vec(E t )) = Σ is randomly generated according to Cov(vec(E t )) = QΛQ′, where

the eigenvalues in the diagonal matrix Λ are the absolute values of i.i.d. standard normal random variates, and the
eigenvector matrix Q is a random orthonormal matrix.
• Setting III: The covariance matrix Cov(vec(E t )) takes the Kronecker product form (4), where Σc and Σr are generated

similarly as the Σ in Setting II.

In addition to the three estimators (PROJ, LSE, and MLEs) discussed in Section 3, we also include the MLE under the
tacked VAR(1) model in (1), with the acronym VAR, as a benchmark for comparison. For each configuration, we repeat
he simulation 100 times, and show a box plot of

log(∥B̂⊗ Â− B⊗ A∥2F ).

Figs. 2–4 show the simulation results under three settings respectively for relatively small sample sizes. For each of
hese three figures, the dimensions m, n increase from top to bottom, taking values in (m, n) = (3, 2), (6, 4) and (9, 6).
he sample size T increases from left to right at T = 100, 200, 400 and 5000, respectively. One common finding from
hese three figures is that all three estimators, PROJ, LSE, and MLEs, obtained under the MAR(1) model in (2) outperform
he stacked VAR estimator.
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Fig. 3. Comparison of four estimators, PROJ, LSE, MLEs, and VAR, under Setting II. The three rows correspond to (m, n) = (3, 2), (6, 4) and (9, 6)
espectively, and the four columns T = 100, 200, 400 and 5000 respectively.

Fig. 4. Comparison of four estimators, PROJ, LSE, MLEs, and VAR, under Setting III. The three rows correspond to (m, n) = (3, 2), (6, 4) and (9, 6)
respectively, and the four columns T = 100, 200, 400 and 5000 respectively.

In the first experiment under Setting I, Fig. 2 shows that LSE is the best estimator when the covariance matrix is indeed
a diagonal matrix. This is intuitive since LSE is the maximum likelihood estimator under this setting. The very close second
best is the MLEs, which is comparable with LSE throughout different combinations of m, n, T and only performs slightly
worse when m, n are large and T is small. This is expected since MLEs has to estimate the additional row and column



552 R. Chen, H. Xiao and D. Yang / Journal of Econometrics 222 (2021) 539–560

c
e
s

e
f
l
t
w
s
i
e
L
o
a
i

f
a
f
I
a

Fig. 5. Comparison of the asymptotic efficiencies of three estimators, PROJ, LSE, and MLEs, under three settings. The left column shows the average
error over 100 repetitions for ∥B̂⊗ Â− B⊗ A∥2F and the right for T∥B̂⊗ Â− B⊗ A∥2F .

ovariance matrices of sizes m × m and n × n when it is not necessary. Both LSE and MLEs are superior over the PROJ,
specially when the sample size is small and the dimensions are large as seen in the lower left corner of the figure. As
ample size increases, the advantage becomes less obvious.
In the second experiment under Setting II, the overall pattern of Fig. 3 is similar to that in Fig. 2. The VAR estimator

performs the worst; PROJ is the second worst, and LSE and MLEs are very much similar. Note that under Setting II, the
covariance structure is arbitrary and does not follow the Kronecker structure, which is the underlying assumption for
the MLEs. The LSE does not assume any covariance structure in the estimation process. Hence one would expect MLEs,
obtained under the wrong assumption, should perform worse than LSE. However, the simulation results show that they
perform similarly.

In the third experiment under Setting III, Fig. 4 shows that MLEs dominates LSE for any choice of m, n, T , as Corollary 5
predicts. LSE in turn prevails PROJ, which in turn always leads the stacked VAR estimator.

In the fourth experiment, we compare the asymptotic efficiencies of PROJ, LSE, and MLEs by letting the length of the
time series T go to infinity. The main purpose of this experiment is to obtain qualitative understanding of the asymptotic
covariances of different estimators. Although Theorems 2–4 provide the theoretical form of the asymptotic covariances
and Corollary 5 ascertains the relative magnitude of the errors from LSE and MLEs under Setting III, we have little concrete
insight on the relative performances of the three estimators under other settings. For this purpose, we fix the dimensions
(m, n) = (3, 2) for all three settings in this experiment. Fig. 5 shows the results. The left three panels show the average
stimation errors over 100 repetitions of ∥B̂⊗ Â− B⊗ A∥2F for different T . The right panels show T∥B̂⊗ Â− B⊗ A∥2F as a
unction of T . The three rows correspond to the three settings respectively. In each of the six panels, the solid line, dashed
ine, and dotted line correspond to PROJ, LSE, and MLEs respectively. The three figures on the left show the decreasing
rend of all three estimators as T grows. The three figures on the right magnify the differences of the three estimators,
ith a clear ordering. PROJ estimator clearly has the lowest efficiency. Under Setting 1 (top panels), LSE and MLEs perform
imilarly, since LSE is the maximum likelihood estimators under the setting. MLEs estimates in total 4 more parameters
n Σr and Σc . The bottom panels in the figure show that MLEs is more efficient than LSE under Setting III, which is
xpected by Corollary 5. However, under Setting II (the middle panels), it is interesting to observe that MLEs outperforms
SE slightly but consistently, although MLEs is obtained under a wrong model assumption. This is probably due to the use
f a regularized covariance structure (4), which is beneficial because of the dimension reduction from 21 parameters in an
rbitrary Σ to 8 in Σc ⊗Σr . Note that the performance also depends on how close the Kronecker product approximation
s to the arbitrary (random) covariance matrix used in the simulation.

In the fifth experiment, the finite-sample performance of the asymptotic covariance matrices is demonstrated. We
ix the dimensions to be m = 3 and n = 2, and the results are similar for larger dimensions. Under each of the three
forementioned settings, combining the three estimators, PROJ, LSE, and MLEs, and their corresponding standard errors
rom Theorems 2–4, we create 95% confidence interval of each parameter based on the asymptotic normality distribution.
n particular, two types of confidence intervals are constructed: one for the entries of the matrices A and B separately,

nd the other for the entries of vec(B)⊗vec(A). We repeat the experiment 1000 times. Table 1 shows the percentage that
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Table 1
Percentage of coverages of 95% confidence intervals.

Setting I II III

Estimator PROJ LSE MLEs PROJ LSE MLEs PROJ LSE MLEs

T = 100 0.926 0.934 0.932 0.913 0.935 0.923 0.872 0.906 0.947
(vec′(Â), vec′(B̂))′ T = 200 0.938 0.941 0.941 0.937 0.944 0.932 0.915 0.934 0.950

T = 1000 0.950 0.951 0.951 0.947 0.947 0.933 0.946 0.949 0.953

T = 100 0.915 0.923 0.921 0.905 0.922 0.911 0.860 0.885 0.936
vec(B̂)⊗ vec(Â) T = 200 0.935 0.938 0.937 0.930 0.939 0.928 0.903 0.923 0.945

T = 1000 0.950 0.952 0.951 0.946 0.945 0.932 0.942 0.944 0.950

Fig. 6. Power of the specification test for varying time series lengths in three settings. η is a measure of how far the alternative hypothesis is away
from the null hypothesis. The heights of the horizontal lines are 0.05.

the true parameter falls within the marginal 95% confidence interval of each parameter for the three different estimators,
under three different settings and different sample sizes. It can be seen from the table that the coverage is quite accurate,
especially in large sample cases. The properties for other nominal confidence levels, for example, 90% and 99%, are similar
in nature.

In the sixth experiment, the performance of the specification test in Corollary 6 is investigated. To that end, the samples
are generated according to the following models

X t = .5A1X t−1B′1 + .5ηA2X t−1B′2 + E t ,

where ρ(A1) = ρ(B1) = ρ(A2) = ρ(B2) = 1, η = 0, 0.05, 0.10, 0.15, ... , 0.50. When η = 0, the null hypothesis
is valid and when η = 0.05, 0.10, ... , 0.50, the alternative is true. The larger the value of η is, the more severe the
eviation from the null hypothesis. Again, we fix the dimensions to be m = 3 and n = 2, and the results are similar for
arger dimensions. The significance level is set to be 0.05 and we perform the specification test for 10,000 replications
f the data with five choices of length T in each of the three aforementioned settings. Fig. 6 shows the empirical sizes
nd powers as a function of η. It can be seen that the when η = 0, the empirical sizes are close to 0.05 and the powers
ncrease to 1 as η increases under all three settings. It is also shown that as T increases, the powers increase from 0 to 1
ore quickly as a function of η.
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Table 2
Residual sum of squares of MAR(1) model using three different estimators and the
stacked VAR(1) estimator; and the total residual sum of squares of fitting univariate
AR(1) and AR(2) to each individual time series; and the total sum of squares of the
original (normalized) data.
MAR(1) PROJ MAR(1) LSE MAR(1) MLEs VAR(1) iAR(1) iAR(2) Original

1828 1318 1332 1028 1585 1515 2076

Table 3
Estimated left coefficient matrix A of MAR(1) using LS method. Standard errors are shown in the
parentheses. The right panel indicates the positively significant, negatively significant and insignificant
parameters at 5% level using symbols (+,−, 0), respectively.

Int GDP Prod CPI Int GDP Prod CPI

Int 0.177 0.215 0.132 −0.171 + + 0 −

(0.061) (0.082) (0.088) (0.063)
GDP −0.19 0.341 0.346 −0.08 − + + 0

(0.05) (0.086) (0.081) (0.062)
Prod −0.223 0.318 0.424 −0.095 − + + 0

(0.054) (0.092) (0.087) (0.068)
CPI −0.028 0.048 −0.045 0.502 0 0 0 +

(0.05) (0.07) (0.078) (0.052)

Table 4
Estimated right coefficient matrix B of MAR(1) using LS method. Standard errors are shown in
parentheses. The right panel indicates the positively significant, negatively significant and insignificant
parameters at 5% level using symbols (+,−, 0), respectively.

USA DEU FRA GBR CAN USA DEU FRA GBR CAN

USA 0.878 −0.044 0.15 0.359 −0.043 + 0 0 + 0
(0.134) (0.202) (0.138) (0.132) (0.156)

DEU 0.722 0.072 0.801 0.308 −0.212 + 0 + + −

(0.076) (0.124) (0.083) (0.078) (0.092)
FRA 0.44 0.064 0.438 0.208 0.024 + 0 + 0 0

(0.12) (0.197) (0.136) (0.125) (0.148)
GBR 0.545 0.032 0.272 0.406 −0.018 + 0 + + 0

(0.089) (0.153) (0.101) (0.101) (0.118)
CAN 0.553 0.023 −0.002 0.531 0.324 + 0 0 + +

(0.079) (0.13) (0.087) (0.085) (0.1)

5.2. Economic indicator from five countries

We now revisit the example shown in Fig. 1. The data consists of quarterly observations of four economic indicators:
-month interbank Interest Rate (first order differenced series), GDP growth (first order differenced log of GDP series),
otal manufacturing Production growth (first order differenced log of Production series) and Consumer Price Index core
nflation (first order differenced log of core inflation series) from five countries: Canada, France, Germany, United Kingdom
nd United States. It ranges from 1991 to 2016. The data was obtained from Organisation for Economic Co-operation and
evelopment (OECD) at https://data.oecd.org/. Before fitting the autoregressive models, we adjusted the seasonality of
PI by subtracting the sample quarterly means. All series are normalized so that the combined variance of each indicator
each row) is 1.

MAR(1) model was estimated using the three estimation methods. We also fitted a stacked VAR(1) model, and
nivariate AR(1) and AR(2) models for each individual time series. The residual sum of squares of each model and the sum
f squares of the (normalized) original data are listed in Table 2. The MAR(1) estimated using the least squares method
as the smallest residual sum of squares, among all models and methods, except the VAR(1) model. Note that MAR(1)
odel uses 16 + 25 − 1 = 40 parameters in the two coefficient matrices, comparing to 20 and 40 parameters in fitting

20 univariate AR(1) and AR(2) models to each series, respectively. The VAR(1) model has total 400 parameters in the AR
coefficient matrix. The large number of parameters results in a small residual sum of squares. It is deemed to be overfitting
as we will show later in out-sample rolling forecasting performance evaluation.

Tables 3 and 4 show the estimated parameters and their corresponding standard errors (in the parentheses) of A and B
using the least squares method. Due to ambiguity between the two matrices, the left matrix is scaled so that its Frobenius
norm is one. On the right of the table we also indicate the positively significant, negatively significant and insignificant
parameters (at 5% level) using symbols (+,−, 0), respectively.

The left coefficient matrix shows an interesting pattern. For example, the first column in Table 3 shows the influence
on the current economic indicators from the past quarter’s interest rate. The influence on the current GDP growth,
Production growth and CPI are all negative, meaning that a higher interest rate will make the GDP growth and Production

https://data.oecd.org/
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Fig. 7. s1-oIRF of MAR(1) model with a unit variance shock on US interest rate.

Fig. 8. s1-oIRF of MAR(1) model with a unit variance shock on US GDP rate.
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Fig. 9. s1-oIRF function of MAR(1) model with a unit variance shock on US CPI rate.

Table 5
Sum of out-of-sample prediction error squares of MAR(1) model using three different
estimators and the stacked VAR(1) estimator, and the total sum of out-of-sample
prediction error squares of fitting univariate AR(1) and AR(2) to each individual time
series.
MAR(1) PROJ MAR(1) LSE MAR(1) MLEs iAR(1) iAR(2) VAR(1)

148.05 142.03 137.29 143.82 150.80 181.64

growth slower. Current CPI is also negatively related to a higher past interest rate. The second column in Table 3 shows
the influence on the current economic indicators from the past quarter’s GDP growth. They are all positive, except the
insignificant influence on CPI. The last row of Table 3 shows that the past economic indicators do not have significant
nfluence on the current CPI, except its own past; whilst the last column indicates that the past CPI only has a negative
mpact on the current Interest Rate, and a positive one on itself.

Table 4 shows the estimated B. Its effect should be considered in the view of BX ′t . It is seen that the influence of
US’s last quarter’s indicators on the current quarter’s indicators of all countries (shown by the first column in B̂) are very
significantly positive and all larger than those of all other countries. This is intuitively correct as US is the world’s largest
economy. Although it is understandable that Canada has a relatively small influence on other countries (shown by the last
column), it is surprising to see that Germany has almost no influence (shown by the second column). Most of the large
coefficients are positive, showing positive influences among the countries. On the other hand, UK has a similar influence
pattern as the US (the fourth column), a feature that is intuitively difficult to explain.

Figs. 7–9 show the shock-first impulse response functions with orthogonal innovations (s1-oIRF) with one standard
deviation shock on US interest rate, US GDP and US CPI, respectively, using that given in Section 2.2. The dotted horizontal
lines mark the values (0.1, 0,−0.1) and the dotted vertical lines mark the time (0, 2, 4, 6, 8, 10). It can be seen from Fig. 7
that a shock of US interest rate is responded positively by the interest rates in other countries with similar patterns, and
the impact lasts about a year. It is interesting to see that GDP of all countries responds positively to the interest rate
shocks at first, and then negatively after two quarters, though very slightly. CPI does not have much response to interest
rate shocks.

From Fig. 8, it is seen that the interest rate, GDP growth and Production growth of all countries respond positively to
a US GDP shock, whose impacts last about 10 quarters. Again, CPI almost does not respond.
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Fig. 10. Residual plot of the MAR(1) model.

Fig. 11. ACF of residuals after fitting MAR(1) model using least squares method.
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Fig. 12. ACF of original series.

On the other hand, Fig. 9 shows that a shock on US CPI generates strong positive responses from CPI of all other
ountries except for UK in the first quarter, while its impacts on interest rates, GDP growth and Production growth are
ll relatively small. These patterns are consistent with our interpretations on the matrix A, reported in Table 3.
Fig. 10 shows the residual plots of the MAR(1) estimated using LS method. There are some outliers. Note that the

analysis was done by scaling each indicator of all countries (each row) to unit sample variance. Hence the scale of the
residuals (Fig. 9) is different from the original data plot (Fig. 1). As an illustration of the MAR(1) model, in this analysis we
do not try to do any adjustment. In Fig. 11 we plot the autocorrelation function (ACF) of the 20 residual series, after fitting
the MAR(1) model using the least squares method. Fig. 12 shows the ACF plots of the 20 original series. It is seen that the
MAR(1) model is able to capture the serial correlations in the 20 time series simultaneously, and lead to relatively clean
ACF plots of the residuals. Further model checking exercises such as the standard portmanteau test may also be applied
to assess the adequacy of the model, though more investigation needs to be done for its properties for high dimensional
cases such as the model used. Note that this example is mainly for demonstration. A more thorough analysis of the data
may require a model with more Kronecker product terms as in (5), or with higher autoregressive orders.

We also obtain out-sample rolling forecast performances of the MAR(1) model as well as univariate AR(1) and AR(2)
odels for comparison. Specifically, starting from the first quarter of 2012 (t = 85) to the end of the series (the last quarter
f 2016, t = 104), we fit the corresponding models using all available data at time t− 1 and obtained the one step ahead

prediction X̂ t−1(1) for X t at time t . Sum of prediction error squares ∥X̂ t−1(1)−X t∥
2
F of all methods are shown in Table 5.

t seems that MAR(1) with least squares and maximum likelihood estimation perform better than the individual AR(1)
odels. Fig. 13 shows the difference between the sum of squares of prediction error (or all countries and all indicators) for
ach quarter between the MAR(1) model and the individual AR(1) model. It is seen that although MAR(1) model performs
uite poorly in two out of the 20 quarters, it performs much better in the later three years. Table 5 also shows that the
tacked VAR(1) model performed terribly in prediction, due to overfitting.

. Conclusion

We proposed an autoregressive model for matrix-valued time series in a bilinear form. It respects the original matrix
tructure, and provides a much more parsimonious model, comparing with the direct VAR approach by stacking the matrix
nto a long vector. Several interpretations of the model, along with possible extensions are discussed. Different estimation
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Fig. 13. The difference of the sum of prediction error squares between the MAR(1) model and individual AR(1) model at each quarter.

ethods are studied under different covariance structures of the error matrix. Asymptotic distributions of the estimators
re established, which facilitate the statistical inferences.
On the other hand, when the matrix observation has large dimensions itself, our model still involves a large number of

arameters, although much less than that of the corresponding stacked VAR model. Note that it is natural to have relatively
arge total number of parameters, due to the large number of time series involved. For example, fitting univariate AR(2)
odels to the (mn) time series individually would require total 2mn AR coefficients, while MAR(1) involves m2

+ n2
− 1

R coefficients. When m ∼ n, they use about the same number of parameters. Also, the structured covariance (4) involves
m(m+1)/2+n(n+1)/2−1 parameters while individual AR models involve mn variance parameters, without considering
any correlation among the series. Of course, regularized estimation approach can be used for MAR(1) model, potentially
shrinking some of the insignificant parameters in the coefficient matrices to zero, as we have done in a rather ad hoc way
in Tables 3 and 4 in the real example.

The impact of dimension m and n on the accuracy of the estimated parameters are hidden in the asymptotic variances
of the estimators. Of course the larger the dimension, the larger the sample size T is required to obtain accurate estimates.
For very large dimensional matrix time series, Wang et al. (2018) proposed a factor model in a bilinear form. The MAR(1)
can be used to model the factor matrix in that of Wang et al. (2018) to build a dynamic factor model in matrix form.

There are a number of directions to extend the scope of the proposed model. Sparsity, group sparsity or other structures
might be imposed on A and B to reach a further dimension reduction, so that the model is better suited when both A
and B are of large dimensions. We will also consider MAR models of order larger than one in the future. Furthermore, the
idea of MAR can be applied for volatility modeling (Engle, 1982; Bollerslev, 1986) as well.
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