2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA)

A Model for the Administration of Access Control
in Software Defined Networking using Custom
Permissions

Abdullah Al-Alaj
Institute for Cyber Security
C-SPECC
Department of Computer Science
UTSA, San Antonio
Texas, USA
abdullah.al-alaj@utsa.edu

Abstract—Role-based access control (RBAC) has been widely
studied and applied in many domains including Software De-
fined Networks (SDN). Because the motivation behind adopting
RBAC for SDN is to simplify the administration of network
app authorizations, having an administrative model is a key
component for managing the associations between different SDN
entities, and thus determining the access rights of network
apps. Currently, SDN environment is lacking such administrative
model. Moreover, the operations provided by SDN services are
coarse grained, which make it difficult to create administrative
units necessary for access control administration. To address
these problems, in this paper, we introduce an approach for
creating custom SDN operations to extend the capabilities of SDN
services and provide fine grained custom permissions specialized
for the administration of access control in SDN. Then, with these
extended features, we present SDN-RBACa, an administrative
model to manage access control actions that define authorizations
of network apps.

Through proof of concept prototype and use cases, we demon-
strate the usability of custom permissions and show how custom
permissions enable and facilitate the administration of access
control in SDNs.

Index Terms—Software Defined Networking, Security and
privacy, Access control, Formal models, Network security.

I. INTRODUCTION

The centralized SDN controller in conjunction with net-
work operations provided by controller services result in a
programmable network. This programmability allows network
administrators to provide network services that enable more
flexible, customized, and intelligent networking through apps.
SDN offers the possibility for SDN apps to further extend the
functionality of the network. These features and more make
SDN suitable for technologies like Cloud Computing [1] and
IoT [2].

Access rights of network apps must follow the minimum
privilege principle. Recently, various methods have been pro-
posed for adopting RBAC for the management of access rights

978-1-7281-8543-9/20/$31.00 ©2020 IEEE
DOI 10.1109/TPS-ISA50397.2020.00032

Ravi Sandhu
Institute for Cyber Security
C-SPECC
Department of Computer Science
UTSA, San Antonio
Texas, USA
ravi.sandhu@utsa.edu

169

Ram Krishnan
Institute for Cyber Security
C-SPECC
Department of Electrical
and Computer Engineering
UTSA, San Antonio
Texas, USA
ram.krishnan @utsa.edu

of network apps [3]-[6]. Thus, administration of access rights
of network apps is inevitable. In large SDNs and possibly
large number of network apps, and with the possibility of
an increased number of network services provided by the
controller, the number of roles can be in the hundreds or
thousands, and apps can be in the tens, hundreds or thousands.
Managing permissions, roles, apps, and their interrelationships
could be a tremendous task which need simplification.

In a prior work, we presented SDN-RBAC [3], a role based
access control model for SDN apps. Because the motivation
behind adopting RBAC [7], [8] for SDN is to simplify the
administration of app authorizations, and because the most
commonly carried out administrative activities in SDN-RBAC
are maintaining the app-role and permission-role relations, in
this paper we present an extension to SDN-RBAC operational
model by introducing tasks, and then we present an adminis-
trative model, referred to as SDN-RBACa, for administering
app-role and task-role relations. To the best of our knowledge,
this is the first time in the literature a model is presented for
the administration of access control in SDN.

For designing our administrative model, we adopt concepts
from Uni-ARBAC [9] administrative model because it com-
bines many of the administrative principles and novel concepts
from many administrative models in the literature [10]-[16].
So, in our model, instead of administering individual permis-
sions, permissions are combined into tasks which are assigned
to roles as a unit. Moreover, roles and tasks are partitioned
and assigned into administrative (or admin) units. Apps are
assigned to app-pools from where individual apps are assigned
to roles. Administrative users in an admin unit can assign apps
to roles only if these apps (via app pools) and these roles are
assigned to the admin unit in which this user is a member.

The rest of the paper is organized as follows. In Section II,
we discuss related work. Section III describes administrative
units in SDN. In Section IV, we describe an approach to create
custom and proxy operations to enable the administration of
access control in SDN. We discuss the concept of custom

permissions in Section V. Section VI describes the conceptual
SDN-RBACa model and its formal definitions. In Section
VII, we describe tasks and roles engineering for SDN using
custom permissions. In Section VIII, we describe a proof-of-
concept use case and its configuration. In Sections IX and
X, we discuss implementation and performance evaluation of
the operational model of SDN-RBACa. Finally, Section XI
concludes the paper and outlines future work.

II. LITERATURE REVIEW

App authorization for SDN can be classified into two main
categories. Firstly, permission-based app authorization which
includes techniques wherein apps authorization is driven by
direct permission-app assignment [17], [18]. The management
of such authorization approach is a widely known prob-
lem. Secondly, role-based app authorization [3]-[6]. Because
SDN’s motivation is to simplify network management, and
because RBAC’s motivation is to simplify the administration
of authorizations, it is very important to think about the
administration of access control in SDN. However, none of the
previous works addressed the administration of access control
for SDN apps. To the best of our knowledge, this is the first
time the administration of access control in SDN is discussed
in the literature.

III. ADMINISTRATIVE UNITS IN SDN
A. The need for Administrative Units in SDN

Small SDN networks with small number of SDN apps and
roles could be managed easily by a single administrator or
a single admin unit that handles all network functions and
all traffic types. As SDN networks grow larger with more
apps, however, they become more complex and difficult to
centrally manage all access control components and their
associations by a single, fully-trusted administrative authority.
Thus, access control administration has to be decentralized into
multiple partially-trusted administrative authorities which are
assigned appropriate power to change portions of the access
control state. To satisfy this requirement, in our proposed
administrative model, rather than having administrative roles,
we adopt the concept of Administrative Units (AU) [9] to
decentralize access control administration for SDN-RBAC [3].

In large SDNs, the need for specialized apps to deal with
specific network traffic becomes more prominent. For exam-
ple, Web load balancer, Web Firewall, VoIP load balancer,
VoIP Firewall, etc. In order to be able to administer the
associations between these apps and their roles, we have to
engineer admin units based on the apps’ network functions
and the corresponding access rights. For example based on
traffic types or organizational entities (e.g., department in a
campus network, tenant’s network slice, etc.).

Engineering of admin units requires that each admin unit
manages an exclusive set of roles which is not under the
authority of another admin unit. If administration is divided
into multiple admin units, each specialized with one traffic
type, for example Web admin unit, VoIP admin unit, Email
admin unit, and FTP admin unit, this makes each admin

170

unit responsible for managing exclusive set of roles that
handle similar network functions. In this case, Web admin
unit exclusively manages roles related to network functions
that handle Web traffic. Similarly VoIP admin unit exclusively
manages roles related to network functions that handle VoIP
traffic. In another scenario, if admin units are divided based on
organizational entities, multiple tenants for example, then each
admin unit manages exclusive roles of one tenant. This admin
unit authorizes SDN apps of this tenant (via role assignment)
to independently operate on this tenant’s resources.

B. Granularity of SDN Network Operations

Practically, if a network operation provides access to a wide
range of network resources, and these resources need to be
managed by different admin units, this precludes the flexibility
in engineering appropriate admin units. The flexibility stems
from the presence of operations fine grained enough to provide
the convenience in engineering set of roles exclusive for each
admin unit.

Because engineering of admin units requires that each
admin unit manages an exclusive set of roles and, to some
extent, exclusive set of resources which can be accessed by
permissions in these roles, it is vital for the operations/APIs
exposed by the system under consideration to be fine grained
enough to the level necessary to engineer these roles. Other-
wise, engineering of such admin units will be infeasible.

Unfortunately, the currant state of the art SDN controllers
doesn’t provide such fine grained network operations. For
example, an app with the permission to add a flow rule can
insert a flow rule that manipulates any traffic type. Also,
it can insert the flow rule in any switch reachable by the
controller. From an administrative point of view, this precludes
the coexistence of different admin units for access control in
SDN. For example, to engineer Web AU and VoIP AU, it is
necessary to engineer roles that only handle web traffic and
other roles that only handle VoIP traffic. Each set of roles will
be exclusively managed by its respective AU. Such capability
is not possible by the native operations currently provided by
SDN controllers.

A solution for this problem is to create refined versions
of the the coarse grained operations in a way that satisfies the
needs of fine grained access control for SDN apps, and enables
engineering of various admin units necessary for access control
administration. The refined version of an operation is called
customized or custom operation as will be described in the
following section.

IV. CusTOM AND PROXY OPERATIONS

In this context, an SDN controller operation is a java API
call submitted by an SDN controller apps to access network re-
sources. We call these operations as target operations OPryrget
since they are the current target by SDN apps and may be a
target for the refinement process. We call the refined version
as the custom operation OP¢ystom- SO, a custom operation is
the refined version of a target operation.

OP.

Target

3. Create proxy

operations
1. Clone

OPProxyl operation
Proxy OPProxyz
group

2. refine
0PProxy3
Fig. 1. Target, custom, and proxy operations.

In its simplest form, a custom operation can be created by
first cloning the target operation, and then refining its code
by adding a fine grained check on the desired attributes based
on which an admin unit is defined. For example, because a
web admin unit manages web-related roles, this requires the
existence of network operations that handle only web traffic
and disallow treatment of other traffic types. Thus, the target
operation is refined by first creating a cloned custom operation
and then adding a check inside the custom operation to make
sure that accessed objects are web-related only.

However, in this approach, if each custom operation will
check for a specific type of traffic (e.g., web, voip, ftp, email),
then multiple custom operations must be created, one for each
traffic type. And because custom operations are exact copies
of target operations, plus a refinement code added to it, this
approach has some problems: i) it significantly increases the
number of lines of the native code in SDN controller, ii) it
requires extra effort in refining multiple very close custom
operations for one target operation, and iii) it increases the
compilation time of the controller’s code.

To avoid such problems, we create what we call proxy
operations OPpyoyy. Each proxy operation calls one custom
operation and passes a parameter value based on which the
refinement will be done. The general process for creating cus-
tom and proxy operations and their interaction is schematically
depicted in Fig. 1. The process starts by cloning the target
operation OPryge¢ that need to be refined. The new resulted
operation OPcygom 18 modified first by adding a new formal
parameter to its parameter list. Then it is further modified by
adding statements to either check the accessed object against
the refinement parameter value or adding statements to filter
out unauthorized objects based on the refinement parameter
value. Then multiple proxy operations OPpyoxy, can be created.
Each OPpyoxy, contains a simple call to OPcystom, and is
designed to pass a hard coded refinement parameter value. This
call passes a parameter value to the custom operation based
on which the refinement will be done and specific objects will
be accessed. For ease of reference and access control review,
the name of the proxy operation should reflect the parameter
value passed to its custom operation. Proxy Operations can be
considered as abstractions of custom operations.

By customizing the operations in such a way, a proxy
operation becomes not only fine-grained, but also expressive,

171

which makes the design of access control policy and its admin-
istration simpler. Fig. 2 shows an example of creating a custom
operation addFlow(.., traffic) for addFlow operation and then
creating three proxy Operations addWebFlow, addVoIPFlow,
and addFtpFlow. Using proxy operations makes OPcyiom and
its refinement parameter abstract from the app.

3. create proxy operations
and call custom operation by
passing actual value.

1. clone

addWebFlow(...){

call addFlow(..., web) call

addVolPFlow(...){ call .
call addFlow..., voip) addFlow(..., traffic)
’ </

call

addFlowTraffic
proxy group <

2. refine based
on traffic type

addFtpFlow(...){
call addFlow(..., ftp)

}

Fig. 2. Example of custom and proxy operations for the target operation
addFlow .

V. CUSTOM PERMISSIONS

Custom permissions are those permissions that are created
using proxy operations. For example, as depicted in Fig. 2,
instead of using the coarse-grained target operation addFlow
to create the permissions (addFlow, FLOW-RULE), we create
the custom operation addFlow(traffic) and its proxy operations
addWebFlow and addVoIPFlow, then we create the custom
permissions (addWebFlow, FLOW-RULE) and (addVoIPFlow,
FLOW-RULE) for adding flow rules that handle Web and VoIP
traffic, respectively.

A proxy group is the group of all operations that invoke the
same custom operation and pass different refinement parameter
values. Members in a proxy group allow access to different
set of objects. Therefore, permissions composed of different
proxy operations in one proxy group allows for the creation
of specialized roles. This enables exclusive role management
by different admin units.

VI. SDN-RBACA MODEL

In this section, we describe the SDN-RBACa administrative
model, along with its formal definitions. The overall structure
of SDN-RBACa is illustrated in Fig. 3. We consider SDN-
RBACa in two parts: the operational model for SDN-RBAC
with respect to regular roles and permissions as well as tasks
which will be introduced shortly, and the administrative model
for administering the app role and task-role relations of the
former. These are discussed in the following subsections.

A. Introducing Tasks

We view a task as a named set of several related permissions
that represent a unit of network function for SDN apps.
Adopting tasks for SDN-RBAC [3] has some administrative
motivations. i) Because custom permissions (see section V)
increase the number of total permissions currently available in
the SDN controller, using tasks reduces the extra management

Operational
Model

Administrative
Model

(AP)
App pools

TA_admin
AA_admin

(OPS)
Operations

(OBT)
Object
Types

(OBS)
objects

tasks

<¢—»» many-to-many

<+—»» one-to-many

O =

Fig. 3. Conceptual model of SDN-RBACa.

overhead entailed from these newly resulted custom permis-
sions. ii) In role engineering process, task-to-role assignment
is a more convenient abstraction than assigning individual
permissions, especially when these permissions are related.
Therefore, adopting tasks as a basic component in SDN-
RBAC reduces administration overhead typically associated
with managing fine-grained permissions. In the next subsection
we show the SDN-RBACa operational model with tasks as a
basic component.

B. SDN-RBACa Operational Model

The sets and relations in the top part of Fig. 3 represent the
SDN-RBACa operational model, which is slightly different
from the SDN-RBAC model [3]. The most distinguished
difference is that there is a level of indirection in role-
permission assignment, so permissions are assigned to tasks
and tasks are assigned as units to roles. Adopting tasks
has several motivations, as discussed in Section VI-A. App-
role assignment remains unchanged from SDN-RBAC. For
simplicity, we have not considered the SDN-RBAC concepts
of sessions and role activation.

The SDN-RBACa operational model is formalized in Table
I. The first six components from item 1 specify the basic
sets carried over from SDN-RBAC. TASKS is the set of
tasks added to SDN-RBAC. The last three sets belong to the
administrative model (see section VI-C). Item 2 specifies the
assignment relations in the operational model including the
additional components which effect the additional indirection
between permissions and roles via tasks. Item 3 shows the type
derived function and shows the authorized_perms function
which formalizes the interaction between the permission-task
and task-role assignments. The authorization function in item
4 specifies the authorization required for an app to exercise a
permission and access an object, which is that the permission
must be authorized to at least one role assigned to the app.

172

C. SDN-RBACa Administrative Model

In this section we describe the SDN-RBACa administrative
model illustrated in the lower part of Fig. 3, and formalized
in Table I. First we use the notion of app-pools. Examples of
app-pool include *"Web Load Balance Pool‘ and *Web Security
Pool‘ as will be described in the use case in Section VIII.
Adopting app-pool facilitates the allocation of several apps
that achieve similar network functions to an admin unit. The
set of app-pools is denoted as AP. Apps are assigned to app-
pools via the AAPA app to app-pool assignment relation which
is formally specified in item 5 of Table 1.

The set of administrative units is denoted as AU. SDN-
RBACa requires that roles are partitioned into different admin
units and each role is allocated to exactly one unit for
administration. In other words, each admin unit manages an
exclusive set of roles which is not under the authority of
another admin unit. This roles partitioning is formally specified
using the roles function in item 6 of Table I. The partitioning
concept is further applied to tasks and app-pools via the fasks
and app_pools functions in item 6 of Table I.

The result of roles, tasks, and app-pools partitioning is that
an admin unit manages an explicitly assigned partition of roles,
to which it can assign apps from an assigned partition of
app-pools and tasks from an assigned partition of tasks. The
outcome of this partitioning directly impacts the results of
administrative user authorization functions specified in item 8
of Table I.

Assignment of administrative users to admin units can
be done via the TA_admin or the AA_admin relation. An
administrative user in TA_admin is authorized to perform the
administrative actions which assign tasks to roles, while a
user in AA_admin is authorized to perform the administrative
actions which assign apps to roles. It should be mentioned
that these capabilities can be separately assigned to two
different administrative users, even though they assigned to
one administrative unit. Such administrative actions bring apps

TABLE I
FORMAL DEFINITION OF SDN-RBACA ADMINISTRATIVE MODEL.

1.Basic Sets
APPS is a finite set of SDN apps.
OPS is a finite set of operations.
OBS is a finite set of objects.
OBTS is a finite set of object types.
PRMS C OPS x OBTS , set of permissions.
ROLES is a finite set of roles.
TASKS is a finite set of tasks.
AP is a finite set of app-pools.
USERS is a finite set of administrative users.
AU is a finite set of administrative units.
. Assignment Relations (operational):
PA C PRMS x TASKS, permission-task assignment relation.
TA C TASKS x ROLES, task-role assignment relation.
AA C APPS x ROLES, app-role assignment relation.
OT C OBS x OBTS, a many-to-one mapping an object to its type,
where (0, t1) € OT A (o, t2) € OT = 1 = to.
. Derived Functions (operational):

Defined as type(o) = {¢ € OBTS | (o, t) € OT}.

authorized perms(r: ROLES) — 2PFMS defined as

authorized _perms(r) = {p € PRMS | 3t TASKS, IreROLES

:(t,r) € TAA (p, t) € PA}
. App Authorization Function:

can_exercise_permission(a: APPS, op: OPS, ob: OBS) =

Ir € ROLES : (op, type(ob)) € authorized _perms(r) A (a, r) € AA.
. Administrative App-pools Relation:

AAPA C APPS x AP, app to app-pool assignment relation.

type: (o: OBS) — OBTS, a function specifying the type of an object.

6. Administrative Units and Partitioned Assignment:
roles(au : AU) — 2FOLES assignment of roles, where
r € roles(auy) A r € roles(auz) = au;= aus.
tasks(au : AU) — 2745KS " assignment of tasks, where
t € tasks(auy) A t € tasks(aug) = au;= aus.
app_pools(au : AU) — 247 | assignment of app-pool, where
ap € app_pools(au;) A ap € app_pools(aus) = au;= aus.

Administrative User Assignment:

TA _admin C USERS x AU.
AA_admin C USERS x AU.

. Administrative User Authorization Functions:
can_manage_task_role(u : USERS, t : TASKS, r : ROLES) =
Jau€AU : (u, au) € TA_admin A r € roles(au) A t € tasks(au).
can_manage_app_role(u : USERS, a: APPS, r : ROLES) =
JaucAU : ((u, au) € AA_admin A r € roles(au)) A
JapeAP : ((a, ap) € AAPA A ap € app_pools(au)).

Administrative Actions:
assign_task_to_role(u: USERS, t: TASKS, r: ROLES)
Authorization condition: can_manage_task_role(u, t, r) = True
Effect: TA” = TA U {(t, r)}.
revoke _task_from_role(u: USERS, t: TASKS, r: ROLES)
Authorization condition: can_manage_task_role(u, t, r) = True
Effect: TA” = TA \ {(t, r)}.
assign_app_to_role(u: USERS, a: APPS, r: ROLES)
Authorization condition: can_manage_app_role(u, a, r) = True
Effect: AA” = AA U {(a, r)}.
revoke_app_ from_role(u: USERS, a: APPS, r: ROLES)
Authorization condition: can_manage app_role(u, a, r) = True
Effect: AA” = AA\ {(a, 1)}.

oo |

and permissions together and, in some critical SDN networks,
they are best to be done by different network administrators.

Item 8 of Table I specifies the authorization functions
for administrative users. The function can_manage_task_role
returns whether a given admin user can assign/revoke a given
task to/from a given role. The requirement is that this user must
be assigned as TA_Admin to the unique admin unit which has
exclusive authority over this role and this task.

Similarly, can_manage_app_role is an authorization func-
tion that returns true or false. This function specifies the
conditions for a given user to assign/revoke a given app
to/from a given role. The requirement is that this user must
be assigned as AA_Admin to the unique admin unit which
has exclusive authority over this role and over an app-pool to
which this app is directly assigned via AAPA relation.

The last item in Table I formalizes the four administrative
actions to assign/revoke a task to/from a role or an app
to/from a role. This supports the reversibility principle which
requires that administrative actions should be reversible. If an
administrative user makes a mistake, they can go back.

VII. TASK AND ROLE ENGINEERING FOR SDN USING
CUSTOM PERMISSIONS

In the following two subsections, we discuss the process of
engineering tasks and roles using custom permissions. The
abstract process is illustrated in Fig. 4 and an example is
described in Section VII-B.

173

. Engineering Tasks and Roles using Custom Permissions

Because each custom permission is created using a proxy
operation, it enables access to a specific fine grained resource
known prior to the task or role engineering process. Now, lets
compare the use of target operations with proxy operations
in creating a permission. As shown in Fig. 4, the three proxy
operations (x11, x12, x13) are resulted from refining the target
operation opl, and each one provides access to a resource
with higher granularity compared to the target operation opl.
This makes the custom permission pl = (x11, ot) more fine
grained compared to using opl to create the same permission,
i.e., (opl, ot), where ot is the object type. In turn, because
we assign the custom permission pl to task tl, this makes
tl a fine grained, or more specialized, task. Again, this is
compared to using opl in the first place to engineer the same
task. As shown in Fig. 4, task tl is engineered with the three
custom permissions pl, p4, and p7 created using the proxy
operations x11, x21, and x31, respectively. Each one provides
more fine grained access, and thus makes task t1 more fine
grained compared to using the target operations opl, op2, and
op3 to create the same task. Notably, this process allows for
the creation of more specialized tasks like t2 and t3 in the
same way.

The granularity of access resulted from using proxy op-

erations to create custom permissions escalates to roles. For
example, roles r1, 12 and r3 in Fig. 4 provide more fine grained

,” SDN Apps Roles
/

Permissions ",

o PProxy OPCustom o PTarget

\

Actual value
passed to custom
operation

clone

Fig. 4. Conceptual representation of the associations between custom permissions, tasks, roles, and apps.

and specialized access to network resources. Now, imagine
that we want to engineer three admin units aul, au2, and au3,
each specialized with managing resources accessed by tl, t2,
and t3, respectively, then we simply assign each task and to
its respective admin unit, and do the same thing with roles
rl, 12, and r3. On the contrary, starting the process with opl,
op2, and op3 to engineer these roles and tasks preclude the
possibility of creating the required admin units.

B. Custom Permissions with ‘Flow Mod’ Role

In this section, we use the ‘Flow Mod’ SDN role as an
example to illustrate the creation of nine proxy operations
for three target operations, namely, addFlow, deleteFlow, and
readFlow. The example is depicted in Fig. 5. These target
operations allow network apps to access flow rules that handle
any type of traffic. However, if it is required to have three
admin units, each specialized with one type of traffic, namely,
Web, VoIP, and FTP, and if users in these three admin units
assign the three target operations to apps (via permissions,
tasks, and roles), this means that an app, specialized with Web
flows for example, might unauthorizedly access flow rules that
handle non-Web traffic, and thus cause threats to the network.

To solve this problem, we refine the three target operation
addFlow, deleteFlow, and readFlow and create nine proxy
operations classified into three proxy groups addFlowTraffic,
deleteFlowTraffic, and readFlowTraffic as shown in Fig. 5.
Each proxy operation in a proxy group can handle only one
traffic type. Now, for the ‘“Web Admin Unit’, which is special-
ized with Web traffic, three custom permissions, namely, (ad-
dWebFlow, FLOW-RULE), (deleteWebFlow, FLOW-RULE),
and (readWebFlow, FLOW-RULE), will be created by picking
the web-related proxy operation from each proxy group. These
three custom permissions contribute to the engineering of the
web-related tasks ‘Web Traffic Forwarding” and ‘“Web Flow
Viewing’, which will be under exclusive authority of ‘Web
Admin Unit‘. These two tasks will be assigned to the role
‘Web Flow Mod’, which also will be under exclusive authority

174

of the same admin unit. This role can be assigned only by
administrative users who are members in “Web Admin Unit*
to apps that handle web traffic and can be managed, via
app-pools, by the same admin unit, such as ‘Web Intrusion
Prevention’ app. The same idea applies to ‘VoIP Flow Mod’
and ‘FTP Flow Mod’ roles.

VIII. PROOF OF CONCEPT USE CASES
A. Basic Use Case - Web Admin Unit

In this section we discuss a proof-of-concept use case to
demonstrate the use of custom permissions in enabling the
administration of SDN-RBAC. The use case is configured in
the SDN-RBACa administrative model as shown in Table II.

The use case describes a scenario in which we have one
admin unit, called ‘Web Admin Unit’. This admin unit is
specialized in managing web resources. It exclusively manages
five web-related roles as listed in the set ROLES in item
1 of Table II. It also exclusively manages ten web-related
tasks listed in the set TASKS. All these roles and tasks
provide access to web resources, such as flow rules that handle
web traffic, packet-in headers and payloads that contain web
traffic, web pool servers, statistics about web flows, etc. These
resources can be accessed via twenty six custom permissions
as listed in the set PRMS. All these custom permissions are
created using the proxy operations listed in the set OPS. The
admin unit ‘Web Admin Unit’ manages the two web-related
app-pools ‘Web Load Balance Pool’ and ‘Web Security Pool’
listed in the set AP. Members in these two pools are the three
network apps, ‘Web Intrusion Prevention’, ‘Web Application
Firewall’, and ‘“Web Load Balancer’, specialized in web traffic,
and thus require access to web resources. The apps are listed
in the set APPS. The relation between the two app-pools and
the three apps are specified in the AAPA relation shown in
item 3 of Table II.

The functions roles, tasks, and app_pools in item 4 show the
partitioned assignment of the five web-related roles, ten web-

TABLE II
CONFIGURATION OF THE ADMINISTRATIVE MODEL FOR THE USE CASE DESCRIBED IN SECTION VIII-A.

1.Basic Sets

— APPS = {Web Intrusion Prevention App, Web Application Firewall App, Web Load Balancer App}.

— ROLES = {Web Packet-In Handler, Web Packet Monitor, Web Flow Mod, Web Load Balancing, Web Stats Collector}.

— OPS = {readWebPacketInPayload, read WebPacket Header, read WebRule, insert WebRule, updateWebRule, deleteWebRule, createWebPool,
listWebPools, removeWebPool, updateWebPool, createWebMonitor, list WebMonitors, removeWebMonitor, updateWebMonitor, createWebVip,
listWebVips, removeWebVip, updateWebVip, createWebMember, list WebMembersByPool, removeWebMember, updateWebMember,
readWebFlowByteCount, read AggWebFlowByteCount, read WebFlowPacket Count, read AggWebFlowPacketCount}.

— OBTS = {PI-PAYLOAD, PI-HEADER, FLOW-RULE, LB-POOL, LB-MONITOR, LB-VIP, LB-POOL-MEMBER, FLOW-STATS}.

— OBS = set of all objects of types PI-PAYLOAD, PI-HEADER, FLOW-RULE, LB-POOL, LB-MONITOR, LB-VIP, LB-POOL-MEMBER, and
FLOW-STATS.

— PRMS = {(readWebPacketInPayload, PI-PAYLOAD), (readWebPacketHeader, PI-HEADER), (readWebRule, FLOW-RULE), (insert WebRule,
FLOW-RULE), (updateWebRule, FLOW-RULE), (deleteWebRule, FLOW-RULE), (createWebPool, LB-POOL), (listWebPools, LB-POOL),
(removeWebPool, LB-POOL), (updateWebPool, LB-POOL), (createWebMonitor, LB-MONITOR), (listWebMonitors, LB-MONITOR),
(removeWebMonitor, LB-MONITOR), (updateWebMonitor, LB-MONITOR), (createWebVip, LB-VIP), (listWebVips, LB-VIP), (removeWebVip,
LB-VIP), (updateWebVip, LB-VIP), (createWebMember, LB-POOL-MEMBER), (listWebMembersByPool, LB-POOL-MEMBER),
(removeWebMember, LB-POOL-MEMBER), (updateWebMember, LB-POOL-MEMBER), (read WebFlowByteCount, FLOW-STATS),

(read AggWebFlowByteCount, FLOW-STATS), (readWebFlowPacketCount, FLOW-STATS), (readAggWebFlowPacketCount, FLOW-STATS)}.

— AP = {Web Load Balance Pool, Web Security Pool}.

— TASKS = {Web Deep Packet Inspection Task, Web Packet Header Inspection Task, Web Flow Viewing Task, Web Traffic Forwarding Task, Web
Server Pool Management Task, Web Server Monitor Management Task, Web Pool VIP Management Task, Web Pool Member Management Task,
Web Payload Statistics Collection Task, Web Packet Statistics Collection Task}.

— USERS = {web_ functions_admin_user, web_apps_admin_user}.

- AU = {Web Admin Unit}.

2. Assignment Relations:

- PA = {{(readWebPacketInPayload, PI-PAYLOAD), (readWebPacketHeader, PFHEADER), (readWebRule, FLOW-RULE)} x
{Web Deep Packet Inspection Task} U
{(readWebPacketHeader, PFHEADER), (readWebRule, FLOW-RULE)} x {Web Packet Header Inspection Task} U
{(readWebRule, FLOW-RULE)} x {Web Flow Viewing Task} U
{(insertWebRule, FLOW-RULE), (updateWebRule, FLOW-RULE), (deleteWebRule, FLOW-RULE)} x {Web Traffic Forwarding Task} U
{(createWebPool, LB-POOL), (listWebPools, LB-POOL), (removeWebPool, LB-POOL), (updateWebPool, LB-POOL)} x
{Web Server Pool Management Task} U
{(createWebMonitor, LB-MONITOR), (lissWebMonitors, LB-MONITOR), (removeWebMonitor, LB-MONITOR),

(updateWebMonitor, LB-MONITOR)} x {Web Server Monitor Management Task} U
{(createWebVip, LB-VIP), (listWebVips, LB-VIP), (removeWebVip, LB-VIP), (updateWebVip, LB-VIP)} x {Web Pool VIP Management Task} U

{(createWebMember, LB-POOL-MEMBER), (lissWebMembersByPool, LB-POOL-MEMBER), (removeWebMember, LB-POOL-MEMBER),
(updateWebMember, LB-POOL-MEMBER)} x {Web Pool Member Management Task} U

{(readWebFlowByteCount, FLOW-STATS), (read AggWebFlowByteCount, FLOW-STATS)} x {Web Payload Statistics Collection Task} U
{(readWebFlowPacket Count, FLOW-STATS), (read AggWebFlowPacketCount, FLOW-STATS)} x {Web Packet Statistics Collection Task}}.
— TA = {{Web Deep Packet Inspection Task, Web Packet Header Inspection Task} x {Web Packet-In Handler} U
{Web Packet Header Inspection Task} x {Web Packet Monitor} U
{Web Flow Viewing Task, Web Traffic Forwarding Task} x {Web Flow Mod} U
{Web Server Pool Management l'ask, Web Server Monitor Management 'l'ask, Web Pool VIP Management 'l'ask,
Web Pool Member Management Task} x {Web Load Balancing} U
{Web Payload Statistics Collection Task, Web Packet Statistics Collection Task} x {Web Stats Collector}}.
— AA = {{Web Intrusion Prevention App} x {Web Packet-In Handler, Web Flow Mod} U {Web Application Firewall App} x
{Web Packet Monitor, Web Flow Mod} U {Web Load Balancer App} x {Web Flow Mod, Web Load Balancing, Web Stats Collector}}.
— OT = {(all payloads in packet-in message, PI-PAYLOAD), (all packet header objects, PIFHEADER), (all low-rules, FLOW-RULE),
(all server pools, LB-POOL), (all server monitors, LB-MONITOR), (all pools virtual IPs, LB-VIP), (all pool members, LB-POOL-MEMBER),
(all flow statistics in flow rules, FLOW-STATS)}.
3. App-pools Relation:
— AAPA = {(Web Intrusion Prevention App, Web Security Pool), (Web Application Firewall App, Web Security Pool),
(Web Load Balancer App, Web Load Balance Pool)}.
4. AU and Partitioned Assignment:
— roles(Web Admin Unit) = {Web Packet-In Handler, Web Packet Monitor, Web Flow Mod, Web Load Balancing, Web Stats Collector}.
—~ tasks(Web Admin Unit) = {Web Deep Packet Inspection Task, Web Packet Header Inspection Task, Web Flow Viewing Task,
Web Traffic Forwarding Task, Web Server Pool Management Task, Web Server Monitor Management Task, Web Pool VIP Management Task,
Web Pool Member Management Task, Web Payload Statistics Collection Task, Web Packet Statistics Collection Task}.
— app_ pools(Web Admin Unit) = {Web Load Balance Pool, Web Security Pool}.
5. Administrative User Assignment:
— TA_admin = {(web_ functions_admin_user, Web Admin Unit)}.
- AA_admin = {(web_apps_admin_user, Web Admin Unit)}.

175

- ~

‘& Custom™
N
// SDN Apps Roles Tasks Permissions OPprony OP¢ustom OParger
1 N (addWebFlow,
| Web Traffic FIOW-RULE addWebFlow _ep
i Web Web Flow__— Forwarding)
! Intrusion ——— Task (addVoipFlow, ! voip clone
: Prevention Mad FIOW-RULE)‘ —:— addVoipFlow —— _ addFlow(traffic) <—O addFlow
! Web Flow 1 ftp
: Viewing Task (addFtpFlow, ! addFtpFlow
1 FIOW-RULE) 1 passed to custom
! 1 operation
~ leteWebFl
: VolP Traffic (deleteWebFlow, _1_ 4o erewebFiow. _,qp
1 VolP Load Forwarding FIOW-RULE) :
- Balancer VoIP Flow__—" " gaqy (deleteVoipFlow, ! voip clone
1 Mod FIOW-RULE) ’ —— deleteVoipFlow ——» deleteF\ow(trafﬁc)e—O deleteFlow
: \ Voip Flow S : ftp
1 Viewing eleteFtpFlow, 1
: FIOW-RULE) 1 deleteFtpFlow
1
1 1
1 FTP Traffic (readWebFlow,
i . / Forwarding FIOW-RULE) I readWebFlow < web
1 1
L FTP Flow Task i voip clone
1 Application (readVoipFlow, | . volp_ . readFlow
1 : Mod FIOW-RULE) T readVoipFlow readFlow(traffic) <——O
\ Firewall FTP Flow 1 ftp
\ o [
Viewing Task\ (readFtpFlow,
AY [S—
FIOW-RULE) 7 readFtpFlow
~ i o i

Fig. 5. Example of creating three roles using custom permissions and their associations with tasks and apps.

related tasks, and two web-related app-pools to the admin unit
‘Web Admin Unit’. This admin unit has two administrative
users, web_functions_admin_user and web_apps_admin_user.
The former is authorized, via TA_admin relation, to as-
sign/revoke tasks to/from roles, and the later is authorized,
via AA_admin relation, to assign/revoke apps to/from roles.
These two relations are specified in item 5 of Table II.

Roles

~ Web Packet-In Handler

 Web Packet Monitor
Web Flow Mod

- Web Load Balancing
Apps

Web Intrusion Prevention

-+ Web Stats Collector

- VolP Packet-In Handler

<
Web Application Firewall e ——

Web Load Balancer + VolP Flow Mod
VolP Intrusion Prevention VolP Load Balancing
VolP Application Firewall <. - VolP Stats Collector
VoIP Load Balancer

App-Pools
* Web Security
“Web Load Balance

™ VolP Security

" VolP Load Balance

Tasks
.~ Web Deep Packet Inspection
" . Web Packet Header Inspection
- Web Flow Viewing
Web Traffic Forwarding
- Web Server Pool Management
Web Server Monitor Management
" Web Pool VIP Management
~ Web Pool Member Management
~ Web Payload Statistics Collection
~ Web Packet Statistics Collection
VolP Deep Packet Inspection
VolP Packet Header Inspection
~ VolIP Flow Viewing
* VolP Traffic Forwarding
VolP Server Pool Management
" VolP Server Monitor Management
* VolP Pool VIP Management
VolP Pool Member Management
* VolP Payload Statistics Collection

" VolP Packet Statistics Collection

Fig. 6. ‘Web Admin Unit’ and ‘VoIP Admin Unit’ (gray) along with tasks,
roles, and app pools they exclusively manage. The figure also shows apps that
admin units can manage via app-pools.

B. Extended Use Case - Multiple Administrative Units

In this section, we describe an extension to the use case
of Section VIII-A and show how we can use multiple proxy
operations from each proxy group to engineer multiple admin
units. The use case is depicted in Fig. 6 with the two admin
units ‘Web Admin Unit’ and ‘VoIP Admin Unit’.

The VolP-related tasks in Fig. 6 are engineered in the
same way Web-related tasks are engineered. VolP-related
tasks are engineered using custom permissions which are
created using VoIP-related proxy operations. For example,

176

three custom permissions, namely, (addVoIPFlow, FLOW-
RULE), (deleteVoIPFlow, FLOW-RULE), and (read VoIPFlow,
FLOW-RULE) will be used to engineer the tasks ‘VoIP Traffic
Viewing’ and ‘VoIP Traffic Forwarding’. Both of these tasks
will contribute to the engineering of ‘VoIP Flow Mod’ role.

Using the same approach, we can create other admin units,
for example, ‘Ftp Admin Unit’ and ‘Email Admin Unit’. It is
clear that, by the power of proxy operations and the custom
permissions created from them, it becomes more flexible to
create more admin units, each one specialized with different
type of traffic.

Table III shows examples of administrative user authoriza-
tions corresponding to some administrative actions based on
the extended use case in this section. The table shows the
results of the authorization function. The use case assumes
the existence of four administrative users assigned to the two
admin units as specified in Table IV.

I[X. IMPLEMENTATION

To demonstrate the effectiveness of custom permissions with
our access control model, we implemented a prototype on
Floodlight, a Java based SDN controller. We developed and
ran the prototype in Floodlight SDN controller v1.2 release
[19]. The Floodlight platform is deployed on a virtual machine
that has 8GB of memory and runs on Ubuntu 14.04 OS
installation. We created a topology with three virtual switches
(Open vSwitch v2.3.90) connected to each other and each
switch is connected to two hosts. Switches are connected to the

[The method net.floodlightcontroller.staticflowentry.IStaticFlowEntryPusherService.faddwebFlow]
is called by session net.floodlightcontroller.webtestapp.WebTestAppSession

01:34:14.691 WARN [n.f.rbac.RBAC:Thread-12] SDN-RBAC: [security violation] "Access denied".
Unauthorized access requested by session (WebTestAppsSession)

Reason: [MatchField:TCP DST - [Incorrect port (25)] in flow rule

Active roles set for this session: [Web Flow Mod]

#1:34:14.824 TNFO [n.f.1.i.1inkDiscovervMananer:Scheduled-31 Sending 11DP nackets out of all

Fig. 7. Screenshot of authorization check result for addWefFlow proxy
operation requested by WebTestApp - Access denied because of incorrect
tcp_port number.

TABLE III
EXAMPLES OF ADMINISTRATIVE USER AUTHORIZATION FUNCTIONS CORRESPONDING TO SOME ADMINISTRATIVE ACTIONS. EXAMPLES BELONG TO
EXTENDED USE CASE IN SECTION VIII-B

1 . Examples of Authorization Functions:

can_manage_task_role(web_functions_admin_user, Web Traffic Forwarding Task, Web Flow Mod) = True

Reason:

IWeb Admin Unit € AU : ((web_ functions_admin_ user, Web Admin Unit) € TA_admin) A

Web Flow Mod € roles(Web Admin Unit) A
Web Traffic Forwarding Task € tasks(Web Admin Unit).

can_manage_ task_role(voip_functions_admin_user, Web Server Pool Management Task, Web Load Balancing) = False

Reason:
Web Load Balancing € roles(Web Admin Unit) A

Web Server Pool Management Task € tasks(Web Admin Unit),
however, (voip_functions_admin_user, Web Admin Unit) ¢ TA_admin.
can_manage_app_role(web_apps_admin_user, Web Intrusion Prevention App, Web Flow Mod) = True

Reason:

IWeb Admin Unit € AU : ((web_apps_admin_user, Web Admin Unit) € AA_admin) A

Web Flow Mod € roles(Web Admin Unit)] A

IWeb Security Pool € AP: (Web Intrusion Prevention App, Web Security Pool) e AAPA A

Web Security Pool € app_ pools(Web Admin Unit).

Reason:
VoIP Flow Mod € roles(VoIP Admin Unit) A

can_manage app_role(web_apps admin_user, VoIP Application Firewall App, VoIP Flow Mod) = False

(VoIP Application Firewall App , VoIP Security) € AAPA A VoIP Security € app_pools(VoIP Admin Unit)],
however, (web_apps_admin_user, VoIP Admin Unit) ¢ AA_admin.

2 . Examples of Administrative Actions:

— assign_task_to_role(web_functions_admin_user, Web Traffic Forwarding Task, Web Flow Mod) is allowed

Reason:

can_manage_task_role(web_functions_admin_user, Web Traffic Forwarding Task, Web Flow Mod) = True
— revoke_task from_role(voip_functions_admin_user, Web Server Pool Management Task, Web Load Balancing) is not

allowed
Reason:

can_manage_task _role(voip_functions_admin_user, Web Server Pool Management Task, Web Load Balancing) = False
assign_app_to_role(web_apps_admin_user, Web Intrusion Prevention App, Web Flow Mod) is allowed

Reason:

can_manage_app_role(web_apps_admin_user, Web Intrusion Prevention App, Web Flow Mod) = True
— revoke_app_from_role(web_apps_admin_user, VoIP Application Firewall App, VoIP Flow Mod) is not allowed

Reason:

can_manage_app_role(web_apps_admin_user, VoIP Application Firewall App, VoIP Flow Mod) = False

TABLE IV
ADMINISTRATIVE USER ASSIGNMENT RELATION FOR USE CASE IN SECTION VIII-B

Administrative User Assignment:

TA_admin = {(web_functions_admin_user, Web Admin Unit), (voip_functions_admin_user, VoIP Admin Unit)}.

AA_admin = {(web_apps_admin_user, Web Admin Unit), (voip_apps_admin_user, VoIP Admin Unit)}.

controller and hosts are virtual machines that has 2GB and run
Ubuntu 14.04 OS server. We implemented the access control
using Aspect] [20], a seamless aspect-oriented extension to
Java. Aspect] ensures that all access requests (i.e., calls to
proxy operations) from apps are intercepted by our access
control components. This system can be deployed to all other
Java-based SDN controllers.

We created a simple test app, WebTestApp and assigned
it to the role 'Web Flow Mod’. Thus, it can access web
flow rules only. We designed the app to insert a flow rule
with the matching field TCP_DST equals to the SMTP port
25. Our refined custom operation addFlow is designed to
consider ports 80 and 443 for web traffic. As a result,
the proxy operation addWebFlow allows only ports 80 and
443 to be used for flow rule insertions and denies any
rule with other ports. The purpose of this test app is to
demonstrate how our access control system checks custom

177

permissions and rejects unauthorized access. We created a
flow rule and set the TCP_DST match field to 25 using the
java instruction: matchbuilder.setExact(MatchField. TCP_DST,
TransportPort.of(25));. This causes an access violation since
the TCP port number failed the refinement check in the custom
permission addFlow. A screen-shot of the output console is
shown in Fig. 7.

X. PERFORMANCE EVALUATION

To evaluate the effectiveness of our access control system
utilizing custom permissions, we created a test app and se-
lected fifty proxy operations, from which we created fifty
custom permissions. These custom permissions are assigned
to eighteen tasks and ten different roles. We incrementally
assigned these roles to the test app which runs in one session.
Despite the fact that this app doesn’t require all these roles,
the purpose of this test is to check the overhead caused by
our access control on the system’s performance by reporting

Pl

10
Number of roles

~+—SDN-RBAC w/o Custom Permissions

~=—SDN-RBACa operational model with Custom Permissions

Fig. 8. Average authorization time in SDN-RBAC and SDN-RBACa Opera-
tional Model.

the execution time with different security policies. We change
the security policy by changing the active role set of the app’s
session. In the first security policy one role is assigned to the
session’s active role set, in the second policy two roles where
assigned, and so on until ten roles.

For each security policy, the session executes all fifty proxy
operations. The system is set to compute the authorization
delay imposed by the access control components to finish
execution and make an access control decision for each proxy
operation submitted by the session. The timer starts when
the call is intercepted by Aspect] hook, and stops when the
access decision is calculated based on the available custom
permissions for the session. The total time is calculated for all
fifty proxy operations. We repeated this test hundred times for
each security policy. For overhead comparison, we performed
the same test on SDN-RBAC, but without custom operations.
The average elapsed authorization times calculated for SDN-
RBACa operational model and the SDN-RBAC model are
reported as shown in Fig. 8. It should be noted here that delay
times does not include floodlight’s boot-up time, the time for
loading the policy and creating the corresponding relations.

This evaluation shows that the authorization check of the
SDN-RBACa operational model takes an average of 0.0252
ms on the floodlight controller while SDN-RBAC takes 0.0245
ms on average. As a result, the SDN-RBACa operational
model adds an overhead of around 2.9% to the authorization
framework. This observed latency is negligible. Therefore,
we believe that the operational model of SDN-RBACa with
custom permissions introduces acceptable overhead to the
controller for the sake of access control administration.

XI. CONCLUSION AND FUTURE WORK

In this paper, we introduced an approach for creating custom
SDN operations to extend the capabilities of SDN services and
provide fine grained custom permissions specialized for the
administration of access control in SDN. Then, we presented,
SDN-RBACa, an administrative model to manage the associ-
ations between network applications and other access control
entities. Through proof of concept prototype implementation
and use cases, we demonstrated the usability of custom

178

permissions and showed how custom permissions enable and
facilitate the administration of access control in SDNs.

In future work, the custom permissions can be further
refined and demonstrated in practical use cases and imple-
mentations of the administrative model.

ACKNOWLEDGMENT

This work is partially supported by NSF CREST Grant
HRD-1736209 and CNS-1553696.

REFERENCES

S. Azodolmolky, P. Wieder, and R. Yahyapour, “Sdn-based cloud
computing networking,” in 2013 15th International Conference on
Transparent Optical Networks (ICTON). 1EEE, 2013, pp. 1-4.

M. Ojo, D. Adami, and S. Giordano, “A sdn-iot architecture with nfv
implementation,” in 2016 IEEE Globecom Workshops (GC Wkshps).
IEEE, 2016, pp. 1-6.

A. Al-Alaj, R. Krishnan, and R. Sandhu, “Sdn-rbac: An access control
model for sdn controller applications,” in 2019 4th International Con-
ference on Computing, Communications and Security (ICCCS). IEEE,
2019, pp. 1-8.

A. Al-Alaj, R. Sandhu, and R. Krishnan, “A formal access control model
for se-floodlight controller,” in Proceedings of the ACM International
Workshop on Security in Software Defined Networks & Network Func-
tion Virtualization. ACM, 2019, pp. 1-6.

P. Porras et al., “A security enforcement kernel for openflow networks,”
in Proceedings of the first workshop on Hot topics in software defined
networks. ACM, 2012, pp. 121-126.

Y. Tseng et al., “Controller dac: Securing sdn controller with dynamic
access control,” in Communications (ICC), 2017 IEEE International
Conference on. 1EEE, 2017, pp. 1-6.

D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chan-
dramouli, “Proposed nist standard for role-based access control,” ACM
Transactions on Information and System Security (TISSEC), vol. 4, no. 3,
pp. 224-274, 2001.

R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
based access control models,” Computer, vol. 29, no. 2, pp. 38-47, 1996.
P. Biswas, R. Sandhu, and R. Krishnan, “Uni-arbac: A unified adminis-
trative model for role-based access control,” in International Conference
on Information Security. Springer, 2016, pp. 218-230.

R. Sandhu, V. Bhamidipati, and Q. Munawer, “The arbac97 model for
role-based administration of roles,” ACM Transactions on Information
and System Security (TISSEC), vol. 2, no. 1, pp. 105-135, 1999.

R. Sandhu and Q. Munawer, “The arbac99 model for administration
of roles,” in Proceedings 15th Annual Computer Security Applications
Conference (ACSAC’99). IEEE, 1999, pp. 229-238.

S. Oh and R. Sandhu, “A model for role administration using organiza-
tion structure,” in Proceedings of the seventh ACM symposium on Access
control models and technologies, 2002, pp. 155-162.

J. Crampton, “Understanding and developing role-based administrative
models,” in Proceedings of the 12th ACM conference on Computer and
communications security, 2005, pp. 158-167.

J. Crampton and G. Loizou, “Administrative scope: A foundation for
role-based administrative models,” ACM Transactions on Information
and System Security (TISSEC), vol. 6, no. 2, pp. 201-231, 2003.

N. Li and Z. Mao, “Administration in role-based access control,” in
Proceedings of the 2nd ACM symposium on Information, computer and
communications security, 2007, pp. 127-138.

H. Wang and S. L. Osborn, “An administrative model for role graphs,”
in Data and Applications Security XVII. Springer, 2004, pp. 302-315.
X. Wen et al., “Towards a secure controller platform for openflow
applications,” in Proceedings of the second ACM SIGCOMM workshop
on Hot topics in software defined networking. ACM, 2013, pp. 171—
172.

S. Scott-Hayward et al., “Operationcheckpoint: Sdn application control,”
in Network Protocols (ICNP), 2014 IEEE 22nd International Conference
on. IEEE, 2014, pp. 618-623.

Floodlight-Project. (2020) https:/floodlight.atlassian.net.

Aspect]. (2020) Aspectj: A seamless aspect oriented extension to java.
https://www.eclipse.org/aspect;j/.

(11

(21

(31

(41

(5]

(61

(71

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

