2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA) | 978-1-7281-8543-9/20/$31.00 ©2020 IEEE | DOI: 10.1109/TPS-ISA50397.2020.00033

2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA)

Role-Based Access Control Models for Android

Samir Talegaon
Department of Electrical & Computer Engineering
University of Texas at San Antonio
San Antonio, USA
samir.talegaon @utsa.edu

Abstract—Android uses runtime permissions to alert users of

application resource usage. Only a limited portion of Android WhatsApp Android OS Internet,
permissions are allowed to be managed by the users. This is Facebook | Request Contacts,
made essential, because Android assigns permissions directly to Chrome Access Camera,
applications, and the number of applications and permissions is YouTube Grant| Deny Microphone

high. However, due to this tradeoff, users are restricted from
managing all the aspects of their own devices. Android itself
groups permissions based on their functionality; however, these
groups are immutable and non-overlapping, which confers a
rigidity to the permission system. Prior work in adapting RBAC
to Android exists but deviates from the standardized NIST
RBAC and does not include sessions, a key component of RBAC,
used to mitigate the exposure of system resources. So, to fully
understand the benefits RBAC offers for Android, and to mitigate
its permissions management problem, we propose three new
models for RBAC in Android. Our models are aimed to address
the issue of user permission management in conjunction with
flexibility of being able to assign permissions to either users,
applications, or app-components.
Index Terms—role-based, access control, android

[. INTRODUCTION

Android is one of the most popular mobile operating sys-
tem, and Android users download apps such as WhatsApp,
Facebook, YouTube, and Chrome to utilize the device’s full
potential. These apps require access to sensitive resources
such as internet, contacts, camera, and microphone amongst
others. The Android OS uses a permission-based mechanism
to control access to sensitive resources that are available to
apps', and despite advancements to access control in Android,
this model has remained largely the same. According to this
model, apps that require access to sensitive system resources,
must request prior approval from the user (Figure 1). If the user
approves such requests, permissions are permanently granted
to apps and there is no mechanism by which permissions are
automatically revoked.

Although the runtime permissions increase user awareness
related to app-resource usage, the control users have over
their own devices remains the same, because permissions
categorized to be in the normal and signature protection level
are restricted from being managed. Also, despite dangerous
permissions being revocable, doing so is extremely tedious.
Furthermore, to reduce the number of prompts to which
users are expected to respond, these runtime permissions are

This work is partially supported by NSF Grants CNS-1553696 and HRD-
1736209.
Thttps://developer.android.com/training/permissions/requesting/

Ram Krishnan
Department of Electrical & Computer Engineering
University of Texas at San Antonio
San Antonio, USA
ram.krishnan @utsa.edu

Sensitive Resources

Figure 1. Permission-based access control in Android

Applications

grouped together based on their functionality, and the permis-
sions within a group are collectively administered. Although
this reduces the administrative burden on users, it also results
in a reduced granularity since permissions within a group
cannot be selectively granted or revoked. Also, the permission
groups themselves are immutable and do not have any overlap,
resulting in an inflexible permission management system.

Role based access control (RBAC) [8] is used in enterprise
scenarios due to the administrative ease it provides, and we
believe it would be useful in managing Android permissions
as well. RBAC assigns objects to roles, and then enables
administrators to grant these roles to the appropriate subjects.
This results in a significant decrease in the administrative
burden, because it is easier to grant a few roles rather than
granting significantly higher number of permissions to the
subjects. Apart from this, RBAC offers inherent advantages
through sessions, which enable subjects to limit the number
of permissions that are exposed at runtime. Due to this, an
RBAC based access control system is a promising approach
towards developing an adaptive, user-administered access con-
trol mechanism, for Android.

There are a few works which have implemented RBAC
in Android. Abdella et. al. [1] proposes a context-aware
Android role-based access control (CA-ARBAC) in which
they associate roles with users and contexts with permissions.
However, this does not ease permission management for the
users, nor does it enable the OS to differentiate between app
components. Apart from this, roles are formed arbitrarily based
on functional groups. DR-BACA [17] introduces static and
dynamic RBAC in Android, and, uses 6-tuples called as rules
to make access control decisions. While this removes the issue
of permissions granted permanently to apps, it exacerbates the
issue of user-management of permissions by increasing the
complexity of the access control mechanism. Also, users in

978-1-7281-8543-9/20/$31.00 ©2020 IEEE 179
DOI 10.1109/TPS-ISA50397.2020.00033

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 17,2021 at 12:26:13 UTC from IEEE Xplore. Restrictions apply.

RBAC are substituted with apps in their work, and although
this is similar to one of the models we propose, as will
be discussed further, the goal of this work is to provide
comprehensive models for RBAC in Android.

OUR CONTRIBUTION: We develop three new models
for RBAC in Android, with distinctions in substitutions for
the set of users in RBAC, with the set of users (RiA,),
apps (RiA,) or app components (RiA,.) in Android. For
adapting the current Android to the Android with RBAC, we
need to design roles. To this end, we demonstrate how roles
can be engineered using a bottom-up approach via various
algorithms from the literature. We also develop a prototype
implementation of RBAC in Android with sessions, using the
RiA, model.

OUTLINE: Sect. II placed our work in the context of others
in the area of RBAC in Android while Sect. III introduces a
few key concepts in Android and describes the three models
for RBAC in Android along with a brief description of the
implementation of the RiA, model in Android. In Sect. IV,
we evaluate our RBAC models by providing suitable use case
scenarios, and, by creating the required assignment relations
by using role-mining algorithms techniques. Sect. V, describes
the conclusion and provides directions for the future work.

II. RELATED WORKS

In this section, we discuss the prior works that target role-
based access control in Android. Abdella et.al. [1] imple-
mented RBAC in Android, by assigning roles to permissions
and granting these roles to apps. They use context information
to limit the permissions that can be activated within a given
role that has been granted to an app, to reduce user adminis-
trative burden. However, their work does not include the use
of sessions, a critical component of RBAC. Also, roles are
arbitrarily created in their model. We believe that the creation
of roles is an important step to fully realize the benefits of
RBAC in Android, since, arbitrarily created roles hamper the
effective advantage gained by using RBAC in Android.

Rohrer [17] implemented DR-BACA model which is an
adaptation of the RBAC model, in Android, which consid-
ers the dynamic nature of contexts and controls application
requests for permissions using factors such as location of
the device, time or date on the device, and events which
take place on the device. However, these modifications to the
Android OS do not make the use of sessions in any way,
nor do they mention role activation/de-activation and it is
for this reason we propose a hitherto un-implemented RBAC
model for improving security and privacy in the Android
OS. MPDroid [12] presents a custom, user-definable access
control system that can be used to control perms granted to
untrusted apps with a high level of granularity. It allows device
administrators to limit the damage apps can do (using MAC in
the kernel layer), and users to control app-access to resources
(using RBAC in the framework layer). However, they require
users to create roles, and since users are not experts in the
field of access control, they cannot be expected to create
security aware roles. Apart from this, their RBAC model does

180

not include sessions, a key concept that allows us to combat
conflict of interest issues.

Several works have proposed access control systems for
Android using context-aware policies [18]. ipShield [4] draws
inferences based on sensor data to make access control sug-
gestions to the users. ConXsense [15] uses context sensing and
machine learning in their framework to probabilistically make
an access control decision. Ren et. al. [16] propose a context-
aware resource usage control system that includes four policy
conflict resolution rules and implement it in Android (named
EasyPrivacy).

Many works have targeted the Android’s permission mech-
anism to understand how it internally works while others have
proposed new methods for implementing access control in
Android. PScout [2] analyses the Android permission system
in a bid to provide insight in to Android’s API permissions,
statistically. Barrera et. al. [3] perform empirical analysis of
1,100 Android applications and identified the frequently used
permissions and suggest improvements to Android’s permis-
sions model to increase the granularity for these permissions
while reducing it for the non-frequent permissions. Stowaway
[7] detects permission over-privilege by mapping API calls to
permissions and identifying those permissions which are not
used in conjunction with any API call. These works prove
an insight into the Android’s permission system, however
they do not propose any new access control methods, and
instead suggest improvements on the Android’s permission-
based access control mechanism.

VetDroid [22] uses 1,249 free applications for performing
dynamic analysis which has advantages over static analysis,
and, it uses results from this analysis to identify potential se-
curity flaws in Android applications. Fang et. al. [6] investigate
issues in Android’s security system and identify flaws relating
to course granularity of permissions, un-friendly permission
management mechanism, insufficient documentation on API
permissions and a few attacks experienced by Android appli-
cations such as permission escalation and TOCTOU (Time of
Check & Time of Use). These works provide novel insights
into the runtime issues experiences by Android applications;
however, they do not attempt to modify the permission-based
access control mechanism.

III. RBAC IN ANDROID

Before proceeding further, a few concepts in Android, its
apps and RBAC require explanation, so that our work can be
better understood.

A. Background

Android app components. Android apps consist of four main
components2 - Activities, Services, Broadcast Receivers and
Content Providers. Activities make up the GUI, which appears
on the phone screen and interacts with the users; services are
the invisible components which run in the background and
are meant to perform tasks which take a significant amount of

Zhttps://developer.android.com/guide/components/fundamentals

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 17,2021 at 12:26:13 UTC from IEEE Xplore. Restrictions apply.

PROLES<(user,
USERS)>

OBJ<(user,

UA USERS)>

user_sessions session_roles

wished_roles

session_apps

(a) RBAC Users substituted with Android Users(RiA.,)

PPERMS<(user, USERS)>

app_sessions session_roles

(b) RBAC Users substituted with Android
Applications(RiAg)

O9-£-0

session_roles

appcomp_sessions

(c) RBAC Users substituted with Android App-components (RiAqc)
Figure 2. RBAC in Android (RiA) models with the set of Users in RBAC substituted as denoted

time to process. Broadcast receivers can receive system wide
broadcasts indicating specific events such as, the completed
boot-up of a device, and content providers are the mechanism
which enable apps to share their data in a controlled manner,
with other apps.

Android permissions. Permissions are categorized® as nor-
mal, dangerous and signature depending on the risk* they pose
to the user’s privacy and security. Normal permissions are
automatically granted, and signature permissions are granted
by the Android OS based on the signing certificate of the
app, both of which cannot be revoked by the user. Dangerous
permissions are those that pose a significant risk to the user’s
privacy and security.

RBAC. There are 3 different models of RBAC: core RBAC,
hierarchical RBAC and constrained RBAC. While core RBAC
provides the basic entities for an RBAC system, hierarchical
RBAC optimizes the PA and UA relationships by adding role
hierarchies, which involve senior and junior roles. The third
RBAC model adds separation of duty constraints that provides
protection against conflict of interest.

3https://developer.android.com/guide/topics/permissions/overview

4We believe that Google evaluates risk with two parameters, namely, access
to user-data, and control over the device that can negatively impact user
experience.

181

B. RBAC Models for Android

In this subsection we define three new models for RBAC
in Android, differing primarily in the substitutions for the set
of users in RBAC with corresponding entities in Android. We
have also provided a rigorous formal specification of these
models below.

1) RiA, (Users in RBAC Replaced with Users in Android):
In this model users in RBAC are substituted with users in
Android. Permissions in Android grant a blanket access to
the resource they protect, but it is intuitive to maintain the
separation of data for each user. For example, access to user
specific data such as contacts, photos, videos, and calendar
needs to be granted only to the user who owns that data; this
requires perms and roles to be parameterized. Many works
in the literature describe the concept of parameterized perms
and roles that can achieve such a selective access control
mechanism [9], [10], [13], [14]. As we can see from Fig.2a,
our model makes use of parameterized roles and perms to
control selective access to resources, however, it should be
noted that not all perms and roles are parameterized.

Design. According to this model, parameterized roles are
granted directly to the users (UA). This UA can be done by the
owner of the Android device or in an enterprise scenario, an
administrator for the device. Once users receive the required
roles, they can launch new sessions when needed, and can

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 17,2021 at 12:26:13 UTC from IEEE Xplore. Restrictions apply.

Table T
RiA, ENTITY SETS, RELATIONS AND FUNCTIONS

Entity Sets

USERS and APPS the sets of all users and apps on an Android device.

OBJ <(user, USERS)>, a set containing all the objects required to be distinct for the users of a given Android device. For example,

- OBJ<(user, USERS)> = {Contacts<(user, Alice)>, Contacts<(user, Bob)>, WhatsAppPhotos<(user, Alice)>, WhatsAppPhotos<(user,
Bob)),...}

AM = {read, write}, a set of access modes for all objects on a given Android device.

PROLES<(user, USERS)>, the set of all parameterized roles in a given Android device. A few example parameterized roles are given

below.

— PROLES((user, Alice)> = {Parent<(user, Alice)>, Guest<(user, Alice)>, Child<(user, Alice)>}

— PROLES((user, Bob)) = {Parent{(user, Bob)), Guest((user, Bob)), Child{(user, Bob))}

SESSIONS, the set of all sessions on an Android device.

Relations

PPERMS((user, USERS)) = 20BJ({(user, USERS)) x AM 5 set of all parameterized permissions on a given Android device. For
example,

- PPERMS<(user, Alice)> = {(WhatsAppPhotos<(user, Alice)>, read) (WhatsAppPhotos<(user, Alice)>, write), (Contacts((user,
Alice)), read), (Contacts((user, Alice)), write) }

UA C USERS x PROLES<(user, USERS)>, a many-to-many mapping user-to-parameterized role assignment relation.
PA C PROLES((user, USERS)) x PPERMS((user, USERS)), a many-to-many mapping permission-to-role assignment relation.

Functions

user_proles: USERS — ZPROLES(USERS), the mapping of a user uzUSERS onto a set of parameterized roles assigned to that
user. Formally, user_proles(u) = {pr{(user, u)) € PROLES{(user, u)) | (u, pr{(user, u))) € UA}

assigned_users: PROLES<(user, USERS)) — 2USERS, the mapping of a parameterized role pr<(user, u)>:PROLES<(user,
USERS)) onto a set of users that it has been assigned to. Formally, assigned_users (pr((user, u)))|u ¢ users = {u | (u,
pr{(user, u))) € UA}

assigned_ppermissions: PROLES<(user, USERS)) — 2PPERMS (user, USERS», the mapping of pr<(user, U)>CPR0LES (user,
USERS)> onto a set of parameterized permissions for a particular user u:USERS. Formally, assigned_ppermissions (pr (user,
u))) = {pp{(user, u)) € PPERMS{(user, USERS)) | (pp{(user, u)), pr((user, u))) € PA}

user_sessions: USERS — ZSESSIONS, the mapping of user u onto a set of sessions. Note that, Vu; # ux €
USERS. user_sessions(u1) N user_sessions(uz) = 0

oAPPS

session_apps: SESSIONS — , the mapping of session s onto a set of apps.

session_proles: SESSIONS — oPROLES ((user, USERS)) ', mapping of session s onto a set of roles. Formally,
session_proles(s;) = {pr{(user, u)) € PROLES((user, u)) | u € USERS A (session_users(s;), pr{(user, u))) € UA}.
Note that, Vs1 # s € SESSIONS. session_proles(s;) # session_proles(ss)

avail_session_pperms: SESSIONS — 2PERMS (user, USERS)), the permissions available to a user in a session,
assigned_ppermissions (pr{(user, u))).
pr{(user, u)) € session_proles(s)

»PROLES (user, USERS))

wished_proles: APPS — , the mapping of an app a:APPS onto a set of roles wished by that app.

activate any role they have been granted in that session. The
user can control whether the new app launched should be
added to an active session or to launch it in a different session
(new session).

RiA, Model. In this model for RiA,, we define pa-
rameterized sets where P,gme is the name of the pa-
rameter and Pjomain 1S the domain of the parameter
SET<(PmmE, Pdomam)>- For all intents and purposes our

model only contains the parameter of username, however
this can be modified in the future to allow more granularity
based on location, time, and other parameters. The entity sets,
relations and functions are described in Table I, and the key
operations for this model can be found in the Table II.

2) RiA, (Users in RBAC Replaced with Apps in Android):
In this model, users in RBAC are substituted with apps in
Android (see Fig.2b). This model dictates entrusting decision

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 17,2021 at 12:26:13 UTC from IEEE Xplore. Restrictions apply.

Table II
RiA,, OPERATIONS

Table III
RiA, ENTITY SETS, RELATIONS AND FUNCTIONS

Operation: CreateSession(u : USERS, a : APPS,
ars: QPR’OLES<(HSQ“ ">>, s: NAME)

Authorization Requirement: ars C user_proles(u) A

ars C wished_proles(a) A s ¢ SESSIONS

Updates:
SESSIONS’ = SESSIONS U {s}
user_sessions’ = user_sessions U {u, s}

sissioanriles’ session_proles LL{S} X ars

Operation: DeleteSession(u : USERS, s : SESSIONS)

Authorization Requirement: sessUser(s) u

Updates:

user_sessions’ = user_sessions \ {u, s}
session_proles’ = session_proles U {s} x ars
| SESSIONS’ = SESSIONS \ {s} o
Operation: RequestAccess (a : APPS, u: USERS,

pr{(user, u)) : PROLES((user, u)})
Authorization Requirement: 3s € SESSIONS.

a € session_apps(s) A u session_users(s) A

(u, pr{(user, u))) € UA A pr{(user, u)) &
session_proles(s)

Updates:

| session proles’ = session_proles Ui{s#pr«useir,i)ﬁ%

Operation: RevokeRole(u : USERS, s : SESSIONS,
pr<(user, u)> :PROLES<(user, u)>)

Authorization Requirement: s € user_sessions(u)

Updates:

| session_proles’ session_proles \ {s, pr (useir,iu)ﬁ%

Operation: CheckAccess(a : APPS, s : SESSIONS,

pp{(user, u)) : PPERMS((user, u)),
outresult : BOOLEAN)
Authorization Requirement:

Jpr{(user, u)) € PROLES((user, u)).

u session_users(s) A

pr((user, u)) € session_proles(s) A

(pr{(user, u)), pp{(user, u))) € PA
Updates:

policies such as what roles to activate and when, with the
apps themselves, and by extension with the app developers. In
the current Android, prompts are only shown for permission
groups and within these groups, only the permissions belong-
ing to dangerous protection level are controlled with the groups
themselves. By assigning roles to apps, the administrative

183

Entity Sets

APPS, ROLES and PERMS the set of all apps, roles and permis-
sions on a given Android device.

SESSIONS, the set of all sessions on an Android device.

Relations

UA C APPS x ROLES, a many-to-many mapping app-to-role
assignment relation.

PA C PERMS x ROLES, a many-to-many mapping perm-to-role
assignment relation.

Functions

assigned_apps: ROLES — 24P the mapping of role
7:ROLES onto a set of apps. Formally: assigned_apps(r) =
{a € APPS | (a, r) € UA}.

app_roles: APPS — 28OS the mapping of app a:APPS onto
a set of roles assigned to it. Formally: app_roles(a) = {r €
ROLES | (g, r) € UA}.

assigned_permissions: ROLES — 2FERMS ihe map-
ping of role r:ROLES onto a set of permissions. Formally:
assigned_permissions(r) = {p € PERMS | (p, r) € PA}.

app_sessions: APPS — 25BSSIONS " the mapping of app
a:APPS onto a set of sessions.

session_roles: SESSIONS — the mapping
of session s:SESSIONS onto a set of roles. Formally:
session_roles(s;) C {r € ROLES | (session_apps(s;),
r) € UA}.

avail_session_permnms: SESSIONS
the permissions available to an app
assigned_permissions(r).

r € session_roles(s)

2ROLES ,

— 2PERMS ,

in a session,

wished_roles: APPS — 2ROMES the mapping of an app
a:APPS onto a set of roles wished by that app.

burden of users is reduced without a disproportionate increase
in the number of user prompts’.

Design. Since apps are tasked with managing active roles,
app developers are responsible for defining, requesting, and
activating roles. A few default roles are built into the devices
for use by apps. These roles are generated by top-down
(semantic meaning) and bottom-up (algorithms for mining
roles) approaches [5] using apps from the Play store and
the information on which permissions are requested by them.
Although apps are designated as subjects, keeping in line with
the requirement to safeguard user data, role requests still need
to be granted by users. Once roles are granted, apps are free
to activate any role as required and can be set to launch in a
pre-active session or launch distinct sessions as per developer
discretion.

RiA, Model. The model for RiA, is described below along
with the entity sets, relations and functions in Table III, and,
its key operations in Table IV.

SThis depends on the quality of the roles that exist in the system.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 17,2021 at 12:26:13 UTC from IEEE Xplore. Restrictions apply.

Table IV
RiA, OPERATIONS

Table V
RiA .. ELEMENT SETS, RELATIONS AND FUNCTIONS

Operation: CreateSession(a : APPS, ars : QROLES
s: NAME)

Authorization Requirement: ars C app_roles(a) A
ars C wished_roles(a) A s ¢ SESSIONS

Updates:

SESSIONS' = SESSIONS U {s}

app_sessions’ = app_sessions U {(a, s)}

| session_roles’ = session_roles U {s} x ARS
Operation: DeleteSession(a : APPS, s: SESSIONS)

Authorization Requirement: s € app_sessions(a)

Updates:

. !’ .
app_sessions’ = app_sessions \ {a, s}
session_roles’ = session_roles U {s} X ars

| SESSIONS' = SESSIONS \ {s} .

Operation: RequestAccess(a : APPS, r: ROLES)
Authorization Requirement: 3s € SESSIONS.

a € session_apps(s) A (a, r) € UAA
r ¢ session_roles(s)

Updates:
| session_roles’ = session_roles U {s, r}

Operation: RevokeRole(s : SESSIONS, r: ROLES)

Authorization Requirement: s € app_sessions(a)

Updates:

| session roles’ = session roles \ {s, r} _
Operation: CheckAccess(a : APPS, s: SESSIONS,
p : PERMS, outresult : BOOLEAN)

Authorization Requirement: 3r € ROLES.

a = session_apps(s) A r € session_roles(s) A
(T, p) € PA

Updates:

3) RiA,. (Users in RBAC Replaced with App-components
in Android): In this model, users in RBAC are replaced with
app-components in Android (see Fig.2c). This model supports
a highly granular access control system, by assigning roles
directly to app-components. This also limits the exposure of
sensitive system and user resources.

Design. Since roles are granted to app-components, the roles
need to be defined by the apps. This puts the onus of defining,
requesting, and activating roles with the app developers. Users
would be required to accept role prompts prior to them being
granted to the app-components. Although this model presents
an additional burden on the app developers and users, due to

Entity Sets

APPS, COMPS (the sets of all apps and components on an
Android device)

ROLES the set of all roles on an Android device

PERMS, the set of all permissions that exist on a given Android
device.

SESSIONS, the set of all sessions that exist on an Android device.
Relations

APP_COMPS C APPS x COMPS, a one-to-many mapping
applications-to-component assignment relation.

UA C APP_COMPS x ROLES, a many-to-many mapping
app_components-to-role assignment relation.

PA C PERMS x ROLES, a many-to-many mapping permission-
to-role assignment relation.

Functions

assigned_comps: ROLES —» 2APP-COMPS e mapping
of role mROLES onto a set of app_components. Formally,
assigned_comps(r) = {ac € APP_COMPS | (ac, r) € UA}.
appcomp_roles: APP_COMPS — 2RSS the mapping of
app-comp ac:APP_COMPS onto a set of roles. Formally,
appcomp_roles(ac) = { r € ROLES | (ac, r) € UA}.
assigned_permissions:ROLES — 2PERMS, the map-
ping of 7mROLES onto a set of permissions. Formally,
assigned_permissions(r) = {p € PERMS | (p, r) € PA}.
APPCOMP_SESSIONS C APP_COMPS x SESSIONS, a many-
to-many mapping app_components - to - session assignment
relation.

sess_appcomp: APP_COMPS —» QSESSIONS = he map-
ping of ac:APP_COMPS onto a set of sessions. Formally,
sess_appcomp(ac) = {s € SESSIONS | (ac, s) € APP-
COMP_SESSIONS}.

appcomp_session: SESSIONS — APP_COMPS, the
mapping of s:SESSIONS to an app_component ac. Note
that, Vs € SESSIONS. (appcomp_session(s), s) €
COMP_SESSIONS.

session_roles C SESSIONS x ROLES, a many-to-many
mapping session-to-roles assignment relation.
session_roles: SESSIONS — 2RCLES the mapping of
s:SESSIONS onto a set of roles. Formally, session_roles(s)
= {r € ROLES | (appcomp_session(s), r) € UA}.
SESSIONS 2FERMS - the

avail_session_perms:

permissions available to a component in a session,
assigned_permissions(r).

r € session_roles(s)

isAuthorized: SESSIONS x PERMS — B, a

s:SESSIONS is authorized to exercise a permission p if
isAuthorized(s, p). Also, Vs € SESSIONS, Vp €
PERMS. isAuthorized(s, p) — 3r € ROLES. ((s, r) €
session_roles A (p, r) € PA)

wished_roles: APP_COMPS — 28%“¥5 the mapping of an
app-comp ac:APP_COMPS onto a set of roles wished by that
app component.

increased granularity associated with granting roles directly
to app-components, it is heavily mitigated by the use of
the RBAC system. Also, this model mitigates the issue of
third-party app components receiving the entire battery of

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 17,2021 at 12:26:13 UTC from IEEE Xplore. Restrictions apply.

Table VI
RiA . OPERATIONS

Operation: CreateSession(ac : APP_COMPS, ars : QROLES
s : NAME)

Authorization Requirement: ars C appcomp_roles(ac) A

ars C wished_roles(ac)

Updates:

SESSIONS’ = SESSIONS U {s}

APPCOMP_SESSIONS’ = APPCOMP_SESSIONS U
{(ac,)}

U {(s n}

T € ars

. ’ .
session_roles = session_roles U

Operation: DeleteSession(ac : APP_COMPS, s : SESSIONS)

Authorization Requirement: ac = appcomp_session(s)

APPCOMP_SESSIONS’ = APPCOMP_SESSIONS \
{(ac, s)}
session_roles’ = session_roles \
{(s, 7}

T € session_roles(s)

| SESSIONS' =SESSIONS \ {s}
Operation: RequestAccess(ac : APP_COMPS,

s : SESSIONS, r : ROLES)
Authorization Requirement: ac = appcomp_session(s) A
(ac, r) € UA A Vdsdpair € DSD. dsdpair = (rs1, n),

Vrset € 28OS rset Crsy A rset C ars = |rset| < n

Updates: session_roles’ = session_roles U {(s, 7)}

Operation: RevokeRole(ac : APP_COMPS, s: SESSIONS,
r : ROLES)

Authorization Requirement: ac = appcomp_session(s) A

r € session_roles(s)
Updates: session_roles’ = session_roles \ {(s, r)}

Operation: CE&&Access(ZciAPP_CiOMPS,is: SESSIONS,

p : PERMS, outresult : BOOLEAN)
Authorization Requirement: 3r € ROLES.

ac appcomp_session(s) A r € session_roles(s) A

(r, p) € PA

Updates: -

permissions assigned to the app themselves, because roles
are granted to app-components themselves. On launch, app-
components can be programmed to activate any of the granted
roles to obtain the required permissions for providing full
functionality.

RiA,. Model. In this subsection, we define a model for

185

Application
Layer

App1

Cannot request
perms directl

App2

Execution request Role request—

[Session act. request——
|

Y Y Y
| Perm Req | | Perm Chk | Session Role
Request Request

(:Grant:} Deny Grant Deny
“““ . 5
Android Perm Manager “

Perm Revoke Request
D
£

Deny

M Grant/Revoke permission

Android Framework Layer

Role
Manager

C, C++, HAL

Kernel Layer

Figure 3. RiA, implementation

RBAC in Android with users in RBAC substituted with com-
ponents in Android. The entity sets, relations and functions are
described in Table V, and the key operations for this model
can be found in Table VI.

C. Implementation

In this subsection, we briefly describe our implementation
for RBAC in Android. We compiled the source code for API
29 (current at this time) and modified the source code for the
same branch. The model RiA, was implemented in Android
and is described below (see Figure 3).

Implementation Methodology This implementation for
RBAC in Android is built within the Android framework
later, and utilizes Android’s internal perm checking mecha-
nism to allow or deny apps from accessing the resources.
The role manager, a module built by us, processes incom-
ing role requests, and maintains an updated UA, PA, and
session_roles. A brief summary of the key modifications
done to Android are described below.

Package Installer The package installer is responsible for
streaming apps from the Google Play Store and installing
them on the device. It is during the installation that all the
normal and signature permissions are auto granted to apps.
We modified the package installer to read external XML files
to input roles defined by developers for their own apps. The
installation only succeeds if such a role is not already defined
on the device, or, if it was defined by the same developer
(via signature match). This is achieved by modifying the
InstallSucceed.java file and adding an exception to the final
method for returning a successful installation.

The Android Manifest File for the Platform The An-
droidManifest.xml file for the platform contained in /frame-
works/base/core/res contains all the permissions definitions for

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 17,2021 at 12:26:13 UTC from IEEE Xplore. Restrictions apply.

that device, and we removed the permission-group associa-
tions for each of the permissions defined in this file, since
permission-groups are not used by our mechanism.

Permission Manager The requestPermission method from
ActivityCompat.java and from the Activity.java files were
overridden, and apps were prevented from being able request
permissions, since apps are only be allowed to request roles
and not individual permissions in RiA,. We added the methods
requestRole in the above-mentioned files to enable apps to
request the appropriate roles, after they have been requested
in the app’s manifest file (AndroidManifest.xml).

Role Manager We developed a new module at the frame-
work level to manage all role to permission assignments as
well as role to app assignments (see Fig.3). This module hooks
onto the permission manager to grant and revoke permissions
according corresponding to role grants and revocations. When
arole is granted, and activated by an app with the activateRole
method, this module grants all the permissions for that role
to the app. When the app shuts down, all those permissions
are revoked. It should be noted that we modified the Android
manifest file for the platform to remove all permission group
assignments and all permissions are now individually granted
or revoked.

IV. EVALUATION

In this section, we evaluate the RBAC models for Android.
We do this by providing plausible scenarios for use cases
pertaining to each model. Also, we utilize role-mining, to
algorithmically generate roles (i.e.: the permission assignment
(PA) and the user-assignment (UA)). By providing example
mapping of roles to permissions and applications, we show
that it is not only feasible to utilize RBAC’s true potential in
easing administrative burden, but also that doing so does not
over burden the user with role prompts instead of permission
prompts.

A. Use Cases for RBAC Models for Android

Use Cases for RiA,, This model is useful in many scenarios
where the Android devices are shared by the users. In a
car, the control system can be designed with RiA,, where
the owner would get access to all the car’s system functions
from setting the tire pressure to modifying the alarm distance
for the proximity sensors. Access for other drivers can be
limited to adjusting the seat height and mirrors amongst other
non-critical components that are required for safely driving
the car. RiA,, can also be employed where Android devices
are used in an attendance system. In an organization, the
managers for the departments can receive a permission to read
all attendance whereas the employees can only log and read
their own attendance. Finally, at home, RiA,, can be used to
share an Android device with the family, such as in a smart
display system, which can control all smart devices within the
household and initiate communication with the outside world
(placing phone calls). Each member of the house can read
their own contacts, photos, videos specific to them and can
choose to share these with the rest of the household, while

senior members can obtain access to modify critical settings
such as thermostats, door alarms and security cameras.

Use Cases for RiA, Since apps in Android are the subjects,
this model is useful in varying special scenarios including
general phone and tablet use. In the enterprise scenario, the
devices used by employees can be automatically configured
to obtain the required roles based on the employee’s job
title in the company. Devices used by managers can be
programmed to receive roles to check on employee attendance,
performance, and approve or decline leave requests. Whereas
devices used by employees can be restricted from activating
certain features such as microphone or camera, and apps can
be limited that reduce productivity in the workplace.

Use Cases for RiA,. Due to the inherently complex nature
of this model, its use is limited to areas of high risk such
as the military, banking sector and sensitive fields such as
nuclear or cyber-security research. All the apps that can run
on the Android built around this model need to be developed
in-house, due to the major change in the subjects, and would
be incompatible with other versions of the RiA. The roles
would be managed by members of the administrative team,
experienced in access control and users would have little to
no control in the administration of roles. In order to realize
the full potential of RBAC in Android, the formation of roles
is explained in the next section.

B. Role Mining for Generating UA and PA

Role mining is a bottom up approach [21] of role engineer-
ing [5], in which, algorithms are used to analyze and extract
roles from a pre-existing user permission assignment (UPA)
matrix. Various algorithms to mine roles from provided data
sets have been published, and we analyzed and implemented
five such algorithms i.e.: Fast Miner/ Complete Miner [21],
Basic RMP [19], Delta RMP [20] and the Min Noise RMP
algorithm [11]. It should be noted that, the issue of engineering
good roles has been studied extensively, and is outside the
scope of this paper; we present an analysis of these algorithms,
as an illustration to the suitability of the generated roles for
Android. This does not confer a finality to this work, and roles
need to be engineered, according to the requirements of each
system. For Android, these algorithms provide a brief outlook
of the nature of generated roles, and we utilize these roles in
our implementation of RBAC in Android.

The purpose of mining roles, is to provide a few basic roles
which can be pre-included with the RBAC in Android system,
and it is not our intention to assign all of Android’s perms (582
perms in API 29) to roles. It is shown below, that even when
we consider as low as 10 roles, a significant number of perms
requested by apps are covered to them. The onus of assigning
the remaining perms to roles, and requesting these roles from
the user lies with the app developers. After prefacing this, the
results from our role mining for Android are described in brief.

The above-mentioned algorithms are run on our data set
consisting of top 500 free apps from the Google Play store
(obtained from APK Pure®). While the total number of per-

Ohttps://apkpure.com/

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 17,2021 at 12:26:13 UTC from IEEE Xplore. Restrictions apply.

No. of most common perms

Perm assignment freq.

Coverage % to no. of roles comparison

150 200 80
2 150 60
0
E100 2 EN
@ = @
c < 100 &
‘.5 ° § 40
o o <3
S 50 =z 50 's)
20
> BasicRMP
A - —+- DeltaRMP
0 0 o bl —©—MinNoiseRMP
0 100 200 300 400 500 0 20 40 60 - 20 20 o0 80 100
No. of apps No. of perms No. of roles
(a) No. of perm assignments reqd. in stock Android (b) Cvrg. of role mining alg.
1Dueulta vs. #roles, perms covered & under-privilege Perm privilege vs. no. of roles Comparison of no. of perm and role
-—+- No. of roles 80 Und T 9, ES
Y —%—Perm covered % nder-privilege % o+-T 120
80 b |-+~ Under privilege %| \—‘ - Over-privilege % T 2
60 2 100 }
g g i I
@ S H i
S @ 40 7 g eof D | i
=] = ; bt :) : T
5 40 s / 5 ! El ;
-9 ' g 40 H
o ! S i .
204 :' s : : : l:l D
20 H g 20 i t j i
: S~ = T S
O+« - . i i i .
o5 . 0 p 20 P 20 20 40 60 80 100 Perms 100% cov.80% cov. 60% cov. 40% cov. 20% cov.

Delta %

(c) Delta RMP perm privilege

No. of roles

(d) MinNoise RMP perm privilege

(e) Comparison of no. of user assignments (stock

Android vs. RBAC in Android)

Figure 4. Results from role mining for Android

missions in Android are more than 500, only 161 of them
are ever requested by any of the apps in our data set, and
out of these 161, nearly 40 perms are rarely requested by any
app. It can be seen from Fig. 4(a), 125 perms are requested
by 0 to 50 apps in our data set, and about 175 apps need
between 5 to 10 perms. Fig.4(b) shows the percentage increase
in the coverage of perms, when a greater number of generated
roles are successively considered. This graph is obtained from
the results of all five of the role mining algorithms. Coverage
of perms is obtained by dividing the total number of unique
perms assigned to any role, in a set of a certain number of
roles, to the total number of perms ever requested by any
app (which is known to be 161). This figure shows that the
algorithms known as Delta RMP and MinNoise RMP are the
most efficient in mining roles.

The Fig.4(c) obtained from the results for the Delta RMP
algorithm, shows the percentage of the number of roles gen-
erated, perms covered and the under-privilege of perms with
respect to an increase in delta. Delta is the difference between
the UPA matrix and the generated UA and PA matrices [20].
Under-privilege of perms occurs when there is a reduction
in the number of perms assigned to apps in comparison to
the requested number of perms. It can be observed from this
graph (approx.) that when a delta of 6% is considered, the
under-privilege is 4%, the perms covered are 70% however the
number of roles that need to be considered are 80 (it should
be noted that in the graph, the number of roles considered
are not a percentage). According to the total number of perms
requested by apps in our data set, which is 161, needing to
consider 80 roles is a disadvantage. Next, Fig.4(d) which is

187

obtained from the results of the MinNoise RMP algorithm,
shows the under-privilege and over-privilege percentage of
perms (over-privilege is the assignment of more than requested
perms to apps) when an increasing number of successively
mined roles are considered. Firstly, this graph shows that even
with 20 roles mined by this algorithm, the under-privilege
percentage is merely 20%; secondly, it shows the sharp rise
in the over-privilege percentage above 120 mined roles which
is noteworthy.

Finally, the Fig.4(e) is obtained by comparing the number
of assignments between the non-RBAC, UPA based Android,
to the RBAC based Android with roles generated by the
MinNoise RMP algorithm. From Fig. 4(b),(d) and (e), it can
be observed that when the coverage is 20%, the number of
role assignments drop below the number of perm assignments.
This 20% coverage reflects the consideration of about 20
roles (from Fig.4(b)), and a corresponding under-privilege of
20% (4(d)). This implies that with 10 generated roles, the
under-privilege of perms is only about 1 in every 5 perms
requested by the apps, and is considered by us as a positive
outcome of the role mining algorithm. As stated earlier, the
remaining perms required by apps can be obtained by, firstly
assigning them to custom-developer-defined roles, and then
by requesting those roles from the user. A few sample roles
generated by the MinNoise RMP algorithm are shown in Table
VIL. It should be noted that these algorithms also generate the
UA, however it is not shown here for brevity.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 17,2021 at 12:26:13 UTC from IEEE Xplore. Restrictions apply.

Table VII
MINNOISE RMP MINED ROLES

Roles | Assigned permissions

R1 android.permission.WRITE_EXTERNAL_STORAGE, com.google.android.c2dm.permission.RECEIVE,
android.permission.INTERNET, android.permission.ACCESS_NETWORK_STATE, android.permission.WAKE_LOCK

R2 android.permission.READ_EXTERNAL_STORAGE, android.permission.WRITE_EXTERNAL_STORAGE,
android.permission.INTERNET, android.permission.ACCESS_NETWORK_STATE, android.permission.VIBRATE,
android.permission.ACCESS_WIFI_STATE

R3 android.permission.INTERNET, android.permission.ACCESS_NETWORK_STATE, android.permission.ACCESS_WIFI_STATE

R4 android.permission.GET ACCOUNTS, android.permission.READ PHONE STATE, android.permission.CAMERA,
android.permission.ACCESS FINE LOCATION, android.permission.ACCESS COARSE LOCATION, android.permission.WRITE
EXTERNAL STORAGE, com.google.android.c2dm.permission.RECEIVE, android.permission.INTERNET,
android.permission.ACCESS NETWORK STATE, android.permission.VIBRATE, android.permission.WAKE LOCK

V. CONCLUSION AND FUTURE WORK

In this paper, we propose three new models for RBAC in
Android, aimed at enhancing users’ capabilities to manage
Android permissions. Our models grant flexibility to users in
regulating app-resource access, by enabling management of
all Android permissions. It also improves the accessibility of
Android permissions for app developers, by enabling them to
define new roles that support overlap. To show the practicality
of RBAC in Android, we analyzed and implemented several
role mining algorithms, to generate the UA and the PA.
We also run these algorithms on the UPA matrix generated
from the top 500 apps in the Play store, and the generated
assignment matrices show positive results with a mere 10 roles
required to keep the under-privilege percentage at 20%. We
also implemented one of the proposed models in the Android
API-29, in the Framework layer by leveraging Android’s in-
ternet permission checking mechanism. Future work includes
analysis of the implementation for RiA, with three distinct
directives of security, usability, and performance. Finally,
our models can be extended for application in hierarchical
RBAC and constrained RBAC for Android, granting even
more administrative power in terms of role hierarchies and
separation of duty constraints.

ACKNOWLEDGEMENTS

This work is partially supported by NSF Grants CNS-
1553696 and HRD-1736209.

REFERENCES

Abdella, J., Ozuysal, M., Tomur, E.: Ca-arbac: privacy preserving using
context-aware role-based access control on android permission system.
Security and Communication Networks 9(18), 5977-5995 (2016)

Au, KWWY., Zhou, Y.F,, Huang, Z., Lie, D.: Pscout: analyzing the
android permission specification. In: Proceedings of the 2012 ACM
conference on Computer and communications security. pp. 217-228.
ACM (2012)

Barrera, D., Kayacik, H.G., Van Oorschot, P.C., Somayaji, A.: A
methodology for empirical analysis of permission-based security models
and its application to android. In: Proceedings of the 17th ACM
conference on Computer and communications security. pp. 73-84. ACM
(2010)

Chakraborty, S., Shen, C., Raghavan, K.R., Shoukry, Y., Millar, M.,
Srivastava, M.: ipShield: A framework for enforcing context-aware
privacy. In: 11th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 14). pp. 143-156 (2014)

Coyne, E.J.: Role engineering. In: Proceedings of the first ACM Work-
shop on Role-based access control. pp. 4—es (1996)

(1]

(2]

(31

(4]

(51

188

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Fang, Z., Han, W., Li, Y.: Permission based android security: Issues and
countermeasures. computers & security 43, 205-218 (2014)

Felt, A.P, Chin, E., Hanna, S., Song, D., Wagner, D.: Android per-
missions demystified. In: Proceedings of the 18th ACM conference on
Computer and communications security. pp. 627-638. ACM (2011)
Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.:
Proposed nist standard for role-based access control. ACM Transactions
on Information and System Security (TISSEC) 4(3), 224-274 (2001)
Ge, M., Osborn, S.L.: A design for parameterized roles. In: Research
Directions in Data and Applications Security XVIII, pp. 251-264.
Springer (2004)

Giuri, L., Iglio, P.: Role templates for content-based access control. In:
Proceedings of the second ACM workshop on Role-based access control.
pp. 153-159 (1997)

Guo, Q.: A formal approach to the role mining problem. Ph.D. thesis,
Rutgers University-Graduate School-Newark (2010)

Guo, T., Zhang, P., Liang, H., Shao, S.: Enforcing multiple security poli-
cies for android system. In: 2nd International Symposium on Computer,
Communication, Control and Automation. Atlantis Press (2013)

Li, N., Mao, Z.: Administration in role-based access control. In: Pro-
ceedings of the 2nd ACM symposium on Information, computer and
communications security. pp. 127-138 (2007)

Lupu, E., Sloman, M.: Reconciling role based management and role
based access control. In: Proceedings of the second ACM workshop on
Role-based access control. pp. 135-141 (1997)

Miettinen, M., Heuser, S., Kronz, W., Sadeghi, A.R., Asokan, N.:
Conxsense: automated context classification for context-aware access
control. In: Proceedings of the 9th ACM symposium on Information,
computer and communications security. pp. 293-304 (2014)

Ren, B., Liu, C., Cheng, B., Hong, S., Guo, J., Chen, J.: Easyprivacy:
Context-aware resource usage control system for android platform. IEEE
Access 6, 44506—44518 (2018)

Rohrer, F., Zhang, Y., Chitkushev, L., Zlateva, T.: Dr baca: dynamic
role based access control for android. In: Proceedings of the 29th Annual
Computer Security Applications Conference. pp. 299-308. ACM (2013)
Tudoricd, C.A., Gheorghe, L.: Context-aware security framework for
android. In: 2016 International Workshop on Secure Internet of Things
(SIoT). pp. 11-19. IEEE (2016)

Vaidya, J., Atluri, V., Guo, Q.: The role mining problem: finding a
minimal descriptive set of roles. In: Proceedings of the 12th ACM
symposium on Access control models and technologies. pp. 175-184
(2007)

Vaidya, J., Atluri, V., Guo, Q.: The role mining problem: A formal
perspective. ACM Transactions on Information and System Security
(TISSEC) 13(3), 1-31 (2010)

Vaidya, J., Atluri, V., Warner, J.: Roleminer: mining roles using subset
enumeration. In: Proceedings of the 13th ACM conference on Computer
and communications security. pp. 144-153 (2006)

Zhang, Y., Yang, M., Xu, B., Yang, Z., Gu, G., Ning, P., Wang, X.S.,
Zang, B.: Vetting undesirable behaviors in android apps with permission
use analysis. In: Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security. pp. 611-622. ACM (2013)

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 17,2021 at 12:26:13 UTC from IEEE Xplore. Restrictions apply.

