
Role-Based Access Control Models for Android

Samir Talegaon
Department of Electrical & Computer Engineering

University of Texas at San Antonio
San Antonio, USA

samir.talegaon@utsa.edu

Ram Krishnan
Department of Electrical & Computer Engineering

University of Texas at San Antonio
San Antonio, USA

ram.krishnan@utsa.edu

Abstract—Android uses runtime permissions to alert users of
application resource usage. Only a limited portion of Android
permissions are allowed to be managed by the users. This is
made essential, because Android assigns permissions directly to
applications, and the number of applications and permissions is
high. However, due to this tradeoff, users are restricted from
managing all the aspects of their own devices. Android itself
groups permissions based on their functionality; however, these
groups are immutable and non-overlapping, which confers a
rigidity to the permission system. Prior work in adapting RBAC
to Android exists but deviates from the standardized NIST
RBAC and does not include sessions, a key component of RBAC,
used to mitigate the exposure of system resources. So, to fully
understand the benefits RBAC offers for Android, and to mitigate
its permissions management problem, we propose three new
models for RBAC in Android. Our models are aimed to address
the issue of user permission management in conjunction with
flexibility of being able to assign permissions to either users,
applications, or app-components.

Index Terms—role-based, access control, android

I. INTRODUCTION

Android is one of the most popular mobile operating sys-

tem, and Android users download apps such as WhatsApp,

Facebook, YouTube, and Chrome to utilize the device’s full

potential. These apps require access to sensitive resources

such as internet, contacts, camera, and microphone amongst

others. The Android OS uses a permission-based mechanism

to control access to sensitive resources that are available to

apps1, and despite advancements to access control in Android,

this model has remained largely the same. According to this

model, apps that require access to sensitive system resources,

must request prior approval from the user (Figure 1). If the user

approves such requests, permissions are permanently granted

to apps and there is no mechanism by which permissions are

automatically revoked.

Although the runtime permissions increase user awareness

related to app-resource usage, the control users have over

their own devices remains the same, because permissions

categorized to be in the normal and signature protection level

are restricted from being managed. Also, despite dangerous

permissions being revocable, doing so is extremely tedious.

Furthermore, to reduce the number of prompts to which

users are expected to respond, these runtime permissions are

This work is partially supported by NSF Grants CNS-1553696 and HRD-
1736209.

1https://developer.android.com/training/permissions/requesting/

Applications

Grant Deny

Android OS

Sensitive Resources

WhatsApp
Facebook
Chrome
YouTube

Internet,
Contacts,
Camera,
Microphone

Mobile user

Request
Access

Figure 1. Permission-based access control in Android

grouped together based on their functionality, and the permis-

sions within a group are collectively administered. Although

this reduces the administrative burden on users, it also results

in a reduced granularity since permissions within a group

cannot be selectively granted or revoked. Also, the permission

groups themselves are immutable and do not have any overlap,

resulting in an inflexible permission management system.

Role based access control (RBAC) [8] is used in enterprise

scenarios due to the administrative ease it provides, and we

believe it would be useful in managing Android permissions

as well. RBAC assigns objects to roles, and then enables

administrators to grant these roles to the appropriate subjects.

This results in a significant decrease in the administrative

burden, because it is easier to grant a few roles rather than

granting significantly higher number of permissions to the

subjects. Apart from this, RBAC offers inherent advantages

through sessions, which enable subjects to limit the number

of permissions that are exposed at runtime. Due to this, an

RBAC based access control system is a promising approach

towards developing an adaptive, user-administered access con-

trol mechanism, for Android.

There are a few works which have implemented RBAC

in Android. Abdella et. al. [1] proposes a context-aware

Android role-based access control (CA-ARBAC) in which

they associate roles with users and contexts with permissions.

However, this does not ease permission management for the

users, nor does it enable the OS to differentiate between app

components. Apart from this, roles are formed arbitrarily based

on functional groups. DR-BACA [17] introduces static and

dynamic RBAC in Android, and, uses 6-tuples called as rules

to make access control decisions. While this removes the issue

of permissions granted permanently to apps, it exacerbates the

issue of user-management of permissions by increasing the

complexity of the access control mechanism. Also, users in

179

2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA)

978-1-7281-8543-9/20/$31.00 ©2020 IEEE
DOI 10.1109/TPS-ISA50397.2020.00033

20
20

 S
ec

on
d

IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 T

ru
st

, P
riv

ac
y

an
d

Se
cu

rit
y

in
 In

te
lli

ge
nt

 S
ys

te
m

s a
nd

 A
pp

lic
at

io
ns

 (T
PS

-I
SA

) |
 9

78
-1

-7
28

1-
85

43
-9

/2
0/

$3
1.

00
 ©

20
20

 IE
EE

 |
D

O
I:

10
.1

10
9/

TP
S-

IS
A

50
39

7.
20

20
.0

00
33

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 17,2021 at 12:26:13 UTC from IEEE Xplore. Restrictions apply.

RBAC are substituted with apps in their work, and although

this is similar to one of the models we propose, as will

be discussed further, the goal of this work is to provide

comprehensive models for RBAC in Android.

OUR CONTRIBUTION: We develop three new models

for RBAC in Android, with distinctions in substitutions for

the set of users in RBAC, with the set of users (RiAu),

apps (RiAa) or app components (RiAac) in Android. For

adapting the current Android to the Android with RBAC, we

need to design roles. To this end, we demonstrate how roles

can be engineered using a bottom-up approach via various

algorithms from the literature. We also develop a prototype

implementation of RBAC in Android with sessions, using the

RiAa model.

OUTLINE: Sect. II placed our work in the context of others

in the area of RBAC in Android while Sect. III introduces a

few key concepts in Android and describes the three models

for RBAC in Android along with a brief description of the

implementation of the RiAa model in Android. In Sect. IV,

we evaluate our RBAC models by providing suitable use case

scenarios, and, by creating the required assignment relations

by using role-mining algorithms techniques. Sect. V, describes

the conclusion and provides directions for the future work.

II. RELATED WORKS

In this section, we discuss the prior works that target role-

based access control in Android. Abdella et.al. [1] imple-

mented RBAC in Android, by assigning roles to permissions

and granting these roles to apps. They use context information

to limit the permissions that can be activated within a given

role that has been granted to an app, to reduce user adminis-

trative burden. However, their work does not include the use

of sessions, a critical component of RBAC. Also, roles are

arbitrarily created in their model. We believe that the creation

of roles is an important step to fully realize the benefits of

RBAC in Android, since, arbitrarily created roles hamper the

effective advantage gained by using RBAC in Android.

Rohrer [17] implemented DR-BACA model which is an

adaptation of the RBAC model, in Android, which consid-

ers the dynamic nature of contexts and controls application

requests for permissions using factors such as location of

the device, time or date on the device, and events which

take place on the device. However, these modifications to the

Android OS do not make the use of sessions in any way,

nor do they mention role activation/de-activation and it is

for this reason we propose a hitherto un-implemented RBAC

model for improving security and privacy in the Android

OS. MPDroid [12] presents a custom, user-definable access

control system that can be used to control perms granted to

untrusted apps with a high level of granularity. It allows device

administrators to limit the damage apps can do (using MAC in

the kernel layer), and users to control app-access to resources

(using RBAC in the framework layer). However, they require

users to create roles, and since users are not experts in the

field of access control, they cannot be expected to create

security aware roles. Apart from this, their RBAC model does

not include sessions, a key concept that allows us to combat

conflict of interest issues.

Several works have proposed access control systems for

Android using context-aware policies [18]. ipShield [4] draws

inferences based on sensor data to make access control sug-

gestions to the users. ConXsense [15] uses context sensing and

machine learning in their framework to probabilistically make

an access control decision. Ren et. al. [16] propose a context-

aware resource usage control system that includes four policy

conflict resolution rules and implement it in Android (named

EasyPrivacy).

Many works have targeted the Android’s permission mech-

anism to understand how it internally works while others have

proposed new methods for implementing access control in

Android. PScout [2] analyses the Android permission system

in a bid to provide insight in to Android’s API permissions,

statistically. Barrera et. al. [3] perform empirical analysis of

1,100 Android applications and identified the frequently used

permissions and suggest improvements to Android’s permis-

sions model to increase the granularity for these permissions

while reducing it for the non-frequent permissions. Stowaway

[7] detects permission over-privilege by mapping API calls to

permissions and identifying those permissions which are not

used in conjunction with any API call. These works prove

an insight into the Android’s permission system, however

they do not propose any new access control methods, and

instead suggest improvements on the Android’s permission-

based access control mechanism.

VetDroid [22] uses 1,249 free applications for performing

dynamic analysis which has advantages over static analysis,

and, it uses results from this analysis to identify potential se-

curity flaws in Android applications. Fang et. al. [6] investigate

issues in Android’s security system and identify flaws relating

to course granularity of permissions, un-friendly permission

management mechanism, insufficient documentation on API

permissions and a few attacks experienced by Android appli-

cations such as permission escalation and TOCTOU (Time of

Check & Time of Use). These works provide novel insights

into the runtime issues experiences by Android applications;

however, they do not attempt to modify the permission-based

access control mechanism.

III. RBAC IN ANDROID

Before proceeding further, a few concepts in Android, its

apps and RBAC require explanation, so that our work can be

better understood.

A. Background

Android app components. Android apps consist of four main

components2 - Activities, Services, Broadcast Receivers and

Content Providers. Activities make up the GUI, which appears

on the phone screen and interacts with the users; services are

the invisible components which run in the background and

are meant to perform tasks which take a significant amount of

2https://developer.android.com/guide/components/fundamentals

180

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 17,2021 at 12:26:13 UTC from IEEE Xplore. Restrictions apply.

UAUSERS PAPROLES<(user,
USERS)>

SESSIONS

user_sessions session_roles

OBJ<(user,
USERS)>

PPERMS<(user, USERS)>

AM

session_apps

APPS

wished_roles

(a) RBAC Users substituted with Android Users(RiAu)

UAAPPS PAROLES PERMS

SESSIONS

app_sessions session_roles

(b) RBAC Users substituted with Android
Applications(RiAa)

UACOMPS PAROLES PERMS

SESSIONS

appcomp_sessions session_roles

APPS

(c) RBAC Users substituted with Android App-components (RiAac)

Figure 2. RBAC in Android (RiA) models with the set of Users in RBAC substituted as denoted

time to process. Broadcast receivers can receive system wide

broadcasts indicating specific events such as, the completed

boot-up of a device, and content providers are the mechanism

which enable apps to share their data in a controlled manner,

with other apps.

Android permissions. Permissions are categorized3 as nor-

mal, dangerous and signature depending on the risk4 they pose

to the user’s privacy and security. Normal permissions are

automatically granted, and signature permissions are granted

by the Android OS based on the signing certificate of the

app, both of which cannot be revoked by the user. Dangerous

permissions are those that pose a significant risk to the user’s

privacy and security.

RBAC. There are 3 different models of RBAC: core RBAC,

hierarchical RBAC and constrained RBAC. While core RBAC

provides the basic entities for an RBAC system, hierarchical

RBAC optimizes the PA and UA relationships by adding role

hierarchies, which involve senior and junior roles. The third

RBAC model adds separation of duty constraints that provides

protection against conflict of interest.

3https://developer.android.com/guide/topics/permissions/overview
4We believe that Google evaluates risk with two parameters, namely, access

to user-data, and control over the device that can negatively impact user
experience.

B. RBAC Models for Android

In this subsection we define three new models for RBAC

in Android, differing primarily in the substitutions for the set

of users in RBAC with corresponding entities in Android. We

have also provided a rigorous formal specification of these

models below.

1) RiAu (Users in RBAC Replaced with Users in Android):
In this model users in RBAC are substituted with users in

Android. Permissions in Android grant a blanket access to

the resource they protect, but it is intuitive to maintain the

separation of data for each user. For example, access to user

specific data such as contacts, photos, videos, and calendar

needs to be granted only to the user who owns that data; this

requires perms and roles to be parameterized. Many works

in the literature describe the concept of parameterized perms

and roles that can achieve such a selective access control

mechanism [9], [10], [13], [14]. As we can see from Fig.2a,

our model makes use of parameterized roles and perms to

control selective access to resources, however, it should be

noted that not all perms and roles are parameterized.

Design. According to this model, parameterized roles are

granted directly to the users (UA). This UA can be done by the

owner of the Android device or in an enterprise scenario, an

administrator for the device. Once users receive the required

roles, they can launch new sessions when needed, and can

181

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 17,2021 at 12:26:13 UTC from IEEE Xplore. Restrictions apply.

Table I
RiAu ENTITY SETS, RELATIONS AND FUNCTIONS

Entity Sets

USERS and APPS the sets of all users and apps on an Android device.

OBJ
〈
(user, USERS)

〉
, a set containing all the objects required to be distinct for the users of a given Android device. For example,

– OBJ
〈
(user, USERS)

〉
= {Contacts

〈
(user, Alice)

〉
, Contacts

〈
(user, Bob)

〉
, WhatsAppPhotos

〈
(user, Alice)

〉
, WhatsAppPhotos

〈
(user,

Bob)
〉
,...}

AM = {read, write}, a set of access modes for all objects on a given Android device.

PROLES
〈
(user, USERS)

〉
, the set of all parameterized roles in a given Android device. A few example parameterized roles are given

below.

– PROLES
〈
(user, Alice)

〉
= {Parent

〈
(user, Alice)

〉
, Guest

〈
(user, Alice)

〉
, Child

〈
(user, Alice)

〉}
– PROLES

〈
(user, Bob)

〉
= {Parent

〈
(user, Bob)

〉
, Guest

〈
(user, Bob)

〉
, Child

〈
(user, Bob)

〉}
SESSIONS, the set of all sessions on an Android device.

Relations

PPERMS
〈
(user, USERS)

〉
= 2OBJ

〈
(user, USERS)

〉 × AM, a set of all parameterized permissions on a given Android device. For
example,

– PPERMS
〈
(user, Alice)

〉
= {(WhatsAppPhotos

〈
(user, Alice)

〉
, read

) (
WhatsAppPhotos

〈
(user, Alice)

〉
, write

)
,
(
Contacts

〈
(user,

Alice)
〉
, read

)
,
(
Contacts

〈
(user, Alice)

〉
, write

)}
UA ⊆ USERS × PROLES

〈
(user, USERS)

〉
, a many-to-many mapping user-to-parameterized role assignment relation.

PA ⊆ PROLES
〈
(user, USERS)

〉 × PPERMS
〈
(user, USERS)

〉
, a many-to-many mapping permission-to-role assignment relation.

Functions

user_proles: USERS → 2PROLES(USERS), the mapping of a user u:USERS onto a set of parameterized roles assigned to that
user. Formally, user_proles(u) = {pr

〈
(user, u)

〉 ∈ PROLES
〈
(user, u)

〉 | (u, pr
〈
(user, u

〉
)
) ∈ UA}

assigned_users: PROLES
〈
(user, USERS)

〉 → 2USERS, the mapping of a parameterized role pr
〈
(user, u)

〉
:PROLES

〈
(user,

USERS)
〉

onto a set of users that it has been assigned to. Formally, assigned_users
(
pr
〈
(user, u

〉
)
)|u ∈ USERS = {u | (

u,

pr
〈
(user, u)

〉) ∈ UA}
assigned_ppermissions: PROLES

〈
(user, USERS)

〉 → 2PPERMS
〈

(user, USERS)
〉

, the mapping of pr
〈
(user, u)

〉
:PROLES

〈
(user,

USERS)
〉

onto a set of parameterized permissions for a particular user u:USERS. Formally, assigned_ppermissions
(
pr
〈
(user,

u)
〉)

= {pp
〈
(user, u)

〉 ∈ PPERMS
〈
(user, USERS)

〉 | (pp
〈
(user, u)

〉
, pr

〈
(user, u)

〉) ∈ PA}
user_sessions: USERS → 2SESSIONS, the mapping of user u onto a set of sessions. Note that, ∀u1 �= u2 ∈
USERS. user sessions(u1) ∩ user sessions(u2) = ∅
session_apps: SESSIONS → 2APPS, the mapping of session s onto a set of apps.

session_proles: SESSIONS → 2PROLES
〈

(user, USERS)
〉

, the mapping of session s onto a set of roles. Formally,
session_proles(si) = {pr

〈
(user, u)

〉 ∈ PROLES
〈
(user, u)

〉 | u ∈ USERS ∧ (
session_users(si), pr

〈
(user, u)

〉) ∈ UA}.
Note that, ∀s1 �= s2 ∈ SESSIONS. session proles(s1) �= session proles(s2)

avail_session_pperms: SESSIONS → 2PERMS
〈

(user, USERS)
〉

, the permissions available to a user in a session,⋃

pr
〈
(user, u)

〉 ∈ session proles(s)

assigned ppermissions
(
pr
〈
(user, u)

〉)
.

wished_proles: APPS → 2PROLES
〈

(user, USERS)
〉

, the mapping of an app a:APPS onto a set of roles wished by that app.

activate any role they have been granted in that session. The

user can control whether the new app launched should be

added to an active session or to launch it in a different session

(new session).

RiAu Model. In this model for RiAu, we define pa-

rameterized sets where Pname is the name of the pa-

rameter and Pdomain is the domain of the parameter

SET
〈
(Pname, Pdomain)

〉
. For all intents and purposes our

model only contains the parameter of username, however

this can be modified in the future to allow more granularity

based on location, time, and other parameters. The entity sets,

relations and functions are described in Table I, and the key

operations for this model can be found in the Table II.

2) RiAa (Users in RBAC Replaced with Apps in Android):
In this model, users in RBAC are substituted with apps in

Android (see Fig.2b). This model dictates entrusting decision

182

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 17,2021 at 12:26:13 UTC from IEEE Xplore. Restrictions apply.

Table II
RiAu OPERATIONS

Operation: CreateSession(u : USERS, a : APPS,

ars : 2PROLES
〈
(user, u)

〉
, s : NAME)

Authorization Requirement: ars ⊆ user proles(u) ∧
ars ⊆ wished proles(a) ∧ s �∈ SESSIONS

Updates:

SESSIONS′ = SESSIONS ∪ {s}
user sessions′ = user sessions ∪ {u, s}
session proles′ = session proles ∪ {s} × ars

Operation: DeleteSession(u : USERS, s : SESSIONS)

Authorization Requirement: sessUser(s) = u

Updates:

user sessions′ = user sessions \ {u, s}
session proles′ = session proles ∪ {s} × ars

SESSIONS′ = SESSIONS \ {s}
Operation: RequestAccess

(
a : APPS, u : USERS,

pr
〈
(user, u)

〉
: PROLES

〈
(user, u)

〉)

Authorization Requirement: ∃s ∈ SESSIONS.

a ∈ session apps(s) ∧ u = session users(s) ∧
(
u, pr

〈
(user, u)

〉) ∈ UA ∧ pr
〈
(user, u)

〉 �∈
session proles(s)

Updates:

session proles′ = session proles ∪ {s, pr
〈
(user, u)

〉}
Operation: RevokeRole

(
u : USERS, s : SESSIONS,

pr
〈
(user, u)

〉
: PROLES

〈
(user, u)

〉)

Authorization Requirement: s ∈ user sessions(u)

Updates:

session proles′ = session proles \ {s, pr
〈
(user, u)

〉}
Operation: CheckAccess(a : APPS, s : SESSIONS,

pp
〈
(user, u)

〉
: PPERMS

〈
(user, u)

〉
,

outresult : BOOLEAN)

Authorization Requirement:

∃pr〈(user, u)
〉 ∈ PROLES

〈
(user, u)

〉
.

u = session users(s) ∧
pr
〈
(user, u)

〉 ∈ session proles(s) ∧
(
pr
〈
(user, u)

〉
, pp

〈
(user, u)

〉) ∈ PA

Updates:

-

policies such as what roles to activate and when, with the

apps themselves, and by extension with the app developers. In

the current Android, prompts are only shown for permission

groups and within these groups, only the permissions belong-

ing to dangerous protection level are controlled with the groups

themselves. By assigning roles to apps, the administrative

Table III
RiAa ENTITY SETS, RELATIONS AND FUNCTIONS

Entity Sets
APPS, ROLES and PERMS the set of all apps, roles and permis-
sions on a given Android device.

SESSIONS, the set of all sessions on an Android device.

Relations
UA ⊆ APPS × ROLES, a many-to-many mapping app-to-role
assignment relation.

PA ⊆ PERMS × ROLES, a many-to-many mapping perm-to-role
assignment relation.

Functions
assigned_apps: ROLES → 2APPS, the mapping of role
r:ROLES onto a set of apps. Formally: assigned_apps(r) =
{a ∈ APPS | (a, r) ∈ UA}.

app_roles: APPS → 2ROLES, the mapping of app a:APPS onto
a set of roles assigned to it. Formally: app_roles(a) = {r ∈
ROLES | (a, r) ∈ UA}.

assigned_permissions: ROLES → 2PERMS, the map-
ping of role r:ROLES onto a set of permissions. Formally:
assigned_permissions(r) = {p ∈ PERMS | (p, r) ∈ PA}.

app_sessions: APPS → 2SESSIONS, the mapping of app
a:APPS onto a set of sessions.

session_roles: SESSIONS → 2ROLES, the mapping
of session s:SESSIONS onto a set of roles. Formally:
session_roles(si) ⊆ {r ∈ ROLES | (session_apps(si),
r) ∈ UA}.

avail_session_perms: SESSIONS → 2PERMS,
the permissions available to an app in a session,⋃

r ∈ session roles(s)
assigned permissions(r).

wished_roles: APPS → 2ROLES, the mapping of an app
a:APPS onto a set of roles wished by that app.

burden of users is reduced without a disproportionate increase

in the number of user prompts5.

Design. Since apps are tasked with managing active roles,

app developers are responsible for defining, requesting, and

activating roles. A few default roles are built into the devices

for use by apps. These roles are generated by top-down

(semantic meaning) and bottom-up (algorithms for mining

roles) approaches [5] using apps from the Play store and

the information on which permissions are requested by them.

Although apps are designated as subjects, keeping in line with

the requirement to safeguard user data, role requests still need

to be granted by users. Once roles are granted, apps are free

to activate any role as required and can be set to launch in a

pre-active session or launch distinct sessions as per developer

discretion.

RiAa Model. The model for RiAa is described below along

with the entity sets, relations and functions in Table III, and,

its key operations in Table IV.

5This depends on the quality of the roles that exist in the system.

183

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 17,2021 at 12:26:13 UTC from IEEE Xplore. Restrictions apply.

Table IV
RiAa OPERATIONS

Operation: CreateSession(a : APPS, ars : 2ROLES,

s : NAME)

Authorization Requirement: ars ⊆ app roles(a) ∧
ars ⊆ wished roles(a) ∧ s �∈ SESSIONS

Updates:

SESSIONS′ = SESSIONS ∪ {s}
app sessions′ = app sessions ∪ {(a, s)}
session roles′ = session roles ∪ {s} × ARS

Operation: DeleteSession(a : APPS, s : SESSIONS)

Authorization Requirement: s ∈ app sessions(a)

Updates:

app sessions′ = app sessions \ {a, s}
session roles′ = session roles ∪ {s} × ars

SESSIONS′ = SESSIONS \ {s}
Operation: RequestAccess

(
a : APPS, r : ROLES)

Authorization Requirement: ∃s ∈ SESSIONS.

a ∈ session apps(s) ∧ (
a, r) ∈ UA ∧

r �∈ session roles(s)

Updates:

session roles′ = session roles ∪ {s, r}
Operation: RevokeRole

(
s : SESSIONS, r : ROLES)

Authorization Requirement: s ∈ app sessions(a)

Updates:

session roles′ = session roles \ {s, r}
Operation: CheckAccess(a : APPS, s : SESSIONS,

p : PERMS, outresult : BOOLEAN)

Authorization Requirement: ∃r ∈ ROLES.

a = session apps(s) ∧ r ∈ session roles(s) ∧
(
r, p) ∈ PA

Updates:

-

3) RiAac (Users in RBAC Replaced with App-components
in Android): In this model, users in RBAC are replaced with

app-components in Android (see Fig.2c). This model supports

a highly granular access control system, by assigning roles

directly to app-components. This also limits the exposure of

sensitive system and user resources.

Design. Since roles are granted to app-components, the roles

need to be defined by the apps. This puts the onus of defining,

requesting, and activating roles with the app developers. Users

would be required to accept role prompts prior to them being

granted to the app-components. Although this model presents

an additional burden on the app developers and users, due to

Table V
RiAac ELEMENT SETS, RELATIONS AND FUNCTIONS

Entity Sets
APPS, COMPS (the sets of all apps and components on an
Android device)

ROLES the set of all roles on an Android device

PERMS, the set of all permissions that exist on a given Android
device.

SESSIONS, the set of all sessions that exist on an Android device.

Relations
APP COMPS ⊆ APPS × COMPS, a one-to-many mapping
applications-to-component assignment relation.

UA ⊆ APP COMPS × ROLES, a many-to-many mapping
app components-to-role assignment relation.

PA ⊆ PERMS × ROLES, a many-to-many mapping permission-
to-role assignment relation.

Functions
assigned_comps: ROLES � 2APP COMPS, the mapping
of role r:ROLES onto a set of app components. Formally,
assigned_comps(r) = {ac ∈ APP COMPS | (ac, r) ∈ UA}.

appcomp_roles: APP COMPS → 2ROLES, the mapping of
app-comp ac:APP COMPS onto a set of roles. Formally,
appcomp_roles(ac) = { r ∈ ROLES | (ac, r) ∈ UA}.

assigned_permissions:ROLES → 2PERMS, the map-
ping of r:ROLES onto a set of permissions. Formally,
assigned_permissions(r) = {p ∈ PERMS | (p, r) ∈ PA}.

APPCOMP SESSIONS ⊆ APP COMPS × SESSIONS, a many-
to-many mapping app components - to - session assignment
relation.

sess_appcomp: APP COMPS � 2SESSIONS, the map-
ping of ac:APP COMPS onto a set of sessions. Formally,
sess_appcomp(ac) = {s ∈ SESSIONS | (ac, s) ∈ APP-
COMP SESSIONS}.

appcomp_session: SESSIONS → APP COMPS, the
mapping of s:SESSIONS to an app component ac. Note
that, ∀s ∈ SESSIONS. (appcomp session(s), s) ∈
COMP SESSIONS.

session_roles ⊆ SESSIONS × ROLES, a many-to-many
mapping session-to-roles assignment relation.

session_roles: SESSIONS → 2ROLES, the mapping of
s:SESSIONS onto a set of roles. Formally, session_roles(s)
= {r ∈ ROLES | (appcomp_session(s), r

) ∈ UA}.

avail_session_perms: SESSIONS � 2PERMS, the
permissions available to a component in a session,⋃

r ∈ session roles(s)

assigned_permissions(r).

isAuthorized: SESSIONS × PERMS → B, a
s:SESSIONS is authorized to exercise a permission p if
isAuthorized(s, p). Also, ∀s ∈ SESSIONS, ∀p ∈
PERMS. isAuthorized(s, p) → ∃r ∈ ROLES.

(
(s, r) ∈

session roles ∧ (p, r) ∈ PA
)

wished_roles: APP COMPS → 2ROLES, the mapping of an
app-comp ac:APP COMPS onto a set of roles wished by that
app component.

increased granularity associated with granting roles directly

to app-components, it is heavily mitigated by the use of

the RBAC system. Also, this model mitigates the issue of

third-party app components receiving the entire battery of

184

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 17,2021 at 12:26:13 UTC from IEEE Xplore. Restrictions apply.

Table VI
RiAac OPERATIONS

Operation: CreateSession(ac : APP COMPS, ars : 2ROLES,

s : NAME)

Authorization Requirement: ars ⊆ appcomp roles(ac) ∧
ars ⊆ wished roles(ac)

Updates:

SESSIONS′ = SESSIONS ∪ {s}
APPCOMP SESSIONS′ = APPCOMP SESSIONS ∪

{(ac, s)}
session roles′ = session roles ∪ ⋃

r ∈ ars

{(s, r)}

Operation: DeleteSession(ac : APP COMPS, s : SESSIONS)

Authorization Requirement: ac = appcomp_session(s)

Updates:

APPCOMP SESSIONS′ = APPCOMP SESSIONS \
{(ac, s)}

session roles′ = session roles \
⋃

r ∈ session roles(s)

{(s, r)}

SESSIONS′ = SESSIONS \ {s}
Operation: RequestAccess(ac : APP COMPS,

s : SESSIONS, r : ROLES)

Authorization Requirement: ac = appcomp_session(s) ∧
(ac, r) ∈ UA ∧ ∀dsdpair ∈ DSD. dsdpair = (rs1, n),

∀rset ∈ 2ROLES. rset ⊆ rs1 ∧ rset ⊆ ars ⇒ |rset| < n

Updates: session roles′ = session roles ∪ {(s, r)}

Operation: RevokeRole(ac : APP COMPS, s : SESSIONS,

r : ROLES)

Authorization Requirement: ac = appcomp_session(s) ∧
r ∈ session_roles(s)

Updates: session roles′ = session roles \ {(s, r)}
Operation: CheckAccess(ac : APP COMPS, s : SESSIONS,

p : PERMS, outresult : BOOLEAN)

Authorization Requirement: ∃r ∈ ROLES.

ac = appcomp session(s) ∧ r ∈ session roles(s) ∧
(
r, p) ∈ PA

Updates: -

permissions assigned to the app themselves, because roles

are granted to app-components themselves. On launch, app-

components can be programmed to activate any of the granted

roles to obtain the required permissions for providing full

functionality.

RiAac Model. In this subsection, we define a model for

Perm
Req

Perm
Chk

Perm
Req

Deny

Application
Layer

App2App1

Grant

Perm Req Perm Chk

Perm Revoke Request

Deny Grant

UA

PA
session_roles

Role
ManagerAndroid Perm Manager

Role
Request

C, C++, HAL

Kernel Layer

Android Framework Layer

Revoke

Grant/Revoke permission

Deny

Execution request
Session act. request

Deny

Session
Request

Role request

Grant

Cannot request
perms directly

Figure 3. RiAa implementation

RBAC in Android with users in RBAC substituted with com-

ponents in Android. The entity sets, relations and functions are

described in Table V, and the key operations for this model

can be found in Table VI.

C. Implementation

In this subsection, we briefly describe our implementation

for RBAC in Android. We compiled the source code for API

29 (current at this time) and modified the source code for the

same branch. The model RiAa was implemented in Android

and is described below (see Figure 3).

Implementation Methodology This implementation for

RBAC in Android is built within the Android framework

later, and utilizes Android’s internal perm checking mecha-

nism to allow or deny apps from accessing the resources.

The role manager, a module built by us, processes incom-

ing role requests, and maintains an updated UA, PA, and

session_roles. A brief summary of the key modifications

done to Android are described below.

Package Installer The package installer is responsible for

streaming apps from the Google Play Store and installing

them on the device. It is during the installation that all the

normal and signature permissions are auto granted to apps.

We modified the package installer to read external XML files

to input roles defined by developers for their own apps. The

installation only succeeds if such a role is not already defined

on the device, or, if it was defined by the same developer

(via signature match). This is achieved by modifying the

InstallSucceed.java file and adding an exception to the final

method for returning a successful installation.

The Android Manifest File for the Platform The An-

droidManifest.xml file for the platform contained in /frame-

works/base/core/res contains all the permissions definitions for

185

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 17,2021 at 12:26:13 UTC from IEEE Xplore. Restrictions apply.

that device, and we removed the permission-group associa-

tions for each of the permissions defined in this file, since

permission-groups are not used by our mechanism.

Permission Manager The requestPermission method from

ActivityCompat.java and from the Activity.java files were

overridden, and apps were prevented from being able request

permissions, since apps are only be allowed to request roles

and not individual permissions in RiAa. We added the methods

requestRole in the above-mentioned files to enable apps to

request the appropriate roles, after they have been requested

in the app’s manifest file (AndroidManifest.xml).

Role Manager We developed a new module at the frame-

work level to manage all role to permission assignments as

well as role to app assignments (see Fig.3). This module hooks

onto the permission manager to grant and revoke permissions

according corresponding to role grants and revocations. When

a role is granted, and activated by an app with the activateRole

method, this module grants all the permissions for that role

to the app. When the app shuts down, all those permissions

are revoked. It should be noted that we modified the Android

manifest file for the platform to remove all permission group

assignments and all permissions are now individually granted

or revoked.

IV. EVALUATION

In this section, we evaluate the RBAC models for Android.

We do this by providing plausible scenarios for use cases

pertaining to each model. Also, we utilize role-mining, to

algorithmically generate roles (i.e.: the permission assignment

(PA) and the user-assignment (UA)). By providing example

mapping of roles to permissions and applications, we show

that it is not only feasible to utilize RBAC’s true potential in

easing administrative burden, but also that doing so does not

over burden the user with role prompts instead of permission

prompts.

A. Use Cases for RBAC Models for Android

Use Cases for RiAu This model is useful in many scenarios

where the Android devices are shared by the users. In a

car, the control system can be designed with RiAu, where

the owner would get access to all the car’s system functions

from setting the tire pressure to modifying the alarm distance

for the proximity sensors. Access for other drivers can be

limited to adjusting the seat height and mirrors amongst other

non-critical components that are required for safely driving

the car. RiAu can also be employed where Android devices

are used in an attendance system. In an organization, the

managers for the departments can receive a permission to read

all attendance whereas the employees can only log and read

their own attendance. Finally, at home, RiAu can be used to

share an Android device with the family, such as in a smart

display system, which can control all smart devices within the

household and initiate communication with the outside world

(placing phone calls). Each member of the house can read

their own contacts, photos, videos specific to them and can

choose to share these with the rest of the household, while

senior members can obtain access to modify critical settings

such as thermostats, door alarms and security cameras.
Use Cases for RiAa Since apps in Android are the subjects,

this model is useful in varying special scenarios including

general phone and tablet use. In the enterprise scenario, the

devices used by employees can be automatically configured

to obtain the required roles based on the employee’s job

title in the company. Devices used by managers can be

programmed to receive roles to check on employee attendance,

performance, and approve or decline leave requests. Whereas

devices used by employees can be restricted from activating

certain features such as microphone or camera, and apps can

be limited that reduce productivity in the workplace.
Use Cases for RiAac Due to the inherently complex nature

of this model, its use is limited to areas of high risk such

as the military, banking sector and sensitive fields such as

nuclear or cyber-security research. All the apps that can run

on the Android built around this model need to be developed

in-house, due to the major change in the subjects, and would

be incompatible with other versions of the RiA. The roles

would be managed by members of the administrative team,

experienced in access control and users would have little to

no control in the administration of roles. In order to realize

the full potential of RBAC in Android, the formation of roles

is explained in the next section.

B. Role Mining for Generating UA and PA
Role mining is a bottom up approach [21] of role engineer-

ing [5], in which, algorithms are used to analyze and extract

roles from a pre-existing user permission assignment (UPA)

matrix. Various algorithms to mine roles from provided data

sets have been published, and we analyzed and implemented

five such algorithms i.e.: Fast Miner/ Complete Miner [21],

Basic RMP [19], Delta RMP [20] and the Min Noise RMP

algorithm [11]. It should be noted that, the issue of engineering

good roles has been studied extensively, and is outside the

scope of this paper; we present an analysis of these algorithms,

as an illustration to the suitability of the generated roles for

Android. This does not confer a finality to this work, and roles

need to be engineered, according to the requirements of each

system. For Android, these algorithms provide a brief outlook

of the nature of generated roles, and we utilize these roles in

our implementation of RBAC in Android.
The purpose of mining roles, is to provide a few basic roles

which can be pre-included with the RBAC in Android system,

and it is not our intention to assign all of Android’s perms (582

perms in API 29) to roles. It is shown below, that even when

we consider as low as 10 roles, a significant number of perms

requested by apps are covered to them. The onus of assigning

the remaining perms to roles, and requesting these roles from

the user lies with the app developers. After prefacing this, the

results from our role mining for Android are described in brief.
The above-mentioned algorithms are run on our data set

consisting of top 500 free apps from the Google Play store

(obtained from APK Pure6). While the total number of per-

6https://apkpure.com/

186

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 17,2021 at 12:26:13 UTC from IEEE Xplore. Restrictions apply.

(a) No. of perm assignments reqd. in stock Android (b) Cvrg. of role mining alg.

(c) Delta RMP perm privilege (d) MinNoise RMP perm privilege (e) Comparison of no. of user assignments (stock
Android vs. RBAC in Android)

Figure 4. Results from role mining for Android

missions in Android are more than 500, only 161 of them

are ever requested by any of the apps in our data set, and

out of these 161, nearly 40 perms are rarely requested by any

app. It can be seen from Fig. 4(a), 125 perms are requested

by 0 to 50 apps in our data set, and about 175 apps need

between 5 to 10 perms. Fig.4(b) shows the percentage increase

in the coverage of perms, when a greater number of generated

roles are successively considered. This graph is obtained from

the results of all five of the role mining algorithms. Coverage

of perms is obtained by dividing the total number of unique

perms assigned to any role, in a set of a certain number of

roles, to the total number of perms ever requested by any

app (which is known to be 161). This figure shows that the

algorithms known as Delta RMP and MinNoise RMP are the

most efficient in mining roles.
The Fig.4(c) obtained from the results for the Delta RMP

algorithm, shows the percentage of the number of roles gen-

erated, perms covered and the under-privilege of perms with

respect to an increase in delta. Delta is the difference between

the UPA matrix and the generated UA and PA matrices [20].

Under-privilege of perms occurs when there is a reduction

in the number of perms assigned to apps in comparison to

the requested number of perms. It can be observed from this

graph (approx.) that when a delta of 6% is considered, the

under-privilege is 4%, the perms covered are 70% however the

number of roles that need to be considered are 80 (it should

be noted that in the graph, the number of roles considered

are not a percentage). According to the total number of perms

requested by apps in our data set, which is 161, needing to

consider 80 roles is a disadvantage. Next, Fig.4(d) which is

obtained from the results of the MinNoise RMP algorithm,

shows the under-privilege and over-privilege percentage of

perms (over-privilege is the assignment of more than requested

perms to apps) when an increasing number of successively

mined roles are considered. Firstly, this graph shows that even

with 20 roles mined by this algorithm, the under-privilege

percentage is merely 20%; secondly, it shows the sharp rise

in the over-privilege percentage above 120 mined roles which

is noteworthy.

Finally, the Fig.4(e) is obtained by comparing the number

of assignments between the non-RBAC, UPA based Android,

to the RBAC based Android with roles generated by the

MinNoise RMP algorithm. From Fig. 4(b),(d) and (e), it can

be observed that when the coverage is 20%, the number of

role assignments drop below the number of perm assignments.

This 20% coverage reflects the consideration of about 20

roles (from Fig.4(b)), and a corresponding under-privilege of

20% (4(d)). This implies that with 10 generated roles, the

under-privilege of perms is only about 1 in every 5 perms

requested by the apps, and is considered by us as a positive

outcome of the role mining algorithm. As stated earlier, the

remaining perms required by apps can be obtained by, firstly

assigning them to custom-developer-defined roles, and then

by requesting those roles from the user. A few sample roles

generated by the MinNoise RMP algorithm are shown in Table

VII. It should be noted that these algorithms also generate the

UA, however it is not shown here for brevity.

187

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 17,2021 at 12:26:13 UTC from IEEE Xplore. Restrictions apply.

Table VII
MINNOISE RMP MINED ROLES

Roles Assigned permissions

R1 android.permission.WRITE_EXTERNAL_STORAGE, com.google.android.c2dm.permission.RECEIVE,
android.permission.INTERNET, android.permission.ACCESS_NETWORK_STATE, android.permission.WAKE_LOCK

R2 android.permission.READ_EXTERNAL_STORAGE, android.permission.WRITE_EXTERNAL_STORAGE,
android.permission.INTERNET, android.permission.ACCESS_NETWORK_STATE, android.permission.VIBRATE,
android.permission.ACCESS_WIFI_STATE

R3 android.permission.INTERNET, android.permission.ACCESS_NETWORK_STATE, android.permission.ACCESS_WIFI_STATE

R4 android.permission.GET ACCOUNTS, android.permission.READ PHONE STATE, android.permission.CAMERA,
android.permission.ACCESS FINE LOCATION, android.permission.ACCESS COARSE LOCATION, android.permission.WRITE
EXTERNAL STORAGE, com.google.android.c2dm.permission.RECEIVE, android.permission.INTERNET,
android.permission.ACCESS NETWORK STATE, android.permission.VIBRATE, android.permission.WAKE LOCK

V. CONCLUSION AND FUTURE WORK

In this paper, we propose three new models for RBAC in

Android, aimed at enhancing users’ capabilities to manage

Android permissions. Our models grant flexibility to users in

regulating app-resource access, by enabling management of

all Android permissions. It also improves the accessibility of

Android permissions for app developers, by enabling them to

define new roles that support overlap. To show the practicality

of RBAC in Android, we analyzed and implemented several

role mining algorithms, to generate the UA and the PA.

We also run these algorithms on the UPA matrix generated

from the top 500 apps in the Play store, and the generated

assignment matrices show positive results with a mere 10 roles

required to keep the under-privilege percentage at 20%. We

also implemented one of the proposed models in the Android

API-29, in the Framework layer by leveraging Android’s in-

ternet permission checking mechanism. Future work includes

analysis of the implementation for RiAa with three distinct

directives of security, usability, and performance. Finally,

our models can be extended for application in hierarchical

RBAC and constrained RBAC for Android, granting even

more administrative power in terms of role hierarchies and

separation of duty constraints.

ACKNOWLEDGEMENTS

This work is partially supported by NSF Grants CNS-

1553696 and HRD-1736209.

REFERENCES

[1] Abdella, J., Özuysal, M., Tomur, E.: Ca-arbac: privacy preserving using
context-aware role-based access control on android permission system.
Security and Communication Networks 9(18), 5977–5995 (2016)

[2] Au, K.W.Y., Zhou, Y.F., Huang, Z., Lie, D.: Pscout: analyzing the
android permission specification. In: Proceedings of the 2012 ACM
conference on Computer and communications security. pp. 217–228.
ACM (2012)

[3] Barrera, D., Kayacik, H.G., Van Oorschot, P.C., Somayaji, A.: A
methodology for empirical analysis of permission-based security models
and its application to android. In: Proceedings of the 17th ACM
conference on Computer and communications security. pp. 73–84. ACM
(2010)

[4] Chakraborty, S., Shen, C., Raghavan, K.R., Shoukry, Y., Millar, M.,
Srivastava, M.: ipShield: A framework for enforcing context-aware
privacy. In: 11th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 14). pp. 143–156 (2014)

[5] Coyne, E.J.: Role engineering. In: Proceedings of the first ACM Work-
shop on Role-based access control. pp. 4–es (1996)

[6] Fang, Z., Han, W., Li, Y.: Permission based android security: Issues and
countermeasures. computers & security 43, 205–218 (2014)

[7] Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android per-
missions demystified. In: Proceedings of the 18th ACM conference on
Computer and communications security. pp. 627–638. ACM (2011)

[8] Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.:
Proposed nist standard for role-based access control. ACM Transactions
on Information and System Security (TISSEC) 4(3), 224–274 (2001)

[9] Ge, M., Osborn, S.L.: A design for parameterized roles. In: Research
Directions in Data and Applications Security XVIII, pp. 251–264.
Springer (2004)

[10] Giuri, L., Iglio, P.: Role templates for content-based access control. In:
Proceedings of the second ACM workshop on Role-based access control.
pp. 153–159 (1997)

[11] Guo, Q.: A formal approach to the role mining problem. Ph.D. thesis,
Rutgers University-Graduate School-Newark (2010)

[12] Guo, T., Zhang, P., Liang, H., Shao, S.: Enforcing multiple security poli-
cies for android system. In: 2nd International Symposium on Computer,
Communication, Control and Automation. Atlantis Press (2013)

[13] Li, N., Mao, Z.: Administration in role-based access control. In: Pro-
ceedings of the 2nd ACM symposium on Information, computer and
communications security. pp. 127–138 (2007)

[14] Lupu, E., Sloman, M.: Reconciling role based management and role
based access control. In: Proceedings of the second ACM workshop on
Role-based access control. pp. 135–141 (1997)

[15] Miettinen, M., Heuser, S., Kronz, W., Sadeghi, A.R., Asokan, N.:
Conxsense: automated context classification for context-aware access
control. In: Proceedings of the 9th ACM symposium on Information,
computer and communications security. pp. 293–304 (2014)

[16] Ren, B., Liu, C., Cheng, B., Hong, S., Guo, J., Chen, J.: Easyprivacy:
Context-aware resource usage control system for android platform. IEEE
Access 6, 44506–44518 (2018)

[17] Rohrer, F., Zhang, Y., Chitkushev, L., Zlateva, T.: Dr baca: dynamic
role based access control for android. In: Proceedings of the 29th Annual
Computer Security Applications Conference. pp. 299–308. ACM (2013)

[18] Tudorică, C.A., Gheorghe, L.: Context-aware security framework for
android. In: 2016 International Workshop on Secure Internet of Things
(SIoT). pp. 11–19. IEEE (2016)

[19] Vaidya, J., Atluri, V., Guo, Q.: The role mining problem: finding a
minimal descriptive set of roles. In: Proceedings of the 12th ACM
symposium on Access control models and technologies. pp. 175–184
(2007)

[20] Vaidya, J., Atluri, V., Guo, Q.: The role mining problem: A formal
perspective. ACM Transactions on Information and System Security
(TISSEC) 13(3), 1–31 (2010)

[21] Vaidya, J., Atluri, V., Warner, J.: Roleminer: mining roles using subset
enumeration. In: Proceedings of the 13th ACM conference on Computer
and communications security. pp. 144–153 (2006)

[22] Zhang, Y., Yang, M., Xu, B., Yang, Z., Gu, G., Ning, P., Wang, X.S.,
Zang, B.: Vetting undesirable behaviors in android apps with permission
use analysis. In: Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security. pp. 611–622. ACM (2013)

188

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 17,2021 at 12:26:13 UTC from IEEE Xplore. Restrictions apply.

