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Abstract—Information-theoretic formulations of the private
information retrieval (PIR) problem have been investigated under
a variety of scenarios. Symmetric private information retrieval
(SPIR) is a variant where a user is able to privately retrieve one
out of K messages from N non-colluding replicated databases
without learning anything about the remaining ' — 1 messages.
However, the goal of perfect privacy can be too taxing for certain
applications. In this paper, we investigate if the information-
theoretic capacity of SPIR (equivalently, the inverse of the
minimum download cost) can be increased by relaxing both
user and DB privacy definitions. Such relaxation is relevant in
applications where privacy can be traded for communication
efficiency.

We introduce and investigate the Asymmetric Leaky PIR
(AL-PIR) model with different privacy leakage budgets in each
direction. For user privacy leakage, we bound the probability
ratios between all possible realizations of DB queries by a
function of a non-negative constant ¢. For DB privacy, we bound
the mutual information between the undesired messages, the
queries, and the answers, by a function of a non-negative constant
0. We propose a general AL-PIR scheme that achieves an upper
bound on the optimal download cost for arbitrary ¢ and 6.
We show that the optimal download cost of AL-PIR is upper-
bounded as D" (¢,d) < 1+ ﬁ — NK‘S%L. Second, we obtain
an information-theoretic lower bound on the download cost as
D*(e,6) > 1+ N;_l — N ;‘Hfl. The gap analysis between
the two bounds shows that our AL-PIR scheme is optimal when
€ = 0, i.e., under perfect user privacy and it is optimal within a

maximum multiplicative gap of Y=

=<~ for any € > 0 and § > 0.

I. INTRODUCTION

In the era of big data and data analytics, users who access
a plethora of online services face serious privacy risks. Their
online behavior and data access patterns can be analyzed to
reveal sensitive personal information and breach their privacy
[1]. One possible solution to such data leakages is to re-
trieve information privately by executing a private information
retrieval (PIR) protocol. In a PIR protocol, the identity of
the message retrieved by the user remains secret from the
database(s). This is typically achieved at the expense of an
increased communication cost to ensure that the desired mes-
sage remains hidden among others. In the pioneering work by
Chor et al. [1], the authors considered one-bit long messages.
The overhead was calculated as the sum of the queries sent
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by the user (upload cost) and the answers provided by the
database (download cost). Under arbitrarily large messages,
the download cost becomes the dominant factor of the PIR
overhead. This allows the PIR rate to be defined as the ratio
of the message size to the number of downloaded bits. The
maximum of these rates is referred to as the PIR capacity and
its reciprocal as the download cost.

Since the introduction of the PIR problem in [1], an exten-
sive body of works have investigated efficient PIR schemes
that yield either computational [2]—[5] or information-theoretic
privacy guarantees [6]-[42]. The former achieves privacy
assuming that the DBs are computationally-bounded. Es-
sentially, privacy is preserved due to the intractability of
computationally-hard problems. In information-theoretic PIR,
the DBs are assumed to be computationally unbounded, thus
achieving a higher level of assurance. Perfect privacy is
guaranteed if the queries do not reveal any information about
the desired message (privacy) and the answers are sufficient
to recover it (decodability). An intuitive PIR solution is to
download all K messages from a database. In fact, this is the
only way to guarantee perfect privacy in the single database
case. However, privacy comes at an impractical communica-
tion overhead.

Review of Recent Progress on Information-Theoretic
PIR: A practical way to increase the PIR capacity is to
consider a distributed storage system (DSS) of N databases.
Shah. et al. [6] proposed a PIR scheme that achieves a rate
of 1 — % when K messages are replicated across N non-
colluding databases. Later, Sun and Jafar [7] characterized the
PIR capacity for any N and K as (1 +1/N +1/N? +... +
1/NE=1)=1 The original scheme introduced in [7] achieves
capacity when the message size L is allowed to grow as a
function of NV and K. Subsequently, they characterized the
PIR capacity for a fixed message size [8]. Since the appearance
of the fundamental result of Sun and Jafar [7], numerous
important and practically relevant variations of PIR have been
considered.

Multi-round PIR allows multiple rounds of communication
between the user and databases. While interaction does not
increase capacity, it can reduce the storage overhead at each
database [10]. Sun and Jafar [11] considered the robust PIR
problem where M — N out of a total of M > N databases
fail to respond to user queries. Additionally, they characterized
the capacity when 7' < N databases collude and share the
received queries. Tajeddine et al. [12] considered MDS-PIR
for coded databases where each message is separately coded
using an (N, M) MDS code. Banawan and Ulukus [13] derived



the coded PIR capacity for arbitrary N, M, and K. Wang
and Skogland [14] showed that the PIR capacity remains

— % even if each message is coded. In [15] and [16], the
scenario of N MDS-coded databases with T' colluding ones
was presented. However, the capacity of this case is still an
open problem (for other variants of MDS-PIR, see [17]-[20]).
In [21] and [22], the case of multi-message PIR, where the
user can use one query to request more than one messages,
was investigated. Banawan and Ulukus [23] characterized the
PIR capacity with Byzantine databases where any subset of
databases can be adversarial and respond untruthfully. In [24],
Tajeddine et al. studied the same model but in the presence of
colluding databases. Banawan and Ulukus [25] studied PIR
through a wiretap channel, where an eavesdropper tries to
decode the content sent through the channel. Other variants
of PIR in the presence of eavesdroppers are studied in [26],
[27].

The problem of PIR was also studied when the user has
a cache or side-information, which can be useful in increas-
ing PIR capacity [28]-[32]. PIR from storage-constrained
databases was studied in [33], [43], [44], where capacity was
characterized under the assumption of uncoded storage across
databases. Recently, Tian et al. [34] proposed a new capacity-
achieving scheme with an optimal message size of N — 1
and a minimum upload cost. Other lines of work considered
different privacy requirements from the original PIR model in
[7]. The problem of symmetric PIR (SPIR) was studied in [9],
where the user must be able to retrieve the message of interest
privately (user privacy), while at the same time the databases
must avoid any information leakage about the remaining K —1

messages (DB privacy). The SPIR optimal download cost
N

was characterized as ~— with common randomness at least
a = ﬁ bits per desired message bits. Latent-variable PIR

was considered recently in [45], where privacy is required
for a latent variable describing a predefined user attribute.
Additional interesting variants of PIR can be found in [35]-
[42].

The novel coding schemes and fundamental ideas developed
in the above works have also helped in advancing other
problems beyond PIR. For instance, an interesting connection
between blind interference alignment (BIA) and PIR was
studied in [46] showing that a good BIA scheme translates
to a good PIR protocol. Secure and private distributed matrix
multiplication has been considered in [47]-[51] addressing the
problem of computing a product of two matrices with some
constraints on the identity of the product matrices and/or the
information content in the matrices. Jia and Jafar [17] showed
the connection of the secure and private distributed matrix
multiplication to one variation of the MDS-PIR problem.
Recently, the problem of private set intersection (PSI) was
studied in [52] from a PIR perspective and capacity results
were obtained.

Relaxing Privacy Metrics for PIR: The above works have
all focused on perfect privacy, either for the user (as in PIR), or
for both the user and the DBs (as in SPIR). The perfect privacy
requirement usually comes at the expense of high download
cost and does not allow tuning the PIR efficiency and privacy
according to the application requirements. In scenarios of

frequent message retrieval, trading user or DB privacy for
communication efficiency could be desirable. Ideally, one
would select a desired leakage level and then design a leakage-
constrained PIR scheme that guarantees such privacy while
maximizing the PIR capacity.

A few previous works have introduced privacy definitions
that relax the notion of perfect privacy. Asonov et al. replaced
privacy with the concept of repudiation [53]. The repudiation
property is achieved if some uncertainty remains about the
desired message. However, this metric does not provide any
information-theoretic privacy guarantees, as repudiation is
satisfied even if the retrieved message can be identified with
almost certainty. Recently, Toledo et al. [54] adopted a game-
based differential privacy definition to increase the PIR ca-
pacity at the expense of bounded privacy loss. However, their
privacy definition only captures the privacy of the submitted
queries. The authors propose several schemes that hide the
query identity and study their cost. Although the query privacy
can be thought of as functional equivalent to information-
theoretic PIR in some cases, it does not satisfy the perfect
privacy definition.

In our prior work, we introduced the Leaky PIR (L-PIR)
where a bounded amount of leakage is allowed about the mes-
sage identity [55]. We adopted a concept similar to differential
privacy to bound the leakage as a function of a non-negative
constant e. The leakage in privacy is achieved by constructing
multiple biased “retrieval paths” across databases where each
path realizes one query per database. Lin et al. [56], [57]
relaxed user privacy by allowing bounded mutual information
between the queries and the corresponding requested message
index. Unlike [56], [57], which deal with the average leakage
(measured by mutual information), the L-PIR model in [55]
satisfies the privacy leakage constraints strictly for all possible
query/message index combinations, and thus provides stronger
privacy guarantees.

In another recent work, Guo et al. [58] considered the
problem of SPIR with perfect user privacy and relaxed DB
privacy. DB privacy was relaxed by allowing a bounded mutual
information (no more than §) between the undesired messages,
the queries, and the answers received by the user. Similar to the
original work on SPIR in [9], SPIR with relaxed DB privacy
in [58] requires sharing common randomness among DBs and
comes at the expense of a loss in the PIR capacity.

Summary of contributions— We investigate a three-way
tradeoff between user privacy, DB privacy, and the communi-
cation efficiency of PIR. We study the problem of Asymmetric
Leaky PIR (AL-PIR) where some information about the iden-
tity of the desired message is allowed to leak to the DBs, and
some information about the undesired messages is allowed to
leak to the user. The goal is to trade privacy in both directions
for achieving gains in PIR capacity, thus making PIR more
communication-efficient. For user privacy, we adopt the metric
introduced in our prior work [55], where the privacy bound
is determined as a function of a non-negative constant €. For
bounding DB privacy, we adopt a mutual information-based
leakage metric to be bounded by a non-negative constant §.
We next summarize the main contributions:

o We propose an AL-PIR scheme that satisfies the leakage



budgets in both directions for arbitrary values of (e, d),

an arbitrary number of K messages, and an arbitrary

number of /N databases. The achievable download cost of

this scheme is given by D(e,8) = 1+ 5 — N;f%_l.

This cost also represents an upper bound on the optimal

download cost (lower bound on the capacity) of the AL-

PIR. We use an alternate perfect privacy PIR scheme

that follows a path-based approach, where a user’s query

is equivalent to selecting one of several possible paths
across databases. A path is defined as a set of queries, one
per database, that achieves decodability, however different
paths incur different download costs. We leverage this
cost imbalance to introduce leakage through the idea of
biasing the path selection probabilities. A path giving
a lower download cost can be used more frequently
compared to higher download cost paths. This bias-
ing introduces user privacy leakage. The path selection
probabilities are chosen to minimize the download cost
while satisfying the privacy budget, measured by €. To
achieve DB privacy, our scheme requires sharing common
randomness among databases. We combine the path-
based approach with the ideas of the scheme presented
in [58] to arrive at our general AL-PIR scheme. In
particular, achieving a DB privacy leakage of no more
than 0L bits, requires common randomness given by

(ﬁ - % 6)L bits, which represents an upper
bound on the optimal common randomness size.

o We present a converse proof to obtain a lower bound on
the optimum download cost (upper bound on capacity).
This bound is characterized by D*(e,8) > 1 + 5o— —
Mﬁ. The upper and lower bounds are shown to
match each other at extreme values of epsilon (¢ = 0;
€ — 00) and for any §. Moreover, we show through gap
analysis that our upper and lower bounds are within a
maximum multiplicative gap of N]\i;‘ for any € > 0
and 6 > 0.

o We derive a lower bound on the optimal required common
randomness at the databases. This bound characterizes
that achieving a DB privacy leakage of no more than
d L bits, requires s}l(lalged randomness of size no less than
(o — (]gfjfll__la)L bits.

o We investigate the tradeoffs variations in both sides of
leakage as special cases of our general (e,6) AL-PIR
scheme. In particular, we show a three-way tradeoff
between download cost, user privacy, and DB privacy,
such that enhancing one of them would be at the expense
of the other two. We also show matching results for the
following special cases for our derived bounds on the AL-
PIR model: a) perfect user privacy (original PIR) [7], b)
perfect user and DB privacy (SPIR) [9], c¢) Leaky user
privacy (L-PIR) [55], and d) perfect user privacy and
leaky DB privacy [58].

II. SYSTEM MODEL: ASYMMETRIC LEAKY PIR

We study the PIR problem illustrated in Figure 1. We
consider N databases DB1, DB,,. .., DBy and K independent

Database 1 Database 2 Database N

g- g. —
—" — —
= —— =
\ QY
Q(lk 1) User Privacy (ePrivacy)
A | A Pr(@), AIWa} _

Pr{Qi, A [Wa} ~
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Message Security (6—Security)

I(Wiacyes; QR AL < 3L,
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Yy € [1: K]

User

Fig. 1. Asymmetric leaky private information retrieval (AL-PIR) problem.

messages Wy, Wy, ..., Wk, each of size L bits, such that

K
H(Wy,Wa, -, Wgk) =Y _ H(Wh), (1)

k=1
HW,)=HW;)=---=H(Wkg)=L. (2)
A user interested in privately retrieving Wy, k € [1 : K]!
sends N separate queries ng), e ,Qy;) to each of the IV

DBs, where lek) denotes the query sent to the nth database
(DB,,), n € [1 : NJ, when retrieving message Wj. The N
DBs are assumed to be replicated and non-colluding, i.e.,
they store all the K messages and they do not share the
queries received from the user. We also assume the DBs are
interested in achieving privacy, i.e., the user must only decode
the requested message subject to a leakage constraint. To
achieve DB privacy, the N DBs are allowed to share common
randomness denoted by a random variable S of size oL bits,
i.e., H(S) = aL. Moreover, S is not known to the user.
Upon receiving Q%k), the nth database generates the corre-
sponding answer Agf ) as a deterministic function of the query

%k), the K messages, and the shared common randomness

S, ie.,
H (APIQW, W1, Wi, S) = 0. 3)

The user must be able to decode the desired message Wy
upon receiving the answers from the N databases. Formally,
the AL-PIR scheme must satisfy the following correctness,
user privacy, and DB privacy constraints.

Correctness: Given queries QH“}N] £ {ng),--- ,QS\?)},
the user must be able to decode the desired message Wi,
with probability of error P,, by collecting the corresponding
answers AEf:)N] = {Agk), e ,AS\];)} from the NV DBs, i.e.,

k k
H (WilQ{{: Al ) = o(D)L, 4)

where o(L) is any function that approaches zero as L — oo.
o(L) is set to zero if P, is required to be exactly zero.
0—DB privacy: In the original SPIR formulation [9], the
authors assume no leakage to the user about the undesired
messages. For a desired message Wy, perfect DB privacy is

'Notation: Through this work, we use the notation [1 : X] to represent
the set of integers from 1 to X.



satisfied if
. (k)
I (W[I:K]\MQ[LN], &)

where W[l:K]\k = (VVl7 e Wi, Whega, o0y WK> is the
set of all messages except Wy. In this work, we relax this
condition by assuming a general leaky DB privacy constraint.
The leaked information about the undesired messages must be
bounded as,

ok 4k .
I(Wiik)\k; Qpuny Apiny) < 6L, Vk € [L: K],

A(k)

) =0, vkell: K],

(6)
where § > 0 is a non-negative constant.

e—user privacy: Under perfect user privacy, the privacy
constraints are expressed as,

(A’SLkl)’Q'SLkl)’Wlf" aWK) ~ (A£f2)7Q£Lk2)7W17"' 7WK)5
(7

Vky, ke € [1 : K]. This guarantees that the submitted queries
are always independent of the message index. The previous
constraint can be alternatively expressed as,

(Agzkl)7Q£Lkl)|WQ) ~ (A;kz)’ngkZ)‘WQ)’ Vki, ko € [1 : K]7

®)
where Wq is any subset of the K messages, i.e., Wqo C
{Wy,...,Wk}. In this work, the privacy constraint is relaxed
such that given any subset Wq of the K messages, the
following likelihood ratio is bounded as follows:

PriQ™) = m, AL = 4[Wa)
PriQ = m A = 4|Wq)

< e, Vkﬁhk‘QE[lZK],

©))
VYn € [1 : NJ], where = and ~ represent any possible
realizations for the queries and answers, respectively and € is a
non-negative constant. Unlike perfect user privacy constraint
which ensures that queries and answers are independent of
the message index, the leaky privacy definition allows some
queries and answers to be used more frequently when certain
messages are retrieved. By setting € = 0, the e—user privacy
definition in (9) becomes equivalent to the perfect privacy
constraint in (8).

Although there is a similarity between the definition of the
user privacy and the definition of differential privacy (DP),
we emphasize that this similarity is just in the mathematical
formulation. The main conceptional difference between our
privacy definition and the DP definition is that in our privacy
model, we do not have the concept of neighboring datasets
(that differ in one element). Instead, our model considers a
fixed input dataset for each query. Actually, we note that our
definition bears more similarity to local differential privacy
(LDP). In local differential privacy, a user holding private data
X wishes to reveal Y through a private mechanism. The mech-
anism satisfies e-LDP if P(Y = y|X = z)/P(Y = y|X =
a’) < e° for all realizations x,2’ of the private data. The
analogy of the e—user privacy with e-LDP is then clear since
here, the private data refers to the index of the desired message,
and the output of the mechanism corresponds to the query
sent by the user to the DB. One thing that is different for the

e—user privacy is that in a DP setting, the information privacy
is guaranteed against an adversary who designs algorithms for
data processing. In the user privacy definition, the side that
represents the adversary is the database. Whereas, the user
(the side that seeks privacy) is the one that can exclusively
design the queries. Generally, for the e—user privacy, there
are potential challenges related to the accumulation of leakage
across multiple queries. An adversary that monitors multiple
queries can combine the outputs to obtain extra information.
To avoid such a scenario, the parameter € could be adjusted to
ensure that the accumulated leakage across multiple queries is
always within the allowed limits.

Guarantees and applications of the leaky privacy defini-
tions: The leaky definition in (9) guarantees that the difference
between the distributions of query and answers for any two
indices and any given realization is always bounded. We
highlight that this is guaranteed for every message index pair
and not on average. From an application perspective, the leaky
definition guarantees that the database has a bounded success
probability in differentiating the requested message index from
any other index, and for any realization that satisfies the
privacy definition. Moreover, this bounded success probability
can be controlled by tuning e.

For database privacy, from an application perspective, the
leaky SPIR metric in (6) guarantees that the user will not
decode more than dL bits, on average, from undesired mes-
sages. Note that this definition does not impose any restrictions
on how the leaked bits are distributed. Depending on the
scheme, the leaked bits could belong to one or multiple
undesired messages and could have a different distribution per
realization. This guarantee is only on average.

Our privacy definitions could be helpful in applications where
privacy is required, but guaranteeing perfect privacy makes
PIR impractical from a communication overhead standpoint.
To provide a concrete example, consider a multimedia stream-
ing application. From the user perspective, allowing the
database to determine with bounded probability, the multime-
dia content (e.g., movie) that the user retrieves is a significant
privacy improvement from the current landscape. This infor-
mation is not as sensitive as other information types such as
patient records. Moreover, the message size is prohibitively
large to allow for perfect privacy solutions. Generally, the
parameter € should be tuned based on the sensitivity of the
retrieved content. It can be even set to zero (this means perfect
privacy) for applications that do not permit any leakage. From
the database perspective, allowing the user to access some
additional multimedia content with each query (which for most
schemes would be partial content) does not degrade privacy
in a meaningful way.

Other leaky user privacy definitions: To relax DB privacy,
we adopt the mutual information metric in [58]. On the other
hand, we use the probability metric we introduced in [55] to
bound the leakage of user privacy. The latter metric strictly
satisfies the privacy constraint for all possible query/message
index combinations. We note that there are other weaker
metrics one can use for relaxing user privacy. In [56], Lin
et al. proposed a metric 7 that gives a bound on the average



privacy leakage over all databases for a desired message index
given by a random variable 6 € [1 : K] such that,

1 N
52 10:Q0) <. (10)
n=1

Jia et al. introduced the following privacy constraint [59],

HAFD Wy, .., Wi) — HAP WL, W) = pL,
Vke[l: K], Vnel[l:N] (11

where parameter p controls the leakage budget, with 0 < p <
%. In contrast to our e-user privacy definition in (9), both
of the metrics provide average privacy guarantees, i.e., they
bound the average privacy leakage over all possible retrieval
schemes. This means that the privacy leakage is allowed to
exceed the required bound in the case of individual message
retrievals. In this work, we extend the definition in (7) to
investigate the scenario when the distribution of the sent
queries and the corresponding answers is allowed to depend on
the requested message index within predefined limits. Also, the
AL-PIR model satisfies the e—user privacy definition strictly
over all possible realizations of answers and queries. This
ensures that leakage is always within the allowed budget ¢
for all individual message retrievals.

We highlight that there are more stricter privacy metrics that
can be employed, such as min-entropy which is a stronger
notion compared to bounded mutual information. However,
we believe that this will require new tools to obtain lower
bounds on the download cost and constructing schemes with
bounded min-entropy.

Communication Cost: To evaluate the performance of the
AL-PIR scheme, we adopt the Shannon theoretic formulation
where the message size is assumed to be arbitrarily long
and therefore, the upload cost is negligible compared to
the download cost [7]. In this case, the AL-PIR rate is the
reciprocal of the download cost D(e,d), which characterizes
the total information bits the user has to download to retrieve
one desired message bit. Let D.s be the total number of
downloaded bits to retrieve message Wy, for some € and 4,
and L be the size of the desired message. The normalized
download cost is given by,

Des _ Y, H(AY)
L H(Wk)

D(e,0) = (12)

We say that the pair (L, D s) is achievable if there exists
an AL-PIR scheme that satisfies the correctness, DB privacy,
and user privacy conditions in (4), (6), and (9), respectively,
and can retrieve a message of size L bits by downloading a
total of D, s bits. Our goal is to find the optimal download
cost D*(¢,0) such that

D*(e,8) = min{D,. s/L : (L, D, s) is achievable}.  (13)

The capacity of the AL-PIR C*(e,d) is the reciprocal of
D*(e,0),
C*(€,0) =max{L/Des : (L, D.s) is achievable}. (14)

Optimal common randomness size: We are also interested in

characterizing the fundamental limits of common randomness
S needed to be stored at the databases. In general, the common
randomness size « is a function of the privacy budget param-
eters (¢,0). Therefore, in the following discussion, we use the
notation H(S) = a(e, §) L. We define a* (¢, 6) as the minimum
common randomness size that satisfies the correctness, DB
privacy, and user privacy conditions in (4), (6), and (9),
respectively, i.e.,

a*(€,9) = minf{a(e, d) : (4), (6), and (9) are satisfied}.
(15)

III. MAIN RESULTS AND DISCUSSION

In this section, we present our main results on the optimal
download cost and the required amount of shared randomness
for AL-PIR. Given desired privacy budgets ¢ and ¢ for the
user and DB privacy leakage, respectively, we state our main
results in the following Theorems.

Theorem 1: Define di(€,6) == 1+ 5 — NK‘S%;%. For
N > 2 and shared randomness S with size H(S) > aq(€,d)L,
where

1 e+ NEK-1_1
o1 (e,6) = 71— SR 6, 0<6 <di(e),
) 07 o> 61 (6),
the optimal download cost of AL-PIR, satisfying both the

e—user privacy and J—DB privacy definitions, is upper-
bounded by

(16)

d1 (6,5),
d1(€, 51 (6)),

0<do< (51(6),

* UB
D*(e,0) <D (6,5)—{ 5> 61(0).
(17)
In (16) and (17), d1(¢) is the maximum DB privacy leakage
(when no common randomness is required, i.e., (€, d) = 0)
which is a function of the allowed user privacy leakage ¢, and

is given by,

NE-1_1
(N —1)(ec + NE-T 1)’

The proof of Theorem 1 is presented in Section IV. As a result
of Theorem 1, we have the following remark.

Remark 1: The required size of shared randomness for our
achievability scheme, as given by «;(e,0) in (16), yields an
upper bound on the optimal size of minimum shared ran-
domness a*(¢,d) as defined in (15), i.e., a*(¢,0) < ay(e, ).
Moreover, o (€,d) is also sufficient to satisfy (¢’,d’) privacy
constraints, such that ¢ > € and ¢’ > §. In other words, if a
given amount of common randomness is sufficient to satisfy
(e,0) privacy, then it is also sufficient if the privacy budgets
are increased.

In Figure 2, we show the effect of ¢ and § on the download
cost for the case when N = K = 2. We can observe the
following: a) the download cost is a monotonically decreasing
function of the privacy budgets € and J; b) as e approaches
infinity, which corresponds to no user privacy, the achieved
download cost approaches 1; ¢) for € = 0 (perfect user privacy)
and as § approaches zero (perfect DB privacy), the achieved
download cost is 2 which matches the case of SPIR studied in

N

[9] where the optimal download cost is ~—7 = 2; and d) for

51(6) =

(18)



Achievable Download Cost

User Privacy Leakage (€)

Fig. 2. The achievable download cost for our AL-PIR scheme when N =
K = 2 as a function of e for different values of 4.

d > 61(e) = 1/(e“+1) (or € > In(1/s — 1)), the download cost
is only a function of € (the line corresponding to 6 = 0.4).

Theorem 2: Define da(e,6) :== 1+ Nel_l — (Nes)i,lfl.
For N > 2, and shared randomness S with size H(S) >
ag(e,0)L, where

1 (NeE)K71
012(6,6) _ Nee—1 (NEG)K7171 67 0 S 6 < 62(6)5
0, 0 > da(e),

19)

the optimal download cost of AL-PIR subject to e—user
privacy and §—DB privacy is lower-bounded by

* LB _ d2(675)a 0< 0 < 62(6)’
ey = Do) = {d2<e,62<e>>, 52 63(c),
(20)
where
Ne€ K—-1 _ 1
Sa(€) = (Ne) @1

(Ne¢ —1)(Nes)K-1"

Furthermore, the optimal size of common randomness satis-
fying e—user privacy and 6—DB privacy is lower-bounded by
a*(€,0) > aa(e,9).

The proof of Theorem 2 is presented in Section V. We note
that the results in Theorems 1 and 2 hold for N > 2 DBs. In
the following proposition, we characterize the capacity for the
case of one database.

Proposition 3: The optimal download cost D* (¢, §) for N =
1 and for any 0 < € < oo is given by:

00, 6<(K-1),

K, &6=(K-1). (22

D*(e,0) = {
The above result shows that the problem of AL-PIR for one
database is degenerate. In particular, to satisfy the e-user
privacy constraint, any query/answer pair has to be requested
to retrieve each of the K messages with non-zero probability.
Since N = 1, the only solution is to download all messages,
i.e., a download cost of K. However, upon downloading all K
messages, the leakage about the remaining (K — 1) messages

is fixed and given by § = K — 1. Hence, if the DB privacy
budget is 6 < (K — 1), the AL-PIR problem is infeasible and
the capacity is 0, i.e., D*(¢,06 < K — 1) = oco. We prove
Proposition 3 in Appendix D.

In the next Corollary, we show that our proposed scheme
in Theorem 1 is information-theoretically optimal for perfect
user privacy, i.e., € = 0, and is optimal within a maximum
multiplicative gap ratio of N]\FfIE for any (e, d). The proof of
the corollary is presented in Appendix A.

Corollary 1: The multiplicative gap ratio between the upper
and lower bounds on the download cost of the AL-PIR, given
by Theorems 1 and 2, respectively, is bounded as follows:

DVB (¢, ) < N —e ¢
DB(ed) = N—1°

In Figure 3, we show the upper and lower bounds on the
download cost of the AL-PIR and the numerical multiplicative
gap ratio, as a function of system parameters (N, K€, J).
Specifically, in Figure 3a, we set the allowed DB privacy
leakage to the maximum leakage, i.e., & > max(d(€), d2(€))
as defined in (18) (no shared randomness required for this
case). This gives the results of the L-PIR model considered
in [55]. As the number of messages increases, both upper and
lower bounds increase, whereas both decrease with N. This
happens as increasing N increases the number of bits that
can be utilized as a side information to retrieve the desired
message. On the other hand, increasing K adds an overhead on
any retrieval scheme to satisfy the privacy by considering the
symmetry among downloaded bits from different messages.
We observe a similar trend for the multiplicative gap ratio as
well. In Figure 3b, we fix the value of the DB privacy leakage
to § = 4x1075. This choice insures that § < min(&y(e), 52(¢))
for all e € [0 : 10] considered in the plots. We note that while
increasing K does not have significant impact on the bounds,
both the download cost and multiplicative gap ratio decrease
with IN. Moreover, we observe that the bounds match when
e = 0, i.e., when perfect user privacy is required, and when
€ — 00, i.e., NO user privacy is required.

The generality of the AL-PIR problem formulation allows
us to recover several existing results on PIR as special cases of
Theorems 1 and 2. These cases are discussed in the following
remark.

Remark 2 (Connections to state-of-the-art results): From
Theorems 1 and 2, the lower and upper bounds on the optimal
download cost D*(e, ) for any (e,0) can be used to derive
the following prior results.

e No user privacy and perfect DB privacy (¢ — 00,0 =
d1(e = 00) = d2(e = o0) = 0). From the shared randomness
bounds (16) and (18), when € — oo and 6 = 0, we get that
a*(e - 00,0) = a1(e = 00,0) = az(e — 00,0) = 0,
i.e., no shared randomness is needed. Substituting the ¢ and
0 values in the download cost bounds (17) and (20), we get
DVYB(e — 00,0 = 0) = D"B(e — 00,6 = 0) = 1, meaning
that the upper and lower bounds are matching and give an
optimal download cost of D*(e — 00,6 = 0) = 1. That is,
AL-PIR is achieved by only downloading the requested file
from any of the databases.

e Perfect user privacy and maximum leakage on DB

(23)
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Fig. 3. Lower and upper bounds on the download cost of AL-PIR for different values of IV, K and § as € increases.

privacy [7] (¢ = 0,6 01 (e 0) da(e 0)
N,(f%(lj\f_ll)) We obtain the original PIR result in [7] for
perfect user privacy leakage e = 0. For this special case, we
get the optimal required shared randomness characterized by
a*(e,0) = a1(€, ) = aa(e, §) = 0, i.e., no shared randomness
is needed. Using the bounds in (17) and (20), we obtain
matching upper and lower bounds, giving an optimal download

cost of

NE-1—1 LB
D(Ezo,ézm):D (6207(;:
NKfl -1 UB NKflil
Ny o)~ P =09 SRy =)
1 1
=1+t R (24)

e Perfect user privacy and DB privacy [9] (¢ = 0,6 = 0).
By setting ¢ = 0, 6 = 0 in Theorems 1 and 2, we obtain
the SPIR results in [9] where the optimal required shared ran-
domness is given by a*(0,0) = a1(0,0) = a2(0,0) =
and the optimal download cost is obtained using the bounds
in (17) and (20) as

D*(e=0,6=0)=D"®(e=0,6 =0) = D"®(e = 0,6 = 0)

1
1+ ——.
+N—l

(25)

e Leaky user privacy and maximum leakage on DB

privacy [55]. We obtain the L-PIR results in [55] for any

level of user privacy leakage ¢ and a DB privacy leakage
d > max (d1(€), d2(€)), where the optimal required shared
randomness is given by a*(¢,0) = ai(€,d) = as(e,6) = 0
and the bounds on the optimal download cost are obtained
using (17) and (20) as

D*(e,0) > DLB(6,52(6)) =1+ Nee + e+ W;
UB NETT -1
D*(e,0) < D""(¢,01(€)) =1+ (N T NET=1);
(26)

e  Perfect user privacy and Leaky DB privacy [58]
(e = 0,0). For perfect user privacy ¢ = 0 and DB privacy
leakage characterized by §, we obtain the results in [S8], where
the optimal required shared randomness is characterized by
a*(0,6) = a1(0,8) = 2(0,68) = 7 — D6 and the
optimal download cost is obtained using the bounds in (17)

and (20) as
D*(e=0,6) = D"®(e =0,6) = D"®(e = 0,6)
N )
 N—-1 NE-1_7°

27

IV. PROOF OF THEOREM 1 : UPPER BOUND ON D*(¢, §)
FOR THE AL-PIR

The leakage in user privacy is achieved using the path-based
approach introduced in our previous work [55]. A retrieval
path is equivalent to a set of queries across databases that



guarantee decodability. Possible retrieval paths have different
download costs. The probability of selecting each path is
chosen to minimize the download cost while satisfying the
privacy budget, measured by €, which is a process referred
to as path biasing. First, we give the following example for
N = K = 2 to describe the idea of path biasing to achieve
e—user privacy leakage with DB Privacy leakage (§ > d1(€)).

A. AL-PIR Example for N = 2, K = 2, and privacy leakage
(6, 6> 51(6))

Consider the simplest non-trivial PIR setting with N = 2
DBs and K = 2 messages denoted by W; and W,. To motivate
the construction of AL-PIR, we first recall the perfect PIR
scheme proposed by Sun and Jafar in [7]. Assume that the
messages Wi = {a1,...,a4} and Wy = {by,...,bs}, are
each L = 4 bits long. Figure 4 shows a retrieval structure
for W7 using the scheme in [7]. The main idea is that one
can use coding and leverage side information from the other
database to reduce the download cost to 3/2. We highlight
that the shown bit indices represent one possible permutation
of the real indices. Thus, W7 retrieval can be obtained through
multiple bit structures that are selected uniformly and have an
equal download cost of 3/2.

In Figure 5, we show an alternative PIR scheme in which
the requested message can be downloaded via sequences of
structures that give unequal download cost. In particular, when
the user wants to retrieve message W7, it picks one of the four
possible queries/paths:

e Path Py:((), W1): Send no request to DB and request W,
from DB,. This path/query has a download cost of L bits.

o Path P5:(W7,0): Request W; from DB; and send no
request to DBy. This path has a download cost of L bits.

e Path Ps5:(Wo, Wy & Ws): Request Wy from DB; and
W1 & Wy from DB,. This path has a download cost of
2L bits.

o Path Py:(W7 @ Wy, Wa): Request Wy & Wy from DB,
and W5 from DB,. This path has a download cost of 2L
bits.

Paths P; and Py, which have lower download cost, are
selected with probability p, whereas higher download cost
paths P35 and P, are selected with probability g. From the
total probability theorem, we have

2p 4+ 2q = 1. (28)

The answer of DB, can take four different structures,
Tp,1s-- -, Tn,4. These structures represent the element addition
of all possible subsets of {I¥;, W5}. Note that the selection
probability of any structure m,;, j € [1 : 4] equals the
selection probability of all paths containing that structure.
Also, there is one path per message that contains each structure
Tn,j- For example, w1 o = {W1} is paired with 75 5 = {0} to
retrieve W1, or it can be paired with 73 3 = {WW;&W,} for Wy
retrieval. Let the path selection probabilities be uniform, i.e.,
p=q= %. Thus, each structure is selected with probability
i, irrespective of the requested message index. It is straight-
forward to show that this probability assignment satisfies the
perfect privacy definition in (7). Moreover, although the cost

Fig. 4. The original PIR scheme in [7] for N =2, K =2, and L = 4.

Fig. 5. AL-PIR scheme for N = 2, K = 2, general ¢, and § > 1 (¢).

varies per path, the uniform path selection yields an optimal
average download cost of 3/2. Therefore, this path-based PIR
scheme is also optimal and matches the result of Sun and Jafar
[7] for perfect privacy.

Improving the download cost via path biasing (achieving
e—user privacy). The leaky privacy definition in (9) together
with the path-based scheme described above, lead us to con-
sider schemes that bias the path selection process for retrieving
desired messages. We next show that this helps reduce the
average download cost for any non-zero e. Intuitively, if we
assign higher selection probability to paths with lower down-
load cost than the average (for example L), an overall lower
cost can be achieved at the expense of some bounded loss of
privacy due to the biasing. The question we pose is whether
there are values p # ¢ that yield an average download cost less
than % and simultaneously satisfy the e—user privacy definition
in (9). The probability Pr{Q%) = 7, A% = ~[Wq} can be
expressed as

Pr{Qy) =m Al =9|Wq} =

PriQW = n[Wq} Pr{A) =~|QW) = 7, Wq}. (29

The term PT{Q%L ) = m|[Wq} depends on the path selection
probability. To provide privacg/, for any answer to a specific
structure 7, the term Pr{Aﬁf = ’Y‘QS) = m,Wq} should
be constant independently of the requested message. To meet
the privacy definition in (9), it is sufficient to show that the

possible structures to each query satisfy:
Pr(m, ;li =1)

< e,
Pr(m, |t = 2) €

Vn e {1,2}, je[l1:4], (30)
where Pr(m,_;|i = k), is the probability of retrieving structure
mn,; When the desired message is k. Based on the scheme in

Figure 5, there are two cases for each structure 7, ;:
(i) my,; is used to recover Wi and Wy with the same
probability either p or ¢, then
Plmngli=1) _
P(m, ;i =2) ’
which clearly satisfies (9).
(ii) my ; is selected with different probabilities p and ¢ to

€Y



retrieve Wy and W, respectively, and vice versa. Then,
p and ¢ must satisfy
Pr(m,;li=1) p

R it MV A P

= Pr(mayli=2) g G2

Invoking the fact that the sum of path probabilities must equal
one, we use (28) to substitute by ¢ = 0.5 — p and rewrite (32)
as »

< ef. 33
05—p — ¢ (33)

This gives us the following inequality,

€

p< o (34)

1+e€)’
Therefore, we can pick p that satisfies (34) with equality, and
then select ¢ = 0.5 — p, as a valid choice of path selection
probabilities which satisfy the e—user privacy constraint.

Computing the download cost D(e,d > 0(¢€)). Since
our scheme is symmetric with respect to messages, the same
download cost is obtained for the retrieval of message W or
message Ws. Then, the average download cost can be written

as

Y1 Pr{P = P;}- Dp,
L )
where Pr{P = P;} € {p, ¢} is the probability that path P,
is chosen and Dp; is the cost of path P;. From Figure 5, we
know that Dp, = Dp, = L, and Dp, = Dp, = 2L. Hence,
D(e,§ > d(e)) equals

D(e, 6 > 5(¢)) = (35)

D(€7526(6)):2><p><L+2><q><(2L)

L
=2p+4q
Ws_9,
(b) e
>S9 __¢ 36
- (1+e) (%6)

where (a) follows from (28), and (b) follows from (34). Hence,
the download cost of this scheme (when p = ¢°/2(1+¢¢)), can
be rewritten as
D (e, 6> o)) =2 — 1
T 2 2(ec+1)’
which is lower than %, the optimal download cost under perfect
privacy. Note that a lower cost cab be achieved for any e.
Computing DB privacy leakage . We have shown in the
above example that the biased selection probability of the path-
based scheme can trade user privacy for lower download cost.
We now calculate the DB privacy leakage. From the above
leaky construction, we can show that

(37

.\ 3 e —1
H(A} ) = D(€,0 2 b1(e)) x L > iL T e+ 1)

L. (38)
Similarly, the average size H (Afllzg] |W5) of answers given Wy
is known and can be expressed as

4
H(A{ W) = > Pr{P =P;} Dp,jw,
j=1

=2xpxL+2xqgxL=1L, 39)

—> IR

az as

oS

Fig. 6. AL-PIR scheme for N = 2, K = 2, e = In(1.5), and § = 4/15.

where Dp,|w, is the cost of path P; when W5 is given. This
makes the DB privacy leakage, or the information revealed
about Ws, equal to

I(Was AfLy) = H(A,) = H(AL, W)
1 e —1
>_L———— L=6()L (4
T CES e (“0)

We highlight that this construction can achieve a lower DB
privacy leakage compared to the perfect privacy scenario in [7]
where I(Wy; Aff:)2]) = L/2, without the need for any shared
randomness. However, this construction cannot fulfill the DB
privacy constraint if § < d1(e). In the following example,
we introduce a construction that can satisfy any DB privacy
requirement with the utilization of the common randomness.

B. AL-PIR example with N = 2, K = 2, ¢ = In(1.5), and
=4/15
Figure 6 shows an example of a possible AL-PIR scheme
with N =2, K =2, e =1n(1.5), and § = 4/15. We observe
that the allowed DB privacy leakage § is less than ¢y (e),

4 1 e —1

09 =5 3
Now, assume that each of the two messages is of size L = 3
bits, W1 = {a1,as, a3} and Wy = {b1, by, b3 }. To satisfy the
0—DB privacy condition, we include the least required amount
of shared randomness S that has a size of «y(e,d)L, where
aq (€, 0) is computed from (16):

1 e+ NE-1 -1
N -1 NE-1 1

=0.4. 1)

0)L = g =1 bit.

(42)
Each message is divided into two parts as follows: W;
is divided into Wl(l) = {a1} (size of S = L/3), and
W = {as,a3}; and Wy is divided into Wi" = {b;}, and
W2 = {by, bs}.

Suppose that the user wants to retrieve W;. The user can
use any of the four possible paths shown in Figure 6, where a
path is defined as a query set QH‘”?N] which satisfies, together
with its corresponding answer, the correctness and privacy
constraints. However, these paths have different download
costs. The first two paths have a cost of 4L/3 bits, whereas
the other two paths have a cost of 2L bits. The correctness of
the scheme is straightforward, the XOR addition of the two
structures forming each path results in getting a;, ao, and as.
To reduce the download cost by trading user privacy, similar

ay(€e,0)L = (




to the previous example, we select the lower cost paths with
probability p = 0.3, whereas the higher cost paths are assigned
a probability ¢ = 0.2. These selection probabilities are chosen
such that both e—user privacy and §—DB privacy conditions
are satisfied. As we will discuss later in more details, the
ratio describing e—user privacy leakage in (9) is given by the
maximum ratio between the probabilities of selecting different
paths, represented here as p/q = 1.5 = e€.

When W, is requested by the user, the DB privacy leakage
is described as the information user can decode about W5. We
notice that the first two paths in Figure 6 do not reveal any
information about W5, while using the other two paths, the
user can decode the two bits WQ(Q) = {b, b3}. This gives the
average DB privacy leakage as

L
I(Wai All) =2 % 0.3x0+2x02x2x 3=

L 4
08x —=—L=4L.
3 15
Hence, this achieves the §—DB privacy condition. The average
number of downloaded bits for this scheme is

(43)

Des =2x03x4+42x0.2x6=4.8 bits, 44)
which yields a download cost of
4

D(e=1In(1.5),0 = E) = 4.8/3 =1.6. (45)

We highlight that this scheme clearly improves the download
cost in comparison to the perfect SPIR, which has a download
cost of N/N—1 = 2, at the expense of some loss in user and
DB privacy.

C. General (¢,0) AL-PIR Construction

In this section, we generalize the AL-PIR scheme in the
previous examples for arbitrary values of N, K, and asym-
metric privacy leakage characterized by the pair (€, §). Assume
there are K > 2 messages, W1, ..., Wg. Consider a random
permutation of the databases indices. Let each message W
be divided into two parts W, = {W,gl), W,£2)} such that

HWV) = (N — Dai(e,8)L, (46)

HWP) = L — (N = Dau(e,0)L, (47)

where «;(€,d) is the minimum required amount of shared
randomness for the AL-PIR scheme to ensure the 6—DB
privacy and computed as

1 ¢4 NE-1
aq(€,0) = max <O, et 6)

N-1  NEK-1_1
_[FE - SEE S 050<80
0, 5>51(€).

Furthermore, let each W,El) and W,Eg) be divided into N — 1
equal sub-packets,

1
w =il oW (49)

W =W, W (50)

such that for all ¢ € [I : N — 1, HW)) =
aq(€,0)L, H(W,Si)) = (55 — 1(¢,8))L. For instance, in
the example of Figure 6 where a1(e,d) = /3 and L = 3
bits, Wy is divided into W" = {a,} of size 1 bit, and
Wl(Q) = {ag, a3} of size 2 bits.

For a requested message W;, the DBs mask W,gl)’s, k €
[1 : K]\ i, with the secret key S. The content of W,gz)’s
may be allowed to leak to the user. To retrieve a required
message W;, the user first selects one of the possible retrieval
paths across the N DBs. Any path is formed by a set of IV
queries, QE?N , which are submitted to the respective DBs.
The selected path has to fulfill two requirements: (i) the path
correctly recovers W;; (ii) the N submitted queries satisfy
both the e—user privacy and §—DB privacy conditions. The
user sends the following query vector to DB,

Tn,i = (xlv"';x’ifh(xi +n)Naxi+1a"'7mK)a

z, €[0:N—1], ke[l: K], (51)

where (z; + n)y denotes (x; + n) (mod N). This K x 1
vector gives the indices of the K message bits, one bit for each
message, that should be included in the answers. The design
of 7, ; makes sure that all submitted queries 7, ;’s include the
same indices of all undesired messages, and different indices
of the required W;. Then, the identical undesired bits, within
the N collected answers, can be utilized to decode the desired
bits. After DB,, receives the query my,;, it responds with
answer ’Vn(ﬂ-n,i),

— (1) 1)
fyn(ﬂ—""i) B { @ Wkawk ®5& Wi7(1i+")N’
ke[1:K]\i

(2) (2)
@ Wk7-”«'k@Wi,(mi+n)N}7 (52)
ke[1: K]\t

where €D represents the summation via XOR operation. We

denote by W,glo) and W,fzo) the null or the empty set (). This
response ensures protecting all W,Slf) ’s by encoding them with
S. We observe that once one of the N queries is designed,
i.e., the indices x’s are chosen, the remaining N — 1 queries
are deterministic functions of these chosen indices. As x €
[0: N —1] for any k € [1: K], each 7, ; can be represented
by NX different vectors. Each of these vectors creates one
possible path to retrieve W;. Thus, for a specific permutation
of DBs indices, we have N possible paths in general. For the
example in Figure 6, there are N = 4 paths for the retrieval
of Wj. The first retrieval path is created from the queries
71,1 = (0,0), and w21 = (1,0) with corresponding answers
’)/1(7'('1,1) = {S,@}, and ’}/2(71'271) = {(11 @ S, {0,270,3}}. A
general form for one possible path is shown in Figure 7.

Analysis of Correctness: The user can decode the sub-
messages Wﬁ) and Wﬁ), V£ e [1: N —1], of the requested
message (I/Vq;:g) using the information retrieved from DBs N —
x; and (N + ¢ — z;)n as follows

{Wi(,;)’ Wz(i)} = YN—=z; (ﬂ—N*CEz‘,i) D YN+e—z; (W(N—i-f—mi)N,i)

1 1 2 2
={ EB Wé,ik ®S® Wi(,o)a @ Wé,ﬁk D Wi(,O)}
ke[1:K]\i ke[1:K]\i



@ wiles @ @ wesew? D wesew,

D wiow?
ke[l:K\i

2 2
D W ewl,

ke[LK\i ke[LKN\

Fig. 7. One path of the AL-PIR scheme that retrieves W; with x; = N — 1.

1 1 2 (2
@ { @ Wk,ik ®SD Wi(,é)’ @ W;iik ® Wi,z)}
ke[1:K\i ke[1:K\i
={wyew!), woew?}
= {w'), Wit (53)

Proof of c—user privacy: We note that the total download
cost for each path is not fixed, but it depends on the choice
of zx’s, k € [1: K]. Then, we have two types of paths:

o Lower cost paths ( Vk € [1: K]\ i, x, = 0):
Generally, N possible paths belong to this case, those
created from queries 7, ; where ; =0,1,...,N —1.In
this case, we have

={ P wiesew],
ke[1:K]\1

Wiy} ={s.0}.

YN —z; 7TN IL,Z

D wie

ke[1:K]\1

(54)

i.e., we only download the secret key S of size (e, )L
from DBy_,,. Whereas, for other databases, all struc-
tures download data of the form {Wi(é) @S, Wi(j) }, each
of size ﬁ bits. In total for these type of paths, the
user needs to download (N — 1)355 + ai(e,6)L =
(1 + ay(¢,9))L bits from all DBs.
 Higher cost paths (3 k € [1: K]\ i, xx # 0):

For this case, there are NX — N possible paths. Here, all
requested query structures are of size N— bits, and the

user needs to download 1! L bits in total from all DBs.

Without loss of generality, we assign probabilities p and g,
where p > ¢, to lower cost and higher cost paths, respectively?,
such that

N xp+ (N¥ —N)

xq=1. (55)

We can see that any query 7, ; with certain x3’s can be
used to recover any desired message. This is obtained by
requesting that query with other N — 1 queries that share the
same z’s of the i — 1 remaining messages. This is crucial to
satisfy the e—user privacy requirements because accessing a
structure does not eliminate any of the message possibilities.
Furthermore, each structure is selected to retrieve W; with the
same probability of selecting the path coming through it, either
p or ¢. Similar to (29), Pr{ng) = 7T7A$Z) = v|Wgq} can be
expressed as

Pr{Q) =m A =4|Wq} =

Pr{QY) = 7n|Wq} Pr{A) = 4|Q) = 7, Wq}.  (56)

2Due to symmetry, paths belonging to the same type are assigned the same
probability. Assigning different probabilities does not improve the download
cost or the privacy.

The term Pr{AEf) = w|Q$f) = m, Wg} is also a constant,
independent of the requested message. Thus, to meet the
definition in (9), we show that possible structures of each query
satisfy:

PI‘(TI'»,L77;|Z' - k‘1)

— = <L 1: K
Pr(my i = ) = © 0 Rk € LK

(57)
where Pr(m,, ;|4 = k1), is the probability of selecting structure
mp,; wWhen the desired message is W, . The following lemma
generalizes the condition in (34) to satisfy e—user privacy for
any K. It states the upper bound on the path biasing that does
not violate the e—user privacy.

Lemma 1: To preserve e—user privacy definition of the
AL-PIR, the biased probability p has to satisfy the following
inequality

eE

PS Ny NE-N (58)

Proof: Based on the proposed scheme, each structure 7, ; can
be selected with probability p or g, then

P n,i =k
r(7n, |l 1) c {p7q p’q} < e, (59)
Pr(my, ili = k2) Pqaqp
As p > q, we only need to guarantee that
Pcee (60)
q
Substituting (55) in the inequality, we get
K K _
e s PV - Njp (N7 - N)p 61)
¢ (N%-N)g 1—Np

By rearranging the above inequality, we get the following:

< ———k .

P=Ney NE-N

Equation (55) can be used to find the following equivalent
condition:

(62)

(63)

> —
1= Nee T NE_N

Analysis of §—DB privacy: We show that the proposed
AL-PIR scheme satisfies the DB privacy leakage constraint in
(6). From the previous construction, we categorized the paths
into two groups: (a) N paths of size (1 + (e, 0))L bits; and
(b) N¥ — N paths of size %L bits. Then, the expected size

of the answers, H (Aﬁ) N]) can be expressed as follows:

= pN(1 +ai(e,0)) L+ q(N¥ — N)LL

(4)
H(A N1

[1:N])

a NE - N
(—) pNa1(€,5)L+L+ ﬁ

1—pN
L
N -1

pN (Nll _ oq(e,é)) L

(64)
and (b) follow from (55). We then calculate

qL

© L+ pNay(e,6)L +

L
— L -
N1

where (a)



H(AS?N] |W[1:K]\i) as follows:

(a)
1 N IWiLkp) =

(b) i
= H(W:) + H(S, Ay [Winsep i, W)
= HW;) + H(S) + H(AD Wk Wi, S)

[1:N] |
@ (1+ ai(e,0)L (65)
where (a) follows the correctness property in (4) whereas
(b) and (c) hold from the fact that answers are function of
messages and the shared randomness.
Lemma 2: To preserve §—DB privacy for 6 < 01(€), the
biased probability p has to satisfy the following inequality

H(A] H(W;, AS?N] Wit ki)

HW;)+ H(S) =

€

P2 Ney NE— N (66)

Proof: According to (64) and (65), we can express the DB
privacy leakage as

6L > I<W[1K]\w A(l)

[l:N])
= H(A ) — H(Aﬁ?N]\W[lzK]\i)

—L+% pN(]Vl—l_al(g(s))L
— (14 a1(e,6))L

a 1—pN
£ (pN = D (e, )L +

= (1 - pN) (5 — (6, 0))L

_ 1 e+ NKE-1 1
(1pN)m1n(N_1, NET 1 §>L, (67)

where (a) follows from (55) and (b) follows from (48). For the
commonly shared randomness .S, we have one of the following
two cases:

L

—~
=

o No shared randomness is needed (a1 (e, ) = 0):
In this case, the condition in (67) can be written as

follows,
1—pN (@ NE-1 1
6L > > L=261(e)L
= N-1~ = (N—-1)(ec+ NE-T 1) 1(€)
(68)

where step (a) follows by applying the e—user privacy
condition obtained in Lemma 1. Therefore, we obtain the
bound on the DB privacy leakage & > d;(¢), i.e., DB
privacy leakage is maximized which covers the L-PIR
model previously considered in [55]. This case requires
no condition on the biased probability p as the inequality
in (68) is achieved for any p. We highlight that this
scheme obtains a better DB privacy compared to the
perfect PIR scheme proposed in [7], without the need
to any shared amount of randomness. The latter scheme
causes a leakage of WL bits.
 Shared randomness is needed (o1 (¢, ) > 0):
For any «(e,0) > 0, we always have

1 e+ NE-1—1
>

N1 NE-T 1 J. (69)

From (67), we get the following relation on p:

NE-1 1
1-pN) < —————— 70
A-pN) < o yrT 7 (70)
which leads to the proof of Lemma 2.

[ |

Lemmas 1 and 2 lead to the following necessary condition
on p to simultaneously satisfy the e—user privacy and 6—DB
privacy definitions.

Lemma 3: To preserve e—user privacy and §—DB privacy,
the biased probability p has to satisfy the following condition
with equality

eE

_ 71
Ne¢ + NK - N 7D

p =
Proof: For § < d;(¢), the proof follows directly by applying
Lemmas 1 and 2. For § > 6;1(€), the proof follows from
Lemma 1 where we pick the maximum value of the biasing
probability p in order to minimize the download cost, i.e.,
maximize the probability of picking the paths of lower cost.
]
Analysis of download cost: Given that the scheme is
symmetric across all messages, the download cost can be
written as,

H(AD )

[1:N]

D(e,8) = ———1

(67) L

@, 1 _ o
_1+N—1 p (N 1 041(676))

(b) 1 1 e+ NK-1 1
Z1+4+-—— —pN )
L mm(Nl’ NE-T_1

(i)1 1 e
B N-1 e +NE-1—-1
, 1 e+ NK-1 1
xmln(Nl, NE-T 1 (5), (72)

where (a) follows from (64), (b) follows (48), and (c) is due to
Lemma 3. According to the size of the available randomness
S, we have one of the following two cases:
o No shared randomness is needed (a1 (e, ) = 0):
This case corresponds to § > d1(¢). The download cost
in (72) can be written as follows,

1 ef 1
D(e,6) =1 —
(€O =1+ gy - o1 * Vo1
NE=1 1
=1
TN D NET )
=1+ o L
e+ NE-L_ 1N NE-L
= d1(€,61(¢)). (73)
o Shared randomness is needed (a; (¢,6) > 0):
For any oy (e,d) > 0, we have
1 e+ NE-1—1
0. 74
N-1  ~NET_ 1 74)

Then, the download cost in (72) can be re-expressed as

1
D(€,5) 1+ m



e€ o e+ NE-1 1
ec+ NE-1 1 NE-1_1

1 de
N1 nE1_g - @6

Both cases in (73) and (75) yield the upper bound in (17) for
the download cost of AL-PIR and prove Theorem 1.

0

=1+ (75)

V. PROOF OF THEOREM 2 : LOWER BOUND ON D*(¢, d)

Without loss of generality, assume the requested message is
W1. We can bound D*(e, §) as follows

Yooy H(AR)

D (e,8) = Lnztf
(1)
_HAL)
- L
A(l (1')
rubely

To further bound D*(e,d), we first state the following
two lemmas. Proofs of both lemmas can be found in the
appendices. In Lemma 4, we introduce the relation between the
entropy of answers downloaded to retrieve different messages
given a certain message. We emphasize that, under perfect
privacy definitions, the entropy should be exactly the same
regardless of the requested message,

H(AL Wi, Q) = H(AL Wi, Q).

Vkq 7é ko, n € [1 : N] ()

However, this does not hold under the e—user privacy defini-
tion.

Lemma 4: Under the e—user privacy definition, for any &
and ko € [1: K| and a non-negative constant ¢, we have the
following inequality

H(A Wiy, Q) = — H(AL W, Q1))
Vk’l#k‘Q, TLE[I:N]. (78)

Using Lemma 4, we get the following recursion lemma.
Lemma 5: For k € [2, K], we have

k) (k
H(AELN] |W[1:k:—1]7 Q[l)j\/])

1
> (1= o)L+ 57 H (AR Wi Q).

1:N]
Using Lemmas 4, and 5, we bound H( (1) |QE11)N]) as
follows
1)
H(A[ Q)
_ (1) (1) (1)
—H(WlaA[lN]‘QDN) ( |A N]aQ[lN)

© HWL AL 1Q ) — o)L

= HW1|Q{y) + <A“’]\W1,Q[1N]> o(L)L
= (1= o(L)L + H(A[ W1, Qi y))
(1—o(L))L + H(A ;>|w1,c9§1:m>

—~
=

Iz IV

(1 —o(L)L + H(AP W1, Q)

@

> (1 o)L+ - HAP W1, Q). (79)

where (a) is due to the correctness property in (4), (b) follows
from the fact that the message content is independent of
queries, (c) comes from the fact that the answer AS’ is
conditionally independent of the queries submitted to other
DBs given the query lel), whereas (d) comes from Lemma
4. The addition of the previous relation over all possible n’s
gives us the following

NH(A{y |fo>N]>

1N
L+ 2D H

> N(1-o(L (ADW,QP).  (80)
n=1
Dividing by N,
(1) 1
H(A[lN]|QE1)N])
> (1—o(L))L + (AP W1, Q)
1 o @
2
> (1= o(L)L + ZlmASENWl,Q[LNQ
1
> (1—o(L))L + WH( [1: N]‘Wl’Q[l N])
(@) 1 2)
o(L)L
+ Nee (WZ‘A[I N]aWIaQ[l N) §V€)€
o(L)L
=(1—o(L))L + —H(WQ,A(Q) W Q) — ;V)E
€
(1 o(L)L+ ~—— N SH(Wa| W1, Q)
o(L)L
+ Nee (A(2 |W1,W2,Q[1N) J(Ve)€
b
~o(L)L
Nes¢
1
= (1 - o)L+ (1= o(L)L
+ (A(Q) |W1,W2 Q[1 N) 81

N €
where (a) comes from the correctness property in (4), and
(b) is due to the message independence. Following the same
iterative process used in [7], and invoking the recursion
property in Lemma 5, we get

H(A[ Q)
1 1
> (1+W+"'+W)(I—O(L))L
1
'*@ﬁ;ﬁiffﬂAﬁgmwangh)
@ 1o+ N

(Ne)K—1(Nec — 1)

1 (K) (K)
+ K—1 H(A[l;N]‘W[lzK]aQ[LN]);

(Ner) ®2



where (a) follows from the rule of finite sum of geometric
series. Under the L-PIR model presented in [55], the term
H(AEEJ)V”W[LK]’ QH{])\] ) is replaced by zero as answers are
functions of only the messages. However, this does not
hold in the presence of common randomness. From the §—DB
privacy definition in (6), we get the following:

(K) (K)
H(A[I:N] (Wh:k), Q[l:N])
_ (K) (K)
- H(A[1;N] ‘W[l:K—l]v Q[l:N])

K K
- I(WK;AELJ{,]|W[1:K—1]an1:]2q)
K K
(Af1 ])\, Wik - 1]7QE1:11/]) - H(Wk)

K K K K
= H(Afl QM) = AT Wi -1 | QX)) — H(Wie)
K K
= H(A [1N]‘QE1K{) (A( ) 7Q[1N]7W[1K 1) — HWk)
K
> H(A}, N]\Qﬁ}v)—éL—L, (83)
where (a) follows since all messages are independent and Wi
. I . K
is a deterministic function of A . By symmetry, we can

K
assume that H(AE11;)N]|QE11:)N]) Afl ])v |Q [0 N]) Then,

H(A[LN]‘W[LK]’Q[I:N]) 2 H(A[lN]|Q[1N]) —d0L— L.

(84)

Since H( [ N IWi:k1s Q(1 N ) > 0, we obtain

H( [1: N]‘W[l K] Q[l N])
> max (0, H(A{|Q! ) — 6L~ L)
Next, we can express (82) using (85) as
H(A Q) >

[1:N]
(Nes)K-1 —1
(Net)K—-1(Nee — 1))(1

max <0 H(A(l)N] |QE11)N]

(1+ —o(L))L

)féLfL). (85)

1
T WeE
Dividing by L and allowing it to approach oo, we get

(1)
H(A [1N]‘Q ) S 14 (Nes)K-1 —1
L - (NeS)K—1(Nec—1)
H(AL Q1)
- - N i 0 Sl S0 AR S |
+ (Ner)FT max | 0, 7 1) (86)
Following (86), the following two inequalities are true
A(l Q e\K—1 _
H( | [1N]) S 14 (Nec) 1 7 87)
(NeS)K—1(Nec —1)
(1) (1)
H(A; | Qpiny) S 14 (Ne)K-1 -1
L - (Nef)f(*l(Ne6 -1)
(1)
1 ( [1 N |Q 1. N])
+ (Neﬁ)K—l( 7 —0—1). (88

The inequality in (88) can be rearranged as

(Nee)K_l -1 H(Afll)N]‘Qﬁ)N )

(Ne )K—1 I
(Ne)E-1 —1 1
> —
2 I ek iNe =) eyt O
 (Ne)Et -1 (Ne)E-1 -1 B 4]
(Nee)Kfl (Nee)Kfl(Nee _ 1) (Nee)Kfl’
(89)
(A(lN]|Q[1 ‘N ) 1
N7 — .
L - 1—i_Nee—l (Nes)K-1 -1 ©0)
From (87) and (90), we get
H(A[y IQ[1 ) (Ne)K—1 1
— T IEMTEIENT
2 max 1+ (Net)K—1(Nec — 1)’
1 0
L Nec —1  (Nes)k-1— 1)'

Substituting by (91) in (76), we can lower bound D* (¢, d) as

@ 1HD
D*(e,8) > —(A“ |9

> D"B(e, 6)
(Ne)E—1 -1
(Nes)K—-1(Nec —1)
I ) )
Net —1  (Nes)Kk-1 17"

= max (1 +

; I+

oD

For a fixed ¢, D“B(¢,§) is monotonically decreasing in &

until we reach § = d2(€) = % at which
Ne)E-1 _q 1 1)
|4 ) —1+ - .
(NeS)K—1(Nec —1) Nec—1 (Neo)k-1-1
(92)

After this point, D'B(e,§) is fixed at the value 1 +
(Net)K—1-1

(Ne)K-T(Ner—1): Lhen, we can alternatively represent
DB(e,6) as
D*(e,8) > D"B(e, 6)
_ {]'—'_Ne1 1 SNPG);S( 11 :d2(6 6)7 0§6<52(6)7
1+Ué%%ﬁﬁi%j—dﬂ€®(ﬂ’ > da(e).
93)

This proves the lower bound on D*(¢, ) in Theorem 2.

A. Required amount of shared randomness

In this section, we prove the lower bound in Theorem 2
on the required amount of shared randomness to achieve the
minimum download cost derived in (91). From the §—DB
privacy in (6), given a requested message Wj, we get

k)
oL > I(Ale 7@ N]aW[lK\k)

_ (k) .
_I<A[ ] Wl K]\le[l N])

(k) AR (k)
( [1 N |Q ) ( [1:N]|W[1:K]\k’Q[1:N])
(k) ( (k) (k)
- H(Au :N] |Q[1;N]) — H(Wy, A[l:N]|W[11K]\k’ Q[l:N])



+ H(Wk\Aff)Np Wik )\ks fo:)m)
D H(AE QW) — H(W, A
+o(L)L
_ H(Aff:)lv]wff:)l\’}) — HWWkp\k QE?N])
- H(Aff)N |W[1~K]5QEf;)N]) +o(L)L
_H([l”Qw))—L_fﬂ4ﬁﬂwh““Q$%)
+o(L)L
= H(A Q) — (1 - (L)L
H(A[ Wi S Q{f ) = 183 Al Wi Qff )
D %), Q%) — (1 o( L)L
—I(S; A[l:N] Wik, Q[f;)zv])
_ H(Aff:)zv]mfi)N]) — (1 —o(L))L — H(S|W1.k) Qﬁc)N])
+ H(SlA(f.)N], Wik 7in)N])
() (A1) — (1 = o(L)L — H(S)
+ H(S|AE1:N], W[l:K]vQEf;)N])
> A0l - (0o~ )

(k) (k)
[1:N] LGRS Q[l:N])

(94)

where (a) follows from the correctness property, (b) comes
from the fact that answers are function of the K messages and
the common randomness .S, and (c) is because the common
randomness S is independent of the K messages. Dividing by
L, allowing it to approach oo, and substituting by (90) in (94),
we get

1 5 H(S)
> _ N [ S
571+N€€—1 (Nec)K-1 -1 L
1 5 H(S)
T Nec—1  (Ne)k-1—1 L ©3)

Rearranging the inequality, we get the following bound on
a(e, 9),
H(S) 1 )
el 5) > _
T SRl P R 7
which is also a valid bound on the optimal common random-

ness a*(e,d). Then, following that a*(e,d) > 0, we obtain
the following bound,

-4, (96)

* I (Neo) K1
a*(€,0) > as(€,d) = max (07 Ne 1 (Ne k1= 15
pey K1
_ Nelfl - (15[12/6)12'7171 67 0 S ) < 62(6)5
0, 0> 52(6),

o7)

which completes the proof of the lower bound on the optimal
common randomness size in Theorem 2.

VI. CONCLUSIONS

We studied the AL-PIR problem that relaxes the perfect pri-
vacy requirements for both user and DB privacy. The allowed
leakage is asymmetric allowing for different privacy leakage

in each direction. We showed that allowing privacy leakage
provides an opportunity to improve the optimal download cost.
We introduced an AL-PIR scheme that gives an upper bound
on the optimal download cost for arbitrary leakage budgets.
We investigated possible tradeoffs that stem by adjusting the
level of privacy at both user and DB sides. We further obtained
a lower bound on the download cost and showed that the
multiplicative gap between the upper and lower bounds is
bounded by Nj\ff, i.e., our AL-PIR scheme is optimal for
perfect user privacy, e = 0, and is optimal within a gap of at
most r— for any e.

REFERENCES

B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, ‘“Private infor-
mation retrieval,” in Proceedings of the IEEE Annual Symposium on
Foundations of Computer Science, 1995, pp. 41-50.

S. Yekhanin et al., “Locally decodable codes,” Foundations and Trends®
in Theoretical Computer Science, vol. 6, no. 3, pp. 139-255, 2012.

W. Gasarch, “A survey on private information retrieval,” Bulletin of the
EATCS, vol. 82, no. 72-107, p. 113, 2004.

D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in Proceeding of the IEEE Symposium on Security
and Privacy. S&P, 2000, pp. 44-55.

R. Ostrovsky and W. E. Skeith, “A survey of single-database private
information retrieval: Techniques and applications,” in International
Workshop on Public Key Cryptography. Springer, 2007, pp. 393—411.
N. B. Shah, K. Rashmi, and K. Ramchandran, “One extra bit of
download ensures perfectly private information retrieval,” in Proceedings
of the IEEE International Symposium on Information Theory (ISIT),
2014, pp. 856-860.

H. Sun and S. A. Jafar, “The capacity of private information retrieval,”
IEEE Transactions on Information Theory, vol. 63, no. 7, pp. 4075—
4088, 2017.

, “Optimal download cost of private information retrieval for
arbitrary message length,” IEEE Transactions on Information Forensics
and Security, vol. 12, no. 12, pp. 2920-2932, 2017.

, “The capacity of symmetric private information retrieval,” IEEE
Transactions on Information Theory, vol. 65, no. 1, pp. 322-329, 2018.
, “Multiround private information retrieval: Capacity and storage
overhead,” IEEE Transactions on Information Theory, vol. 64, no. 8,
pp. 5743-5754, 2018.

, “The capacity of robust private information retrieval with collud-
ing databases,” IEEE Transactions on Information Theory, vol. 64, no. 4,
pp. 2361-2370, 2017.

R. Tajeddine, O. W. Gnilke, and S. El Rouayheb, “Private information
retrieval from MDS coded data in distributed storage systems,” I[EEE
Transactions on Information Theory, vol. 64, no. 11, pp. 7081-7093,
2018.

K. Banawan and S. Ulukus, “The capacity of private information
retrieval from coded databases,” IEEE Transactions on Information
Theory, vol. 64, no. 3, pp. 1945-1956, 2018.

Q. Wang and M. Skoglund, “Symmetric private information retrieval for
MDS coded distributed storage,” in Proceedings of the IEEE Interna-
tional Conference on Communications (ICC), 2017, pp. 1-6.

R. Freij-Hollanti, O. W. Gnilke, C. Hollanti, and D. A. Karpuk, “Private
information retrieval from coded databases with colluding servers,”
SIAM Journal on Applied Algebra and Geometry, vol. 1, no. 1, pp.
647-664, 2017.

H. Sun and S. A. Jafar, “Private information retrieval from MDS coded
data with colluding servers: Settling a conjecture by Freij-Hollanti et
al.” IEEE Transactions on Information Theory, vol. 64, no. 2, pp. 1000—
1022, 2018.

Z. Jia and S. A. Jafar, “X-secure T-private information retrieval from
mds coded storage with byzantine and unresponsive servers,” [EEE
Transactions on Information Theory, vol. 66, no. 12, pp. 7427-7438,
2020.

H.-Y. Lin, S. Kumar, E. Rosnes, and A. G. i Amat, “An MDS-
PIR capacity-achieving protocol for distributed storage using non-MDS
linear codes,” in Proceedings of the IEEE International Symposium on
Information Theory (ISIT), 2018, pp. 966-970.

H. Sun and C. Tian, “Breaking the MDS-PIR capacity barrier via joint
storage coding,” Information, vol. 10, no. 9, p. 265, 2019.

[1]

[2]

[4]

[5]

[6]

[7]

[9]
[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]



[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

R. Zhou, C. Tian, T. Liu, and H. Sun, “Capacity-achieving private
information retrieval codes from MDS-coded databases with minimum
message size,” in Proceedings of the IEEE International Symposium on
Information Theory (ISIT), 2019, pp. 370-374.

K. Banawan and S. Ulukus, “Multi-message private information re-
trieval: Capacity results and near-optimal schemes,” IEEE Transactions
on Information Theory, vol. 64, no. 10, pp. 6842-6862, 2018.

Y. Zhang and G. Ge, “Private information retrieval from MDS coded
databases with colluding servers under several variant models,” arXiv
preprint arXiv:1705.03186, 2017.

K. Banawan and S. Ulukus, “The capacity of private information
retrieval from byzantine and colluding databases,” IEEE Transactions
on Information Theory, vol. 65, no. 2, pp. 1206-1219, 2019.

R. Tajeddine, O. W. Gnilke, D. Karpuk, R. Freij-Hollanti, and C. Hol-
lanti, “Robust private information retrieval from coded systems with
byzantine and colluding servers,” in Proceedings of the IEEE Interna-
tional Symposium on Information Theory (ISIT), 2018, pp. 2451-2455.
K. Banawan and S. Ulukus, “Private information retrieval through
wiretap channel II: Privacy meets security,” [EEE Transactions on
Information Theory, vol. 66, no. 7, pp. 4129-4149, 2020.

Q. Wang and M. Skoglund, “Secure private information retrieval from
colluding databases with eavesdroppers,” in Proceedings of the IEEE
International Symposium on Information Theory (ISIT), 2018, pp. 2456—
2460.

Q. Wang, H. Sun, and M. Skoglund, “The capacity of private information
retrieval with eavesdroppers,” IEEE Transactions on Information Theory,
vol. 65, no. 5, pp. 3198-3214, 2018.

R. Tandon, “The capacity of cache aided private information retrieval,”
in Proceedings of the IEEE Annual Allerton Conference on Communi-
cation, Control, and Computing, 2017, pp. 1078-1082.

Y.-P. Wei, K. Banawan, and S. Ulukus, “Fundamental limits of cache-
aided private information retrieval with unknown and uncoded prefetch-
ing,” IEEE Transactions on Information Theory, vol. 65, no. 5, pp. 3215—
3232, 2018.

S. P. Shariatpanahi, M. J. Siavoshani, and M. A. Maddah-Ali, “Multi-
message private information retrieval with private side information,” in
Proceedings of the IEEE Information Theory Workshop (ITW), 2018,
pp. 1-5.

A. Heidarzadeh, B. Garcia, S. Kadhe, S. El Rouayheb, and A. Sprintson,
“On the capacity of single-server multi-message private information
retrieval with side information,” in Proceedings of the IEEE 56th Annual
Allerton Conference on Communication, Control, and Computing, 2018,
pp- 180-187.

A. Heidarzadeh, S. Kadhe, S. El Rouayheb, and A. Sprintson, “Single-
server multi-message individually-private information retrieval with side
information,” in Proceedings of the IEEE International Symposium on
Information Theory (ISIT), 2019, pp. 1042-1046.

M. A. Attia, D. Kumar, and R. Tandon, “The capacity of private
information retrieval from uncoded storage constrained databases,” I[EEE
Transactions on Information Theory, vol. 66, no. 11, pp. 6617-6634,
2020.

C. Tian, H. Sun, and J. Chen, “Capacity-achieving private information
retrieval codes with optimal message size and upload cost,” [EEE
Transactions on Information Theory, vol. 65, no. 11, pp. 7613-7627,
2019.

Q. Wang and M. Skoglund, “Symmetric private information retrieval
from mds coded distributed storage with non-colluding and colluding
servers,” IEEE Transactions on Information Theory, vol. 65, no. 8, pp.
5160-5175, 2019.

R. Tajeddine, O. W. Gnilke, D. Karpuk, R. Freij-Hollanti, and C. Hol-
lanti, “Private information retrieval from coded storage systems with
colluding, byzantine, and unresponsive servers,” IEEE Transactions on
information theory, vol. 65, no. 6, pp. 3898-3906, 2019.

H. Yang, W. Shin, and J. Lee, “Private information retrieval for secure
distributed storage systems,” IEEE Transactions on Information Foren-
sics and Security, vol. 13, no. 12, pp. 2953-2964, 2018.

Z. Jia, H. Sun, and S. A. Jafar, “Cross subspace alignment and the
asymptotic capacity of X-secure T-private information retrieval,” IEEE
Transactions on Information Theory, vol. 65, no. 9, pp. 5783-5798,
2019.

S. Kumar, H.-Y. Lin, E. Rosnes, and A. G. i Amat, “Achieving maximum
distance separable private information retrieval capacity with linear
codes,” IEEE Transactions on Information Theory, vol. 65, no. 7, pp.
4243-4273, 2019.

N. Raviv and I. Tamot, “Private information retrieval is graph based
replication systems,” in Proceedings of the IEEE International Sympo-
sium on Information Theory (ISIT), 2018, pp. 1739-1743.

[41] K. Banawan and S. Ulukus, “Private information retrieval from non-
replicated databases,” in Proceedings of the IEEE International Sympo-
sium on Information Theory (ISIT), 2019, pp. 1272-1276.

[42] K. Banawan, B. Arasli, Y.-P. Wei, and S. Ulukus, “The capacity
of private information retrieval from heterogeneous uncoded caching
databases,” IEEE Transactions on Information Theory, vol. 66, no. 6,
pp. 3407-3416, 2020.

[43] Y.-P. Wei, B. Arasli, K. Banawan, and S. Ulukus, “Private information
retrieval from decentralized uncoded caching databases,” in Proceedings
of the IEEE International Symposium on Information Theory (ISIT),
2019, pp. 2114-2118.

[44] K. Banawan, B. Arasli, Y.-P. Wei, and S. Ulukus, “Private information
retrieval from heterogeneous uncoded caching databases,” in Proceed-
ings of the IEEE International Symposium on Information Theory (ISIT),
2019, pp. 1267-1271.

[45] I. Samy, M. A. Attia, R. Tandon, and L. Lazos, “Latent-variable
private information retrieval,” in 2020 IEEE International Symposium
on Information Theory (ISIT). 1EEE, 2020, pp. 1071-1076.

[46] H. Sun and S. A. Jafar, “Blind interference alignment for private infor-
mation retrieval,” in Proceedings of the IEEE International Symposium
on Information Theory (ISIT), 2016, pp. 560-564.

[47] W.-T. Chang and R. Tandon, “On the capacity of secure distributed ma-
trix multiplication,” in Proceedings of the IEEE Global Communications
Conference (GLOBECOM), 2018, pp. 1-6.

[48] Z. Jia and S. A. Jafar, “On the capacity of secure distributed matrix
multiplication,” arXiv preprint arXiv:1908.06957, 2019.

[49] R. G. D’Oliveira, S. El Rouayheb, and D. Karpuk, “GASP codes for
secure distributed matrix multiplication,” in Proceedings of the IEEE
International Symposium on Information Theory (ISIT), 2019, pp. 1107—
1111.

[50] W.-T. Chang and R. Tandon, “On the upload versus download cost for
secure and private matrix multiplication,” in 2019 IEEE Information
Theory Workshop (ITW). 1EEE, 2019, pp. 1-5.

[5S1] M. Aliasgari, O. Simeone, and J. Kliewer, ‘“Distributed and private coded
matrix computation with flexible communication load,” in Proceedings
of the IEEE International Symposium on Information Theory (ISIT),
2019, pp. 1092-1096.

[52] Z. Wang, K. Banawan, and S. Ulukus, “Private set intersection: A multi-
message symmetric private information retrieval perspective,” arXiv
preprint arXiv:1912.13501, 2019.

[53] D. Asonov and J.-C. Freytag, “Repudiative information retrieval,” in
Proceedings of the ACM workshop on Privacy in the Electronic Society,
2002, pp. 32-40.

[54] R.R. Toledo, G. Danezis, and 1. Goldberg, “Lower-cost-private informa-
tion retrieval,” Proceedings on Privacy Enhancing Technologies, no. 4,
pp. 184-201, 2016.

[55] I Samy, R. Tandon, and L. Lazos, “On the capacity of leaky private
information retrieval,” in Proceedings of the IEEE International Sympo-
sium on Information Theory (ISIT), 2019, pp. 1262-1266.

[56] H.-Y.Lin, S. Kumar, E. Rosnes, A. G. i Amat, and E. Yaakobi, “Weakly-
private information retrieval,” in Proceedings of the IEEE International
Symposium on Information Theory (ISIT), 2019, pp. 1257-1261.

[57] ——, “The capacity of single-server weakly-private information re-
trieval,” IEEE Journal on Selected Areas in Information Theory, vol. 2,
no. 1, pp. 415427, 2021.

[58] T. Guo, R. Zhou, and C. Tian, “On the information leakage in pri-
vate information retrieval systems,” IEEE Transactions on Information
Forensics and Security, vol. 15, pp. 2999-3012, 2020.

[59] Z. Jia, “On the capacity of weakly-private information retrieval,” Ph.D.
dissertation, UC Irvine, 2019.

APPENDIX A
PROOF OF COROLLARY 1

We first notice that for any € > 0, we have d;(€) > da(e).
This follows as we can express di(e,d1(e)) = 1 + d1(e) and
da(e,02(€)) = 1+ d2(€). Then, from Theorems 1 and 2 and
for any § > max (d1(€),d2(€)), D*(e,d) can be bounded as
follows

14 02(€) = dale, d2(€)) = DB (€,8) < D*(e,0)
< DYB(e,6) = dy(e,61(e)) =1+ 61(e), (98)



which proves that d1(¢) must be greater than or equal d2(€)
for any value of ¢ > 0.

Following that, we can write the multiplicative gap ratio
between the upper and lower bounds on D*(e,d) given in
(17) and (20) as follows:

Y1(€)—v2(€)d

@ 0 <02(e),

DUB(€7§) _ Y1(e)—=72(€)d
DIB(e,§) )| w(0)—ra(e)92(e)?

71 (€)—y2(€)d1(€)
v3(€)—va(€)o2(e€)’
99

where we have 71(€) = 1 + 15, 72(€) = xx5r—, 13(€) =

1+ 5. and y4(e) = (Ne)% Then, we can upper
bound (99) as follows,
71(€)—y2(€)d
DUB(E 5) v3(€)—va(€)d’ 5 < 0(e),
5 < (100)
D) ™ | n@-none 55 4,0
v3(e)—va(€)oz(e€)’ = Y23/
For any 4, we have the bound % < :’{1—8 valid
when 2eale) < 1. We can prove that 2ule)yale) < 1 in the
v2(€)v3(e) v2(€)v3(€)
following:
1 1 K-1_
) _ O+ v w1 _ F
120 (1 F ) ey | e
K—-2 ark
N
= kio.e*‘k <e %<1, (101)
o (Nee)

for any € > 0 with equality when € = 0. Eventually, we can
bound the multiplicative gap ratio for any value of § as

D"(ed) _m()  l+xg N-e*

= = . 102
DUB(e,8) = y3(€) 14 5= N-1 (102)

APPENDIX B
PROOF OF LEMMA 4

Assume that Agﬁ) the answer of any DB,,, given any
requested message k; € [1 : K|, can take one of 7" different
structures. Each of them is requested by a certain query, i.e.,

1) 4lso takes T different forms. Let 7, and ~(m¢) be the
tth form that Q( 1) and Agﬁ) can take, respectively. Then,

(A(’“)|W 1’Q(’“ ) can be written as
H(AM Wy, Q)

Pr(Q¥) = m ) H(A*V W, , Q) = 7))
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-

Pr(Qff) = m) H (AL = y(m)[Wi,)
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M=

676 PI‘(QS{Q) = Wt)H(AgQ) = ’}/(7'(',5)|Wk1)

~
I
=

T
LS PrQ) = m ) H(AL) = 5(m) W)
e —

T
= le ZPr(Q%kQ) = ) H(AP2) = ~(7,)| Wi, Q) = 1))
e

1 )
= —H(AF) W, QF), (103)
[

where (a) follows from the fact that the entropy of certain an-
swer structure (7, ) is independent of the requested message,
it only depends on the query form m;. Whereas, (b) comes
from the definition in (9) and the corresponding interpretation
in (57).

APPENDIX C
PROOF OF LEMMA 5

We can bound H(A(f:)N”W[l:k—l]aQ(k)

[1:N]
H( i N]|W1 k—1] fo;)zv])

@ H AL Wi, Q)

+ H(Wk|A[1:N], W[l:kfleEf;)N]) -
= H(Wk,A%i)N”W[l:k—l]aQEfz)N}) -
= H(Wk|W[1:k—1]ﬂQEfz)N])

+ H(Aff;)zv] Wi, fo:)N]) —o(L)L
=L+ H(Aff:)N] |W[1:k]>QEf;)N]) —o(L)L

= (1 - o(L))L + H(AL )\ Wi, Qi)

> (1 - o(L)L + HAL Wi, Q)

= (1= o(L)L + H(AP Wiy, Q). Yne 1

) as follows:

P N,

(104)
where (a) is due to the correctness property in (4), and (b)
comes from the fact that the answer AL is conditionally
independent of the queries submitted to other DBs given the
query Q%k). By adding the relation in (104) over all possible
n’s and dividing by N, we get the following:

(k) (k)
H(A[I:N] (Whk—1), Q[l:N])

N
1 k k

n=1
(@) N
Z (1 _ 0 k‘+1) ‘W[l:k]a Q”(/Lk-'rl))
_ > k+1)
= (1-o(L ] )

N ec
where (a) follows using similar steps as in the proof of Lemma
4.

> (1-o(L))L + H( ’““>|W1k] QI (10s)



APPENDIX D
PROOF OF PROPOSITION 3

Here, we prove the bound in proposition 3 for N = 1. We
show that the relaxed privacy conditions have no benefits when
there is only one database even if we ignore the DB privacy
leakage constraint (§ = K — 1). Assuming that the requested
message is Wy, we lower bound D, s as follows:

Des=H(AY) > H(A|QLY)
:H<w1, AP — Hw AY, Q)
HW|QS") + H(A “>|W1,Q§”> —o(L)L
= (1—o(L))L + H(AP Wy, Q) (106)

where (a) follows the correctness property in (4). Let there
be T different structures, my,...,7p, the query sent to the
databases can take. For each structure 7y, ¢ € [1 : T, the
answer is on the form of v(m;) then we get, for j € [2: K],

H(AP W1, Q1Y) — H(AY W1, QYY)
= (HAP, M) - Hm QM)

— (H(AP, Q) - W|Q1”)
= H(AY, W1|Q") - H(AP, w4Q)
= H(APM QYY) + Hw A, Q1Y)

HW:|AY, Q)
@147

(W47, QY = m)

H(A(J)|Q(J))
(A 1>|Q1”>+o(> H(AY

H
=2 Pr(Qi =m)H
o(L) -

VH(W1|AY) = (),

t=1
H(A(”IQ(”) H(471QY)

T
—ZPr =

where (a) also comes from (4). We emphasize from the user
privacy constraint in (9) that all queries or structures must be
requested with non-zero probability, otherwise the constraint
in (9) can not be met. This dictates that y(7;), the answer of
any structure 7, has to fulfill the decodability conditions, i.e.,

H(W,| A = o(L). (108)

(107)

=(m))

As the form of the answer ~y(7;) is the same regardless of the
requested message, this implies that

HWh|AY) = y(m)) = HW1 A = 5(m)) = o(L).

(109)
From (107) and (109), we get the following

H(4 W1, Q1Y)
_ . N _ _
= H(AY W1, Q) + H(AP|QY) - H(AY Q).
(110)
Assuming the symmetry across all messages, we have

HAP|QW) = HAP|QY), vjel2:K]. (1D

Using this fact, we have

H(AD W1, Q1Y) = H(AY Wy, ), Vje[2: K]
(112)
This allows us to write D, s as follows

Des > (1= o(L))L + H(A? W1, Q)
= (1= o(L))L + H(W2, AP W1, Q1Y)
H(W,|AP )
= (1= o(L))L + HW,, AWy, Q) — o(L)L
= (1—20(L))L + H(W,|QY) + H(AP|Wy, W2, Q)
=2(1 — o(L))L + H(AP Wy, W,, Q). (113)
Completing the proof inductively using equations (107) to
(112), we get
D.s > (K —1)(1—o(L))L+ H(A;(lK)‘W[lzK—l]v Q")
= (K-1)(1- o(L))L + H(WK, AP Wik, Q)
—H(WK|A Wik -1, Q1 ))
= (K —1)(1 - o(L))L + H(Wie, AT Wiy, Q)
—o(L)
@ (K = 1)(1 = o(L)L + HWi|Wige—1, Q1)
+ H(AY Wik, Q1) = o(L)

> K(1—o(L)L, (114)

where (a) comes from the fact that the answer must be a
function of the K messages. Dividing by L and taking the
limit L — oo, we arrive at the desired lower bound:

D*(e,8) > K (115)
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