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Abstract—Collaborative sensing of spatio-temporal
events/processes is at the basis of many applications including
e.g., spectrum and environmental monitoring, and self-driving
cars. A system leveraging spatially distributed possibly airborn
sensing nodes can in principle deliver better coverage as well
as possibly redundant views of the observed processes. This
paper focuses on modeling, characterising and quantifying the
benefits of optimal sensor activation/scanning policies in resource
constrained settings, e.g., constraints tied to energy expenditures
or the scanning capabilities of nodes. Under a natural model
for the process being observed we show that a periodic sensor
activation policy is optimal, and characterize the relative phases
of such policies via an optimization problem capturing knowledge
of the sensor geometry, sensor coverage sets, and spatio-temporal
intensity and event durations. Numerical and simulation results
for simple different sensor geometries exhibit how performance
depends on the underlying processes. We also study the gap
between optimal and randomized policies and how it scales with
the density of sensors and resource constraints.

I. INTRODUCTION

The increasing prevalence of terrestrial and airborn nodes
with the ability of both sense and communicate is playing
a central role in enabling a broad set of applications such
as self-driving cars, positioning, environmental, city and RF
spectrum monitoring [1]–[3]. For many applications, either
because of the cost of deployment and maintenance or due to
application-related requirements the number of nodes, battery
capacity and/or energy harvesting capabilities, and computa-
tional power of nodes may be limited. Under such limitations
understanding what is possible through optimized collaborative
operation of distributed sensing nodes is both a relevant and
interesting problem. In this paper we consider a basic scenario
where spatially distributed nodes are enabled to collaboratively
sense spatio-temporal activity in an environment. We focus on
the fundamental problem exploring to what degree optimized
sensor activation policies can minimize the number of missed
events under a resource constraint. As we shall see optimal
activation policies can improve performance up to 25% with
respect to say random activation policies depending on event
duration distributions and energy limitations, but simple ran-
domization may be quite effective in other scenarios.

There has been extensive interest and research towards devel-
oping effective algorithms and systems to monitor and detect
spatio-temporal events and communicate such information [1]–
[3]. Further to exploit the correlated sensor measurements to
minimize the network traffic and energy efficiency, compressed
sensing based data gathering techniques are proposed in [4]–
[7]. Although the techniques proposed in these works decrease
in-network traffic and improve coverage, they do not discuss
how sensor nodes should be activated. However, it is shown that
under certain conditions nontrivial sensor activation patterns
can significantly improve performance and energy efficiency.
For example in [8], it is shown that optimizing the waiting
time between two samples with respect to the network statistics
can significantly reduce the “age” of the available information
while decreasing unnecessary network traffic. Another class of

problems considered are those associated with scalability in the
context of large-scale sensor networks which might leverage
wireless relaying, see e.g., [9]. In this paper the authors propose
a method based on an aggregation/compression and employing
mobile sinks to smooth out inhomogeneities in traffic/energing
across the network. The optimization of sensor activation when
nodes have energy harvesting capability is studied in [10].
In this work, the authors model the sampling problem for a
single node as a Markov Decision Process and characterize
the optimal policy. This work also exhibits various simulation
results for the case with multiple sources using a heuristic
activation policy. Our work specifically explores settings where
sensors might have overlapping coverage sets.

The primary motivation and goal of this paper is to explore
how one might optimally coordinate sensor activation so as to
maximize the number of events that are observed while meeting
energy constraints. To that end we propose and analyze a
generic model where Poisson distributed spatio-temporal events
having random duration and are collaboratively sensed by a
set of nodes with overlapping coverage sets. In this setting
we provide a natural characterization of the optimal sensing
policies as being periodic and exhibit an optimization problem
and solution which permits one to identify an optimal policy
given prior knowledge of the sensor geometry, coverage sets,
and spatio-temporal intensity and duration statistics of the
events. The importance of such results is to provide a baseline
for what the performance limits would be.

Additionally, we show a bound on the performance gap
between such randomized and the optimal sensing activation
policies. It follows that for dense sensing configurations with
substantial coverage overlap this gap decreases in the overlap.
This shows that the combination of sensor density and periodic
activation with randomized phases not only leads to near
optimal sampling, but also, robustness to underlying geometry
and systems statistics. Finally we include some representative
numerical examples exhibiting the theoretical results and in-
sights developed in the paper.

RF spectrum monitoring has been studied for a long time and
continues to gain importance [11]–[13]. Some recent works,
e.g., [11], [12], propose techniques for wideband spectrum
monitoring using inexpensive hardware such as USRP Radios.
The framework proposed in our work can capture the joint
optimization of distributed sensing nodes’ activity either un-
der energy constraints, where nodes cannot be “on” all the
time, and/or modified to capture constraints on sensing node
capabilities, e.g., their sweep rate and bandwidth resolution.
The results in this paper can be used to study the benefits
of coordinating sensor activation to maximize coverage in
frequency-time-space and improve the accuracy of a spectrum
monitoring applications by coordinating sensor activation.

The paper is organized as follows. In the Section II we
describe our system model. Section III provides a result on
the existence of optimal collaborative sensing policies which
are periodic, followed by a characterization of the performance



of the optimal periodic policies. Section IV develops results for
periodic sensing policies, and in particular establishes a bound
on the performance gap between random and optimal phased
policies. We exhibit numerical and simulation results in Section
V, and conclude the paper with Section VI.

II. SYSTEM MODEL

We consider a set of n sensors S = {1, . . . , n}. Each sensor
s ∈ S has an associated 2-D coverage region Cs ⊂ R2, and
the collection of all sensors’ coverage regions is denoted C =
{Cs | s ∈ S}. We denote the union of all coverage regions
by R =

⋃
s∈S C

s. The coverage region of sensors can model
the region that the sensor can observe and the sensor modality,
e.g., beam forming in a given direction.

We shall let the set S(x) ⊆ S denote the sensors that cover
the location x ∈ R2, i.e., S(x) = {s ∈ S | x ∈ Cs}. Note that
the number of possible unique subsets of S(x) depends on the
geometry of the coverage sets C, and there are a finite number
of such disjoint subsets nP . Note also that nP is necessarily
less than the number of possible of subsets of S, i.e., nP < 2n.
We denote by Pj regions which are observed by the same
subset of sensors. In other words, for any two locations x,x′

such that S(x) = S(x′), there is a j such that x,x′ ∈ Pj .
By definition of Pj , we have that Pj ∩ Pk = ∅ for j 6= k.
Thus, P = {Pj | j = 1, ..., nP} forms a partition induced
by the coverage sets C of R. We let Sj be the unique subset
of sensors that observe partition Pj , i.e. Sj = S(x) for some
x ∈ Pj , and nj , |Sj |. An example of a set of coverage sets
and the associated partition is provided in Fig. 1.

Fig. 1. An example of coverages for n = 3 sensors. The defined quantities
in this example are: C = {C1, C2, C3}, nP = 4, P = {P1, P2, P3, P4},
S1 = {1}, S2 = {1, 3}, S3 = {3}, S4 = {2}.

Each sensor s ∈ S has an associated sequence of (possibly
random) sampling times, T s = (T si )i, and each sampling
period has a fixed duration of length δ. We shall assume that
during any sampling interval (T si , T

s
i +δ], the sensor s observes

all activity within its coverage region Cs. The union of all of
its sampling intervals is denoted T s =

⋃
i (T si , T

s
i + δ].

We will constrain sampling times such that any two samples
cannot be closer than τ in time, i.e., T si+1 − T si ≥ τ ∀s ∀i
almost surely. Here, the parameter τ denotes a constraint on a
minimum period between samples, and is such that τ > δ. This
constraint can be viewed as limiting the maximum sampling
frequency or eventually tied to a constraint on the maximum
power expenditure of a sensor.

Our model is quite general and can be easily modified to
capture other settings such as constraints on the sweep rate
and bandwidth resolution of an RF spectrum monitoring node,
see e.g., [11]. We only need to define τ and δ, such that

τ =
fend − fstart

k
, δ =

fB
k

where fstart and fend are the end frequencies within which the
chirp signal varies, k denotes the sweep rate indicating how

fast the sensor sweeps the spectrum, and fB is the bandwidth
of the baseband signal sampled by the ADC of the receiver.

We model activity/events in R as a time-stationary marked
point process Γ = (Ei)i where each event Ei = (Ai, Di,Xi)
is characterized by three components: its arrival time Ai, its
duration Di, and its location Xi ∈ R2. The arrivals (Ai)i
follow a stationary point process with intensity λ such that the
expected number of arrivals in an interval of length ε is given
by λε. We assume that locations (Xi)i are i.i.d with a 2-D
spatial probability density function fX(x) on R. Similarly, the
durations (Di)i are i.i.d. with cumulative distribution function
FD. Note under this model activity/events need not be spatially
homogeneous.

A policy π schedules sensor activation times subject to
the aforementioned constraints. We will let T s,π denote the
sequence of (possibly random) sampling times of sensor s
under policy π, and similarly T s,π is the union of sampling
intervals of sensor s under policy π. All policies and their
sampling sequences are assumed to be independent of the event
process Γ. Ideally a policy should coordinate the activation
of sensors in order to minimize the number of unobserved,
or “missed”, events. An event Ei is missed if there is no
sensor which covers the event’s location and is active between
its arrival and departure, i.e., @s ∈ S s.t. Xi ∈ Cs and
(Ai, Ai + Di] ∩ T s 6= ∅. To quantify the performance of a
sampling policy, we define several quantities.

The set of events located in partition Pj that are missed under
policy π is given by,

Mπ
j , {(Ai, Di,Xi) | Xi ∈ Pj and

(Ai, Ai +Di] ∩ T s,π = ∅ ∀s ∈ Sj}.
We denote the set of missed events in partition Pj which are
initiated in the time interval (0, t] by,

Mπ
j (0, t] , {(Ai,Xi, Di) ∈Mπ

j | Ai ∈ (0, t]}.

Then, the number of missed events located in partition Pj and
initiated in an interval (0, t] is given by,

Mπ
j (0, t] , |Mπ

j (0, t]|.

Counting such misses across all partitions, we have,

Mπ(0, t] ,
nP∑
j=1

Mπ
j (0, t].

Let Π denote the set of all stationary sensor activation policies
that satisfy the sampling constraints. An initial objective might
be to determine a stationary policy π∗ ∈ Π that minimizes the
expected number of misses over any interval, i.e.,

π∗ ∈ argmin
π∈Π

E[Mπ(t, t+ d]] ∀t ∈ R, d > 0.

III. CHARACTERIZING OPTIMAL POLICIES

In the sequel we refer to “τ -periodic policies” as the subset of
stationary sampling policies, Πτ ⊂ Π, which for each sensor
is periodic with the minimal period τ allowed by the sampling
constraint.

Theorem 1 (Existence of an Optimal Periodic Policy): For
a given stationary event process Γ there exists a stationary
optimal policy π∗ ∈ Π which is τ -periodic, i.e., π∗ ∈ Πτ ,
and minimizes the expected number of misses on any interval.

This theorem can be shown using a coupling argument,
and showing that there exists a τ−periodic stationary policy
performing as well as or better than any stationary policy. The
detailed proof is given in Appendix A of [14].



Theorem 1 asserts the existence of a τ -periodic policy which
is optimal but does not characterize such optimal policies.
To that end, we start by considering deterministic τ -periodic
policies. These policies are parameterized by a vector of phases
φ = (φs | 0 ≤ φs ≤ τ, s ∈ S) within [0, τ ] representing the
relative shift of the τ -periodic sampling times of each sensor
–we denote the associated sampling policy by πφand note that
under policy πφ sensor s will sample deterministically at times
ts,π

φ

= (τi+ φs)i.
Each phase vector φ has an associated ordering of the n

sensors’ based on their sampling times in [0, τ ] and conversely
each ordering specifies a set of phase vectors φ consistent
with that ordering. We introduce notation allowing us to
work with such orderings. We define a class Ω of functions
ω : {1, ..., n} → S which capture an ordering on the set of
sensors through a one-to-one mapping between indices and
sensors. More explicitly, ω(i) denotes the ith sensor in the
ordering that ω imposes on the sensors in S. Thus, the ordering
that ω induces over S is (ω(1), ..., ω(n)) and a phase vector φ
consistent with that ordering will satisfy φω(1) ≤ ... ≤ φω(n).

Furthermore for a subset Sj ⊂ S of cardinality nj we define
ω(j) : {1, ..., nj} → Sj as the ordering that ω induces on the
sensors in Sj . Namely, ω(j)(i) is the i’th sensor in the ordering
of Sj under ω, and for any sensors s, r ∈ Sj , ω−1(s) ≤ ω−1(r)
implies (ω(j))−1(s) ≤ (ω(j))−1(r).

Now, consider a vector of phases φ and a corresponding order-
ing ω and policy πφ induced by φ. We evaluate the performance
of πφ over (0, τ ] and rewrite the objective function:

E
[
Mπφ(0, τ ]

]
= E

[ nP∑
j=1

Mπφ

j (0, τ ]
]

=

nP∑
j=1

E
[
Mπφ

j (0, τ ]
]
.

Dividing the interval (0, τ ] into subintervals of length ε yields,

E
[
Mπφ(0, τ ]

]
=

nP∑
j=1

τ/ε−1∑
k=0

E
[
Mπφ

j (kε, (k + 1)ε]
]
.

For infinitesimally small ε, the expected number of misses in
partition j over an interval of width ε is equal to the expected
number of event arrivals in partition j times the probability the
sampling policy misses an event.

Under our activity model, the expected number of event
arrivals in partition j in an interval of width ε is λεwj , where
wj is the probability of an event arrived in partition j, i.e.,
wj = P(Xi ∈ Pj) =

∫∫
Pj
fX(x)dx.

In order to miss an event i, its arrival time Ai must be after the
active interval of the previous sample of its partition, and the
event’s departure time Ai+Di must be before the next sample
of its partition. At a time t in partition j, we denote the time of
the previous sample by sj,φprev(t) and that of the next sample by
sj,φnext(t). Then, the probability of missing an event that arrives
at time kε is FD(sj,φnext(kε)− kε)1(kε > sj,φprev(kε) + δ). Fig. 2
exhibits an example to help visualize this for a partition having
two sampling times ts10 and ts20 in the interval (0, τ ] associated
with sensors s1 and s2 respectively. Note that the phase of the
first sensor is less than the phase of the second sensor, such
that φs1 < φs2 . In the figure, the event E = (A,D,X) arrives
in an interval of width ε. Although it departs before the next
sample time, A+D < sj,φnext(A) = ts20 it arrived before the end
of the previous sample interval, A < sj,φprev(A) + δ = ts10 + δ so
it will not be missed.

Fig. 2. An example of an arrival in an interval of ε width being observed by
the previous sample.

Substituting this result into the equation for E
[
Mπφ(0, τ ]

]
and letting ε go to zero, we have

=

nP∑
j=1

τ/ε−1∑
k=0

λεwjFD(sj,φnext(kε)− kε)1(kε > sj,φprev(kε) + δ).

=

nP∑
j=1

λwj

∫ τ

0

FD(sj,φnext(u)− u)1(u > sj,φprev(u) + δ)du.

Thus for partition j, we define the intervals between its
associated sampling times, or “gaps”, as the sequence (gj,φk :
k = 1, ..., nj) where,

gj,φk =

{
φω(j)(k+1) − φω(j)(k), for k < nj ,

τ − φω(j)(nj) + φω(j)(1), for k = nj .

Note that
∑nj
k=1 g

j,φ
k = τ . Then, we can equivalently write,

E
[
Mπφ(0, τ ]

]
=

nP∑
j=1

λwj

nj∑
k=1

∫ gj,φk

δ

FD(gj,φk − u)du.

To understand this equivalence, we use Fig. 2 as an example.
The interval (0, τ ] can be decomposed into the intervals ts20 −t

s1
0

and τ − ts20 + ts10 . Between samples ts10 and ts20 , the probability
of a miss is zero for the first δ, and then it is FD(gj,φ1 − u),
(i.e. the probability that the event’s duration is longer than the
remainder of the gap), for u ∈ (ts10 + δ, ts20 ], where gj,φ1 =
ts20 − t

s1
0 in this example. Notice that since FD is a C.D.F., it is

a non-decreasing function, so the integral over FD is a convex
function of φ. Thus, E

[
Mπφ(0, τ ]

]
can be written as a sum of

convex functions, and it is convex.
Next, let us consider a particular fixed ordering ω. A phase

vector φ satisfies the ordering ω if φω(1) ≤ ... ≤ φω(n).
Suppose we wish to find the phase vector that minimizes
E
[
Mπφ(0, τ ]

]
amongst all phase vectors that satisfy a given

ordering ω. This is achieved by solving the optimization
problem:

min
φ

nP∑
j=1

λwj

nj∑
k=1

∫ gj,φk

δ

FD(gj,φk − u)du

s.t. 0 = φω(1) ≤ φω(2) ≤ ... ≤ φω(n) ≤ τ,

where gj,φk =

{
φω(j)(k+1) − φω(j)(k), for k < nj ,

τ − φω(j)(nj) + φω(j)(1), for k = nj .

(1)

Since the objective is convex, and the constraint on φ is convex,
this optimization problem is convex.

Observe that φω(1) is pinned to zero in order to prevent shifted
versions of φ. Shifted policies are redundant since they result
in circular shifts over the interval (0, τ ], and hence they don’t
change the value of the objective function. Finally, we propose
a construction of an optimal τ -periodic policy. We construct
this stationary minimally periodic policy, π(s.m.p.), as follows.
We denote by Ω(1) ⊂ Ω the subset of orderings of sensors
for which the first sensor is sensor 1, i.e. Ω(1) = {ω ∈ Ω |
ω(1) = 1}. For each ordering ω ∈ Ω(1), evaluate the convex
optimization problem for that ω. Select the ordering ω∗ that
achieves the smallest minimum, and let its argmin be φ∗. (Note



that these may be non-unique). Shift the deterministic policy
parameterized by φ∗, π(φ∗), by a uniformly random value Φ ∈
(0, τ ]. This randomly shifted policy is π(s.m.p.).

Theorem 2 (A stationary optimal periodic policy): The
π(s.m.p.) policy is an optimal stationary periodic policy.

Proof: By Theorem 1, there exists an optimal τ -periodic
policy. Therefore, it is sufficient to show that π(s.m.p.) is
optimal amongst this subset of policies. By stationarity of
policy π(s.m.p.), it achieves the same performance over the
interval (0, τ ] as it does over any interval. Therefore, it is
further sufficient to show that the deterministic policy π(φ∗)

used in the construction of π(s.m.p.) is optimal over (0, τ ]
amongst all possible parameters φ. Since the construction of
π(s.m.p.) finds φ∗ by minimizing the objective over all possible
non-redundant parameters φ, (searching over Ω(1) instead of
Ω removes only redundant parameters), we can conclude that
π(s.m.p.) is optimal.

IV. CHARACTERIZING RANDOMIZED SENSING POLICIES

In certain settings, computation of the optimal policy may be
intractable, e.g., when the number of sensors is large, or compu-
tational resources are small, or the system’s properties change
frequently. In such scenarios, a simpler policy is desirable. This
motivates the use of a randomized policy, in which the sensors’
sampling phases are random and independent of each other.
Below, we formalize this policy and bound its performance
loss in both a general and a dense setting.

We define the random policy, π(rand.), as a sampling policy
whose random sampling times for each sensor s are given by:

T s,π
(rand.)

i = Φs + iτ ∀s ∈ S,
where Φs ∀s ∈ S are independent and identically distributed
random variables uniform over (0, τ ]. Note that each sensor’s
sampling times are independent of all other sensors, and each
sensor samples every τ .

The best performing possible realization of the set of random
variables Φs will perfectly align the samples of all sensors with
those of an optimal policy π(s.m.p.). This is possible since the
possible realizations of π(rand.) span all τ -periodic policies.

Conversely, the worst performing realization of π(rand.)

is when all samples are synchronized, i.e., when Φs =
Φr almost surely ∀s, r ∈ S, since regions with overlapping
sensor coverage are the sampled simultaneously. We can bound
the performance loss of the random policy π(rand.) by bound-
ing the loss of the worst case realization of the random policy.

For ease of notation, we introduce a few new definitions. We
define the worst case synchronised realization of the random
policy as π(sync.), which has sampling times given by:

T s,π
(sync.)

i = Φ1 + iτ ∀s ∈ S,
where Φ1 is uniformly random over (0, τ ]. We also introduce
the following function:

F δ
D(x) =

{∫ x
δ
FD(x− u)du, for x > δ,

0, for x ≤ δ.
Note that our objective function corresponding to the mean
number of missed events can be written as a weighted sum of
these functions. Lastly, we define the loss of a policy π with
respect to the optimal policy π(s.m.p.) as:

L(π) = E
[
Mπ(0, τ ]

]
− E

[
Mπ(s.m.p.)

(0, τ ]
]
.

Theorem 3 (Performance loss bounds for random policy):
The loss of the random policy π(rand.) with respect to an

optimal policy π(s.m.p.) is bounded by that achieved by syn-
chronizing sensors phases π(sync.), which itself can be bounded
as follows:

L(π(rand.)) ≤ L(π(sync.)) ≤ λF δ
D(τ)− λE[N ]F δ

D(
τ

E[N ]
),

where N is an RV such that P(N = nj) = wj , for
j = 1, ..., nP , where wj correspond to the probabilities of a
given event being located in each partition. Hence, E[N ] is the
weighted average of the number of sensors observing each set
of the partition.

For the proof, we refer the reader to Appendix B in [14].
Furthermore, we characterize a setting for which we can find

a tighter bound on the loss. We call this setting “d-dense” if
all locations x ∈ R are observed by at least d ≥ 1 sensors.
This also implies that for all j we have nj ≥ d.

In d-dense settings for which d � 1, realizations of the
ordered phases of the sensor samples of the random policy
converge towards an even spacing between samples for any
given partition. A visualization of such an even spacing is
shown in Figure 3. For a partition j with nj = 4, even spacing
within a period τ would result in a spacing of τ

nj+1 = τ
5

between each sample and the edges of the period. Note that
across the boundaries of periods, this results in a gap of 2τ

nj+1

between samples.

Fig. 3. An example of samples in a partition j over one period τ that are
evenly spaced with respect to each other and to the borders of the period.

We can see that the random policy converges to even spacing
as d goes to infinity if we consider the order statistics of
(Φs ∀s ∈ Sj) for a particular partition j. Let Φj(1), ...,Φ

j
(nj)

de-
note their order statistics, and let Gj(k) = Φj(k)−Φj(k−1). With-
out loss of generality, let τ = 1. Since Φs ∼ Uniform(0, τ = 1],
then Φj(k) ∼ Beta(k, nj+1−k) and Gj(k) ∼ Beta(1, nj). Then,
we have that the expected size of the gaps between sensors’
samples is E[Gj(k)] = 1

nj+1 . The variance of Gj(k) is O( 1
n2
j
),

which means that as d becomes large, nj becomes large, so the
distribution of the random gap lengths concentrates at its mean

1
nj+1 . Thus, the random policy converges to even spacing.
Using this intuition, for d-dense settings with a large finite
d, we can derive a tighter bound on the loss of performance
of the random policy π(rand.), L(π(rand.)), by considering the
random gaps Gj(k) which are concentrating on even spacings.

Theorem 4 (Bounds on a random policy for dense settings):
For a d-dense setting, the loss of the random policy π(rand.)

with respect to the optimal policy π(s.m.p.) is bounded as
follows:

L(π(rand.)) ≤ λτC

d
= O

(1

d

)
,

C = fD(
1

d+ 1
) + 2 +

∞∑
p=3

pτp−2

p!(p− 2)
F δ
D(

1

d+ 1
).

The proof has been relegated to Appendix C in [14].
It is worth considering the case where 1

d+1 < δ. As d becomes
larger, there is an increasing probability that the random policy
will achieve a perfect coverage, i.e., the union of all sampling
intervals be (0, τ ]. If 1

d+1 < δ, the constant in the bound in
Theorem 4 will reduce to C = fD( 1

d+1 ), since F δ
D( 1

d+1 ) =



0. This tighter bound reflects the probability that the random
policy will achieve perfect coverage.

V. NUMERICAL RESULTS

To get a sense of the quantitative performance of optimized
sensor activation policies we considered a variety of simple
scenarios starting with a single sensor, with two sensors with
overlapping coverage, and subsequently with 5 sensors with
increasingly overlapping coverage. To examine the effect of
a power constraint, we consider a simple model where each
sensor must operate under a power constraint ρ given by δ/τ =
ρ, where 1/τ corresponds to the sampling frequency and δ the
sensing, “on” time. This corresponds to a simple proxy for a
constraint on energy expenditures on sensing devices.

The idea here is to build some intuition regarding the impact
of various system characteristics, e.g., the event durations, as
well as the impact that increasing overlap amongst sensors’
coverage sets and increasing power constraint ρ will have on
the performance of an optimal sensing versus a random policy.

A. Single Sensor
We began by evaluating the simplest non-trivial setting: a

single sensor. For a variety of event durations FD with a
mean duration of 1, we computed the mean miss rate of the
optimal policy, i.e. 1

τ E[Mπ(s.m.p.)

(0, τ ]]. We plotted the miss
rates against the sampling frequency 1

τ , when δ is set to be
zero. The resulting plots for uniform, exponential, constant,
and Pareto distributions are shown in Figure 4.
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Fig. 4. Mean miss rate versus sampling frequency 1
τ

for uniform, exponential,
constant, Pareto and Weibull distributions, all with a mean of 1.

We can see that for an increase in sampling frequency, the
returns on performance are diminishing. Also, the rate of
diminishing returns are very dependent on the event duration
distribution FD. This implies that in order to properly bal-
ance power consumption with performance, it is necessary to
have prior knowledge of the event duration distribution. For
example, doubling the sampling frequency from 2 to 4 for
the constant distribution in Figure 4 provides no benefit, while
doing so for the Pareto distribution decreases the mean miss
rate significantly.

Figure 4 also provides insight into the maximum possible
benefit that can be achieved by leveraging overlapping sensors.
For example, let us consider a setting where sensors sample at a
frequency of 2 and events arrive with exponential interarrivals.
Then, we expect a mean miss rate of about .3 for any regions
covered by only a single sensor. Any regions which are
overlapped by multiple sensors can also perform no worse than
.3, but no better than 0, so the marginal improvement from
overlapping sensors is bounded.

B. Two Sensors
We next considered settings with two sensors and character-

ized the benefits of coordinating their sampling times.

We began by comparing the mean miss rate of the optimal
policy against the random policy for varying sampling frequen-
cies 1/τ . Figure 5a shows these plots for a setting where event
durations are uniformly distributed. They assume that half of
each sensor’s coverage overlaps with the other’s. Similar to
the single sensor case, the observations are assumed to be
instantaneous, i.e., δ = 0. These plots show the mean miss
rates for: the optimal policy, the average realization of the
random policy, the worst possible case of the random policy,
(i.e. synchronized), and the lower quartile of the random policy.
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Fig. 5. Mean miss rate versus sampling frequency 1
τ

(a, left), power constraint
ρ = δ/τ (b, middle) and percent overlap of the sensors’ coverages (c, right) of
the optimal, random, worst case random, and lower quartile of random policies,
for a uniform event duration.

The plots show that the marginal benefit of the optimal policy
over the random policy is again dependent on the event duration
distribution as well as the sampling frequency. In both plots, we
see the largest increase in performance in the low and middle
sampling frequencies, and we see negligible improvement in
very low and high sampling frequencies.

The “Optimal” and “Worst Case” lines in the plots provide
empirical bounds on the performance on the random policy,
since they represent the best and worse performing possible
realizations. The optimal policy takes full advantage of the
overlap of the two sensors’ coverage regions, while the worst
case synchronized realization takes no advantage of it.

We can observe the influence of coverage overlap on the
performance bounds in Figure 5c. We vary the fraction of the
coverage regions overlap between the two sensors from none
to fully overlapping, and we plot the mean miss rates. As ex-
pected, the optimal policy performs much better than the worst
case synchronized policy for greater overlap. Interestingly, the
random policy tends to perform slightly closer to the optimal
policy than to the worst case for greater overlaps.
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Fig. 6. Relative performance versus power constraint ρ = δ/τ of random
policy over optimal policy, for different event duration.

By letting the observation duration vary according to the
relation δ = τρ, we observe the impact of the power con-
strained sensor nodes in Figure 5b – for the case where event
durations are uniformly distributed. In this setting, the sampling



frequency is 1/τ = 2, and the sensors’ coverage regions
overlap by about 50%. As the power constraint increases,
i.e., the duration of each observation increases, the mean
miss rates for all schemes decrease. In Figure 6, the relative
performance of random policy with respect to the optimal case
under various event duration distributions is shown. These plots
exhibit the mean miss rate ratio of a randomized sensing policy
versus the optimal policy. We see that the marginal benefit
of using the optimal policy changes depending on the power
constraint. If the power is not constrained, random policy can
perform as well as the optimal policy. Otherwise, the optimal
policy can significantly improve the performance depending
on the event duration distribution. Although employing the
optimal policy requires some computational effort, it enables us
to maximize performance while possibly expending reducing
sensors’ energy expenditures. Additionally, in the setting with
two sensors, the distribution for the duration of events has a
limited impact on the relative performance of optimal policy,
except for the case where durations are uniformly distributed.

Overall, the simulations reveal that although there are certain
settings for which the optimal policy does perform noticeably
better than the random policy, for the majority of the settings
the marginal benefit of the optimal policy over the random
policy is small or even negligible. Furthermore, the random
policy tends to perform much better than the worst case when
there is a lot of overlap in coverage, e.g., in dense settings. This
further justifies the use of the simpler random policy instead of
the computationally expensive optimal policy in some settings,
such as those that are dense.
C. Set of sensors with increasing coverage sets

The units are arbitrary, for simplicity assume that distance is
in ”miles” and time is in ”seconds”. 5 of the coverage regions
are evenly spaced on a circle of radius 1.5 miles, and the 6th
coverage region is at the center of the circle. The radii of the
coverage regions takes values between 0.5 and 6.0 miles.

Fig. 7. Partitions and coverage redundancy with increasing coverage radius.
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The minimum sampling period τ is 1 second. The event
durations were independent and uniformly distributed on [0, τ ].
The sampling duration δ was set to 0 (i.e. instantaneous sam-
ples). The events arrival process was Poisson with an overall
rate of λ = 1 sec, and homogeneous in the coverage area.
We examined the performance of the optimal sensing strategy
versus the randomized one, as we increased the radius of disc
shaped coverage areas associated with each sensor. The upper
row of Figure 7 exhibits the partitions induced as one increases
the coverage radius of the sensors. The lower row of the same,
shows the redundancy in coverage at various locations as one
increases the coverage radius. The lighter the shade of gray
the higher the redundancy at that location. Figure 8 exhibits

the performance in terms of the miss rate of the optimal and
random policies. We have also added the performance of the
lower quartile for the random policy to show that a randomized
sensing policy could lead to a substantially worse performance
if the realization of the phases were poorly aligned.

VI. CONCLUSIONS
In this paper we considered a fairly generic framework for a

distributed sensing platform wherein sensors are deployed to
observe stochastic events which have limited durations. With
some care one can develop a good understanding of how to
optimize the sensing policy subject to a simple proxy constraint
on sensor’s activation/energy.
• Optimizing the sensing policy provides benefits, which

may be quite dramatic depending on the power constraint,
for settings with very limited sensor resources and with
overlapping coverages.

• Randomizing sensor phases of τ -periodic sensor activation
may provide adequate robust performance, particularly in
dynamic settings where optimizing may be costly.

• Context dependent coordination of joint sensor activation
to provide “slices” of network activity that deliver features
(e.g., for localization of nodes) may also benefit from
coordinated optimal sensing policies.
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