
Information Systems Frontiers
https://doi.org/10.1007/s10796-020-10066-9

A Formal Specification of Access Control in Android with URI
Permissions

Samir Talegaon1 · Ram Krishnan1

Accepted: 10 September 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
A formal specification of access control yields a deeper understanding of any operating system, and facilitates performing
security analysis of the OS. In this paper, we provide a comprehensive formal specification of access control in Android
(ACiA). Prior work is limited in scope, furthermore, recent developments in Android concerning dynamic runtime
permissions require rethinking of its formalization. Our formal specification includes three parts, the user-initiated operations
(UIOs) and app-initiated operations (AIOs) - which are distinguished based on the initiating entity, and the URI permissions
which are utilized in sharing temporary access to data. We also studied the evolution of URI permissions from API 10
(Gingerbread) to API 22 (Lollipop), and a brief discussion on this is included in the paper. Formalizing ACiA allowed
us to discover many peculiar behaviors pertaining to ACiA. In addition to that, we discovered two significant issues with
permissions in Android which were reported to Google.

Keywords Android · System permissions · URI permissions · Access control · Formal model

1 Introduction

A formal specification of Access Control in Android
(ACiA) facilitates a deeper understanding of the nature
in which Android regulates app access to resources. Prior
work on formalization of the perm mechanism exists, but is
limited in its scope since most of it is based on the older
install time perm system (Shin et al. 2010; Fragkaki et al.
2012; Betarte et al. 2015; Bagheri et al. 2015b). Hence,
detailed analysis and testing needs to be conducted to build
the model for ACiA (ACiAα), to enable a systematic review
for security vulnerabilities.

Android contains a wide variety of software resources
such as access to the Internet, contacts on the phone,
pictures and videos etc., and hardware resources such as
Bluetooth, NFC, WiFi, Camera etc. Android apps require
the use of such resources, and they request access to
them, from the Android OS. Android in turn, seeks user
interaction to approve some of these requests and grant
the necessary permissions to the apps (https://developer.

� Samir Talegaon
samir.talegaon@utsa.edu

1 The University of Texas at San Antonio, One UTSA Circle,
San Antonio, TX 78249, USA

android.com/training/permissions/requesting/, Enck et al.
2009b) (see Fig. 1). These permissions, provide some
protection against unauthorized access of app data, however,
research suggests that it is inadequate (Bugiel et al. 2012;
Enck et al. 2011; Chin et al. 2011; Davi et al. 2010;
Grace et al. 2012; Enck et al. 2009b). This inadequacy can
cause issues with privacy and security of the user’s data,
and requires a formal approach towards that facilitates its
analysis.

As mentioned before, Android apps need to request per-
missions from the user, and this results in the user needing
to interact with such prompts. To avoid over-burdening the
user with too many permission prompts, Android groups
permissions together (based on functionality), and man-
ages these permission groups collectively. These permission
groups, however, are immutable, non-overlapping, and only
dangerous permissions that fall within a group are granted
or revoked from apps (leaving out normal and signature
permissions); this makes permission groups in Android
under-utilized. We explore several automated means of gen-
erating permission groups from the literature, to enhance
this feature of Android, and, as a consequence the user expe-
rience as well. Besides this, we exploratively include normal
permissions in the generated permission groups as well.

Formalization of the ACiA is a non-trivial task, and
has received limited prior attention, apart from the fact

http://crossmark.crossref.org/dialog/?doi=10.1007/s10796-020-10066-9&domain=pdf
mailto: samir.talegaon@utsa.edu
https://developer.android.com/training/permissions/requesting/
https://developer.android.com/training/permissions/requesting/

Inf Syst Front

Fig. 1 Permission-based access control in Android

that much of this work has limitations with respect to
the current ACiA, due to the major changes in ACiA
with the introduction of runtime permissions and non-
holistic nature of the work. We believe that the formal
specification of access control in Android obtained from
the documentation as well as the source code has not been
done comprehensively. Our model of the ACiA, and its
analysis enables a holistic and systematic review of the
ACiA security policies, and facilitates the discovery of
issues in the ACiA.

Our Contribution: We provide a formal model for
access control in Android with two major components.
The first component concerns system permissions in
Android, and the second one is related to URI
permissions in Android.

◦ A comprehensive formal model of access control in
Android.

– We built a formal model for ACiA (ACiAα),
which includes user initiated operations
(UIOs) and app-initiated operations (AIOs).

– We also present two key issues that
we encountered while building the
ACiAα , pertaining to how custom per-
missions are handled in Android (https://
issuetracker.google.com/issues/128888710,
https://issuetracker.google.com/issues/
129029397). These issues have been
reported to Google and one of these issues
has been fixed by Google.

◦ A comprehensive study of the evolution of URI
permissions in Android.

– We tested URI permissions in Android,
and provide a detailed explanation of how
URI permissions behave. This is required,
since there is a lack of understanding of
evolution of URI permissions in Android,
both, in the literature and in Googles official
documentation.

◦ An exploratory analysis of mining algorithms to
show feasibility of constructing useful permission
groups in Android.

– We analyze and implement several mining
algorithms from the literature, as an alterna-
tive approach to build effective permission
groups in Android.

OUTLINE: In Section 2, we place our research amongst
the current body of works and in Section 3, we
describe the ACiAα including the modifications done
post our analysis of the evolution of URI permissions.
In Section 4, we describe the testing methodologies used
in building the ACiA model. Section 5 presents the
anomalies and quirks in the ACiA that were discovered
as a result of thorough testing. Section 6 describes
our analysis of Android’s URI permissions, including
the observations made as a result of this meticulous
analysis. In Section 7, we discuss permission-groups in
Android, and show the feasibility of generating new
permission groups via automated mining algorithms
(obtained from the literature), and analyze them for
suitability with respect to Android. Section 8 concludes
with the overview for this paper, and presents the scope
for future work.

2 RelatedWork

Formalizing ACiA has received some attention from prior
works. Shin et al. (2010) present a model of ACiA and
is one of the few works that is comparable to ours, in
modeling the ACiA, including UIOs and AIOs. However,
they do not distinguish between multiple competing custom
permission definitions, because Android permissions were
designed differently at the time. Also, it does not model
dangerous runtime permissions nor does it include the
URI permissions used to facilitate inter-app data sharing.
Fragkaki et al. (2012) developed a formal model to analyze
Android permissions and built a system, called as SORBET,
to hold a few desired security properties which were not
found in the Android’s permission model. They also model
the ACiA, but their work is centered largely around the
URI permission system, with no mention of the UIOs nor
the issue with Android’s handling of multiple competing
custom permission definitions. Apart from this, their work
on URI permissions is based on the older versions of the
Android OS, which has since undergone many changes, and
the URI permissions need to be carefully studied again.

Betarte et al. (2015, 2016, 2017) present a state-
based model of the ACiA, which offers pronounced
analytical capabilities with respect to security. They define
a model state as 8-tuples that record the current state
for an Android device, which includes the installed
apps, permissions, runtime components, temporary and
permanently delegated URI permissions. However, their

https://issuetracker.google.com/issues/128888710
https://issuetracker.google.com/issues/128888710
https://issuetracker.google.com/issues/129029397
https://issuetracker.google.com/issues/129029397

Inf Syst Front

Fig. 2 Building blocks of the
ACiA

work does not discuss the UIOs and also does not state
the issue of multiple competing custom perm definitions.
Bagheri et al. (2015a, 2018) built a formal ACiA model,
however, no distinction between developer-defined custom
permissions and effectively defined custom permissions
are included (see Section 5 Obs - 1). Tuncay et al.
(2018) identify that developers should always define custom
permissions with the same parameters such as perm-
group and protection-level; but, the UIOs proposed by
them do not differentiate between multiple competing
custom permission definitions. Also, the URI permissions
are not included in their model, so this model is
insufficient to obtain a holistic understanding of the
ACiA.

Enck et al. (2009a) provide an overview of Android’s app
level security policies and developed a tool (Kirin) to certify
whether apps should be installed on a device after compar-
ing the security policy of the apps extracted from their man-
ifest, with the security requirements of the device owner.
Shabtai et al. (2010) performed a comprehensive security
assessment of Android’s framework and made security rec-
ommendations based on this assessment. Felt et al. (2011)
used Stowaway to determine the over privilege in Android
apps which, according to them, was due to developers over
requesting the system permissions (based on future, possi-
ble need), while at other times, due to developer confusion
owing to the insufficient documentation available pertain-
ing to the system APIs. Allowing app developers to specify
security policies for their apps which dictate how other apps
access their apps information is a novel concept which puts
the onus of security on the developers (Ongtang et al. 2012).
Some works (Wei et al. 2012; Taylor and Martinovic 2016)
also discuss the evolution of the system permissions in
Android. Papers such as these add on to work on system per-
missions, however, formalizing the ACiA is not their main
focus.

To conclude, none of the works that model the ACiA,
satisfy our requirements for capturing a holistic yet
detailed model for the same. To begin with, only a few

of the works that model ACiA use a holistic approach
like ours, while the rest of them either only model the
UIOs or the AIOs, but not both. Furthermore, even the
works that employ a holistic approach in building a
model for ACiA, are insufficiently detailed to provide a
thorough understanding of the ACiA including the URI
permissions, to the level of granularity we desire. The
model ACiAα we built, helped us discover two flaws
in Android permissions which were reported to Google
(https://issuetracker.google.com/issues/128888710, https://
issuetracker.google.com/issues/129029397). We were also
notified by Google that they fixed one of those flaws
(https://issuetracker.google.com/issues/129029397).

3 Formal Specification of Access Control
in Android

In this section, we present our formal model for ACiA,
ACiAα , starting with the building blocks of the model (see
Fig. 2). Some relevant background information is presented,
before proceeding.

3.1 Background Information

The four main components of Android apps are activi-
ties, services, broadcast receivers and content providers.
Components that are utilized within an app, need to be
declared in the manifest of that app. Content providers
are one such component, that facilitate inter-app data
sharing via highly granular URI permissions. Within a
content provider definition in the manifest file, we con-
sider two important attributes, namely, android:exported and
android:granturipermission. An example syntax for a con-
tent provider in the manifest file is shown in Fig. 3. The
exported attribute decides whether the content provider is
allowed to be accessed by other apps. The granturipermis-
sion attribute decides whether the URI permissions can be
granted to other apps at run time.

https://issuetracker.google.com/issues/128888710
https://issuetracker.google.com/issues/129029397
https://issuetracker.google.com/issues/129029397
https://issuetracker.google.com/issues/129029397

Inf Syst Front

Fig. 3 Android manifest file

3.2 Element Sets, Functions and Relations
of the ACiAα

Our model for ACiA (ACiAα) was built after studying
the documentation (https://developer.android.com/training/
permissions/requesting/, https://source.android.com/devices/
tech/config), reading Android’s source code and verifying
our findings via inter-app tests. The major classifications
for entity sets, relations and functions are explained below
in brief (for a comprehensive description of universal sets,
device dets, relations and the functions see Talegaon and
Krishnan (2019), Section 3.1).

Application data such as app names, permissions, app
component names are stored on the Google Play, and on an
Android device (see Table 1). The data stored by Google is
mimicked by the universal sets, whereas, the data stored on
an Android device, is mimicked by device sets. These sets
are populated by Google along with the app developers and
are assumed to be immutable for the purposes of this paper.
To install apps, Android uses many different APIs which
we summarize as APK Extractor Functions (see Fig. 2 and
Table 2). These functions retrieve information from the apps
that are being installed on the device; evidently, the relations
maintained on the device are not useful for these functions.
Upon successful installation, all the necessary device entity
sets and relations (see Table 3) are updated as shown in
Table 5 (InstallApp operation). The device relations (3,
Column - 1) portray the information stored by an Android
device to facilitate access control decisions. Convenience
functions (Table 3, Column - 2) query existing relations

Table 1 ACiA entity sets

Universal entity sets Device entity sets

UAPPS APPS

UCOMPS COMPS

UAUTHORITIES Authorities

UPERMS PERMS

USIG –

UPGROUP PGROUP

UPROTLVL PROTLVL

– DATAPERMS

– URI

– OP

Table 2 APK extractor functions

getComps : UAPPS → 2UCOMPS

getOps : UCOMPS → 2OP

getAuthorities : UAPPS � 2UAUTHORITIES

getCompPerm: UCOMPS × OP � PERMS

appSign : UAPPS → USIG

defPerms : UAPPS � 2UPERMS

defPgroup : UAPPS � 2UPGROUP

defProtlvlPerm: UAPPS × UPERMS � UPROTLVL

defPgroupPerm : UAPPS × UPERMS � UPGROUP

wishList : UAPPS � 2UPERMS

maintained on the device; evidently, these functions fetch
information based on apps that are already installed on
the device. Similarly, to facilitate app un-installation, the
helper functions (see Table 4) extract data from the device
sets and relations. Many other operations take place during
the normal course of operation of an app, and, this is
portrayed by the UIOs and AIOs that mimic built-in
methods such as RequestPermission, GrantPermission and
GrantUriPermission. The operations within the UIOs and
AIOs are assumed to be in-order, and, the relations do
not automatically get updated, when the constituent sets or
relations undergo a change.

3.3 User Initiated Operations

ACiAα - UIOs are initiated by the user or require their
approval before they can be executed. These are discussed
in this section; the detailed updates are available in Table 5.

The AddApp operation resembles the user clicking
on “install” button on the Google Play Store, and
upon successful execution, the requested app is installed
on the device. The DeleteApp operation resembles a
user un-installing an app from the Settings app. The
GrantDangerPerm and GrantDangerPgroup operations
resemble the user granting a dangerous perm/perm-group
to an app via the Settings app; and, the execution of
this operation result in an app receiving a dangerous
perm/perm-group, respectively. The RevokeDangerPerm
and RevokeDangerPgroup operations resemble the user
revoking a dangerous perm or perm-group from an app via
the Settings app; and, their execution results in an app’s
dangerous perm/perm-group getting revoked.

3.4 App Initiated Operations

The AIOs are initiated by the apps when attempting to
perform several tasks (see Table 6) such as requesting a
perm from the user, granting a URI permission to another
app, revoking a URI permission from all apps etc.

https://developer.android.com/training/permissions/requesting/
https://developer.android.com/training/permissions/requesting/
https://source.android.com/devices/tech/config
https://source.android.com/devices/tech/config

Inf Syst Front

Table 3 ACiA relations and convenience functions

APP COMPS ⊆ APPS × COMPS ownerApp : COMPS → APPS

appComps : APPS → 2COMPS

COMP PROTECT ⊆ COMPS × OP × PERMS requiredPerm : COMPS × OP � PERMS

allowedOps : COMPS → 2OP

AUTH OWNER ⊆ APPS × AUTHORITIES authoritiesOf : APPS → 2AUTHORITIES

PERMS DEF ⊆ APPS × PERMS × PGROUP × PROTLVL defApps : PERMS → 2APPS

defPerms : APPS → 2PERMS

defPgroup : APPS × PERMS � PGROUP

defProtlvl : APPS × PERMS → PROTLVL

PERMS EFF ⊆ APPS × PERMS × PGROUP × PROTLVL effApp : PERMS → APPS

effPerms : APPS → 2PERMS

effPgroup : PERMS � PGROUP

effProtlvl : PERMS → PROTLVL

DPERMS WISHED ⊆ APPS × PERMS wishDperms : APPS → 2PERMS

PERMS GRANTED ⊆ APPS × PERMS grantedPerms : APPS → 2PERMS

GRANTED DATAPERMS ⊆ APPS × URI × DATAPERMS grantNature: APPS × URI × DATAPERMS →
SemiPermanent, Temporary, NotGranted}
uriPrefixCheck : APPS × URI × DATAPERMS → B

The RequestPerm operation resembles an app request-
ing a dangerous system perm from the Android OS. The
CheckAccess operation resembles a component attempting
to perform an operation on another component; components
may belong to the same or distinct apps. Finally, the App-
Shutdown operation resembles an app shutting down, so
all the temporary URI permissions granted to it are revoked
unless they are persisted.

4 Experimental Setup

After we extract the model for ACiA using source code
and developer documentation, testing was done via carefully
designed inter app tests. These tests enabled the discovery
of the flaws that are stated in the next section, apart from

helping us understand the intricate details of operations
such as app installation, uninstallation, perm grants and
revocation, URI permission grants and revocation etc. We
explain in brief, the test setup for studying evolution of
Android’s URI permissions, in this section.

Rationale for Testing. Mathematical models mitigate
ambiguity in access control; documentation and source
codes can be open to interpretation. Differences in
interpretation leads to a plunge in accuracy of stated
operations, which in turn leads to inaccurate predic-
tions based on that interpretation. Since our entire
model for ACiA depends on reading the source code
and documentation, testing was performed (on an
emulator) to ensure that our model is in line with
the behavior of the Android OS and that of Android
apps. Apart from this, we made several predictions

Table 4 Helper functions
userApproval : APPS × PERMS → B

brReceivePerm : COMPS → PERMS

corrDataPerm : PERMS → 2URI × DATAPERMS

checkExported : URI → B

checkGrantUriPermission : URI → B

belongingAuthority : URI → AUTHORITIES

requestApproval : APPS × APPS × URI → 2DATAPERMSb

grantApproval : APPS × APPS × URI × 2DATAPERMS → B

prefixMatch : APPS × URI × DATAPERMS → B

appAuthorized : APPS × URI × DATAPERMS → B

Inf Syst Front

Table 5 ACiAα User Initiated Operations

Operation: AddApp(ua : UAPPS)

Authorization Requirement: ∀up ∈ PERMS ∩ defPerms(ua).

appSign
(
effApp(up)

) = appSign(ua) ∧ getAuthorities(ua) ∩ ⋃

a ∈ APPS
getAuthorities(a) = ∅

Updates:

APPS′ = APPS ∪ {ua}; COMPS′ = COMPS ∪ getComps(ua)

APP COMPS′ = APP COMPS ∪ {ua} × getComps(ua)

AUTHORITIES′ = AUTHORITIES ∪ getAuthorities(ua)

AUTH OWNER′ = AUTH OWNER ∪ {ua} × getAuthorities(ua)

PERMS DEF′ = PERMS DEF ∪ ⋃

up ∈ defPerms(ua)

{(
ua, up, defPgroupPerm(ua, up),

defProtlvlPerm(ua, up)
)}

PERMS EFF′ = PERMS EFF ∪ ⋃

up ∈ defPerms(ua) \ PERMS

{(
ua, up, defPgroupPerm(ua, up),

defProtlvlPerm(ua, up)
)}

PERMS′ = PERMS ∪ defPerms(ua)

COMP PROTECT′ = COMP PROTECT ∪ ⋃

c ∈ appComps(a);op ∈ getOps(c);
p ∈ PERMS ∩ getCompPerm(op, c)

{
(c, op, p)

}

PGROUP′ = PGROUP ∪ defPgroup(ua)

PERMS GRANTED′ = PERMS GRANTED ∪
⋃

a′ ∈ APPS
up ∈ wishList(a′) ∩ PERMS s. t.

effProtlvl(up) = normal

{(a′, up)} ∪ ⋃

a′ ∈ APPS; up ∈ wishList(a′) ∩ PERMS

s. t.
(
effProtlvl(up) = signature ∧

appSign(effApp(up)) = appSign(a′)
)

{(a′, up)}

DPERMS WISHED′ = DPERMS WISHED ∪ ⋃

a′ ∈ APPS; up ∈ wishList(a′) s. t.
effProtlvl(up) = dangerous

{(a′, up)}

Operation: DeleteApp(a : APPS)

Authorization Requirement: T

Updates:

COMP PROTECT′ = COMP PROTECT \
⋃

c ∈ appComps(a)
op ∈ allowedOps(c)

p ∈ PERMS ∩ getCompPerm(op, c)

{
(c, op, p)

} ∪ ⋃

a′ ∈ APPS \ {a}; c ∈ appComps(a′)
op ∈ allowedOps(c)

p ∈ effPerms(a) ∩ requiredPerm(c, op)

{(c, op, p)}

AUTH OWNER′ = AUTH OWNER \ {a} × authoritiesOf(a)

AUTHORITIES′ = AUTHORITIES \ authoritiesOf(a)

COMPS′ = COMPS \ appComps(a); APP COMPS′ = APP COMPS \ {a} × appComps(a)

PERMS′ = PERMS \
(
effPerms(a) \ ⋃

a′∈APPS\{a}
defPerms(a′)

)

PGROUP′ = PGROUP \
(
defPgroup(a) \ ⋃

a′∈APPS\{a}
defPgroup(a′)

)

PERMS GRANTED′ = PERMS GRANTED \(
{a} × grantedPerms(a) ∪ ⋃

a′∈APPS\{a}; p ∈ effPerms(a)

{(a′, p)}
)

DPERMS WISHED′ = DPERMS WISHED \(
{a} × wishDperms(a) ∪ ⋃

a′∈APPS \ {a}; p ∈ effPerms(a)

{(a′, p)}
)

PERMS EFF′ =
(
PERMS EFF \ ⋃

p ∈ effPerms(a)

{(
a, p, effPgroup(p),

effProtlvl(p)
)}

)
∪

⋃

p ∈ effPerms(a′)

{(
a′, p, defPgroup(a′, p),defProtlvl(a′, p)

)}
, whr. a′ ∈ defApps(p) \ {a}

PERMS DEF′ = PERMS DEF \ ⋃

p ∈ defPerms(a)

{(
a, p, defPgroup(a, p), defProtlvl(a, p)

)}

Inf Syst Front

Table 5 (continued)

COMP PROTECT′ = COMP PROTECT ∪ ⋃

a′ ∈ APPS \ {a}
c ∈ appComps(a′); op ∈ allowedOps(c)

p ∈ PERMS ∩ getCompPerm(op, c)

{
(c, op, p)

}

PERMS GRANTED′ = PERMS GRANTED ∪
⋃

a′ ∈ APPS \ {a}
p ∈ wishList(a′) ∩ PERMS s. t.

effProtlvl(p) = normal

{(a′, p)} ∪ ⋃

a′ ∈ APPS \ {a}
p ∈ wishList(a′) ∩ PERMS s. t.(
effProtlvl(p) = signature ∧

appSign
(
effApp(p)

)
= appSign(a′)

)

{(a′, p)}

DPERMS WISHED′ = DPERMS WISHED ∪ ⋃

a′ ∈ APPS \ {a}
p ∈ wishList(a′) s. t.

effProtlvl(p) = dangerous

{(a′, p)}

APPS′ = APPS \ {a}

Operation: GrantDangerPerm(a : APPS, p : PERMS)

Authorization Requirement: p ∈ wishDperms(a)

Update: PERMS GRANTED′ = PERMS GRANTED ∪ {(a, p)}

Operation: GrantDangerPgroup(a : APPS, pg : PGROUP)

Authorization Requirement: ∃p ∈ wishDperms(a). effPgroup(p) = pg

Update: PERMS GRANTED′ = PERMS GRANTED ∪
⋃

p ∈ wishDperms(a) s. t. effPgroup(p) = pg
{(a,p)}

Operation: RevokeDangerPerm(a : APPS, p : PERMS)

Authorization Requirements: p ∈ grantedPerms(a) ∧ p ∈ wishDperms(a)

Update: PERMS GRANTED′ = PERMS GRANTED \ {(a, p)}

Operation: RevokeDangerPgroup(a : APPS, pg : PGROUP)

Authorization Requirements: ∃p ∈ grantedPerms(a). effPgroup(p) = pg ∧ p ∈ wishDperms(a)

Update: PERMS GRANTED′ = PERMS GRANTED \
⋃

p ∈ grantedPerms(a) such that(
effPgroup(p) = pg ∧ p ∈ wishDperms(a)

)
{(a, p)}

based on the model, and then verified them using these
tests, and this methodical procedure that enabled us
to discover flaws in the design of ACiA that were
communicated to Google (https://issuetracker.google.
com/issues/128888710, https://issuetracker.google.com/
https://issuetracker.google.com/). Google communicated
that one of these flaws were fixed and has acknowledged
the other flaw.

Experimental Setup for Building ACiAα . A simple three
app based testing environment was designed, which was
adapted for each individual test. The apps used for these
tests were dummy apps with two activities and one
service component. According to need, the apps were
programmed to define a new perm using one of the
available protection levels, or, into a hitherto undefined
permission group.

Test Parameters. A total of four test parameters (TP)
are considered (see Table 7) which include installation

procedure for an app, uninstallation procedure for an all,
installation sequence formultiple apps and uninstallation
sequence for multiple apps. A few simple tests that were
conducted to verify our findings using test apps are
described below.

1. Verifying authorization requirements for the
AddApp operation. The AddApp operation mimics
the app installation procedure in Android, and several
checks are required to pass before the installation can
proceed.

Checks found via the source code and documenta-
tion.

(a) All custom permissions need to be unique.
(b) If custom perm already exists, signatures of the

apps should match.
(c) All authorities also need to be unique.

https://issuetracker.google.com/issues/128888710
https://issuetracker.google.com/issues/128888710
https://issuetracker.google.com/issues/129029397
https://issuetracker.google.com/issues/129029397

Inf Syst Front

Table 6 ACiAα App Initiated Operations

Operation: RequestPerm(a : APPS, p : PERMS)

Authorization Requirement: (a, p) ∈ DPERMS WISHED ∧((∃p′ ∈ PERMS \ {p}. effPgroup(p′) = effPgroup(p) ∧ (a, p′) ∈ PERMS GRANTED
) ∨ userApproval(a, p)

)

Updates: PERMS GRANTED′ = PERMS GRANTED ∪ {(a, p)}

Operation: CheckAccess(csrc : COMPS, ctgt : COMPS, op : OP)

Authorization Requirement:

ownerApp(csrc) = ownerApp(ctgt) ∨
(

op ∈ allowedOps(ctgt) ∧ requiredPerm(ctgt , op) ∈
grantedPerms

(
ownerApp(csrc)

) ∧ (
op = sendbroadcast ∧ brReceivePerm(csrc)

) ⇒ brReceivePerm(csrc) ⊆
grantedPerms

(
ownerApp(ctgt)

)
)

Update: -

Operation: AppShutdown(a : APPS)

Authorization Requirement: T

Updates: GRANTED DATAPERMS′ = GRANTED DATAPERMS \
⋃

(a, uri, dp) ∈ GRANTED DATAPERMS such that
grantNature(a, uri, dp) = Temporary

{(a, uri, dp)}

Verification methodology. For this test, we designed
three test apps that each define the same perm, however,
two are signed with the same certificate, whereas
the third is signed with a different certificate. Upon
attempting installation we encountered the following.

Case for defining new perm (see Fig 4): Apps 1 and
2 could be installed even though they re-defined the
same perm, however, App3’s installation could not
proceed since it was signed with a certificate from
a different developer.

2. Check whether perm definitions were changed in
accordance to the apps that were present on a
device. The three apps mentioned above, were designed
to define a single perm, into 3 distinct perm groups
i.e.: pgroup1, pgroup2 and pgroup3. These apps were
installed on an Android emulator multiple times, and
each time their install order was changed. After each
installation we checked the perm attributes via adb
commands and discovered the issue 1 in Section 5 as
discussed in the next section.

5 Observations

In this section, we discuss the observations made after the
ACiA model was built. Our analysis of ACiAα yields some
interesting and peculiar observations; and, after a thorough
review of the same, we derived the rationale behind these
observations and make predictions based on them. Testing
these predictions yield a number of potential flaws in
ACiA, which were reported to Google. Every important
observation was verified using test-apps, and the final model
is designed to capture all the important aspects of ACiA.
Below we note a few such important observations and the
operations where they were encountered.

1. Undefined behavior in case of competing custom
perm definitions. Android allows multiple definitions
of the same perm (from apps signed with the same
certificate) to co-exist on a device. The effective
definition for such a perm is taken from the first app
that defines it; any subsequent definitions of the same
permission are ignored. This can cause issues when
that app that defined the permission is un-installed,

Table 7 Test parameters used for ACiAα model evaluation

TP1a Install Procedure e.g.:$adb push and then use GUI for installation, or $adb uninstall

TP2 Uninstall Procedure e.g.:$adb uninstall, or Use GUI for uninstallation

TP3 Install order e.g.: install App1, App2, App3; or install App2, App1, App3; or install App3, App2, App1

TP4 Uninstall order e.g.: uninstall App3, App2, App1; or uninstall App1, App2, App3; or uninstall App2, App1, App3

aTP:Test Parameter

Inf Syst Front

Fig. 4 App installation
authorization requirement - New
permission definition

App1
Certificate1

App2
Certificate1

App3
Certificate2

Install Policy

def(p1)

def(p1)

def(p1)
App1 defines p1

Android Device

AddApp(App1)
AddApp(App2)
AddApp(App3)

since there is no order with which Android changes
the definition of the perm, hence, the perm definition
randomly jumps from the un-installed app, to any other
app that defined that permission (see Fig. 5).

2. Normal permissions are never re-granted after app
un-installation. According to Android, normal and
signature permissions are defined to be install-time
permissions by Android, so, when multiple apps define
the same perm, app un-installation results in any new
normal permissions to be not granted to apps. Signature
permissions are automatically re-granted by Android.

3. Apps can re-grant temporary URI permissions
to themselves permanently. Android enables apps
to share their data via content providers, temporar-
ily (using intents with URI permissions), or semi-
permanently (using the grantUriPermissions) method.
When an app receives a temporary URI perm, it can
even grant this perm to any other app temporarily or
semi-permanently. This is clearly a flaw as no app can

control this style of chain URI perm grants; this flaw
is not exactly new and was discovered a few years
ago (Fragkaki et al. 2012).

4. Custom perm names are not enforced using the
reverse domain style. Although Google recommends
developers use the reverse domain style naming
convention for defining custom-permissions, this isn’t
enforced by Google (see Fig. 6). This can lead to
unwanted behavior when a new app fails to install,
because it attempted to redefine a perm that already
exists on the device (new app is from a different
developer).

5. Complex custom perm behavior upon app un-
installation. During app un-installation, extensive
testing was done to ensure that we captured an
accurate behavior for Android. Care was taken while
removing perm definitions, since only if there are
no other apps defining the same perm, is that perm
removed from the system. For this test case we

Fig. 5 Anomaly in Android
custom permissions

Inf Syst Front

Fig. 6 Drawback of not
enforcing custom permission
Names

constructed 3 test apps and performed worst case
testing with respect to perm definitions and found Issue
#2 described above. This is a grave issue since the
documentation states that all normal perms are always
granted when their apps are installed on the device
(Table 8).

6 Android’s URI Permissions

In this section, we describe the experimental setup used
for analyzing URI permissions in Android, and, the
observations that were made as a result. While the URI
permissions changed dramatically over the course of APIs
10 onwards, the system permissions did not undergo
extensive smaller changes except for the change from install
time permissions to runtime permissions. There is a lack of
understanding of how URI permissions work in Android.
Also, since URI permissions have changed across APIs,
and, because at any given point there is a mix of APIs
deployed on Android devices (see Table 9), it is critical
we understand how URI permissions work, across various
APIs.

In order to thoroughly understand the intricate behavior
of Android’s URI permission system we built 6 dummy
apps, and performed a total of 96 tests based on the
following parameters for every API in consideration. The
APIs under consideration for this analysis were - 10, 16-19
and 21-22.

6.1 Experimental Setup

We designed and used a total of six apps as described in
Table 10. These apps were deployed on an emulator from
Android studio.

Parameters for testing. The parameters for testing are
shown below.

I Attributes in the manifest file. The first parameter
for testing is the boolean value for the exported and
granturipermission attribute.

II App scenarios. The second parameter comprises of 4
distinct testing scenarios for the 6 apps noted above
(see Table 8). The scenarios are designed to incorporate
all the most common app usage in the real world,
involving apps with a content provider, manifest-apps

Table 8 App scenarios for URI permission testing

Scenario Apps Explanation

1 Owner-app, A5, A6 Owner-app declared perm to guard its content provider and requests this perm in the
manifest. The URI perm to this content provider maybe granted to other apps.

2 Owner-app, Manifest-App, A3, A4, A5, A6 Owner-app declares and requests perm to its content provider in the manifest.
Manifest-app requests access to this perm in its manifest and is granted to it at install
time. Other apps may receive access to this content provider at runtime.

3 Owner-app, Manifest-App, A3, A4, A5, A6 Owner-app declared perm to its content provider but does not request it in the
manifest. Manifest-app requests perm to this content provider in its manifest. Other
apps may be granted the URI perm to this content provider at runtime.

4 Owner-app, Manifest-App, A3, A4, A5, A6 Owner-app does not declare perm to guard its content provider. No other apps can
request perm to this content provider since it does not exist.

Inf Syst Front

Table 9 Android device API distribution

Android version Percentage of devices

Jelly bean API 18 98.4%

KitKat API 19 98.1%

Lollipop API 22 92.3%

Marshmellow API 23 84.9%

Nougat API 25 66.2%

Orea API 27 53.5%

Pie API 28 39.5%

Android 10 8.2%

with perm to a content provider and other apps with
URI permissions to the content provider.

III Key questions pertaining to Android URI permis-
sions. The third and final parameter of our study
consists of six questions to establish the scope of URI
perm, their re-delegation and revocation in Android
apps. These questions (see Table 10) pertain to the
granting, revocation, and delegation of URI permis-
sions in Android.

6.2 Observations from the Study of Evolution
of Android’s URI Permissions

Extensive testing was done on Android’s URI permissions,
while seeking the answers to some intriguing questions
mentioned above. These tests yield some interesting
observations that are described below.

Case I (Exported = False, GrantUriPermission = False)

Answers 1 - 6: As the exported and Gran-
tUriPermission attributes are false, the
Manifest-apps and Delegated-apps do not get
any access the App A1’s URI permissions
(no other app except Owner-app gets access
to the URI and owner cannot delegate any
permission)

Case II (Exported = False, GrantUriPermission = True)

Answers 1, 2: The Manifest-app does not have
access to the URI permissions, however,
Owner-apps have access to these permissions
and can delegate them to delegated apps.
The delegated-apps can keep the URI per-
missions until Device is Rebooted, App-stack
finishes or the RevokeUriPermission method
is invoked for URI permissions granted via
Intents; and until Device is Rebooted or
RevokeUriPermission method is invoked for
URI permissions granted via the grantUriPer-
mission.

Answers 3 - 6: The Delegated-apps receive
perm from Owner-app and can delegate this
perm using Intents and GrantUriPermission.
The Delegated-app can receive delegated per-
mission from Owner-app → DA-1 → DA-2
which they keeps until - Device Reboots, the
App-Stack finishes, or the RevokeUriPermis-
sion method is invoked for URI permissions
granted with Intents; and until, Device
Reboots, the RevokeUriPermission method is
invoked for URI permissions granted via the
grantUriPermission method. Manifest-apps do
not have perm to URI and cannot revoke URI
permissions, but the Owner apps can revoke
them. Only the Owner-app can revoke URI
permissions via the RevokeUriPermission
method.

Case III (Exported = True, GrantUriPermission = False)

Answer 1: No app can grant URI permission as
grantUriPermission is false.

Answers 2 - 6: Delegated app does not exist on
this case.

Case IV (Exported = True, GrantUriPermission = True)

Answers 1 - 3: Manifest-app can grant the URI
permissions via Implicit Intent using syn-
tax intent.set Action (“Action string”). The
Delegated-apps keeps the URI perm until
their app-stack finish, RevokeUriPermission

Table 10 Apps used for testing URI permissions

Apps App description

Owner-app (A1) App having a content provider to share its data.

Manifest-App (A2) App requesting the system perm to A1s content provider in its manifest.

Delegated-apps (A3, A4, A5, A6) Dummy apps used for testing, and having three activities each with methods for URI
perm re-delegation to one another. These apps do not request the URI permissions
at install time and, depending on the scenario, may be granted permissions to the
URI via Intents or GrantUriPermission method.

Inf Syst Front

method is invoked, or, until the device reboots.
The Delegated-apps can re-delegate the URI
permissions via Intents and the GrantUriPer-
mission method.

Answer 4 - 6: The Delegated-apps keep the
URI perm until app stack finishes or until
the Manifest-app or Owner-app invoke the
revokeUriPermission method or until Device
Reboots. Only Manifest-apps and Owner-apps
can revoke URI permissions. URI permissions
can be revoked using the revokeUriPermission
method which revokes URI perm from ALL
apps.

6.3 Answers to Key Questions

The questions that were put forth in Section 6.1 (Table ??)
are answered below.

1. Which app is allowed to delegate URI permissions
to other apps? Before API 16, only those apps
which requested URI permissions in the manifest were
allowed to delegate them to other apps. After API 16
the Owner-app received access to grant its own URI
permissions.

2. Once URI permissions are delegated to an app, how
long will the permission remain with the app? Once
a URI permission is delegated to an app via an Intent, it
remains with that app until all its activities have ended
which means that none of its activities are running
in the task stack. URI permissions granted via the
GrantUriPermissions method, remain with the app until
the RevokeUriPermissions method is onvoked. It should
be noted that all such permissions are automatically
revoked when a device is rebooted, unless the URI perm
is granted with intent containing the persist tag.

3. Can an app to which temporary URI permissions
were granted, re-delegate these permissions to other
apps, and does any conditions exist on the scope
of such re-delegation? The URI permissions which
the Delegated-apps have, can be further re-delegated
by those apps using Intents and GrantUriPermissions
method, without any restrictions.

4. What are the key changes in URI permissions
with respect to their delegation, re-delegation and
revocation? It is be surprising that in API 10 the Owner
app did not get any access to its own content provider
to delegate its perm to other apps. This meant that
the Owner app must request permissions to its own
content provider to enable it to delegate it to other
apps! In API 16 this was changed to allow the Owner-

apps to gain access to their own URI, which allowed
them to delegate URI permissions to other apps. No
major changes were detected after API 16 to API 22
(Table 11).

6.4 Current App Initiated Operations for URI
Permissions

Post performing the evaluation study for Android’s URI per-
missions, we present the operations for the latest Android
API 29 in Table 12. The RequestDataPerm operation
denotes the URI permission requests by apps. The Grant-
DataPerm operation resembles the URI perm delegation
by apps; and, it only succeeds if the app trying to grant
the permissions has the necessary access. TheRevokeData-
Perm operation resembles the revocation of URI perm from
an installed app. The RevokeGlobalDataPerm operation is
similar to the RevokeDataPerm except that it revokes the
URI permissions from all apps on the device. The Check-
DataAccess operation checks if a particular app has access
to a URI. URI permissions are delegated to apps by other
app possessing those permissions.

7 Permission Groups

In this section, a few algorithms for mining permission
groups in Android are discussed. Permission groups are
a step towards increasing user friendliness of access
control in Android, by reducing the number of prompts, to
which users are required to respond. However, permission
groups currently deployed in Android are immutable, non-
overlapping and are thus rigid. On the other hand, it
is possible to have permission groups that employ an
overlapping structure which have benefits such as, being
able to moderate the trade-off with respect to the cardinality
of permissions within a group, and the cardinality of the
set of permission groups themselves, according to the
requirement. The mining algorithms we use to generate
permission groups, employ a bottom up approach (Vaidya
et al. 2006), in which, algorithms are used to generate
groups of permissions from a user-permission assignment
(UPA) matrix. Various algorithms for mining groups from
the UPA matrix have been published, and we have
implemented and analyzed a few of such algorithms. It
should be noted that the results presented in this section
merely point towards the feasibility of a permission group
based architecture for Android, and these permission groups
are not perfect for every need. Accordingly, permission
groups can be generated tailored to the demand, and can be
incorporated in Android.

Inf Syst Front

Table 11 Questions for testing URI permissions

1 How do apps grant URI permissions to other apps which do not have them?

2 How long do the delegated-apps keep their permissions, once granted?

3 How does URI permission re-delegation work with regards to delegated-apps?

4 How long do the URI permissions being re-delegated by delegated-apps to others last?

5 Which app can revoke delegated permissions?

6 How can URI permissions be revoked?

7.1 Permission GroupMining Algorithms

The mining algorithms that were implemented from
their pseudo-code to generate the permission groups are
described below.

7.1.1 Fast-Miner and Complete-Miner Algorithm

The Fast-Miner (FM) and Complete-Miner (CM) (Vaidya
et al. 2006) are algorithms, that generate a large set of
candidate permission groups. The FM algorithm restricts
the intersections between users to a maximum of two,
and its output consists of more than 14,000 candidate
permission groups. This algorithm executes fully within a
reasonable amount of time, and, we use its output to extract
permission groups for Android (see Table 13a). The CM

algorithm, however, has no such restriction, and so, it takes
a significant amount of time to execute generating over
200,000 permission groups.

7.1.2 Basic-RMP Algorithm

The Basic-RMP algorithm (Vaidya et al. 2007) is adapted
from the largest uncovered tile mining algorithm (LUTM)
(Geerts et al. 2004) defined for databases. It greedily
discovers largest uncovered tiles from the UPA, to construct
the permission groups. The output of this algorithm contains
many permission groups consisting of singular permissions,
and, this is due to the nature of the algorithm. While the
algorithm ensures that each permission is assigned to at-
least one permission group, the tiles considered by the
algorithm are contiguous and do not provide optimal area

Table 12 ACiAα App Initiated
Operations for URI permissions Operation: RequestDataPerm(asrc : APPS, atgt : APPS, uri : URI)

Authorization Requirement: requestApproval(asrc, atgt , uri) �= ∅
Updates: GRANTED DATAPERMS′ = GRANTED DATAPERMS ∪

⋃

dp ∈ requestApproval(asrc, atgt , uri)

{(asrc, uri, dp)}

Operation: GrantDataPerm
(
asrc : APPS, atgt : APPS, uri : URI, dp : 2DATAPERMS

)

Authorization Requirement: grantApproval(asrc, atgt , uri, dp)

Updates: GRANTED DATAPERMS′ = GRANTED DATAPERMS ∪ (atgt , uri) × dp

Operation: RevokeDataPerm(asrc : APPS, a2 : APPS, uri : URI, dp : DATAPERMS)

Authorization Requirement 1: ¬ψ

Update 1: GRANTED DATAPERMS′ = GRANTED DATAPERMS \ {(asrc, uri, dp)}
Authorization Requirement 2: ψ

Update 2: GRANTED DATAPERMS′ = GRANTED DATAPERMS \ {(atgt , uri, dp)}
where ψ : ≡ asrc = ownerOf

(
belongingAuthority(uri)

) ∨
∃p ∈ grantedPerms(asrc). (uri, dp) ∈ corrDataPerm(p)

Operation: RevokeGlobalDataPerm(a : APPS, uri : URI)
Authorization Requirement: ψ

Update: GRANTED DATAPERMS′ = GRANTED DATAPERMS \ ⋃

a ∈ APPS
{(a, uri, dp)}

Operation: CheckDataAccess(a : APPS, uri : URI, dp : DATAPERMS)

Authorization Requirement: appAuthorized(a, uri, dp)

Update: -

Inf Syst Front

Table 13 Mined permission
groups Perm groups Assigned permissions

(a) FM/CM

PG1 INTERNET, ACCESS NETWORK STATE

PG2 com.google.android.c2dm.permission.RECEIVE,
INTERNET, ACCESS NETWORK STATE,
ACCESS WIFI STATE, WAKE LOCK

PG3 INTERNET, READ EXTERNAL STORAGE,
WRITE EXTERNAL STORAGE,
com.google.android.c2dm.permission.-
RECEIVE, ACCESS NETWORK STATE,
ACCESS WIFI STATE, WAKE LOCK

PG4 INTERNET

(b) Basic RMP

PG1 WRITE CONTACTS, GET ACCOUNTS, READ CONTACTS

PG2 WRITE CONTACTS, GET ACCOUNTS,
READ CONTACTS, READ CALL LOG

PG3 WRITE CONTACTS

PG4 GET ACCOUNTS

(c) Delta RMP

PG1 WRITE EXTERNAL STORAGE,
com.google.android.c2dm.permission.RECEIVE,
INTERNET, ACCESS NETWORK STATE,
WAKE LOCK

PG2 READ EXTERNAL STORAGE,
WRITE EXTERNAL STORAGE, INTER-
NET, ACCESS NETWORK STATE, VIBRATE,
ACCESS WIFI STATE

PG3 INTERNET, ACCESS NETWORK STATE, ACCESS WIFI STATE

PG4 GET ACCOUNTS, READ PHONE STATE,
CAMERA, ACCESS FINE LOCATION,
ACCESS COARSE LOCATION,
WRITE EXTERNAL STORAGE,
com.google.android.c2dm.permission.RECEIVE,
INTERNET, ACCESS NETWORK STATE,
VIBRATE,WAKE LOCK

(d) MinNoise RMP

PG1 WRITE EXTERNAL STORAGE,
com.google.android.c2dm.permission.RECEIVE,
INTERNET, ACCESS NETWORK STATE,
WAKE LOCK

PG2 READ EXTERNAL STORAGE,
WRITE EXTERNAL STORAGE, INTER-
NET, ACCESS NETWORK STATE, VIBRATE,
ACCESS WIFI STATE

PG3 INTERNET, ACCESS NETWORK STATE, ACCESS WIFI STATE

PG4 GET ACCOUNTS, READ PHONE STATE, CAMERA,
ACCESS FINE LOCATION, ACCESS COARSE LOCATION,
WRITE EXTERNAL STORAGE,
com.google.android.c2dm.permission.RECEIVE, INTERNET,
ACCESS NETWORK STATE, VIBRATE, WAKE LOCK

with respect to the entire UPA. Due to the permission groups
consisting of a single permission, which are generated by

this algorithm, the output of this algorithm do not satisfy our
requirements.

Inf Syst Front

7.1.3 δ Approx.-RMP Algorithm

The δ-approximation algorithm (Vaidya et al. 2010)
generates permission groups by using the candidate
permission groups, generated by the Fast Miner algorithm
as input, and, greedily picking the best candidate permission
group until the original UPA is fully covered within an
approximation called δ. Thus, it uses both, the largest tile
mining algorithm as well as subset enumeration algorithm
to efficiently generate the optimal set of permission groups.

7.1.4 Min-Noise RMP Algorithm

The Min-noise RMP algorithm (Guo 2010) generates
permission groups by fixing the number of groups and
then minimizing the approximation δ, used in the Delta-
RMP algorithm above. This algorithm also takes the output
from the FM algorithm and proceeds to greedily extract
permission groups until all the permissions are categorized.
The output of this algorithm can be found in Fig. 7d and
Table 13d.

7.2 Analysis of the Generated Permission Groups

The algorithms mentioned above, were run on our data
set consisting of top 500 free apps from the Google Play
store (obtained from APK Pure1). While the total number of
permissions in Android are more than 500, only 161 of them
are ever requested by any of the apps in our data set, and out
of these 161, nearly 40 permissions are rarely requested by
any app. So, for the purposes of this paper, it is assumed that
the maximum number of permissions in Android is 161. It
can be seen from Fig. 7a, that 125 permissions are requested
by 0 to 50 apps in our data set, which implies that these 125
permissions are the most commonly requested permissions
in Android (when considering the apps from our data-set).
It also indicates that about 175 apps need between 5 to
10 permissions, which is indicative that a large portion of
the apps from our data set do not require more than 10
permissions.

Coverage of permissions, is used to judge the quality of
the permission groups generated by the mining algorithms;
it is obtained by dividing the total number of unique
permissions assigned to any permission group, to the total
number of permissions ever requested by any app (which is
known to be 161). A permission in a group is considered
unique, when other permission groups being collectively
considered do not possess that permission. It can be seen
from Fig. 7b, that amongst all the algorithms tested, the
Delta RMP and the MinNoise RMP algorithm generate
permission groups with a good coverage.

1 https://apkpure.com/

The Fig. 7c generated from the results for the Delta
RMP algorithm, shows the percentage of the number of
permission groups generated, permissions covered and the
under-privilege of permissions with respect to an increase in
delta. Delta is the difference between the UPA matrix and
the generated permission groups (a few examples of this are
shown in Table 13) and user permission group assignment
(not shown, as it is outside the scope of this paper) (Vaidya
et al. 2010). Under-privilege of permissions occurs when a
lower than requested number of permissions are assigned
to apps. It can be observed from this graph that when a
delta of 6% is considered, the under-privilege is at 4%,
the permissions covered are at 70% however the number
of permission groups that need to be considered are 80 (it
should be noted that in the graph, the number of groups
considered are not a percentage). According to the total
number of permissions requested by apps in our data set,
which is 161, needing to consider 80 permission groups is a
disadvantage.

Consider Fig. 7d, which is generated from the results
of the MinNoise RMP algorithm, shows the under-
privilege and over-privilege percentage of permissions
(over-privilege is the assignment of more than requested
permissions to apps), when an increasing number of
successively mined permission groups are considered.
Firstly, this graph shows that even with 20 permission
groups mined by this algorithm, the under-privilege
percentage is merely 10%; secondly, it shows the sharp
rise in the over-privilege percentage above 120 mined
permission groups which is noteworthy. Contrasting this
with the results of the Delta RMP algorithm (see Fig. 7c),
when considering the first 20 mined, the under-privilege is
at 21%. Thus, for Android, the MinNoise RMP algorithm is
better at generating permission groups than the Delta RMP
algorithm.

Finally, the Fig. 7e is obtained by comparing the number
of permission assignments to the number of permission
group assignments (with the permission groups generated
by the MinNoise RMP algorithm). From Fig. 7e, it can be
observed that when the coverage is at 20%, the number
of permission group assignments drop below the number
of permission assignments. This 20% coverage reflects
the consideration of about 10 permission groups (from
Fig.7b), and a corresponding under-privilege of 20% (7d).
This implies that with 10 generated permission groups, the
under-privilege of permissions is only about 1 in every 5
permissions requested by the apps, and is considered by
us as a positive outcome of the MinNoise RMP mining
algorithm. As stated earlier, the remaining permissions
required by apps can be obtained by, firstly assigning them
to custom-developer-defined permission groups, and then
by requesting those groups from the user. A few example

https://apkpure.com/

Inf Syst Front

Fig. 7 Results from permission
group mining algorithms for
Android

permission groups generated by the mining algorithms are
discussed below.

The FM, CM and the Basic RMP algorithms generate
permission groups (see Table 13) that contain a lot of
common permissions (see Table 13a and b). This increases
the number of permission groups required to encompass all
the permissions, which dramatically blunts the advantage
gained by grouping permissions together. The Delta RMP
and the MinNoise RMP algorithms on the other hand
generate permission groups with good coverage i.e.: a low

number of common permissions inter-group (see Table 13c
and d). It can be observed from the tables, that the
number of unique permissions for permission groups from
each of the five algorithms, FM, CM, Basic RMP, Delta
RMP and MinNoise RMP algorithms are 7, 7, 4, 13 and
13 respectively (permission groups for FM and CM are
identical for the first few hundred groups). Thus, it is
feasible to obtain permission groups for use in Android,
by using the MinNoise algorithm (5 permission groups, 13
permissions).

Inf Syst Front

8 Conclusion

In this paper, we have provided a comprehensive formal
specification of access control in Android. By formalizing
the ACiA, we were able to identify many issues in Android’s
permission framework. The thorough formalization we
have performed in this paper, facilitates a formal security
analysis. Some examples of such analysis are,

◦ What ways can an app receive a system or URI
permission it does not possess? Once granted, is there a
way in which the permission is revoked?

◦ What are the requirements for an app to get installed on
an Android device?

◦ How can an app receive URI permission to a content
provider?

– Can this content provider be accessed without
the URI permission?

◦ Can an application access another app’s content
provider without its URI permission?

◦ How can the permission’s group and protection level be
changed?

We have also implemented and analyzed several mining
algorithms from the literature, for mining permission
groups, and have presented an alternative to Android’s
permission groups. A few permission groups generated by
such algorithms have been shown in this paper as well. We
have also shown that the mined permission groups can be
used in lieu of Android’s own permission groups, towards
obtaining a more user-friendly access control mechanism
for Android.

Acknowledgements This work is partially supported by DoD ARO
Grant W911NF-15-1-0518, NSF CREST Grant HRD-1736209 and
NSF CAREER Grant CNS-1553696.

References

(2019) Android perm protection lvl “normal are never re-granted!”
https://issuetracker.google.com/issues/129029397, [Online; accessed
21-March-2019].

(2019a) Android Permissions — Android Open Source Project.
https://source.android.com/devices/tech/config, [Online; accessed
17-June-2019].

(2019) Issue about Android’s permission to permission-group map-
ping. https://issuetracker.google.com/issues/128888710, [Online;
accessed 21-March-2019].

(2019b) Request App Perms — Android Devs. https://developer.
android.com/training/permissions/requesting/, [Online; accessed
12-March-2019].

Bagheri, H., Kang, E., Malek, S., Jackson, D. (2015a). In Intl. Symp.
on Formal Methods (pp. 73–89): Springer.

Bagheri, H., Sadeghi, A., Garcia, J., Malek, S. (2015b). COVERT:
Compositional analysis of android Inter-App permission leakage.
IEEE Transactions on Software Engineering, 41(9), 866–886.

Bagheri, H., Kang, E., Malek, S., Jackson, D. (2018). A formal
approach for detection of security flaws in the android permission
system. Formal Aspects of Computing, 30(5), 525–544.

Betarte, G., Campo, J.D., Luna, C., Romano, A. (2015). Verifying
Android’s Permission Model, (pp. 485–504). Cham: Springer.

Betarte, G., Campo, J., Luna, C., Romano, A. (2016). Formal analysis
of android’s Permission-Based security model 1. Scientific Annals
of Computer Science, 26(1), 27–68.

Betarte, G., Campo, J., Cristiá, M., Gorostiaga, F., Luna, C., Sanz,
C. (2017). Towards formal model-based analysis and testing of
android’s security mechanisms. In 2017 XLIII Latin American
Computer Conference (CLEI) (pp. 1–10): IEEE.

Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.R.,
Shastry, B. (2012). Towards taming privilege-escalation attacks on
android. In NDSS, Citeseer, (Vol. 17 p. 19).

Chin, E., Felt, A.P., Greenwood, K., Wagner, D. (2011). Analyzing
inter-application communication in android. In Proc. of the 9th
International Conference on Mobile Systems, Applications, and
Services (pp. 239–252).

Davi, L., Dmitrienko, A., Sadeghi, A.R., Winandy, M. (2010). Privi-
lege escalation attacks on android. In International conference on
Information security (pp. 346–360): Springer.

Enck, W., Ongtang, M., McDaniel, P. (2009a). On lightweight
mobile phone application certification. In Proc. of the 16th
ACM Conference on Computer and Communications Security
(pp. 235–245).

Enck, W., Ongtang, M., McDaniel, P. (2009b). Understanding android
security. IEEE security & privacy, pp. 50–57.

Enck, W., Octeau, D., McDaniel, P.D., Chaudhuri, S. (2011). A study
of android application security. In USENIX Security Symposium,
(Vol. 2 p. 2).

Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D. (2011). Android
permissions demystified. In Proc. of the 18th ACM conference on
Computer and communications security (pp. 627–638).

Fragkaki, E., Bauer, L., Jia, L., Swasey, D. (2012). Modeling and
Enhancing Android’s Permission System, (pp. 1–18). Berlin:
Springer.

Geerts, F., Goethals, B., Mielikäinen, T. (2004). Tiling databases.
In International conference on discovery science (pp. 278–289):
Springer.

Grace, M.C., Zhou, Y., Wang, Z., Jiang, X. (2012). Systematic
detection of capability leaks in stock android smartphones. In
NDSS, (Vol. 14 p. 19).

Guo, Q. (2010). A formal approach to the role mining problem. PhD
thesis, Rutgers University-Graduate School-Newark.

Ongtang, M., McLaughlin, S., Enck, W., McDaniel, P. (2012).
Semantically rich application-centric security in android. Security
and Communication Networks, 5(6), 658–673.

Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y., Dolev, S., Glezer,
C. (2010). Google android: a comprehensive security assessment.
IEEE Security & Privacy, 8(2), 35–44.

Shin, W., Kiyomoto, S., Fukushima, K., Tanaka, T. (2010). A formal
model to analyze the permission authorization and enforcement
in the Android framework. In Proc. - socialcom 2010: 2nd IEEE
international conference on social computing, PASSAT 2010: 2nd
IEEE International Conference on Privacy, Security, Risk and
Trust (pp. 944–951).

Talegaon, S., & Krishnan, R. (2019). A formal specification of
access control in android. In International Conference on Secure
Knowledge Management in Artificial Intelligence Era (pp. 101–
125): Springer.

https://issuetracker.google.com/issues/129029397
https://source.android.com/devices/tech/config
https://issuetracker.google.com/issues/128888710
https://developer.android.com/training/permissions/requesting/
https://developer.android.com/training/permissions/requesting/

Inf Syst Front

Taylor, V.F., & Martinovic, I. (2016). Quantifying permission-creep in
the google play store. arXiv:160601708.

Tuncay, G.S., Demetriou, S., Ganju, K., Gunter, C.A. (2018).
Resolving the predicament of android custom permissions. In
Proc. 2018 Network and Distributed System Security Symposium.
Reston: Internet Society.

Vaidya, J., Atluri, V., Warner, J. (2006). Roleminer: mining roles using
subset enumeration. In Proceedings of the 13th ACM conference
on Computer and communications security (pp. 144–153).

Vaidya, J., Atluri, V., Guo, Q. (2007). The role mining problem:
finding a minimal descriptive set of roles. In Proceedings of the
12th ACM symposium on Access control models and technologies
(pp. 175–184).

Vaidya, J., Atluri, V., Guo, Q. (2010). The role mining problem: a
formal perspective. ACM Transactions on Information and System
Security (TISSEC), 13(3), 1–31.

Wei, X., Gomez, L., Neamtiu, I., Faloutsos, M. (2012). Permission
evolution in the android ecosystem. In Proc. of the 28th Annual
Computer Security Applications Conference (pp. 31–40).

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Samir Talegaon received the M.S. degree in Electrical Engineering
from The University of Texas at San Antonio (UTSA) in 2014.
Currently he is working on a doctoral degree at the Electrical and
Computer Engineering Department at UTSA. His research interests
include access control in Android and Android platform analysis and
modification.

Ram Krishnan is an Associate Professor of Electrical and Computer
Engineering at the University of Texas at San Antonio, where he
holds Microsoft President’s Endowed Professorship. His research
focuses on (a) applying machine learning to strengthen cybersecurity
of complex systems and (b) developing novel techniques to address
security/privacy concerns in machine learning. He actively works on
topics such as using deep learning techniques for runtime malware
detection in cloud systems and automating identity and access control
administration, security and privacy enhanced machine learning and
defending against adversarial attacks in deep neural networks. He is a
recipient of NSF CAREER award (2016) and the University of Texas
System Regents’ Outstanding Teaching Award (2015). He received his
PhD from George Mason University in 2010.

http://arxiv.org/abs/160601708

	A Formal Specification of Access Control in Android with URI Permissions
	Abstract
	Introduction
	Related Work
	Formal Specification of Access Control in Android
	Background Information
	Element Sets, Functions and Relations of the ACiA
	User Initiated Operations
	App Initiated Operations

	Experimental Setup
	Observations
	Android's URI Permissions
	Experimental Setup
	Observations from the Study of Evolution of Android's URI Permissions
	Answers to Key Questions
	Current App Initiated Operations for URI Permissions

	Permission Groups
	Permission Group Mining Algorithms
	Fast-Miner and Complete-Miner Algorithm
	Basic-RMP Algorithm
	 Approx.-RMP Algorithm
	Min-Noise RMP Algorithm

	Analysis of the Generated Permission Groups

	Conclusion
	References

