2020 IEEE 6th International Conference on Collaboration and Internet Computing (CIC)

ParaSDN: An Access Control Model for SDN
Applications based on Parameterized Roles and
Permissions

Abdullah Al-Alaj
Institute for Cyber Security
C-SPECC
Department of Computer Science
UTSA, San Antonio
Texas, USA
abdullah.al-alaj@utsa.edu

Ram Krishnan
Institute for Cyber Security
C-SPECC
Department of Electrical
and Computer Engineering
UTSA, San Antonio
Texas, USA

Ravi Sandhu
Institute for Cyber Security
C-SPECC
Department of Computer Science
UTSA, San Antonio
Texas, USA
ravi.sandhu@utsa.edu

ram.krishnan @utsa.edu

Abstract—Software Defined Networking (SDN) has become one
of the most important network architectures for simplifying net-
work management and enabling innovation through network pro-
grammability. Network applications submit network operations
that directly and dynamically access critical network resources
and manipulate the network behavior. Therefore, validating these
operations submitted by SDN applications is critical for the
security of SDNs. A feasible access control mechanism should
allow system administrators to specify constraints that allow for
applying minimum privileges on applications with high granu-
larity. However, the granularity of access provided by current
access control systems for SDN applications is not sufficient to
satisfy such requirements. In this paper, we propose ParaSDN,
an access control model to address the above problem using
the concept of parameterized roles and permissions. Our model
provides the benefits of enhancing access control granularity
for SDN with support of role and permission parameters. We
implemented a proof of concept prototype in an SDN controller
to demonstrate the applicability and feasibility of our proposed
model in identifying and rejecting unauthorized access requests
submitted by controller applications.

Index Terms—Software Defined Networking, Security and
privacy, Access control, Formal models, Network security.

I. INTRODUCTION AND MOTIVATION

Software-Defined Networking (SDN) has become one of the
most important architectures for network management and, not
surprisingly, helps shape how networks will be designed in
the future. Decoupling the control logic of the network from
the forwarding hardware has been determined as the core of
SDN. This process led to the ability to control the network
behavior via network apps, which often have to share the same
infrastructure managed by a central controller, causing several
security challenges, and access control is at the forefront of
them.

Information about network resources stored in the SDN
controller are highly valuable which makes it an attractive

978-1-7281-4146-6/20/$31.00 ©2020 IEEE
DOI 10.1109/CIC50333.2020.00022

99

target for attackers and increases the potential to be gained
via unauthorized access. Also, the potential damage that can
be done increases dramatically if this unauthorized access is
done by compromised, buggy, or malicious SDN apps.

In prior works on access control for SDN [1]-[3], an access
control system was built based on a set of course grained
permissions. For example, a permission to install a flow rule
allows an app to handle any type of traffic. In other proposals
that exploit the concept of roles for SDN [4], permissions
are created based on object types rather than specific object
instances. For example, a permission to read an object of type
flow rule is generally used to read every flow rule in a switch.
In another example, a permission to access a network device
allows access to all network devices.

However, in real SDN deployments, a higher access con-
trol granularity is required, and there is often the need to
assign permissions to a subset of object instances that share
the same type. For instance, in a campus network it might
be required for an app to access particular resources (e.g.,
switches, servers, etc.) that belong to a specific department
only. Moreover, there is a need to assign permissions with
higher granularity and make access decisions based on low
level parameters derived from the request or contents of object
itself (e.g., TCP protocol, VLAN id, IP address, Ethernet
address, etc.).

This requires an access control system that restricts apps’
access scope to unique object instances. An easy solution for
this problem is to have an access control system in which a
separate permission is created for each single object. However,
adopting such approach in role-based systems has known
problems and hard to manage as it requires creating and
managing huge number of permissions, roles, permission-role
associations, and app-role associations. A more feasible access
control mechanism should allow the system administrator
to flexibly specify the constraint that every app can only
access and modify specific object instances commensurate to

its authorization requirements. Otherwise, apps may access
resources not under their authority and thus conflicts may
arise. For instance, apps that manage web services and require
installing flow rules to handle web traffic should not be
allowed to handle other traffic types.

Because of the known advantages of role-based access
control especially in facilitating access control management,
we propose ParaSDN, an access control model that addresses
the above problems using the concept of parameterized roles
and permissions.

This paper is organized as follows. In Section II, we discuss
related work. Section III describes the concept of parameter-
ized permissions and roles. Section IV describes the concep-
tual ParSDN model and its formal definitions. In Section V, we
define app and permission assignment administrative actions.
The framework architecture is described in Section VI. Section
VII describes Parameter types in SDN. In VIII, we describe
proof-of-concept use case and its configuration. Section IX
discusses implementation and performance evaluation of the
ParaSDN. Finally, Section X presents conclusion and outlines
future work.

II. LITERATURE REVIEW

Several proposals on access control for SDN apps exist in
the literature. [5]-[7] described the access control system in
terms of the set of operations (APIs) as the basic unit for
restricting app’s activities. Although in works like [1]-[3],
roles were assigned to apps, the operation (API) assigned
to roles was too course grained leads to violating the least
privilege principle to a large extent.

We classify SDN apps authorization into two main cate-
gories: firstly, permission-based app authorization which in-
cludes techniques wherein apps authorization is driven by di-
rect permission-app assignment. Secondly, role-based app au-
thorization in which app authorization is driven by permission-
to-role followed by role-to-app assignment.

PermOF [5] proposed a permission system in which a
permission set is directly granted to apps. The authors of
[6] adopted the concept of PermOF. Inspired by Android
permission system, [7] proposed a permission system based
on OpenFlow messages’ states that can be used as the unit to
which the permission details can be applied. The authors in
[8] introduced AEGIS using security access rules. Managing
the aforementioned permission-based authorization systems is
a widely known problem which we opt-out of. So we will only
discuss role based authorization system for SDN.

FortNOX [1] implemented a role-based authorization sys-
tem with three roles. FortNOX is extended and improved in
SE-Floodlight [2]. In [9], a formal access control model for
SDN apps based on SE-Floodlight as a reference controller is
presented. SM-ONOS [10] proposed a permission system at
four-level granularity. Based on API-level permissions from
SM-ONOS, [11] proposed information flow control among
apps for the ONOS controller. Tseng et al. [3], inspired by
[2], proposed Controller-DAC with API request threshold and
a priority for each app assigned either directly or via the

100

role. These approaches have a limited granularity scope and
don’t provide an extensive and open fine grained capabilities.
However, in our work we present a more convenient and
flexible approach for creating a set of easy manageable roles
built upon fine-grained and fully customized permissions that
suit complex SDN use cases.

Works in [12]-[14] used the concept of parameterization
with roles and privileges. However, their formalization is not
well structured in a complete model, which make it hard
to adopt in different contexts including SDN. In this work,
we introduce a formal definition for parameterized roles and
permissions that conform to the standard RBAC model and
more flexible to adopt in a variety of environments including
and beyond SDN.

III. PARASDN COMPONENTS OVERVIEW

In this section, we present an overview of the ParaSDN
components and give examples of the syntax and semantics in
the context of SDN environment.

A. Parameters

A parameter is a name:value pair that, when assigned to a
permission, may indicate the subset of network resources that
an app can access using this permission, or add restrictions
on the performed operation. A parameter value can identify
network resources in several ways. For example, It can usec
(1) network resource IDs, for instance, a parameter ‘attach-
ment_point’ can be assigned the value {0Ox1:1, Ox1:2, 0x2:1}
to indicate the listed switch:port combinations; (2) a label that
indicates a group of network resources, for instance, the label
‘CS’, when assigned to the parameter ‘dept’, may indicate
all switch IDs in the CS department; (3) a property existing
in the requested resource, for instance, the parameter ‘traffic’
with a value of ‘web’ indicates the set of ports used for Web
protocol; or (4) a contextual property that restricts access to
the resource, for instance, the parameter ‘time_active’ with the
value of ‘9-17" may indicate the time frame during which an
operation can be carried out.

The range of each parameter is represented by a finite set
of atomic values. For example, the range of ‘dept’ is a set of
department names that share the network infrastructure. Each
parameter can either be atomic or set-valued from its declared
range. For a particular parameter p, it is range is composed
only from those values defined by the system administrator.
Different SDN-related parameter types with examples are
discussed in section VIIL

B. Parameterized Permissions

A parameterized permission is represented by the ordered
pair:

((op;, ot;), {(pary, valy), (parp, valy), ...})
where (op;, ot;) combines a network operation with an object
type in the ordinary permission format, and {(par;, val}),
(pary, valy), ...} is a subset of parameter:value pairs. In the pa-
rameterized permission, the object type ot; indicates all object
instances of that type on which operation op; can be exercised.

If used alone, it provides a very course-grained access privilege
and impractical for many SDN security policies. In many
situations, what is required is to provide access to subset of
object instances of that type. This is achieved with the help of
the parameters associated with this permission. The semantics
of this parameterized permission is that an app can execute the
operation op; on only object instances of type ot; that satisfy
the restrictions imposed by the parameter values.

The values of parameters in a permission are not assigned
at the time of permission creation; instead, their values re-
mains unknown until the permission is associated with a
parameterized role whose parameter values already defined,
i.e., permission parameters’ values are steered by the values
of role parameters. So, when security architects create a
parameterized permission, they initialize parameter values with
a special value L, which means unknown. For example, the
parameterized permission:

((addFlow, FLOW-RULE), {(dept, L), (traffic, 1)})
indicates that an app can insert flow rules in switches of as-
yet-unknown department(s), and these rules can handle traffic
of as-yet-unknown type. If the values of parameters ‘dept’ and
‘traffic’ are ‘CS’ and ‘web’, then an app can add flow rules
that handle Web traffic in switches of CS department.

C. Parameterized Roles

A parameterized role is represented using an ordered pair:

(ri’ {(parl’ Vall)’ (Par2a ValZ)’ })
where r; represents a role name, and {(par, valj), (parp,
valy), ...} is a set of parameter:value pairs. Initially, all role
parameters are assigned a special value |, which means
unknown. For example,

(Flow Mod, {(dept, L), (traffic, L)})
is a parameterized role that includes permissions to read,
update, insert, and delete flow rules in switches of as-yet-
unknown department(s), and these rules can handle traffic of
as-yet-unknown type. If the values of parameters ‘dept’ and
‘traffic’ are ‘CS’ and ‘web’, then an app can exercise these
operations only to flow rule instances that reside in switches
of CS department and handle traffic destined to Web servers.

D. Parameter Value Assignment

At the time of role engineering, there is no need to worry
about actual parameter values at the level of permissions and
roles. As mentioned above, parameterized permissions and
parameterized roles are instantiated with parameter values
assigned a special value |, which means unknown.

A parameterized permission is assigned to a parameterized
role via the administrative action assignPPerm(pp, pr), where
pp is a parameterized permission and pr is a parameterized
role. At this step, no actual parameter values are assigned.
This is demonstrated in step 1 of Fig. 1 (a). Because pa-
rameter values are assigned based on the requirements for
an app to access system resources, their values will remain
unknown until actual app-to-role assignment is executed via
assignApp(a, pr,valset), where a is an app, pr is a param-
eterized permission, and valset is the set of values to be

101

D [1 assignPPermipp. pr) D
a 2. assignApp(a, pr, l_‘pr pp
val,, » (par),) > (par, L)
valy) » (pary, 1) > (pary 1)
3. values propagate
[2.] + = unknown value automatically
Iiez]
a pr pp
(par, val,), (par,, val))
El (par, valy) (pary, valy)

Fig. 1. Parameter values assigned via assignApp administrative action
propagate automatically from role parameters to permission parameters.

supplied to pr. The values in valset propagates automatically
to corresponding permission parameters. This app-to-role as-
signment and value propagation is demonstrated in steps 2 and
3 of Fig. 1 (a). The final state of the parameterized role and
parameterized permission as associated with app a is shown
in Fig. 1 (b).

E. Parameter Verification

We consider an app’s access request to an object as a right
of access claim by that app to that object. This claim requires
verification by the access control system. We use specific
functions, called Verifiers, to check the validity of this claim
by comparing the parameter values in the actual access rights
of the app (i.e., the available parameterized permissions of the
session) with the properties of the requested object.

For example, a verifier VRuleSwitch will be called after
exercising the permission ((addFlow, FLOW-RULE), (dept,
CS), (traffic, web)). It is used to verify that a flow rule that is
being submitted by an app for insertion is to be inserted in an
authorized switch, i.e., in switches if the CS department. The
verifier exploits information from the object, i.e., the flow rule,
and parameter values from the parameterized permission, i.e.,
CS department. If the accessed switch is within the switches
of CS department, a positive response is returned, otherwise
the verifier returns negative response.

It worth mentioning that one verifier can serve multiple
parameterized permissions. For example, the same verifier
VRuleSwitch will be called with the permission ((deleteFlow,
FLOW-RULE), (dept, CS), (traffic, web)). Associating one
verifier with multiple parameterized permissions reduces the
management effort when dealing with large number of per-
missions. Also, one parameterized permission might require
multiple verifiers. For example, another verifier that will
be invoked for any of the above parameterized permissions
is VRuleTraffic which verifies that the accessed flow rule
handles corrcet traffic type, i.e., web traffic. The verifiers must
be called for one parameterized permission depends on the
parameters associated with the permission.

IV. PARASDN CONCEPTUAL MODEL AND DEFINITION

The conceptual model and the relations between the com-
ponents of ParaSDN are shown in Fig. 2. ParaSDN has the
following basic components: OpenFlow apps APPS, roles
ROLES, operations OPS, objects OBS, object types OBTS,
the parameter set PAR, and the set of parameter values VAL.

<4—— many-to-many

——» one-to-many

app_

sessions session_

TYPES
(OBTS)

H

pperms i

______ Parameter
Engine
Permit/Deny

SESSIONS

Fig. 2. ParaSDN Conceptual Model.

The basic sets and functions in ParaSDN are shown in
Table 1. APPS refer to the set of OpenFlow apps. ROLES
is the set of role names. OPS is the set of all operations
exposed to apps by the controller services and performed on
objects. Inserting flow rules and reading port statistics are
examples of operations. OBS is the set of object instances
that are managed by the controller and should be protected
from unauthorized access. They are managed by the controller
to maintain a consistent state of the network infrastructure.
An element in OBTS represents the type of a specific object
instance. For example, FLOW-RULE, DEVICE, and LINK
refer to the type of actual instances of flow rules, devices,
and links respectively.

PAR represents the set of all parameters in the system. This
could be atomic or set valued as determined by the type of the
parameter. Type of a parameter, set or atomic, is specified by
the function parType. VAL is the set of all parameter values
used in the system. PRMS is the set of permissions, where a
permission combines a network operation with an object type.
The set SESSIONS represents a mapping between an app and
an activated subset of parameterized roles. An app can have
multiple sessions and a session belongs to only one app. OT
is a relation for the combinations between objects and their
types. PVPAIRS is a subset of parameter:value pairs. PPRMS
defines the set of parameterized permissions as discussed in
Section III-B. PROLES defines the set of parameterized roles
as discussed in Section III-C.

The functions required for parameter verification are defined
in part 4 of Table II. VERIFIERS is a set of boolean functions
defined by security administrators for parameter verification.
Each V; € VERIFIERS is applied on an object and a parameter
to check whether an object satisfies the requirements of the
parameter. Param_verifier is a function that returns a verifier
that needs to be executed at the time of access request. It maps

102

an (object type, parameter) pairs to their related verifier.

In our model, parameter checking and verification process
is an essential part of evaluating each session’s access request.
It requires different components to communicate as illustrated
in Table II. Security administrators firstly need to define a
parameter verification function V; (or so-called a verifier)
that must be executed to find whether an object fulfills the
requirements of a parameter. Verifiers are defined by means
of the language LVerify defined in Table IIl. The language
LVerify allows to create conditions that involve parameter
values and information about the object. In this language,
ConsSet and ConsAtomic are constant sets and atomic values.

Because not all the verifiers need to be executed for a
requested object, security administrators need to specify the
subset of verifiers applicable to the requested object and
the permission parameters. An access request might need
to execute multiple verifiers depending on the parameters
associated with the parameterized permission undergo the
check. At the time of access request, the function CandidateV-
erifiers receives all parameters associated with a parameterized
permission need to be checked. This function is responsible
of retrieving the set of applicable verifiers and submitting this
set to the function ParamCheck for evaluation. In order to do
this, it passes the object type along with each parameter to
param_verifier function that retrieves the applicable verifier.

It should be mentioned that the function CandidateVerifiers
doesn’t deal with the parameter values or the object instances
themselves, however, it relies on the parameter name and the
object types to fetch the relevant verifiers. On the other hand,
the verifiers returned by CandidateVerifiers use information
about actual object and actual parameter values for evaluation.

The function ParamCheck receives the applicable verifiers
for the object and verifies if the object can be accessed based
on the provided parameter values. It achieves this by invoking

TABLE I
PARASDN FORMAL MODEL DEFINITION.

1.Basic Sets:
— APPS, ROLES, OPS, OBS, OBTS, PAR, and VAL: set of apps, roles, operations, objects, object types, parameters, and parameter values.
— For each par € PAR, Range(par) represents the parameter’s range, a finite set of atomic values. We assume VAL includes a special value “1” to
indicate that the value of a parameter is unknown.
- parType: PAR — {set, atomic} specifies parameter type as set of atomic valued.
— PRMS C OPS x OBTS, set of ordinary permissions.
— SESSIONS, set of sessions.
2.Assignment Relations:
- OT C OBS x OBTS, a many-to-one relation mapping an object to its type, where
(0, ot}) € OT A (o, otp) € OT = ot] = oty.
— PVPAIRS C PAR Xx VAL, a many-to-many mapping parameter to value assignment relation.
For convenience, for every pvpair = (par;, val;) € PVPAIRS, let pvpair.par = par; and pvpair.val = val;.
— PPRMS C PRMS x 2PVPAIRS 4 relation mapping a permission role to subset of (parameters , value) combinations.
For convenience, for every pp = ((op;, ot;), PVPAIRS,;) € PPRMS, let pp.op = op;, pp.ot = ot;, and pp.PVPAIRS = PVPAIRS,.
-~ PROLES C ROLES x 2PVPAIRS 4 relation mapping a role to subset of combinations of parameters and their values.
For convenience, for every pr = (r;, PVPAIRS;) € PROLES, let pr.r = r; and pr.PVPAIRS = PVPAIRS;.
— PPA C PPRMS x PROLES , a many-to-many mapping parameterized permission to parameterized role assignment relation.
— AA C APPS x PROLES, a many-to-many mapping app to parameterized role assignment relation.
3.Derived Functions:
— assigned_pperms: PROLES — 2PPRMS "the mapping of parameterized role into a set of parameterized permissions.
Formally, assigned_pperms(pr) = {pp € PPRMS — (pp, pr) € PPA}.
— app_sessions: APPS — 25ESSIONS the mapping of an app into a set of sessions.
— session_app : SESSIONS — 24PPS | the mapping of session into the corresponding app.
— session_roles: SESSIONS — 2PROLES ' the mapping of session into a set of parameterized roles.
Formally, session_roles(s) = {pr € PROLES — (session_app(s), pr) € AA}.
— type: OBS — OBTS, a function specifying the type of an object defined as
type(o) = {r € OBTS — (o, 1) € OT}.
— avail_session_pperms: SESSIONS — 2PPRMS the parameterized permissions available to an app in a session.
Formally, avail_session_pperms(s) = U,,,e‘,esximu,,,e‘\v(x)assigned_pperms(pr).
4.Parameter Verification Functions:
— VERIFIERS = {V}, V,, ..., V,} a finite set of Boolean functions.
For each V; € VERIFIERS.V; : SESSIONS x OPS xOBS x PVPAIRS — {True, False}.
— param_verifier: OBTS x PAR — VERIFIERS, a function that maps a combination of object type and parameter to the corresponding verification
function needs to be evaluated.

TABLE II
PARAMETER CHECKING FUNCTIONS.

A. Verifiers:
Language LVerify is used to define each verifier V;(s: SESSIONS, op: OPS, ob: OBS, pvpair : PVPAIRS) in VERIFIERS.

B. CandidateVerifiers: a function that maps each object type to its applicable set of verifiers.
Candidate Verifiers(ot: OBTS, pvpairs : 2FVPAIRS) [
verifiers = {};
For each pvpair; € pvpairs do
V; = param_verifier(ot, pvpair;.par);
verifiers := verifiers U {(V; X pvpair;)};
return verifiers;

}

C. ParamCheck: a function that checks an object against all candidate verifiers until the first failure is discovered or a true is returned as the final outcome.
ParamCheck(s: SESSIONS, op: OPS, ob: OBS, pvpairs: 2FVPAIRS)
For each (V; x pvpair;) € CandidateVerifiers(type(ob), pvpairs) do
if =V;(s, op, ob, pvpair;)
return false;
return true;

TABLE III
LANGUAGE LVERIFY TO FORM VERIFIERS.

= ANple Vel | p|3x e sety | Vx € set.p | set setcompare set | atomic € set | atomic atomiccompare atomic setcompare = C | C | l@atomiccompare n=
<l=1<

set ::= setpar.val | ConstSet

atomic ::= atomicpar.val | ConstAtomic

setpar € {pvpair | pvpair € PVPAIRS A parType(pvpair.par) = set}
atomicpar € {pvpair | pvpair € PVPAIRS A parType(pvpair.par) = atomic}

TABLE IV

APP AUTHORIZATION FUNCTION.

Function

| Authorization Condition

checkAccess(s: SESSIONS, op: OPS, ob: OBS)

Jpr € PROLES : pr € session_roles(s), dpp € PPRMS : (pp, pr) € PPA A
(op, type(ob)) = (pp.op, pp.ot) A ParamCheck(s, op, ob, pp.PVPAIRS) =
True.

Application Plane

Network App

Session

Session

Service
Agents

Event
Listeners|

Service
Agents

Event
Listeners|

Service APIs

Service APIs

Controller
Services

Topology Service

Routing Service

Protected Object:
Topology
Flow Tables

Link Discovery

Statistics

Read/
Write

Links

Devices
Other

Device

L3 T 23

X . . Other

1
1
1
1
1
1
| | [Statistics Collection
1
1
1
1
I
I

Controller Request by sesslanl Result to session

SE——

Authorized request |

Component

(PEP)
access

request l

Session's access !
() request _Request !
ParasDN Evaluation !
& Decision 1

Available N\ (PDP) Request, |

parameterized Parameters |

1

1

1

Parameter Engine

True/False

True/ !
false |

Session’s Access

decision (pcp)

ob. type,
Param. set

list

(PIP)

Policy
permissions

Access control layer Verifiers Map

Fig. 3.
ture

General Overview of the proposed system components and Architec-

the verifiers one by one. For finding the final outcome of
session’s access request, the system function CheckAccess is
used. This function is formally defined in Table IV. As part
of the final decision, it invokes the function ParamCheck to
evaluate the compliance of the object with the permission
parameters. It is responsible of returning the final decision
whether an app’s session is or is not allowed to perform a
given operation on a given object.

V. ADMINISTRATIVE ACTIONS FOR APP AND PERMISSION
ASSIGNMENT

The specification of a complete list of administrative
functions is out of the scope of this paper. We only
show two administrative functions assignApp(a, pr, valset) and
assignPPerm(pp,pr) due to their relation to the parameter
values as described in Section III-D. The formal specification
of these two administrative functions is shown in Table V.
The function assignApp(a, pr,valset) assigns an app a to a
parameterized role pr and assigns the values in valsetr to
parameters in pr. The values in valset propagates automatically
to the corresponding permission parameters in every param-
eterized permission pp associated with pr. A parameterized
permission pp can be assigned to a role parameterized pr via
the assignPPerm(pp, pr) function.

VI. FRAMEWORK ARCHITECTURE AND PARAMETER
ENGINE COMPONENTS

In this section, we show how ParaSDN framework is de-
signed to integrate role parameters in the decision process, and

104

then we elaborate on how it works by presenting its operational
scenario.

A. ParaSDN Framework Architecture

As shown in Fig. 3, ParaSDN consists of four main
components: (1) Policy Enforcement Point (PEP), (2) Policy
Decision Point (PDP), (3) Policy Information Point (PIP),
and (4) Parameter Engine. The General functionality of the
Parameter Engine itself is distributed among multiple com-
ponents, namely, Parameter Check Point (PCP), Verifiers
Retrieval Point (VRP), and multiple Parameter Verification
Points (PVPs). These components function together to provide
parameter evaluation essential for generating an access control
decision fundamental for security policy enforcement.

When an app’s session submits an access request, the
authorization flow involves intercepting the session’s access
request by the PEP, passing the request to the PDP, querying
the PIP to get the parameterized permissions available for the
session, and finally calling the Parameter Engine for parameter
verification. It is the PDP’s decision to involve the Parameter
Engine in the authorization process or not. If the ordinary per-
mission in the parametrized permission doesn’t match with the
sessions request, the PDP denies access, otherwise the request
is passed to the Parameter Engine for further evaluation.

B. ParaSDN Parameter Engine

The first component of the Parameter Engine is the PCP. It
represents a central point in the Policy engine. It is responsible
of receiving the object and the permission parameters and
verifying if the object can be accessed based on the provided
parameters’ values. In order to do this, the PCP must check
if the requested object complies with the requirements of
each and every parameter associated with the permission.
This is done by invoking candidate verifiers each represents a
parameter verification point (PVPs).

Each PVP is a boolean expression designed by the security
administrator to verify if an object satisfies the requirement
of the parameter. In other words, each PVP receives an object
and a parameter and evaluates the session’s right to access
the object based on the parameter value. If any PVP returns
FALSE, which means that the requirements of that parameter
is not satisfied, the PCP stops the whole parameter verification
process and returns false to the PDP. On the other hand, the
PCP will return true if and only if the object satisfies all
the perimeter requirements, i.e., all PVPs return TRUE. The
PDP logic relies on this result to allow or deny access to the
requested object.

Before the PCP calls any PVP, it need to specify the subset
of PVPs need to be invoked. We design the VRP as responsible

TABLE V

FORMAL SPECIFICATION OF ASSIGNAPP(A, PR, VALSET) AND ASSIGNPPERM(PP, PR) ADMINISTRATIVE FUNCTIONS.

Authorization
Condition

Function Update

assignPPerm(pp, pp € PPRMS A pr € PPA’ = PPA [{(pp. pr)}

AX = AA U {(a pn)

pr) PROLES A (pp, pr) ¢
PPA

assignApp(a, pr, a € APPS A pr € /[Assign values to role parameters.

valset) PROLES A For each pr_pvpair; € pr.PVPAIRS, v; € valset, | < i < —pr.PVPAIRS— do
valset € VAL A(a, pr) pr_pvpair;.val = v;
¢ AA /[Pass parameter values from pr to its member parameterized permissions.

For each pp € PPRMS : (pp, pr) € PPA do
For each pr_pvpair; € pr.PVPAIRS, pp_pvpair; € pp.PVPAIRS, 1 < i < —pr.PVPAIRS— do
pp_pvpair;.val = pr_pvpair;.val

TABLE VI
EXAMPLES FOR FLOW-DRIVEN PARAMETERS FOR SDN.

Parameter

Description \

tep_sre, tep_dst
udp_src, udp_dst
vlan_id

ip_proto

ipv4_src, ipv4_dst
ipv4_src_mask,
ipv4_dst_mask

TCP source/distination port

UDP source/distination port

VLAN id

IP protocol

IPv4 source/distination address
IPv4 source/distination subnet mask

of identifying these PVPs and submitting them to the PCP. The
VRP does this by referring to the VerifiersMap which maps
pairs of object type and parameter to their applicable PVP.

c

VII. PARAMETER CATEGORIES FOR SDN

We identify four categories of parameters that can be used
with parameterized roles and permissions for SDN environ-
ment.

1. Topology-specific parameters: parameters to iden-
tify subsets of network switches, links, or ports. For ex-
ample, the set-valued parameter switch_id with a value
of 00:00:00:00:00:00:00:01 assigned to a role Topology-
Visualizer restricts role holders from accessing other switches.

2. Flow-driven parameters: represent parameters to iden-
tify flow rules. They can be supplied to roles (e.g., ‘Flow
Mod’) that authorize access to objects of type FLOW-RULE.
For example, parameter tcp_dst assigned a value of 80 will
identify all flow rules that manipulate traffic destined to an
HTTP server. A parameter ipv4_dst_mask assigned a value of
192.168.5.0/24 identifies flow rules targeting this subnet. i.e.,
targeting IP addresses in the range 192.168.5.0 - 192.168.5.255
that has subnet mask of 255.255.255.0. Table VI shows
examples of Flow-driven parameters.

3. Application-specific parameter: This parameter repre-
sents an app_id. It is supplied to roles to identify particular
app that will operate using this role. For example, assume
the parameter app_id is supplied to role ‘Pool Manager’ and
app_id is assigned the value "Load Balancer” (assuming ’Load
Balancer” is an app ID for a load balancer app), this means

105

that this role can operate only by “"Load Balancer” app. Every
time a request is submitted by a session using this role, a
verifier function VApp_id should verify that session_app(s)
= app_id(‘Pool Manager’), i.e., session_app(s) = “Load Bal-
ancer”. Assuming this session is compromised by an app
MalApp, this makes session_app(s) = MalApp. As a result,
any request using this session will not be granted because the
verifier VApp_id will fail since the check session_app(s) =
app_id(‘Pool-Manager’) will return false because the parame-
ter value ‘Pool Manager’ is attached as the parameter value in
the parameterized role. This requires sending the session id as
parameter to the verifier function in order to use session_app(s)
in the evaluation process which is already depicted in the
formal model in Table I.

4. Organization-specific parameters: They represent pa-
rameters pertaining to internal organizational structure such
as divisions and departments operating internally at some
level in the organization hierarchy. For example, a parameter
dept with the value of CS or CE associated with a ‘Flow
Mod’ role identifies network resources that can be accessed
by apps operating under Computer Science or Computer
Engineering departments, respectively. These resources might
include set of switches, ports and links under the authority
of specific department. The interpretation of the organization-
specific parameters and the resources associated with them is
an internal organization issue. In another example, a parameter
tenant with the value tenantl, authorizes an app to access
tenantl resources.

VIII. PROOF OF CONCEPT USE CASE

In this section we demonstrate and configure a use case
in ParaSDN. Assume in a small campus network we have the
network infrastructure as depicted in Fig. 4. The infrastructure
is divided between two departments CS and CE. Assume CS
dept independently manages two switches, Ox1 and 0x2 and
the four hosts connected to them. Host-3 runs a web server.
The CE department separately manages one switch 0x3 and
two hosts host-5 and host-6. Host-5 runs a web server. Hosts 1-
4 are assigned vlan_id=1, and hosts-5 and Host-6 are assigned
to vlan_id=2. Switches are connected to one controller. The
controller has two apps, one for each Department. ‘Data

TABLE VII
CONFIGURATION OF THE PROOF OF CONCEPT USE CASE OF SECTION VIII IN PARASDN (PART1).

1. Model Basic Sets:

APPS = {Data Usage Cap Mngr, Intrusion Prevention App}.

ROLES = {Device Handler, Bandwidth Monitoring, Flow Mod, Packet-In Handler}.
OPS = {queryDevice, getBandwidthConsumption, addFlow, readPacketInPayload}.
OBS =D U PS U FR U PIP, where D = set of all network devices, PS = set of all port statistics in all switches, FR = set of all flow rules, and PIP = set of all

packet-in messages.
OBTS = {DEVICE, PORT-STATS, FLOW-RULE, PI-PAYLOAD}.
PAR = {vlan_id, attachment_point, dept, traffic}.

Range(vlan_id) = {1, 2}. Range(attachment_point) = {Ox1:1, 0x1:2, 0x2:1, 0x2:2, 0x3:1}. Range(dept) = {CS, CE}. Range(traffic) = {web}.
parType(vlan_id) = atomic. parType(attachment_point) = set. parType(dept) = set. parType(traffic) = atomic.

PRMS = {(queryDevice, DEVICE), (getBandwidthConsumption, PORT-STATS), (addFlow, FLOW-RULE), (readPacketInPayload, PI-PAYLOAD)}.
SESSIONS = {DataUsageAnalysisSession, DataCapEnforcingSession, IntrusionPreventionSession}.

NI

. Assignment Relations:

OT = {(d, DEVICE) : d € D} {(ps, PORT-STATS) : ps € PS} |J {(fr, FLOW-RULE) : fr € FR} {J {(pip, P-PAYLOAD) : pip € PIP}}.

PPRMS = {((queryDevice, DEVICE), {(vlan_id, L)}), ((getBandwidthConsumption, PORT-STATS), {(attachment_point, L)}),

((addFlow, FLOW-RULE), {(dept, L), (traffic, L)}), ((readPacketInPayload, PI-PAYLOAD), {(attachment_point, 1)})}

PROLES = {(Device Handler, {(vlan_id, _L)}), (Bandwidth Monitoring, {(attachment_point, _L)}),

(Flow Mod, {(dept, L), (traffic, 1)}), (Packet-In Handler, {(attachment_point, L)})}

PPA = {(((queryDevice, DEVICE), {(vlan_id, L)}), (Device Handler, {(vlan_id, _L)})),

(((getBandwidthConsumption, PORT-STATS), {(attachment_point, 1)}), (Bandwidth Monitoring , {(attachment_point, L)})),

(((addFlow, FLOW-RULE), {(dept, L), (traffic, 1)}), (Flow Mod, {(dept, L), (traffic, 1)})),

(((readPacketInPayload, PI-PAYLOAD), {(attachment_point, _L)}), (Packet-In Handler, {(attachment_point, L)}))}.

AA = {(Data Usage Cap Mngr, (Device Handler, {(vlan_id, 1)})), (Data Usage Cap Mngr, (Bandwidth Monitoring, {(attachment_point, {0x1:1, 0x1:2, 0x2:1,
0x2:2})})), (Data Usage Cap Mngr, (Flow Mod, {(dept, {CS}), (traffic, web)})), (Intrusion Prevention App, (Device Handler, {(vlan_id, 2)}), (Intrusion Prevention
App, (Packet-In Handler, {(attachment_point, {0x3:1})}), (Intrusion Prevention App, (Flow Mod, {(dept, {CE}), (traffic, web)}))}.

3. Derived Functions:

assigned_pperms((Device Handler, {(vlan_id, 1)})) = {((queryDevice, DEVICE), {(vlan_id, L)})}.

assigned_pperms((Bandwidth Monitoring, {(attachment_point, L)})) = {((getBandwidthConsumption, PORT-STATS), {(attachment_point, L)})}.
assigned_pperms((Flow Mod, {(dept, L), (traffic, L)})) = {((addFlow, FLOW-RULE), {(dept, L), (traffic, L)})}.

assigned_pperms((Packet-In Handler, {(attachment_point, 1)})) = {((readPacketInPayload, PI-PAYLOAD), {(attachment_point, 1)})}.
app_sessions(Data Usage Cap Mngr) = {DataUsageAnalysisSession, DataCapEnforcingSession }.

app_sessions(Intrusion Prevention App) = {IntrusionPreventionSession }.

session_roles(DataUsageAnalysisSession) = {(Device Handler, {(vlan_id, 1)}), (Bandwidth Monitoring, {(attachment_point, {Ox1:1, 0x1:2, 0x2:1})})}.
session_roles(DataCapEnforcingSession) = {(Flow Mod, {(dept, {CS}), (traffic, web)})}.
session_roles(IntrusionPreventionSession) = {(Device Handler, {(vlan_id, 2)}), (Packet-In Handler, {(attachment_point, {0x3:1})}), (Flow Mod, {(dept, {CE}),

(traffic, web)})}.

avail_session_pperms(DataUsageAnalysisSession) = {((queryDevice, DEVICE), {(vlan_id, 1)}),

((getBandwidthConsumption, PORT-STATS), {(attachment_point, {Ox1:1, 0x1:2, 0x2:1})})}.

avail_session_pperms(DataCapEnforcingSession) = {((addFlow, FLOW-RULE), {(dept, {CS}), (traffic, web)})}.
avail_session_pperms(IntrusionPreventionSession) = {((queryDevice, DEVICE), {(vlan_id, 2)}), ((readPacketInPayload, PI-PAYLOAD), {(attachment_point,

{0x3:1})}). ((addFlow, FLOW-RULE), {(dept, {CE}), (traffic, web)})}.

4.Parameter Verification Functions:

VERIFIERS = {VDeviceVlan, VStatsAttachpoint, VRuleSwitch, VRuleTraffic, VPlnAttchpoim}

param_verifier((DEVICE, vlan_id)) = VDeviceVlan.
param_verifier((PORT-STATS, attachment_point)) = VStatsAttachpoint.
param_verifier((FLOW-RULE, dept)) = VRuleSwitch.
param_verifier((FLOW-RULE, traffic)) = VRuleTraffic.
param_verifier((PI-PAYLOAD, attachment_point)) = VPInAttchpoint.

Controller
=
=
2 ==
a— \
/ \ dept = CE
dept =CS ’ \
U \
/ \
’ \ L
vian_id =1 ’ vian_id =2

>

Host1
——

——
' vt
server CE
Host2

/1 |
web

server Cs i'

Host3

'

Host4

Fig. 4. Topology for proof of concept use case in section VIII.

106

Usage Cap Mngr’ is authorized on resources of CS dept and
‘Intrusion Prevention App’ is authorized on resources of CE
dept. The basic sets and assignment relations of the use case
configuration is shown in Table VIIL.

The app ‘Data Usage Cap Mngr’ is designed to protect
web server on host-3 from any denial-of-service. It needs
to monitor bandwidth consumption on attachment points in
the switches of CS dept. Thus, is assigned the parameter-
ized role (Bandwidth Monitoring, (attachment_point, 0x1:1,
0x1:2, 0x2:1, 0x2:2)). When this application notices high
transmission of packets destined to the web server, it inserts
flow rules to block sender’s traffic. This app is authorized to
handle web traffic only. For that reason it is assigned to to
the parameiretized role (Flow Mod, (dept, CS), (traffic, web)).
‘Data Usage Cap Mngr’ is allowed to read information about
hosts with vlan_id = 1 only. For this reason it is assigned

TABLE VIII
CONFIGURATION OF PARAMETER ENGINE FUNCTIONS FOR PROOF OF CONCEPT USE CASE OF SECTION VIII (PART 2).

A. Verifiers:
A.1. VDeviceVlan(s: SESSIONS, op: OPS, ob: OBS, pvpair : PVPAIRS){
//assume a request from app Data Usage Cap Mngr via DataUsageAnaly-
sisSession with the following:
//ob = host tagged with vlan_id=1
/lpvpair = (vlan_id, 1)
(ob.vlan_id = pvpair.val); //will return true

}
A.2. VStatsAttachpoint(s: SESSIONS, op: OPS, ob: OBS, pvpair :
PAIRS){

/lassume a request from app Data Usage Cap Mngr via DataUsageAnaly-
sisSession with the following:

/lob = 0x1:1

/lpvpair = (attachment_point, {Ox1:1, 0x1:2, 0x2:1: 0x2:2})

(ob € pvpair.val); //will return true

PV-

A.3. VRuleSwitch(s: SESSIONS, op: OPS, ob: OBS, pvpair : PVPAIRS){
//assume a request from app Data Usage Cap Mngr via DataCapEnforc-
ingSession with the following:
/lob = flow_rulesirch_id=0x2.1cp_dst=80....]
/lpvpair = (dept, {CS})
/Iswitches(CS) = {0x1, 0x2}
(3d € pvpair.val : ob.switch_id € switches(d)); //will return true

}

A.4. VRuleTraffic(s: SESSIONS, op: OPS, ob: OBS, pvpair : PVPAIRS){

with the following:

¥
As.

with the following:

¥
B. CandidateVerifiers(or: OBTS, pvpairs : 27" AIRS){

//assume a request from app Data Usage Cap Mngr via DataCapEnforcingSession

/lob = flow_rulesyirch_id=0x2.1cp_dst=80....]
/Ipvpair = (traffic, web)
(ob.tcp_dst € protocol_ports(pvpair.val)); //will return true

VPInAttchpoint(s: SESSIONS, op: OPS, ob: OBS, pvpair : PVPAIRS){
//assume a request from Intrusion Prevention App via IntrusionPreventionSession

/lob = packet-in message with source switch_id = 0x3

//and out_port = 1

/Ipvpair = (attachment_point, {0x3:1})

(attachment_point(ob.switch_id, ob.out_port) € pvpair.val); //will return true

verifiers = {};

For each p; € {dept, traffic} do
V| = param_verifier(FLOW-RULE, dept); //V;=VRuleSwitch.
verifiers := verifiers U VRuleSwitch;
V, = param_verifier(FLOW-RULE, traffic); //V,=VRuleTraffic.
verifiers := verifiers U VRuleTraffic;

return verifiers; //verifiers = {VRuleSwitch, VRuleTraffic}.

C. ParamCheck(s: SESSIONS, op: OPS, ob: OBS, pvpairs: 277475 £
//Example for flow rule insertion by DataCapEnforcingSession.

return true;

verifiers = CandidateVerifiers(type(flow_rule(syirch_id=0x2.icp_dsi=s0...1)» {(dept, {CS}), (traffic, web)}).
VRuleSwitch(DataCapEnforcingSession, addFlow, flow_rulefgyirch_id=0x2.1cp_dsi=s0,..1» (dept, {CS}));
VRuleTraffic(DataCapEnforcingSession, addFlow, flow_rulejgyirch_id=0x2.1cp_dsi=s0...1» (traffic, web));

to the parameterized role (Device Handler, (vlan_id, 1)). The
relations between theses apps and their parameterized roles
are specified in AA relation in item 2 of table VIIL.

The function of ‘Intrusion Prevention App’ is to inspect
packets destined to the web server in host-5. It inserts flow
rules to block any malicious activity destined to this server.
Because it is authorized for switch 0x3 only, the app is as-
signed the parameterized roles (Flow Mod, (dept, CE), (traffic,
web))) and (Packet-In Handler, (attachment_point, 0x3-1).

When access requests are submitted by these apps, ParaSDN
checks each access request using the CheckAccess function
described in Table IV. The Parameter Engine calls the verifiers
to verify if apps requests are legitimate based on parameter
values. Examples of verifiers are shown in item A of Table
VIII. For example, the verifier VRuleSwitch Will be called
to make sure that the flow rule is inserted in a switch under
the authority of the requesting app. If the ‘Data Usage Cap
Mngr’ app tries to insert a flow rule in switch 0x2. The
verifier VRuleSwitch will be elected as a candidate verifier
based on the object type and the parameter. It will receive
the object and the parameter (dept, CS) and verify, based on
the condition, that the flow rule will be inserted in switches
of CS department. Otherwise, a false is returned and access
will be denied. The verifiers in item A of Table VIII gives
some assumed access requests based on the use case and the
corresponding verifier’s decision. The two Apps achieve these
tasks via sessions. These sessions and their parameterized roles
are shown in item 3 of Table VII via the function session_roles.

107

IX. IMPLEMENTATION AND EVALUATION

In order to demonstrate our proof-of-concept prototype,
we developed and ran the framework in Floodlight platform
v1.2 release [15]. The Floodlight platform is deployed on a
virtual machine that has 8GB of memory and runs on Ubuntu
14.04 OS installation. We created a topology with three virtual
switches (Open vSwitch v2.3.90) connected to each other and
each switch is connected to two hosts. Switches are connected
to the controller and hosts are virtual machines that has 2GB
and run Ubuntu 14.04 OS server.

We implemented our ParaSDN authorization framework in
Floodlight platform and used hooking techniques without any
change to the code of Floodlight modules. We implemented
hooking for all operations exposed by Floodlight services to
controller apps. We used Aspect] [16], which is a seamless
aspect-oriented extension to Java. Our system intercepts all
operations before execution. When a session issues a request
the hooked API invokes the ParaSDN components for per-
forming access verification and reply back. This system can
be deployed to all other Java-based SDN controllers.

App requests are intercepted by our framework before
reaching to the SDN service. Access will be provided by
the service only after successful authorization check. During
the lifetime of the app, our access control system keeps
mediating all sessions access requests for performing security
authorizations. It can identify each session, mediate each
access request and send it for authorization check based on
ParaSDN configuration.

To evaluate the performance of ParaSDN, we created a test
app and assigned the app fifty network operations. The purpose

0.060

0.050

0.040

0.030

—_—— s e

0.020

Average Execution Time (ms)

1 roles 2roles =e=3roles -=-4roles =5 roles

0.010

—e—6roles —#=7roles -m-8roles =—9roles —A—10roles

0.000

1 2 E 4 L 6 7 8 2 10

Number of parameters

Fig. 5. Average execution time required to finish the tested operations.

is to perform a pressure test on ParaSDN by executing these
operations with different security configurations. Each security
configuration is characterized by the number of parameterized
roles assigned to the app and number of parameters associated
with each of them. We created test parameters and associated
them with parameterized roles and created corresponding test
verifiers. For each security configuration, the test is repeated
for hundred times.

In the first configuration, the fifty operations are executed
with one fixed parameterized role and varying number of test
parameters. The total authorization time is reported for these
fifty operations as shown in Fig. 5. Each subsequent test is
performed by assigning one more parameterized role to the
app and repeating the same previous test with varying number
of parameters until ten roles. The execution time for all tests
is reported as shown in Fig. 5.

The results in Fig. 5 demonstrates that the latency overhead
of ParaSDN increases linearly with the number of parameters
and the number of roles, thus ParaSDN is highly scalable even
if the number of parameters and the complexity of security
configuration grow in the future.

To compare the overhead imposed by parameters in
ParaSDN with the one without using Parameters, i.e, the
SDN-RBAC system [4], we repeated the same test on SDN-
RBAC. We computed the average times required to finish all
parameters with fixed number of roles and aligned the results
of with that of SDN-RBAC. The results are shown in Fig.
6. The overall results show that ParaSDN adds negligible
overhead to the Floodlight controller which doesn’t impact
the whole controller’s performance.

X. CONCLUSION AND FUTURE WORK

In this paper, we proposed ParaSDN, an access control
model that provides fine grained capabilities for SDN using
the concept of parameterized roles and permissions. We im-
plemented a proof of concept prototype in an SDN controller
to demonstrate the applicability and feasibility of our pro-
posed model in identifying and rejecting unauthorized access
requests submitted by controller apps. As a future work,
we plan to extend our model to suit the needs for multi-
controller environments in SDN-Enabled technologies like IoT
and Cloud infrastructures.

108

0,050
N

Looss -
3 0.040
£ 0035
= 0.030
£ 0.025
3

g oo
& 0015
()

2 0.010
S

§ 0005
Z 0.000

10

Number of roles

—+=SDN-RBAC only =m=ParaSDN

Fig. 6. Overhead imposed by parameters in ParaSDN compared to SDN-
RBAC system.

ACKNOWLEDGMENT

This work is partially supported by NSF CREST Grant
HRD-1736209 and CNS-1553696.

REFERENCES

P. Porras et al., “A security enforcement kernel for openflow networks,”
in Proceedings of the first workshop on Hot topics in software defined
networks. ACM, 2012, pp. 121-126.

P. A. Porras et al., “Securing the software defined network control layer.”
in NDSS, 2015.

Y. Tseng et al., “Controller dac: Securing sdn controller with dynamic
access control,” in Communications (ICC), 2017 IEEE International
Conference on. 1EEE, 2017, pp. 1-6.

A. Al-Alaj, R. Krishnan, and R. Sandhu, “Sdn-rbac: An access control
model for sdn controller applications,” in 2019 4th International Con-
ference on Computing, Communications and Security (ICCCS). 1EEE,
2019, pp. 1-8.

X. Wen et al., “Towards a secure controller platform for openflow
applications,” in Proceedings of the second ACM SIGCOMM workshop
on Hot topics in software defined networking. ~ACM, 2013, pp. 171—
172.

S. Scott-Hayward et al., “Operationcheckpoint: Sdn application control,”
in Network Protocols (ICNP), 2014 IEEE 22nd International Conference
on. IEEE, 2014, pp. 618-623.

J. Noh et al., “Vulnerabilities of network os and mitigation with
state-based permission system,” Security and Communication Networks,
vol. 9, no. 13, pp. 1971-1982, 2016.

H. Padekar et al., “Enabling dynamic access control for controller
applications in software-defined networks,” in Proceedings of the 21st
ACM on Symposium on Access Control Models and Technologies.
ACM, 2016, pp. 51-61.

A. Al-Alaj, R. Sandhu, and R. Krishnan, “A formal access control model
for se-floodlight controller,” in Proceedings of the ACM International
Workshop on Security in Software Defined Networks & Network Func-
tion Virtualization. ACM, 2019, pp. 1-6.

C. Yoon et al., “A security-mode for carrier-grade sdn controllers,”
in Proceedings of the 33rd Annual Computer Security Applications
Conference. ACM, 2017, pp. 461-473.

B. Ujcich et al., “Cross-app poisoning in software-defined networking,”
in Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2018, pp. 648—663.

L. Giuri and P. Iglio, “Role templates for content-based access control,”
in Proceedings of the second ACM workshop on Role-based access
control, 1997, pp. 153-159.

M. Ge and S. L. Osborn, “A design for parameterized roles,” in Research
Directions in Data and Applications Security XVIII. ~ Springer, 2004,
pp. 251-264.

A. E. Abdallah and E. J. Khayat, “A formal model for parameterized
role-based access control,” in IFIP World Computer Congress, TC 1.
Springer, 2004, pp. 233-246.

Floodlight-Project. (2020) http://www.projectfloodlight.org/.

Aspect]. (2020) Aspectj: A seamless aspect oriented extension to java.
https://www.eclipse.org/aspectj/.

[10]

[11]

[12]

[13]

[14]

[15]
[16]

