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Abstract—Processing data from Internet of Things (IoT) ap-
plications at the cloud centers has known limitations relating to
latency, task scheduling and load balancing. Hence, there have
been a shift towards adopting fog computing as a complementary
paradigm to cloud systems. In this paper, we first propose a multi-
objective task-scheduling optimization problem that minimizes
both the makespans and total costs in a fog-cloud environment.
Then, we suggest an optimization model based on a Discrete
Non-dominated Sorting Genetic Algorithm II (DNSGA-II) to deal
with the discrete multi-objective task-scheduling problem and
to automatically allocate tasks that should be executed either
on fog or cloud nodes. The NSGA-II algorithm is adapted to
discretize crossover and mutation evolutionary operators, rather
than using continuous operators that require high computational
resources and not able to allocate proper computing nodes. In our
model, the communications between the fog and cloud tiers are
formulated as a multi-objective function to optimize the execution
of tasks. The proposed model allocates computing resources that
would effectively run on either the fog or cloud nodes. Moreover,
it efficiently organizes the distribution of workloads through
various computing resources at the fog. Several experiments are
conducted to determine the performance of the proposed model
compared with a continuous NSGA-II (CNSGA-II) algorithm and
four peer mechanisms. The outcomes demonstrate that the model
is capable of achieving dynamic task scheduling with minimizing
the total execution times (i.e. makespans) and costs in fog-cloud
environments.

Index Terms—Genetic Algorithm, NSGAII, Task-Scheduling,
Resource Allocation, Fog Computing, Cloud Computing

I. INTRODUCTION

CLOUD computing is widely used by both public and
private sector organizations, although a number of chal-

lenges associated with cloud services exist (e.g., lack of
location-awareness, and latency). Hence, there have been
attempts to complement existing cloud services using fog
computing, particularly for latency- and delay-sensitive ap-
plications (e.g., battlefield Internet of Things). The fog is an
architectural design, which extends the main services of the
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cloud to be deployed at the edge of a network. Specifically,
fog is a considerably virtualized system of resource pools with
a decentralized infrastructure, where computing resources can
be shared between clients and cloud data centers to improve
computational processing and data analytical capabilities [1],
[2].

By executing data collection tasks at the edge of a network,
task-related data analytics can be promptly undertaken at the
fog, which address limitations such as latency and limited
bandwidth. Computing and infrastructure resources, such as
available nodes, computational processing, bandwidth, costs,
and power, can also be optimally allocated to run tasks
either in the fog or cloud environments, depending on the
configurations and requirements. Task scheduling, along with
fast and resilient processing and load-balancing, are crucial in
the visualization technology to minimize costs and overheads
(e.g., execution times) for both users and providers [3].

This reinforces the importance of having efficient schedul-
ing and distributing of tasks between fog and cloud nodes
[1], [2]. Cloud systems usually inter-operate using task sched-
uler and load balancer services that are not fully automated
[2], [3]. The task scheduler allocates computing resources
that can be executed at fog and/or cloud nodes, while the
load balancer organizes the distribution of workloads through
multiple computing resources. Task scheduling algorithms are
then used to schedule tasks on computing processors for
minimizing the total makespan without violating the given
constraints [4]. Multiprocessor scheduling is categorized as
an NP-hard problem, where the algorithms fundamentally
apply single objective optimization functions that minimize
execution times or costs [3], [4]. Fog-cloud systems generally
comprise multiple computing nodes and high-performance
servers with large number of processor cores [5].

However, as the interactions between fog and cloud nodes
are relatively complex, a multi-objective optimization function
is required. For example, allocating resources (e.g., processor
cores, memory, and I/O interrupts) to handle user tasks can be
challenging, particularly in dynamic fog-cloud environments
[5], [6]. In shared-memory multiprocessor systems, the con-
nections between central memory, I/O interrupts and proces-
sors require an optimization process to facilitate task execu-
tions with a load-balancing capability. Furthermore, different
task executions have different resource constraints that demand
regular updates to examine their status (e.g., available or still
occupied). Optimization and meta-heuristic approaches have
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been widely used to facilitate task scheduling and resource
allocation [7], [8], [9], [10]. However, existing approaches
generally require manual tuning of parameters and have a
number of limitations [11], [12], [13].

In this paper, we propose a multi-objective task scheduling
problem to minimize the total makespans and costs in fog-
cloud environments. One-point crossover is used to design a
discrete NSGA-II (DNSGA-II) model, which directly specifies
computing nodes, rather than the use of mapping methods
that require high computational resources. The process of
individual reproduction in one-point crossover depends on the
production of a new offspring by swapping parts from two
other individuals (called parents) so that the generated off-
spring has characteristics from its parents but is not similar to
them. This way of individual reproduction can construct new
discrete solutions that are able to further explore the search
space and reduce the population similarity. This, therefore,
guides the search process of DNSGA-II and improves its
global optimization ability, especially in distributed environ-
ments such as those of fog-cloud systems.

The key contributions of this paper include the following:
• We formulate the task-scheduling problem as a multi-

objective optimization problem for minimizing the total
execution times and costs to dynamically allocate ap-
propriate resources to predefined tasks in a fog-cloud
environment.

• We propose an enhanced NSGA-II optimization model
that can deal with discrete multi-objective optimization
problems to assign particular computing nodes (e.g.,
nodes 1 and 2), which cannot be allocated using a
continuous space. The proposed model is designed to
adaptively tune extensive parameters to select their best
values.

• We assess the performance of the proposed NSGA-II
model for scheduling tasks and dynamically distributing
them in fog-cloud environments. The model is tested to
auto-allocate tasks with appropriate resources either in a
fog tier, a fog-cloud tier or a cloud tier, and is compared
with other compelling models.

The rest of this work is structured as follows. Section
II explains the background and related work of the NSGA-
II model and task scheduling in fog-cloud environments.
The problem of task-scheduling is discussed in Section III.
The proposed model and its fog-cloud architecture are then
described in Section IV. The experimental results are provided
in Section V and some conclusions are drawn in Section VI.

II. BACKGROUND AND RELATED WORK

This section explains concepts and related studies to task
scheduling and resource allocation in fog, fog-cloud and cloud
environments, as well as discusses multi-objective optimiza-
tion and NSGA-II approaches.

A. Task Scheduling and fog-cloud Systems

With the prevalence of IoT applications, there has been an
increasing interest in moving computing and storage at the
edge of a network close to users and organizations. In more
detail, cloud data centers would not handle big data collected

from those applications in real-time, due to their limitations
of delay, limited bandwidth and geographical distributions [5],
[11]. The cloud’s limitations bring attention to move data
processing and analytic models onto either fog computing or
fog-cloud computing models for faster processing [5], [14],
[15]. To enable faster processing for the fog/fog-cloud models,
it is vital to develop effective task scheduling techniques.

Task scheduling in computing platforms is broadly classi-
fied into dependent and independent approaches [16]. In the
dependent approaches, there are dependencies and commu-
nications while distributing and allocating tasks to particular
computing resources. In the independent approaches, tasks
are individually distributed on computing resources either
using a batch mode or an online mode [16]. Both modes
describe the arrival way of the tasks, where in the batch
mode, the tasks are allocated to the corresponding fog nodes
through a scheduling algorithm once they arrived, while in the
online mode, the allocations of the arrived tasks are processed
through a Resource Management System (RMS), as the arrival
time of each task is random [16]. In our architecture, the online
mode has been considered as it is more realistic and reflects
the task arrival and allocation processes in the real world.

Task scheduling algorithms are essential in dynamic envi-
ronments to allocate batch mode tasks and assist in organizing
the arrival time of every task scheduled for the resource
management system. Task scheduling has been formulated
as an NP-complete problem [17]. Despite the advantages
of fog-cloud systems, task scheduling and resource alloca-
tion in such systems still suffer from challenges related to
dynamic environments and auto-configuration of tasks and
their required resources [10]. The task scheduling problem in
dynamic environments, such as fog-cloud systems, demands
the development of optimization models that could automat-
ically tune its parameters and specify appropriate computing
resources to either fog or cloud nodes [12], [14], [18]. There
is also a lack of design for a fog-enabled cloud architecture
that demonstrates the communication between fog and cloud
elements and their resource distributions [16]. ,

Optimization and meta-heuristic algorithms have been
widely employed to schedule tasks and allocate batch or
online modes [5], [10]. For example, Naeem et al. [19]
stated that 46,000 IoT units were installed between 2016 and
2020, where heterogeneous resources and dynamic workloads
needed for each IoT application introduce new issues in fog
and fog-cloud systems. In light of these open challenges,
there have been numerous attempts by researchers to allocate
tasks in fog and fog-cloud environment. Pham et al. [20]
considered a task scheduling problem, while they proposed
a cost-makespan aware scheduling approach to obtain the
highest cost-makespan trade-off value. They prioritized each
node before allocating specific tasks to them. Although their
approach hinted at the necessity of cost-makespan trade-off,
they considered a rational factor to linearize that trade-off
rather than using any Pareto optimization concepts.

In another work, Zeng et al. [21] concurrently considered
task image placement and task scheduling strategies to min-
imize the completion time of service requests. By balancing
the workload task on both client and fog nodes, they attempted
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to minimize the transmission latency of all requests. A three-
stage heuristic algorithm was proposed to their mixed-integer
nonlinear programming model. A method proposed by Xu et
al. [22] conveyed a laxity-based priority algorithm to allocate
tasks on fog-cloud nodes. They attempted to minimize total
energy consumption during the task and resource allocation
and proposed a constrained optimization model which was
later solved by an Ant Colony Optimization (ACO) algorithm.
However, in their proposed model, they did not consider
independent and associated tasks for scheduling. Moreover,
their proposed approach was only validated against small
datasets.

A similar study was also carried out by Boveiri et al. [23]
who proposed a variant of ACO algorithm, the so-called max-
min ant system, for task scheduling in cloud applications.
Different priority values of tasks were considered to select the
optimal combinations of task-orders. After exhaustive experi-
mental analysis on randomly generated cloud-based computing
data, they proved the suitability of their algorithm against
other counterparts. However, their model was limited to small-
sized task-graph input samples in the cloud only. Recently,
Nguyen et al [10] also considered a fog-cloud environment and
proposed a time-cost aware scheduling algorithm to allocate
tasks in different nodes. Although their approach is very useful
to keep track of both cost and makespan associated with a
resource and task allocation, as with Pham et al. [20], they did
not consider any Pareto optimization algorithms to intelligently
handle two-conflicting objectives (e.g., minimizing both costs
and makespan).

From the discussions above, most of the existing task
scheduling approaches are only valid for small datasets and
only considered either cost or makespan (i.e., total completion
time) as a single objective. Although some trade-off analysis
has been conducted in the existing works, such trade-offs
could not reflect reality. To deal with two or multiple con-
trasting objectives, Pareto optimization techniques, or multi-
optimization algorithms are essential. Jena [24] proposed a
nested-PSO algorithm to solve a multi-objective task schedul-
ing problem. Their objectives were to minimize energy and
processing time. However, their analysis was only limited to
the cloud computing environment. More recently, Kumar and
Venkatesan [25] proposed one multi-objective task scheduling
methodology, solved by a hybrid genetic-ACO algorithm.

Most of existing task scheduling techniques has been widely
formulated as a multi-objective problem, which is more re-
alistic than a single objective problem [26], [27], [28]. The
multi-objective problem makes a trade-off between the objec-
tives, including response time vs. computation cost or power
consumption vs. computation latency, should be optimized to
make the best decision(s). Consequently, this study proposes
a multi-objective optimization problem that deals with task-
scheduling problems in both cloud and fog-cloud environments
and discusses the computation differences between them. To
do so, we develop a modified NSGA-II algorithm that can
efficiently handle multi-objective optimization problems.

TABLE I
NOTATIONS OF MATHEMATICAL SYMBOLS USED IN THE STUDY

Symbol Description
Pi Server number i
Tj Task number j
M Total number of available servers
N Total number of tasks
T j
i Task j is processed by server i

I(Tj) Total number of j task instructions
RM(Tj) Required memory for task j
RB(Tj) Required bandwidth to upload and download

files of task j
Sr(Pi) Computing rate of server i to handle million

instructions per second
Susage(Pi) Computing cost of server i
Memc(Pi) Cost of memory usage of server i
BWc(Pi) Cost of bandwidth usage of server i
Pjeoi Node (i) and storage (o) servers have been

assigned a task (j) that is requested by client
(e) to be processed

E Total number of clients

B. NSGA-II Algorithm

NSGA-II is a powerful algorithm for solving Evolutionary
Multi-Objective (EMO) problems. The main characteristics of
NSGA-II include: 1) a fast sort method of non-dominated
solutions, 2) a fast estimation technique of the density of
solutions, and 3) a simply crowded selection strategy [29].
NSGA was basically designed for solving multiple objective
optimization problems with continuous decision variables.
However, a binary representation of solutions has also been
used for applying classical genetic operators, such as a one-
point crossover, a point mutation [7], logical crossover and
mutation operators [30]. It was recommended by [7] the use
of a real-valued representation with specific genetic operators,
such as Simulated Binary Crossover (SBX) and polynomial
mutation [31], for solving continuous function optimization
problems.

Since multi-objective optimization problems involve more
than one objective function to be optimized simultaneously,
and with the absence of any additional information about the
EMO problem to be solved, no particular Pareto-optimal solu-
tion can be considered as better than the others [32]. Therefore,
the optimal solutions (decisions) need to be determined as a
trade-off between two or more objectives and the optimality of
a solution varies based on a number of factors, such as user’s
choice, problem definition or its environment. Considering the
merits of NSGA-II, its implementation in the cloud, fog and
fog-cloud environment would be an interesting research work.
However, since NSGA-II was originally developed for solving
continuous problems, it needs to be modified to solve discrete
ones, as we propose in this study.

III. FORMULATION OF TASK SCHEDULING PROBLEM IN
FOG-CLOUD SYSTEMS

In fog-cloud systems, the fog layer receives several re-
quests from many IoT applications. The requests are then
decomposed into small independent tasks, characterized by
many factors, for example, the number of instructions, memory
required, as well as input and output file sizes. The tasks
have to be processed using the resources of the fog-cloud
systems, which comprise computing servers with various ca-
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pabilities. The servers could be located at either fog or cloud
nodes, where each of these has different resources that enable
computing, including core processors (e.g., CPU), memory
bandwidth, storage, and I/O usage. It is observed that the costs
of using cloud nodes are higher, but such nodes are more
powerful than their fog counterparts [2].

The notations of most of the mathematical symbols are
listed in Table I. In a typical task scheduling problem, the
objective is to schedule the entire tasks to minimize the
total execution times (i.e., makespans) using the minimum
total costs of available resources. For a single request, let
N be the number of tasks (T = {T1, T2, ..., Tj , ..., TN})
to be processed, M the number of available servers (P =
{P1, P2, ..., Pi, ..., PM}). For task Tj , let I(Tj) be the number
of instructions, RM(Tj) the required memory, and RB(Tj)
the required bandwidth to upload and download Tj’s files.

For each server (Pi), let Sr(Pi) be the computing rate,
which is the server capability to compute million instructions
per second, Susage(Pi) the computing cost of server/node (Pi),
Memc(Pi) the cost of memory usage, and BWc(Pi) the cost
of bandwidth usage. Mathematically speaking, the set of tasks
(T ) and processors (P ) can be presented using the following
vectors: T = {T1, T2, T3, ..., TN}, P = {P1, P2, P3, ..., PM}.
Also, the solution can be presented as follows, where T i

j

denotes that task j is processed by server i:

Sol = {T i
1, T

i
2, T

i
3, ..., T

i
j , ..., T

M
N } (1)

The task scheduling problem can be formulated as a multi-
objective optimization problem by using the following math-
ematical model:

Minimize :

M∑
i=1

(max1≤j≤N (
I(Tj)

Sr(Pi)
), ∀ Tj ∈ Pi) (2)

Minimize :
M∑
i=1

(
∑

Tj∈Pi

(TotalCost(T i
j ))) (3)

Subject to∑
o∈O

∑
i∈PM

pjeoi +
∑
o∈O

pjeo = 1, ∀j ∈ TN , e ∈ E (4)

yjo =

{
1, if Task j stored in node i

0, otherwise
(5)

∑
o∈O

yjo = Ω, ∀j ∈ TN (6)

M∑
i=1

T i
j = 1, ∀ Tj ∈ T, ∀ Pi ∈ P (7)

and
i > 0, i = 1, 2, ...,M (8)

j > 0, j = 1, 2, ..., N (9)

o > 0, o = 1, 2, ..., O (10)

where I(Tj)
Sr(Pi)

is the execution time required by node i to
process task j, which can be obtained by dividing the number

of instructions of task j (I) to the processing unit’s rate of
node i (Sr), TotalCost(T i

j ) is the total computing cost of Pi,
memory and bandwidth resources used by node i to process
task j and Ω is a variable that needs to be considered and
maintained for any task t on different servers m for system
reliability and load balancing. pjeoi indicates that node (i)
and storage (o) servers have been assigned a task (j) that is
requested by client (e) to be processed and E is the total
number of clients. TotalCost(T i

j ) can be calculated as the
sum of the three combinations, as follows:

TotalCost(T i
j ) = Sc(T

i
j ) + Mc(T

i
j ) + Bc(T

i
j ) (11)

Every cost can be independently calculated using the fol-
lowing three equations. The equations present the processing,
RAM usage and bandwidth usage costs, respectively, required
by the node i to process the task j.

Sc(T
i
j ) = Susage(Pi)× (

I(Tj)

Sr(Pi)
) (12)

Mc(T
i
j ) = Memc(Pi)×RM(Tj) (13)

Bc(T
i
j ) = BWc(Pi)×RB(Tj) (14)

In the model, equation (2) presents the first objective
function, which minimizes the total response time required by
a system (i.e. fog-cloud) to handle users’ requests. Equation
(3) shows the second objective function, which minimizes the
total cost of the resource usages. The first constraint (equation
4) ensures that all the tasks (j ∈ TN ) that are requested by e
client are processed by either cloud or fog nodes to ensure the
task completeness. The second constrain (equations 5) checks
the existence of j task in a storage server by using a binary
variable yjo, which decides whether a storage server (o) holds
a task j or not. While the third constraint (equation 6) puts a
limitation on the number of stored tasks on a particular storage
server. The fourth constraint (equation 7) ensures that task
j is processed by only one node. The last three constraints
(equations 8, 9 and 10) preserve the discrete domain of tasks,
computation servers and storage servers, respectively.

IV. PROPOSED TASK SCHEDULING MODEL AND ITS
ARCHITECTURAL DESIGN

A. Proposed Task scheduling Model

This section explains the proposed task scheduling model
using an enhanced NSGA-II algorithm. The NSGA-II algo-
rithm fundamentally relies on continuous crossover operators.
The operators do not suit a task scheduling problem in
dynamic fog-cloud environments because continuous values
resulting from the Continuous NSGA-II (CNSGA-II) algo-
rithm can not be assigned appropriate computing nodes. For
example, if the output of the algorithm is a node vector of
2.5, 3.7, 5.8, each value in the vector has to be mapped into
discrete values of 2, 3, 5 that refer to the computing nodes
required, either in the fog or the cloud tier. This problem has
been solved using mapping functions, which sometimes de-
mand high computational resources, especially in the dynamic
environments that have broader ranges of resources.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 16,2021 at 12:15:38 UTC from IEEE Xplore.  Restrictions apply. 



2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.3032386, IEEE
Transactions on Cloud Computing

5

In order to address this problem, we directly employ a
Discrete NSGA-II algorithm (DNSGA-II). This model has
practically proven its high performance, in terms of processing
time and costs, compared with CNSGA-II. The DNSGA-II
algorithm is also enhanced to auto-tune its parameters without
human intervention; hence this enhanced version is utilized
to address the automatic task distributions and allocate their
proper computing resources in fog-cloud systems. The aim of
the proposed task scheduling-based DNSGA-II is to optimize
two objectives: minimum execution times (i.e., makespans)
and minimum costs. These objectives are constrained by that
every task has to processed using enough resources at fog or
cloud nodes, as mathematically formulated in Section III. The
main components of the task scheduling-based DNSGA-II are
presented in Algorithm 1. The components of the model are
elaborated below.

B. Solution representation and initial population

Initially, every solution in the population is represented by a
vector of integer values in the range [1 - M ], where M is the
total available nodes/processors and the length of each vector
equals the number of tasks to be scheduled (N ). The integer
value in each gene (T i

j ) represents the task (Tj) the will be
handled by the processor (Pi). The number of the generated
solutions equals the population size (PS). For each solution in
the initial population, each task (Tj) is randomly assigned to
the processor (Pi). For example, if we have 7 tasks (N= 7) to
be processed by 3 processors (M= 3), one candidate solution
can be represented as in Fig.1.

C. Fitness evaluation

In order to decide which solutions should be kept for
the next generation and which should be excluded from the
population, the quality of all solutions needs to be measured.
In this work, the fitness values of the candidate solutions are
evaluated against two objective functions: 1) makespan, which
is the total time that is needed by the nodes to execute all the
received tasks, and 2) total cost, which is the total resources,
such as RAM, CPU, network bandwidth, required by the nodes
to process the tasks. Both objective functions are formulated
by equations 2 and 3.

D. Sorting of population

A fast-non-dominated sorting mechanism [33] is applied to
sort solutions within the population. In this procedure, each
solution (Si) has an integer value that is holding the number
of solutions, which dominate Si. This holder integer value
called "domination count". Another set, which contains all
solutions that are dominated by the solution Si is calculated.
Each solution in the population is assigned a rank, based on
those two parameters, which represents the front to which
this solution belongs with rank equal to 0 for the Pareto
front solutions. In general, all solutions, which have rank x+1
are dominated by solutions with rank x. For example, the
solutions, which are dominated by solutions from the Pareto
front, have rank 1.

Algorithm 1 Pseudo-code of Proposed task scheduling-based
DNSGA-II

1: Pop← InitialPop(PS,N);
2: [makespan, cost] ← FitnessEvaluation(Pop); (sub-

section IV-C)
3: [Popsorted] ← fastNonDominatedSort(Pop); (sub-

section IV-D)
4: Gen← 1;
5: while Gen ≤Max_Gen do
6: Selected_vectors ←

RankSelection(Popsorted, PS); (sub-section IV-E)
7: Trail_vectors ← Crossover(Selected_vectors, Pc);

(sub-section IV-F)
8: Mutant_vectors ← Mutation(Trail_vectors, Pm);

(sub-section IV-G)
9: Popnew ←Mutant_vectors

10: [makespan, cost] ←
FitnessReEvaluation(Popnew);

11: Popunion ← Merge(Pop, Popnew); (sub-section
IV-H)

12: Fronts← fastNonDominatedSort(Popunion);
13: X ← [ ]; // to keep Parents vectors
14: FL ← [ ]; // to keep Front solutions
15: for Fi ∈ Fronts do
16: CrowdingDisAssignment(Fi);
17: if Size(X) + Size(Fi) > PS then
18: FL ← Fi;
19: Break();
20: else
21: X ←Merge(X,Fi);
22: end if
23: end for
24: if Size(X) < PS then
25: FL ← RankAndDistanceSorting(FL);
26: for j = 1 : PS − Size(FrontL) do
27: X ← Xj ;
28: end for
29: end if
30: Selected_vectors ←

RankAndDisSelection(X,PS);
31: Pop← Selected_vectors;
32: Gen← Gen+ 1;
33: end while

E. Selection operator

The first step in the main loop of GA is the selection oper-
ation. In the proposed NSGA-II, binary tournament selection
[34] is used. In this approach, two solutions (parents) are
selected from the population pool based on the rank for the
reproduction process by crossover and mutation operators. A
solution is selected if and only if its rank is lower than the
other. Solutions that have the same non-dominated rank in the
population are assigned a diversity rank by adapting an explicit
diversity-preservation or niching strategy [12]. Genes in each
non-dominated individual are ranked based on the density
of their region. The density of solutions around a specific
individual can be calculated using a crowding distance metric,
which is the average distance of the two solutions on either
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side of that solution along each of the objectives. Because
such niching strategy does not require external parameters, it
is used by NSGA-II [35].

F. Crossover operator

Crossover is considered the key operator for solution explo-
ration in a GA [36]. New offspring (modified solutions) are re-
produced by performing crossover and/or mutation operations.
Generally in a crossover, two or more selected parents produce
one or more offspring. In this paper, for the purpose of further
studying the performance of the NSGA-II with continuous and
discrete evolving operators, two different crossover operators
will be used: 1) one-point crossover, and 2) a simulated binary
crossover (SBX).

In one-point crossover, two solutions are randomly selected
as parents, a crossover point (CP ) is chosen uniformly at
random between 1 and the solution length (equation 15), and
two new solutions are created for the two parents. This CP
divides each solution into two sub-solutions (left and right)
and then the right (or left) sub-solution of the two individuals
are swapped. For example, Fig. 1 considers the individual in
sub-section IV-B as one parent (P1) and another one is P2.
OS1 and OS2 are two offspring, which are produced from
recombination of P1 and P2, with the CP occurs after the
fourth bit.

CP = round((αmax − αmin)× rand+ αmin (15)

where αmax and αmin are the upper and lower limits of CP ,
rand is a uniform random number generated in the range [0,1]
and round is a function applied to round the produced real
number to its closest discrete one.

SBX crossover was firstly proposed by Deb and Agrawal
[31] and it is used by the basic NSGA-II [29]. SBX is a real-
parameter recombination operator, which is commonly used
for solving optimization problems in continuous domain. It
mimics the one-point crossover with binary coding, so it uses
two solutions as parents and produces two offspring. Also,
it uses a parameter called the distribution index (di), which
is kept fixed throughout a simulation run. If di is large, the
offspring is produced close to the parent, otherwise it will
be produced away from the parent. di parameter has a direct
effect in controlling the produced offspring distribution.

G. Mutation operator

Mutation is considered a key operator that increases the
diversity of the population and enables GAs to explore promis-
ing areas of the search space [37]. Normally, after offspring are
produced by crossover, mutation is applied to their variables
according to a low probability called the mutation rate (pm).
It alters a few random bits of a solution and maintains genetic
diversity, with the aim of preventing convergence towards a
local optimum. For the purposes of studying the performance
of NSGA-II using both continuous and discrete evolving
operators, polynomial and a discrete bit-flip mutations are
used.

In continuous NSGA-II (CNSGA-II), the polynomial muta-
tion [38] is used. This mutation is based on the polynomial

distribution and applied with a user-defined index parameter
(Plm) to perturb the current solution (parent) to a neighbour-
ing solution (offspring) by mutating each solution separately,
i.e. one parent solution gives one offspring. The two main
steps of polynomial mutation are as follows: 1) Calculate the
perturbation parameter (Plm) by using the following rule,

Plm =

{
(2× rand)

1
r+1 − 1 , rand < 0.5

1− [2(1− rand)]
1

r+1 , rand ≥ 0.5
(16)

where rand is a random number generated in the range [0-1]
and r a positive or negative exponent decided by the user. 2)
The new offspring is then produced from the original solution
as follows:

OS = P + Plm × δ (17)

where P is the parent solution, δ the maximum perturbation
allowed between the original and mutant solution, which is
also decided by the user.

In our algorithm and based on [38] and after doing some
experiments for validating them, r is set to 100 and δ is
calculated as

δ = min(
(OS −Xl), (Xu −OS)

Xu −Xl
) (18)

where Xl and Xu are the lower and upper values of solutions.
The produced offspring (OS) usually contains real-values.

In order to use this mutation to the discrete task scheduling
problem, the produced continuous mutant vectors have been
rounded to their nearest discrete values. In the discrete NSGA-
II (DNSGA-II), the traditional bit-flip mutation has been mod-
ified to produce discrete variables instead of binary ones and
employed. The pseudo-code of bit-flip mutation is presented
in Algorithm 2.

Algorithm 2 Pseudo-code for the bit-flip mutation
1: M ← size(child) // child is the vector produced from

Crossover;
2: for k= 1 : M do
3: R ← rand(); // a uniform random number generated

in the range [0,1]
4: if R < Pm then
5: child(k) = randi(M); // randi is a discrete uniform

random number generated in the range [1,M ]
6: end if
7: end for

H. Fitness re-evaluation and selection

The fitness values of the produced solutions in the new
population (Popnew) are re-evaluated. Then, both old (Pop)
and new (Popnew) populations are combined in one popula-
tion (Popunion) of size 2×PS. The individuals of Popunion
are then sorted into a hierarchy of sub-populations based on
the ordering of Pareto dominance. The similarity between
individuals of each group is measured in the Pareto front, and
the resulting groups and similarity values are used to endorse a
diverse front of non-dominated solutions. The non-dominated
solutions are emphasized and the Pareto front individuals are
formed as Pareto-optimal solutions [9]. The pseudo-code of the
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fitness re-evaluation and selection are illus tarted in Algorithm
1 through steps [12-30]. Finally, the new population is formed
by selecting all front solutions with rank 0, followed by
solutions with higher ranks.

I. Termination conditions

The processes of the NSGA-II operations continue until
the allowed time or number of generations (Gen) exceeds
a pre-defined maximum number of generations (Max_Gen).
Also, the NSGA-II algorithm termination can be decided by
the maximum allowed number of evaluations of the fitness
(objective) functions.

J. Overall Model Architecture

The proposed task-scheduling model is designed in a fog-
cloud environment, as depicted in Figure 1. The process of
task-scheduling starts when a client requests the implementa-
tion of a particular task, such as analytics of big data sources
collected at the edge layer. Then, the proposed model could
be executed at the edge of a network using virtualization
technology. The technology would enable the model to allocate
the demanded resources at either the fog or the cloud layer.
The selection of which layer is better depends on the costs
and time executions of tasks, as detailed in Section V. The
model executes its procedure, including initialization, discrete
crossover and mutation operations to dynamically allocate
tasks of applications to fog and/or cloud nodes. The model
could also activate the load balancer service via the regular
examination of the status of fog and cloud nodes (e.g., idle,
occupied).

The main components of the fog-cloud system architecture
include three layers of the edge, fog, and cloud, as shown in
Figure 1. The edge layer includes the proposed task-scheduling
model deployed in a virtualized server and linked with virtu-
alized fog nodes and cloud centers using network gateways.
The fog layer consists of a set fM of fog nodes/computation
servers and fO of storage servers. In this layer, computing
processes occur at devices that are close to end-users, such
as local servers, gateways, etc. The cloud layer contains a set
CM of cloud computing servers and CO of storage servers.
All the servers in both Cloud and fog layers are interconnected
with each other and with the clients. The fog layer contains
a hierarchical computing architecture, where the proposed
task scheduling model distributes the tasks/workloads to be
parallelly processed by available computing nodes according
to the length/complexity of each task and the maximum
capacity of each node [39]. The proposed model would be
also deployed at a fog mediator, which is a physical or virtual
server that receives the requests from a set E of clients. Then,
it distributes the tasks as independent ones to be processed on
various fog-cloud nodes.

When a client request (r) sends to a (e) fog mediator,
along with an average arrival rate (Λre). The proposed task
scheduling based on DNSGA-II starts the execution process of
decomposing the request into several independent tasks, which
are then stored in a storage device (o) with capacity (Ko).
A storage device is also used to handle any I/O interrupts,
which could accidentally occur during task processing on a

server/node. In this system, the I/O interrupts probability is
assumed to be very small α = 0.0001. After that, the tasks are
transmitted to the computation server, which was assigned by
the proposed task scheduler, to be executed. The transmission
time can be vary depending on the environment. Although the
computing cloud servers usually have a higher processing rate
than fog servers, transmission latency in the cloud environment
is larger than the fog environment. As the task execution time
(makespan) could be impacted by this latency, the proposed
model has a critical role in balancing the distribution of tasks
into fog and cloud computing servers.

V. EXPERIMENTAL RESULTS AND COMPARISONS

The experiments presented in this study were conducted in
a PC with Windows 10, a 3.4 GHz Core I7 processor and
16 GB RAM. The proposed algorithm is coded in Matlab
2018b. To judge the performance of the proposed NSGA-II,
we solved 33 different task-scheduling problems (11 for fog,
11 for fog-cloud and 11 for cloud) with a different number of
tasks (40 to 500 tasks).These problems are randomly generated
the attributes listed in Table II. A different number of fog and
cloud nodes has been with various characteristics as presented
in Table III. The generated data instances and source codes of
this proposed model can be accessed at [40] for future research
directions and comparison purposes.

TABLE II
ATTRIBUTES USED TO GENERATE TASKS

Property Value Unit
Size of Input file [1, 100] 109 instructions
Size of output file [50, 200] Mega Byte (MB)
No. of instructions [10, 100] Mega Byte (MB)
Required Memory [10, 100] Mega Byte (MB)

TABLE III
SUMMARY OF CHARACTERISTICS OF THE FOG-CLOUD STRUCTURE

Parameter fog tier Cloud tier Unit
Bandwidth usage cost [0.01, 0.02] [0.05, 0.1] Grid $ per MB

Memory usage cost [0.01, 0.03] [0.02, 0.05] Grid $ per MB
CPU rate [500, 1500] [3000, 5000] Million Instructions per Second

CPU usage cost [0.1, 0.4] [0.7, 1.0] Grid $ per Second

The Wilcoxon rank-sum test with α = 0.05 was used to
check the statistical difference between the compared algo-
rithms, with +, −, and ≈, which denote that the obtained
results from the first algorithm are statistically better than,
worse than, and similar to the obtained result by another algo-
rithm, respectively. The efficiency of the proposed algorithm
is also graphically assessed by plotting performance profiles
[41], [42]. The performance profiles are drawn to compare
the efficiency of different algorithms (A) using a number of
problems (P ) and a comparison goal (i.e., the computational
time or the average number of FES) to attain a certain level
of efficiency value (i.e., optimal objective function value). To
estimate the performance profile Rhoa for an algorithm (a),
the following equation is employed as:

Rhoa(τ) =
1

np
× |p ∈ P : rpa ≤ τ | (19)
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Fig. 1. Proposed task scheduling-based NSGA-II Model in fog-cloud environments

where Rhoa(τ) is a probability of a ∈ A that the efficiency
ratio rp,a, which is computed by equation 20, is within a factor
τ > 1 of the best possible ratio and Rhoa is the cumulative
distribution function of the performance ratio.

rpa =
tpa

min {tpa : a ∈ A}
(20)

where tpa is the consumed CPU time by an algorithm a to
attain the objective function value fitp in problem p.

A. Parameter Tuning

The proposed NSGA-II algorithm has three main parame-
ters: population size (PS), crossover rate (Pc) and mutation
rate (Pm) that would affect the quality of the obtained results.
Table IV presents the proposed values of the parameters. In
order to determine the best combination of the parameter
values, we use the Taguchi design method, which is a favorite
method using orthogonal arrays. For every combination of the
orthogonal array, 3 instances were randomly chosen from 11
ones to calculate the average total cost and average makespan
values.

TABLE IV
COMBINATION OF PARAMETER VALUES

Parameters Factors
1 2 3 4 5

PS 25 50 75 100 150
Pc 0.25 0.45 0.65 0.85 1.00
Pm 0.01 0.05 0.10 0.15 0.20

The proposed NSGA-II was run 30 runs, for each run, the
best obtained cost and makespan were recorded. The numerical

results of each parameter combinations are demonstrated in
Table V. The values of each parameter are plotted in Figure 2
to adopt the best one. It can be concluded from Figure 2 for
both average total makespan and average total cost that the
largest values are better for both PS and Pc, while the lowest
value is the best for Pm. Considering the above analysis, the
best combinations of parameter values are PS = 150, Pc = 1,
and Pm = 0.01.

The effect of each parameter on the performance of NSGA-
II is presented at Table VI for the average total makespan and
average total cost. Pm has the most effect as it is ranked first
for both cases, while Pc has the lowest effect in the case of
the average total makespan and PS has the lowest effect in
the case of the average total cost.

B. Detailed Results for fog, cloud, and fog-cloud

This section discusses the detailed results obtained from
both CNGSA-II and DNSGA-II for fog, fog-cloud and cloud
systems. After determining the best parameter combination as
described in section V-A, the proposed algorithm is used to
solve the entire instances for the three systems. Table VII
presents the detailed results obtained from solving the 33
instances (11 fog, 11 fog-cloud and 11 cloud) using discrete
NSGA-II. As can be concluded from Table VII, the makespan
of the fog-cloud system is better while the cost of the the fog
system is better. The detailed results obtained from continuous
NSGA-II are presented in Table VIII. The makespan obtained
for fog is better than fog-cloud and cloud systems for most of
the instances, while the cost is always better in the fog system.

The summary of the results obtained from DNSGA-II and
CNSGA-II for the three systems are presented at Table IX.In
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TABLE V
ORTHOGONAL TABLE AND AVERAGE MAKESPAN AND AVERAGE TOTAL

COST VALUES

Experiment
Number

Factor Average
Makespan

Average Total
CostPS Pc Pm

1 1 1 1 868.51 4281.77
2 1 2 2 923.79 4261.61
3 1 3 3 951.02 4261.13
4 1 4 4 986.33 4316.3
5 1 5 5 1007.2 4303.65
6 2 1 2 856.69 4308.21
7 2 2 3 929.78 4219.28
8 2 3 4 988.84 4357.67
9 2 4 5 984.73 4359.64
10 2 5 1 861.06 3925.39
11 3 1 3 918.17 4274.75
12 3 2 4 909.16 4285.27
13 3 3 5 992.6 4334.27
14 3 4 1 848.18 3992.58
15 3 5 2 810.95 4197.37
16 4 1 4 940.7 4315.36
17 4 2 5 979.11 4389.27
18 4 3 1 811.31 4126.3
19 4 4 2 818.64 4178.38
20 4 5 3 874.15 4200.45
21 5 1 5 959.76 4286.72
22 5 2 1 791.49 4085.27
23 5 3 2 785.11 4218.23
24 5 4 3 885.7 4268.45
25 5 5 4 941 4214.35

(a)

(b)

Fig. 2. Factor level trend of NSGA-II based on (a) average total makespan
and (b) average total cost

the fog, based on makespan, DNSGA-II is better than, similar
to, and worse than CNSGA-II in 5, 0, 6 instances, respectively.
Based on cost, DNSGA-II is superior, equal and inferior to
CNGSA-II in 6, 0, 5 instances, respectively. For both fog-cloud
and cloud, based on both makespan and cost, DNSGA-II is
better than CNGSA-II in the entire test instances.

Considering the Wilcoxon test, DNSGA-II is significantly
better than CNGSA-II for both fog-cloud and cloud systems
for both cost and makespan, while there is no significant

TABLE VI
RESPONSE TABLE OF MEANS OF BOTH AVERAGE TOTAL MAKESPAN AND

AVERAGE TOTAL COST

Criteria Average Total makespan Average Total Cost
Level PS Pc Pm PS Pc Pm

1 947.4 908.8 836.1 4285 4293 4082
2 924.2 906.7 839 4234 4248 4233
3 895.8 905.8 911.8 4217 4260 4245
4 884.8 904.7 953.2 4242 4223 4298
5 872.6 898.9 984.7 4215 4168 4335

Delta 74.8 9.9 148.6 70 125 252
Rank 2 3 1 3 2 1

difference between both algorithms in the case of the fog
system as observed in the last column of Table IX. A further
analysis is conducted by plotting the performance profiles,
which compare DNSGA-II and CNSGA-II in the three sys-
tems, as shown in Figure 3. It is clear that DNSGA-II is always
better than CNSGA-II as it was able to attain the probability
of 1 for all cases first. For more analysis, the Pareto fronts
are plotted in Figure 4, which compares the performance of
DNSGA-II and CNSGA-II. To sum up, the graphs illustrate
that DNSGA-II is better than CNSGA-II.

Based on the above analysis, it can be concluded that, the
discrete version of NSGA-II (DNSGA-II) is always better
than the continuous version (CNSGA-II). Therefore, we used
DNSGA-II to conduct a comparison between fog, fog-cloud
and Cloud environments based on both average total cost and
average total makespan. As we can see at Table VII, the fog
environment has the lowest cost for all instances in comparison
with fog-cloud and Cloud systems, while fog-cloud has the
lowest makespan for all instances. Overall, if cost matters,
our suggestion to users is to use the fog environment, while
if the makespan is more important than cost, we recommend
the use of fog-cloud environment.

C. Comparison with state-of-the-art-algorithms

This section discusses the performance of the proposed
DNSGA-II algorithm compared with other 10 compelling
optimisation-based tasking scheduling algorithms for solving
single and multiple objectives problems.
1) Comparison of single objective algorithms

The proposed DNSGA-II is designed for multi-objective
problems, while considering two conflicting/non-conflicting
objectives. However, to compare with several single objective
algorithms, two objectives (i.e., makespan and total cost) are
transformed into one objective equation using the following
equation:

Minimize : F (21)

where

F = 0.5×Makespan+ 0.5× TotalCost (22)

In Equation 22, both makespan and total cost are given equal
weights (0.5) to transform into a single objective framework,
which is a very common practice in the relevant literature
[10]. In the fog system, the performance of the proposed
algorithm is compared with four algorithms: 1) Time-Cost
aware Scheduling (TCaS) [10], 2) Bee Life Algorithm (BLA)
[43], 3) Modified Particle Swarm Optimization (MPSO) [44]
and 4) a simple Round Robin (RR) [45]. The outputs of the
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TABLE VII
SUMMARY OF DETAILED MAKESPAN AND TOTAL COST VALUES OBTAINED FROM DISCRETE NSGA-II

Instances Fog (10 Nodes) Fog-cloud (13 Nodes) Cloud (3 Nodes)
Makespan Cost Time (s) Makespan Cost Time (s) Makespan Cost Time (s)

40 114.08 366.88 16.24 82.60 415.96 18.03 116.29 711.93 10.70
80 335.11 968.35 16.44 236.08 1146.31 18.85 347.84 1628.88 10.99
120 455.74 1428.83 16.55 330.88 1675.31 19.98 498.97 2280.86 11.59
160 600.72 1882.60 17.45 455.36 2224.95 20.05 637.73 3184.72 12.08
200 717.62 2348.81 18.64 590.46 2610.73 21.10 800.62 3893.36 12.92
250 918.34 2983.07 19.48 699.80 3484.21 21.92 1021.05 4845.92 13.78
300 1147.54 3645.65 20.38 847.47 4371.47 22.36 1265.57 5857.88 14.38
350 1298.67 4251.81 21.14 959.44 5126.33 24.03 1455.04 6856.27 15.17
400 1382.51 4536.45 22.08 1072.17 5239.97 24.34 1541.65 7447.39 15.85
450 1691.43 5436.82 23.71 1258.32 6493.59 25.90 1860.82 9351.24 17.44
500 1930.72 6256.01 25.32 1470.50 7333.50 26.84 2172.93 10384.31 18.43

Average 962.95 3100.48 19.77 727.55 3647.48 22.13 1065.32 5131.16 13.94

TABLE VIII
SUMMARY OF DETAILED MAKESPAN AND TOTAL COST VALUES OBTAINED FROM CONTINUOUS NSGA-II

Instances Fog (10 Nodes) Fog-cloud (13 Nodes) Cloud (3 Nodes)
Makespan Cost Time (s) Makespan Cost Time (s) Makespan Cost Time (s)

40 122.02 369.06 23.56 88.44 443.97 23.26 117.61 722.92 15.57
80 337.18 974.92 27.50 302.10 1231.30 26.92 355.38 1665.51 18.03
120 454.48 1428.43 28.98 456.33 1755.24 29.93 514.75 2445.38 21.01
160 592.76 1892.51 32.68 581.51 2362.52 33.28 647.24 3344.55 22.52
200 734.30 2329.33 35.06 735.59 2981.99 37.37 804.54 4075.83 26.55
250 932.15 2965.32 39.59 954.27 3773.83 44.58 1042.68 5144.04 27.76
300 1122.49 3648.44 42.99 1223.29 4672.63 44.42 1318.17 6173.32 32.48
350 1285.61 4225.41 46.67 1538.02 5213.55 46.96 1536.37 7300.92 37.28
400 1374.12 4563.22 50.21 1410.77 5822.98 52.87 1600.14 7979.26 38.62
450 1639.38 5448.32 55.24 1898.97 7005.68 55.80 1928.88 9424.87 44.32
500 1972.06 6209.10 58.78 2513.82 7725.56 57.75 2263.39 10637.89 47.28

Average 960.60 3095.82 40.11 1063.92 3908.11 41.19 1102.65 5355.86 30.13
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Fig. 3. Performance profile graphs comparing DNSGA-II and CNSGA-II for fog, fog-cloud and Cloud based on (a) makespan; (b) based on cost

TABLE IX
COMPARISON SUMMARY BETWEEN DNSGA-II AND CNSGA-II FOR FOG,

FOG-CLOUD AND CLOUD SYSTEMS BASED ON BOTH AVERAGE TOTAL
MAKESPAN AND AVERAGE TOTAL COST

Algorithms Better Equal Worse Dec.

Makespan
DNSGA-II vs. CNSGA-II (Fog System) 5 0 6 ≈
DNSGA-II vs. CNSGA-II (Fog-cloud System) 11 0 0 +
DNSGA-II vs. CNSGA-II (Cloud System) 11 0 0 +

Cost
DNSGA-II vs. CNSGA-II (Fog System) 6 0 0 ≈
DNSGA-II vs. CNSGA-II (Fog-cloud System) 11 0 0 +
DNSGA-II vs. CNSGA-II (Cloud System) 11 0 0 +

compassion’s between the algorithms are listed in Table X.
In the fog-cloud system, besides the four algorithms above,
other two algorithms: 5) Genetic Algorithm (GA) [46] and 6)
Differential Evolution (DE) [47] are used. The results of the
comparisons are demonstrated in Table XI. From both tables,

the proposed DNSGA-II can obtain the best F values for all
instances in both fog and fog-cloud systems. This indicates the
superior performance of the proposed algorithm in achieving
better total costs and makespan than other comparative single
objective-based algorithms.

A further analysis is conducted based on the Wilcoxon rank-
test listed in Table XII. It can be noticed that the performance
of the proposed DNSGA-II is significantly better than all the
rival algorithms in fog and fog-cloud systems based on the
resultant F values shown in equation 22.
2) Comparison of multi-objective algorithms

In this section, the performance of the proposed DNSGA-II
is compared with four Multi-objectives algorithms: 1) Strength
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Fig. 4. Pareto front comparing results obtained from DNGSA-II and CNSGA-II for instances with 500 tasks (a) Fog environment; (b) Fog-cloud environment;
and (c) Cloud environment

TABLE X
COMPARISONS OF DNSGA-II AGAINST SOME STATE-OF-THE-ART

ALGORITHMS BASED ON F VALUES FOR FOG ENVIRONMENT

Instances F
DNSGA-II TCaS BLA MPSO RR

40 243.54 462.65 469.23 477.83 606.05
80 650.99 967.46 978.47 999.39 1272.45
120 949.25 1485.54 1511.26 1533.68 1957.28
160 1233.85 1998.07 2050.74 2064.67 2579.39
200 1531.94 2348.04 2417.43 2422.11 2870.55
250 1958.24 3129.95 3253.91 3243.72 4066.93
300 2394.73 3653.24 3821.45 3787.64 4622.54
350 2754.71 4128.28 4332.06 4271.83 5188.19
400 2965.68 4841.57 5119.01 5030.23 6111.52
450 3539.89 5540.53 5883.68 5813.80 7183.47
500 4100.59 6202.87 6585.18 6494.51 8060.75

Pareto Evolutionary Algorithm 2 (SPEA-II) [48], 2) Multi-
objective Particle Swarm Optimization algorithm (MOPSO)
[49], 3) Pareto Envelope-based Selection Algorithm II (PESA-
II) [50], and 4) ulti-objective Evolutionary Algorithm based on
Decomposition (MOEA/D) [51]. These algorithms are used
as they showed high performances in solving multi-objective
optimization problems.

The parameter settings of these algorithms are taken from
their original paper, and the stopping condition (maximum
number of iteration) for all of them including the proposed
algorithm is set to 5000 generations. Also, they run for 30
times and their best results are recorded in Table XIII.

The makespan and cost obtained from DNSGA-II and the
competing algorithms are presented in Table XIII. It is clear
that the proposed DNSGA-II is better than others in a term of
makespan. Considering the cost objective function, DNSGA-
II is better than SPEA-II, MOPSO, PEAS-II and MOEA/D in
8, 9, 9 and 9 instances, respectively. The proposed DNSGA-II
algorithm can save average makespan considering all instances
by 36.75%, 39.15%, 41.99% and 41.57% compared to SPEA-
II, MOPSO, PEAS-II and MOEA/D, respectively. DNSGA-II
can save the average cost of all instances by 2.72%, 5.55%,
3.25% and 3.92%, compared to PEA-II, MOPSO, PEAS-II
and MOEA/D, respectively.

The Wilcoxon test is also carried out to judge if there
is a statistical significant difference between the proposed
DNSGA-II and the other algorithms, where the results are
presented in Table XIV. From Table XIV, it is clear that

the proposed DNSGA-II statistically outperforms the rival
algorithms for both makespan and cost. Additionally, the
Pareto-fronts obtained from DNSGA-II, SPEA-II, MOPSO,
PESA-II and MOEA/D algorithms are plotted for instances
with 40 and 450 tasks, depicted in Figure 5. It is obvious that
the proposed DNSGA-II algorithm can produce better results
(solutions are in the lower areas) than other rival algorithms.
Based on these experiments for both single and multi-objective
formulations, the proposed DNSGA-II is empirically proven
that it is the best one compared with the competing algorithms.

D. Discussions and Implications

This section explains the sensitivity analysis of the pro-
posed DNSGA-II algorithm for fog and fog-cloud systems.
One fundamental query regarding task scheduling or latency
minimization is to sort out an optimal number of nodes for
each system. The optimum number of nodes for different
computing systems, a practitioner can allocate resources ac-
cordingly based on employing the proposed algorithm. It can
be seen from Figure 6, both cost and makespan are drawn
for executing different tasks or instances of different nodes
in the fog and fog-cloud systems. Since, comparing with two
contrasting values is very tricky, we hypothetically give 50%
credit to each cost and makespan value, i.e., each cost and
makespan values are multiplied by 0.5 and then summed up
to calculate normalised value, as shown in that figure. Hence,
normalisedvalue = 0.5∗ cost+0.5∗makespan. In the case
of Figure 6(a), normalised values under the fog system show
a sharp decreasing trend with the increasing number of fog
nodes up to 10 fog nodes (i.e., 10FN), after which the decre-
ments flatten. Hence, we can claim that for the fog system,
if we intend to solve different tasks or instances, having 16
fog nodes should be the optimum decision, considering both
makespan and cost values.

Meanwhile, for the fog-cloud environment, this work started
considering 3 cloud nodes with different fog nodes. As
depicted in Figure 6(b), the normalised value of cost and
makespan decreased up to 3 cloud nodes and 16 fog nodes
(i.e., 3CN&16FN), and then flattened. To identify the optimum
number of cloud nodes, another experiment was carried out
with 16 fog nodes and different cloud nodes for the same
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TABLE XI
COMPARISONS OF DNSGA-II AGAINST SOME STATE-OF-THE-ART ALGORITHMS BASED ON F VALUES FOR FOG-CLOUD ENVIRONMENT

Instances F
DNSGA-II TCaS BLA MPSO RR GA DE

40 249.28 487.95 498.36 484.43 586.49 597.72 607.50
80 691.20 1025.41 1050.62 1020.88 1379.43 1414.88 1421.74
120 1003.10 1568.57 1610.04 1565.13 1977.44 1676.20 2069.79
160 1340.16 2105.04 2159.88 2113.87 2658.42 2608.00 2652.67
200 1600.60 2518.46 2571.06 2503.58 2922.68 2692.65 3044.84
250 2092.01 3151.22 3238.47 3133.89 3800.75 3722.81 3875.03
300 2609.47 3896.64 4014.17 3890.33 4764.27 4444.26 4797.27
350 3042.89 4453.78 4582.14 1167.54 5223.22 4996.00 5351.96
400 3156.07 5182.03 5344.60 1373.58 5965.94 5870.29 6391.28
450 3875.96 5939.37 6142.45 5925.58 6839.80 6781.50 7201.34
500 4402.00 6646.87 6865.79 6624.85 7949.90 7446.65 7644.54
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Fig. 5. Comparison of Pareto fronts obtained from DNGSA-II, SPEA-II, MOPSO, PESA-II and MOEA/D for Fog-Cloud system for instances with (a) 40
instances; and (b) 450 instances

TABLE XII
COMPARISON SUMMARY OF DNSGA-II WITH OTHER ALGORITHMS FOR

FOG AND FOG-CLOUD SYSTEMS

. Criteria Algorithms Better Equal Worse Dec.

Fog environment

DNSGA-II vs. TCaS 11 0 0 +
DNSGA-II vs. BLA 11 0 0 +
DNSGA-II vs. MPSO 11 0 0 +
DNSGA-II vs. RR 11 0 0 +

Fog-cloud environment

DNSGA-II vs. TCaS 11 0 0 +
DNSGA-II vs. BLA 11 0 0 +
DNSGA-II vs. MPSO 11 0 0 +
DNSGA-II vs. RR 11 0 0 +
DNSGA-II vs. GA 11 0 0 +
DNSGA-II vs. DE 11 0 0 +

fog-cloud environment. It can be seen from Figure 6(c), the
normalised values are increasing with increasing cloud nodes.
Hence, from this experiment, it can be claimed that for the
fog-cloud environment, having 16 fog nodes and 1 cloud node
(i.e., 16FN&1CN) is the optimal decision, considering both
makespan and cost.

Another experiment is also carried out to observe perfor-
mance measures with increasing task numbers. As expected,
normalised values of cost and makespan always show a non-
linearly increasing trend with increasing task numbers for both
fog and fog-cloud environments, as depicted in Figure 7. It
is observed in Figure 8, the computational time in seconds
also increases with the increasing number of nodes for both
environments. CT_fog and CT_cloud_fog represent the com-
puting time in seconds for fog and fog-cloud environments,
respectively. It is noted that the computing time of the fog-
cloud environment is always higher than the simple fog nodes.
This is also obvious, even in the case of fog-cloud nodes, as
there are more tasks that need to be allocated in a higher

number of nodes.

VI. CONCLUSION AND FUTURE WORK

This paper has introduced an enhanced discrete non-
dominated sorting genetic algorithm II (DNSGA-II) for solv-
ing the problem of task scheduling and resource allocation
in fog-cloud environments. We first formulated the commu-
nication between fog and cloud tiers as a multi-objective
optimization problem that allows auto-tuning of the parameters
of the proposed DNSGA-II model in a dynamic environment.
Then, we have implemented the proposed model in a simulated
environment to determine its capability to allocate tasks to
proper computing resources either in the fog or the cloud.
The model has proven its high performance in distributing the
tasks to appropriate resources in fog-cloud systems. Several
statistical analyses and experiments were carried out to exam-
ine the model’s evaluation. The model was also compared with
a continuous NSGA-II model and other four peer mechanisms
to determine how tasks and their needed resources could
properly be allocated either in the fog or the cloud layer.
The experimental results showed the high performance of
the proposed model in terms of lower makespans and costs
compared with others. This could give an indication to utilize
the model in distributing batch tasks with large-scale data in
fog-cloud environments.

In the future, we will extend this work to address the
challenge of allocating resources in cyber-physical systems
and also allow auto-configuration of service orchestration at
the edge of a network.
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TABLE XIII
COMPARISONS OF DNSGA-II WITH SPEA-II, MOPSP, PESA-II AND MOEA/D BASED ON BOTH MAKESPAN AND TOTAL COST FOR FOG-CLOUD

SYSTEM

Instances Makespan Cost
DNSGA-II SPEA-II MOPSO PESA-II MOEA/D DNSGA-II SPEA-II MOPSO PESA-II MOEA/D

40 82.60 116.82 111.88 123.90 156.08 415.96 481.80 407.06 438.35 414.79
80 236.08 383.43 381.34 314.12 439.36 1146.31 1258.15 1232.43 1063.97 997.73

120 330.88 503.98 423.96 490.41 608.35 1675.31 1649.36 1791.79 1765.31 1679.85
160 455.36 721.24 629.03 762.35 712.94 2224.95 2456.32 2808.84 2324.57 2296.11
200 590.46 1040.92 905.53 838.43 823.73 2610.73 3044.48 2649.51 2625.04 2687.78
250 699.80 1042.74 1058.35 1252.49 1128.23 3484.21 3488.35 3610.48 3631.06 3780.91
300 847.47 1358.16 1647.12 1444.33 1431.35 4371.47 4363.22 4671.82 4430.15 4470.30
350 959.44 1659.61 1671.66 1680.00 1606.41 5126.33 4908.52 4935.09 5035.62 5172.39
400 1072.17 1695.57 1703.28 1838.97 2002.29 5239.97 5678.74 5923.38 5619.17 5833.92
450 1258.32 1783.53 2096.77 2350.23 2359.27 6493.59 6503.91 6591.60 6782.36 6978.20
500 1470.50 2346.92 2524.08 2702.78 2428.57 7333.50 7409.96 7859.39 7755.05 7447.02
Avg. 727.55 1150.26 1195.73 1254.36 1245.14 3647.48 3749.34 3861.94 3770.06 3796.27

(a) (b) (c)

Fig. 6. Performance measures based on number of nodes (a) fog environment; (b) fog-cloud environment (3 cloud nodes and different fog nodes); and (c)
fog-cloud environment (16 fog nodes and different cloud nodes)

(a) (b)

Fig. 7. Performance measures based on number of tasks (a) fog environment; (b) fog-cloud environment

TABLE XIV
COMPARISON SUMMARY BETWEEN DNSGA-II, SPEA-II, MOPSO,
PESA-II AND MOEA/D FOR FOG-CLOUD SYSTEM BASED ON BOTH

MAKESPAN AND COST.

Criteria Algorithms Better Equal Worse Dec.

Makespan

DNSGA-II vs. SPEA-II 11 0 0 +
DNSGA-II vs. MOPSO 11 0 0 +
DNSGA-II vs. PESA-II 11 0 0 +
DNSGA-II vs. MOEA/D 11 0 0 +

Cost

DNSGA-II vs. SPEA-II 8 0 3 +
DNSGA-II vs. MOPSO 9 0 2 +
DNSGA-II vs. PESA-II 9 0 2 +
DNSGA-II vs. MOEA/D 9 0 2 +
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