

Fragility Functions for Liquefaction-Induced Ground Failure

Mertcan Geyin, S.M.ASCE¹ and Brett W. Maurer, M.ASCE²

3

4 **Abstract:** The predicted severity of liquefaction manifested at the ground surface is a popular and
5 pragmatic proxy of damage potential for infrastructure. Towards this end, the Liquefaction
6 Potential Index (*LPI*) and similar models are commonly used, and often codified, to predict surface
7 manifestations on level ground. These predictions typically use deterministic thresholds from the
8 literature - obtained via calibration on case-history data - to classify the expected manifestation.
9 While widely adopted, such thresholds obscure the uncertainty of expected outcomes and are
10 incompatible with probabilistic frameworks. Proposed thresholds are also intimately tied to the
11 liquefaction analytics used to compute them and to the methodology used to select them, each of
12 which can conflict with forward applications, leading to erroneous predictions. Accordingly, using
13 15,223 case histories from 24 earthquakes, this study develops fragility functions that
14 probabilistically predict surficial manifestations of liquefaction using triggering and manifestation
15 models popular in practice. Deterministic workflows are easily extended by selecting appropriate
16 fragility coefficients; options are provided for six CPT-based triggering models, one CPT-
17 inversion filter, three manifestation models, and three manifestation severities. Model application
18 is demonstrated by predicting: (i) liquefaction manifestations in Christchurch, NZ, resulting from
19 an Alpine Fault earthquake, wherein a logic-tree is used to ensemble predictions from 18 models;
20 and (ii) the return period of liquefaction manifestations in the SODO district of Seattle, USA,
21 wherein predictions are compared to historical observations.

¹Graduate Research Asst., Civil & Environmental Eng, University of Washington, Seattle, WA (mgeyin@uw.edu)

²Asst. Professor, Civil & Environmental Eng, University of Washington, Seattle, WA (bwmaurer@uw.edu)

22 **Introduction**

23 Proposed herein are fragility functions for probabilistically predicting the occurrence and
24 severity of liquefaction-induced land damage on level ground. These functions are developed as
25 extensions to deterministic liquefaction triggering and manifestation models popular in practice,
26 such that users need only select fragility coefficients, presented in Tables 4 and 5, corresponding
27 to the models of choice. Following development and analysis of the fragility functions, application
28 is demonstrated via (i) a scenario earthquake simulation, and (ii) within a probabilistic seismic-
29 hazard analysis.

30 The severity of soil liquefaction manifested at the ground surface is a pragmatic proxy of
31 damage potential for many types of infrastructure (e.g., shallow foundations and lifelines). The
32 greater the severity of surface manifestation, the greater the likelihood of damage. By way of this
33 proxy, manifestation models have been proposed to link the computed factor of safety against
34 liquefaction triggering (FS_{liq}) at-depth within a profile to damage potential at the surface. Iwasaki
35 et al. (1978) proposed what may be the first manifestation model – the Liquefaction Potential Index
36 (*LPI*) – which has been used in countless studies worldwide (e.g., among many, Luna and Frost
37 2000; Rix and Romero 2001; Holzer et al. 2006; Lenz and Baise 2007; Hayati and Andrus 2008,
38 Chen et al. 2016; Boulanger et al. 2018). Other manifestation models also in current use include,
39 but are not limited to, the Liquefaction Severity Number (*LSN*) (van Ballegooij et al. 2014a) and a
40 modified version of *LPI* termed *LPI_{ISH}* (Maurer et al. 2015a).

41 Central to the typical use of these and similar models, which will be defined subsequently, are
42 proposed index thresholds for classifying the expected risk or severity of manifestation. For
43 example, Iwasaki et al. (1984) proposed that risk of manifestation is “low” at sites where $LPI \leq 5$,
44 “high” where $5 < LPI \leq 15$, and “very high” where $LPI > 15$. Some, but not all, evaluations of *LPI*

45 following more recent earthquakes (e.g., Toprak and Holzer 2003; Holzer et al. 2005; Maurer et al. 2014a) have supported the Iwasaki et al. (1984) classification thresholds. In similar fashion, 46 Tokin and Taylor (2013) proposed that manifestations should be “little to none” at sites where $LSN < 10$; “minor” where $10 < LSN < 20$; “moderate to severe” where $20 < LSN < 40$; and “major” 47 where $LSN > 40$. Thus, an LPI of 5 and an LSN of 10 to 20 may correspond to similar expected 48 outcomes. While manifestation models are widely employed in this manner – using deterministic 49 classification thresholds – it is often unappreciated that such thresholds have innate limitations. 50 Namely, they (i) are unique to the liquefaction analytics used to compute them; (ii) are tied to the 51 method used to select them, and by corollary, to the relative consequences of misprediction 52 assumed therein; and (iii) inherently conceal the probabilities of possible outcomes. These 53 limitations are elaborated as follows.

54 First, many liquefaction triggering models are available to predict FS_{liq} , an input to LPI ,
55 LPI_{ISH} , LSN , and other manifestation models. These models typically yield different FS_{liq} values
56 for the same soil profile and seismic loading, and thus different manifestation model predictions
57 (Lee et al. 2003; Maurer et al. 2015b). For example, using data from the 2010-2011 Canterbury,
58 New Zealand, earthquakes, Maurer et al. (2015b) found that the relationship between expected
59 manifestation severity and computed LPI was unique to the adopted triggering model. That is, each
60 had different optimal classification thresholds. Other procedural variants, such as differences in
61 CPT data processing, correction, or filtering (e.g., Boulanger and DeJong 2018) could
62 systematically alter FS_{liq} values, further biasing proposed thresholds.

63 Second, researchers have used different methods and justifications – often unstated or
64 nonstandard – to select classification thresholds. For example, Iwasaki et al. (1984) found that
65 among 87 study sites, 80% of sites with manifestations had $LPI > 5$ and 70% of sites without

68 manifestations had $LPI < 5$; this led to their proposal of $LPI = 5$ as a classification threshold for
69 predicting manifestations. Implicit to this, and any such threshold, is an assumed economy of
70 misprediction. Iwasaki et al. (1984) implicitly treated the costs of false positives (manifestations
71 are expected but not observed) and false negatives (manifestations are observed but not expected)
72 as similar. If Iwasaki et al. (1984) instead assumed that false negatives were significantly more
73 costly than false positives – which is true of many engineering projects – then their proposed
74 threshold would presumably be less than $LPI = 5$. In other words, the threshold would be not that
75 which minimizes the rate of mispredictions, but rather, that which minimizes the cost of
76 mispredictions. Thus, researchers assuming different misprediction economies will invariably
77 propose different classification thresholds. This presents a problem for forward use when the
78 misprediction economy implicit to a proposed threshold either is unknown or differs from that
79 desired in forward analysis.

80 Due at least partly to the combined effects of the above, proposed thresholds vary significantly
81 for the same manifestation model and what appear to be equivalent expected outcomes. For
82 example, Iwasaki et al. (1984), Toprak and Holzer (2003), Lee et al. (2003), Kang et al. (2014),
83 Papathanassiou et al. (2015), and Maurer et al. (2015b), each calibrating LPI on case-history data,
84 proposed LPI thresholds of 5, 5, 13, 14, 13.5, and 5, respectively, for binomially classifying the
85 expected occurrence and non-occurrence of surface manifestation. It follows that classification
86 thresholds proposed by one study could be far from optimal (i.e., result in erroneous predictions)
87 when applied to the methods of another. It is reasonable to assume this is true of other
88 manifestation models, such as LPI_{ISH} and LSN , though analogous suites of studies are unavailable.

89 Third, deterministic classifications mask the uncertainty of ground failure and are
90 incompatible with fully probabilistic frameworks, leading to incomplete characterizations of

91 hazard and risk. All existing liquefaction models are imperfect. As a result, and counter to how
92 classification thresholds may be interpreted, multiple outcomes are always possible at a given
93 classifier index value. For example, considering the popular threshold of $LPI = 5$ for predicting
94 manifestations, two sites with respective LPI values of 5.01 and 4.99 could be classified differently
95 (e.g., “hazardous” vs. “non-hazardous”, “damage likely” vs. “damage unlikely”, etc.) even though
96 the probability of liquefaction manifestation is identical. Moreover, because this probability is
97 unknown, many “probabilistic” studies have resigned to compute the probability that some
98 classification threshold will be exceeded – commonly $LPI = 5$ – in lieu of computing the
99 probability of some physical outcome. Various liquefaction hazard assessments in North America
100 have employed LPI in this way, computing either the probability or return period of LPI exceeding
101 a threshold value (e.g., Cramer et al. 2008, 2017, 2018; Holzer 2008; Gathro et al. 2018; Goda et
102 al. 2011). However, because the probabilistic relationship between LPI and liquefaction
103 manifestation is not well defined, the results of these assessments cannot be properly interpreted
104 in the context of hazard and risk. The probability of LPI exceeding a classification threshold could
105 be 50% at a site of interest, but what is the probability of liquefaction manifestation? This latter,
106 more meaningful probability is unknown and could be nearly any value between 0 and 100%,
107 depending on the means and methods used to select the threshold.

108 Accordingly, motivated by these uncertainties and limitations, the objective of this study is to
109 formulate fragility functions that probabilistically predict the occurrence and severity of
110 liquefaction manifestations on free-field level ground. Analyzing 15,223 case histories compiled
111 from 24 earthquakes in 9 countries, fragility functions will be conditioned on the LPI , LPI_{ISH} , and
112 LSN manifestation models. Given the observed dependence of these models on the procedures
113 used to compute their inputs, functions will be separately proposed using six CPT-based triggering

114 models, each implemented with and without CPT inversion via the Boulanger and DeJong (2018)
115 procedure. This will result in fragility functions for 36 distinct liquefaction models (i.e., 3
116 manifestation models x 6 triggering models x 2 CPT processing possibilities), allowing users to
117 select fragility coefficients consistent with the models they utilize.

118 **Data**

119 This study analyzes 15,223 case histories, as summarized in Table 1. However, since the
120 majority were compiled from three earthquakes in the Canterbury region of New Zealand, fragility
121 functions will be separately developed and compared for these and the other 21 events, henceforth
122 respectively referred to as the “Canterbury dataset” and “Global dataset.”

123 ***Canterbury Earthquake Dataset***

124 Earthquakes occurring over the last decade in the Canterbury region of New Zealand have
125 resulted in case-history data of unprecedented quantity and quality. The present study analyzes
126 data compiled from the $M_w7.1$, 4 Sept. 2010 Darfield earthquake, the $M_w6.2$, 22 Feb. 2011
127 Christchurch earthquake, and the $M_w5.7$, 14 Feb. 2016 Christchurch earthquake. This effort built
128 on a series of successive compilations (Maurer et al. 2014a, 2015c, 2019), augmenting the largest
129 by more than 50% and resulting in a total of 14,948 case histories (following exclusions discussed
130 subsequently). The case histories consist of classifications of liquefaction manifestations,
131 geotechnical and hydrological data, and ground-motion intensity measures.

132 The fragility functions to be developed herein will predict manifestations of liquefaction on
133 free-field level ground – specifically the occurrence and severity of liquefaction ejecta – rather
134 than any other metric of land damage. Sites with lateral spreading were expressly removed from
135 the dataset because the *LPI*, *LPI_{ISH}*, and *LSN* manifestation models do not fully account for the
136 factors which cause lateral spreading and thus may predict it poorly (e.g., Maurer et al. 2015b;

137 Rashidian and Gillins 2018). Observations of liquefaction ejecta were compiled by the authors and
138 classified as “none,” “minor,” “moderate,” and “severe” using criteria modified from Green et al.
139 (2014) and given in Table 2. This was accomplished using high-resolution satellite imagery and
140 reconnaissance reports available in the New Zealand Geotechnical Database (NZGD, 2019). Cases
141 for which surface manifestations could not be reliably classified are not included in the dataset. Of
142 the resulting 14,948 cases compiled from Canterbury, 65% are classified as “none” and 35% are
143 cases in which manifestations were observed and classified in accordance with Table 2.

144 CPT data was compiled from the New Zealand Geotechnical Database at sites where
145 liquefaction manifestations were classified as described above. In compiling case-histories, CPTs
146 were rejected: (1) if the depth of “pre-drill” significantly exceeded the depth to ground water; and
147 (2) if inferred from geospatial autocorrelation analysis (Anselin 1995) to have prematurely
148 terminated (e.g., due to impedance from gravel) at a depth beneath which liquefiable soil could be
149 present. Additional coverage of the CPT data and autocorrelation analyses is provided in Maurer
150 et al. (2014a, 2015b); further processing and use of the CPT data are discussed subsequently.
151 Ground water depths at CPT locations were obtained from the time-dependent regional models of
152 van Ballegooij et al. (2014b), which were derived, in part, using monitoring data from ~1000
153 piezometers. Peak Ground Accelerations (*PGAs*) were estimated via the Bradley (2013) method,
154 which has previously been used in Canterbury research (e.g., Maurer et al. 2014b; van Ballegooij
155 et al. 2015) and which geostatistically coalesces instrumentally-recorded *PGAs* with *PGAs* from
156 ground-motion prediction equations.

157 ***Global Dataset***

158 To compare fragility functions in Canterbury with regions worldwide, 274 case histories were
159 compiled from 21 global earthquakes in nine countries. These cases were obtained from the

160 existing literature, including CPT soundings, observations of liquefaction, and estimations of
161 ground water depth and *PGA*, as generally reported by original investigators. When available,
162 refinements were adopted from more recent literature. Whereas liquefaction in Canterbury was
163 intensively catalogued via reconnaissance and remote sensing, the case histories in the global
164 dataset are typically documented in less detail, often with scant information about the nature or
165 severity of manifestation. Since most global cases do not support use of the Green et al. (2014)
166 classification criteria, a binomial “Manifestation” or “No Manifestation” classification was
167 adopted instead. The implications of using two classification schemes will be discussed later. Of
168 the 274 cases compiled, 58% are “Manifestation” and 42% are “No Manifestation.” To properly
169 recognize all sources of data used to compile the global dataset, data and references are provided
170 in Table S1 (electronic supplement) for each case history. In this regard, the data assemblages of
171 Moss (2003) and Boulanger and Idriss (2014) greatly assisted the present effort.

172 **Methodology**

173 Fragility functions will be conditioned on three liquefaction manifestation models, each
174 computed using six CPT-based liquefaction triggering models, implemented with and without CPT
175 inverse filtering. These models, and the symbology henceforth used to identify them, are
176 summarized in Table 3. The methodologies underlying the CPT processing, liquefaction modeling,
177 and fragility function development are detailed as follows. In addition, all calculations performed
178 herein can be carried out via the open-source software program *Horizon* (Geyin and Maurer, 2020).

179 ***CPT Processing Methodology***

180 The CPT offers advantages among in-situ tests used to predict liquefaction (NRC 2016). Yet,
181 as a penetration test, the CPT is still potentially limited by the volume of soil mobilized around the
182 cone, which acts as a physical low-pass filter on the true soil stratigraphy. This filter removes

183 information from the high spatial frequencies, such as the data defining a thin soil stratum or the
184 interface between two disparate soils. These smoothing effects, which are commonly referred to
185 as “thin layer” and “transition” effects, have long been recognized and studied (e.g., Treadwell
186 1976; Lunne et al. 1997; Ahmadi and Robertson 2005; Robertson 2011; van der Linden 2016).
187 While chart-based methods exist for manually correcting these effects on CPT data, Boulanger
188 and DeJong (2018) proposed the first programmable procedure. This methodology, referred to as
189 an “inverse filtering and interface detection” procedure, predicts the “true” CPT profile from
190 measured CPT values. Since these measured values reflect a filtered view of reality, their
191 correction would improve subsurface characterization. As a demonstration of the methodology,
192 CPT data is shown in Fig. 1, both with and without correction.

193 While the performance of Boulanger and DeJong’s (2018) procedure has not yet been
194 evaluated in the literature, its use can change a site’s perceived liquefaction hazard, with the
195 direction and magnitude of change dependent on numerous factors. Considering this potential
196 influence, and that the Boulanger and DeJong (2018) procedure could soon become popular, both
197 measured and “true” CPT data will be used to develop fragility functions, thereby providing users
198 with the same option. While the reader is referred to Boulanger and DeJong (2018) for complete
199 details, the procedure’s “baseline” parameters were used to compute “true” CPT data. This was
200 the case both for the methods which invert tip resistance and sleeve friction, and that which detects
201 and corrects stratigraphic interfaces. These defaults can conceivably be calibrated via site-specific
202 study (e.g., from borings adjacent to a CPT), but the information compiled for this study either
203 was insufficient to attempt calibration or provided insufficient statistical support to justify it.
204 However, the sensitivity of results to these parameters will be investigated and discussed later in

205 the paper. As part of the processing methodology, CPT tip- and sleeve-measurements were aligned
206 using cross-correlation (Buck et al. 2002), both for measured and “true” CPT data.

207 ***Liquefaction Triggering and Manifestation Model Methodology***

208 Six triggering models, as summarized in Table 3, were used to compute the factor-of-safety
209 against liquefaction (FS_{liq}) vs. depth for each CPT. While the reader is referred to these
210 publications for complete details, two nuances pertinent to this study are as follows. First, prior to
211 using any of the six models, liquefaction susceptibility was inferred using the CPT soil-behavior-
212 type index (I_c) (Robertson and Wride 1998), such that soils with $I_c > 2.50$ were assumed not
213 susceptible. This criterion was developed specifically for the Canterbury dataset using lab and field
214 test data (Maurer et al. 2019). However, because an I_c threshold of 2.50 is within the range of
215 general, commonly used values (e.g., 2.4-2.6) (Youd et al. 2001), this criterion is also adopted in
216 analyses of the global dataset. Ultimately, the results of this study were insensitive to this decision.
217 Second, for liquefaction-susceptible soils, the IB08, BI14, and Gea19 models compute liquefaction
218 resistance as a function of fines-content (FC). Accordingly, FC was estimated for the Canterbury
219 dataset using a Canterbury-specific $I_c - FC$ correlation (Maurer et al. 2019), and for the global
220 dataset using a global $I_c - FC$ correlation (Boulanger and Idriss 2014), with the latter estimating
221 FC to be ~10% less for a given I_c .

222 Next, the results from triggering analysis were input to the LPI , LSN , and LPI_{ISH} manifestation
223 models, which have been given other general names in the literature, including liquefaction hazard
224 frameworks, vulnerability parameters, and damage indices. Nomenclature aside, these models
225 have the same basic objective - to characterize the system-response of a liquefiable soil profile,
226 thereby linking seismic demand to ground failure.

227 The Liquefaction Potential Index (LPI) is defined as (Iwasaki et al. 1978):

228
$$LPI = \int_0^{20m} F(FS_{liq}) \cdot w(z) dz \quad (1)$$

229 where $F(FS_{liq})$ and $w(z)$ are functions that weight the respective influences of FS_{liq} and depth, z ,
 230 on surface manifestation. Specifically, $F(FS_{liq}) = 1 - FS_{liq}$ for $FS_{liq} \leq 1$ and $F(FS_{liq}) = 0$ otherwise;
 231 $w(z) = 10 - 0.5z$. LPI thus assumes that surface manifestation depends on the thickness of all
 232 liquefied strata in a profile's upper 20 m, their proximity to the ground surface, and the amount by
 233 which FS_{liq} in each stratum is less than 1.0. Given this definition, LPI can range from zero to 100.

234 A modified LPI was proposed by Maurer et al. (2015a) and inspired by Ishihara (1985), who
 235 proposed limit-state curves for predicting manifestations as a function of the "crust" thickness
 236 (H_l), among other factors. Using these curves, Maurer et al. (2015a) modified LPI to include the
 237 observed influence of H_l . Given its provenance, the result was termed LPI_{ISH} and is defined by:

238
$$LPI_{ISH} = \int_{H_l}^{20m} F(FS_{liq}) \cdot w(z) dz \quad (2a)$$

239 where

240
$$F(FS_{liq}) = \begin{cases} 1 - FS_{liq} & \text{if } FS_{liq} \leq 1 \cap H_l \cdot m(FS_{liq}) \leq 3 \\ 0 & \text{otherwise} \end{cases} \quad (2b)$$

241
$$m(FS_{liq}) = \exp\left(\frac{5}{25.56(1-FS_{liq})}\right) - 1 \quad (2c)$$

242 In Eq. (2a), $F(FS_{liq})$ and $w(z)$ have the same objective as in LPI , but are functionally different, such
 243 that $F(FS_{liq})$ accounts for the crust thickness through parameter H_l and $w(z)$ is defined by $w(z) =$
 244 $25.56 \cdot z^{-1}$. Maurer et al. (2015a) recommended a minimum H_l of 0.4 m, even if liquefiable soils
 245 are present at shallower depths. Provided this constraint, LPI_{ISH} can range from zero to 100.

246 The Liquefaction Severity Number (LSN) is adapted from methods for estimating post-
 247 liquefaction volumetric strain (e.g., to predict ground settlement), modified to include a power-
 248 law depth weighting function (van Ballegooij et al. 2014a):

249
$$LSN = \int_0^{20m} \varepsilon_v \cdot w(z) dz \quad (3)$$

250 where ε_v is volumetric strain (%) and $w(z) = 10 \cdot z^{-1}$. While there are many methods to estimate ε_v ,
 251 (e.g., Geyin and Maurer 2019), van Ballegooij et al. (2014a) used that of Zhang et al. (2002), which
 252 we also adopt. *LSN* values can surpass 100 if liquefiable soils are near the surface, but typically
 253 are between zero and 100. These values are not quantities of predicted settlement, but rather, are
 254 index values á la *LPI* and *LPI_{ISH}* that correlate to the probability of surface manifestation.

255 ***Fragility Function Methodology***

256 The probability of surface manifestations reaching or exceeding a defined manifestation
 257 severity (MS_i), given a computed liquefaction manifestation model (*LMM*) value, is herein denoted
 258 $F_{MS_i}(LMM)$, where i corresponds to the severity of manifestation (e.g., 1 = minor, 2 = moderate,
 259 etc.). Adopting the lognormal cumulative distribution function, as is common for fragility
 260 functions (e.g., Bradley 2010; Kwak et al. 2016), and which best fit the data relative to other
 261 distributions (e.g., beta, chi-squared), $F_{MS_i}(LMM)$ is defined by:

$$262 \quad F_{MS_i}(LMM) = \Phi \left(\frac{\ln(LMM) - \ln(\theta)}{\beta} \right) \quad (4)$$

263 where Φ is the Gaussian cumulative distribution function and θ and β are the distribution's median
 264 and logarithmic standard deviation, respectively. In this context, θ is the value of the *LMM* (i.e.,
 265 *LPI*, *LPI_{ISH}*, or *LSN*) corresponding to a 50% probability of exceeding a given MS_i .

266 Several methods exist for fitting fragility functions to empirical data (e.g., Baker 2015; Porter
 267 2019). These include: (1) maximum likelihood estimation; (2) logistic regression; or (3) as utilized
 268 in this work, minimizing the squared error term, $\varepsilon^2(\theta, \beta)$, defined as (Porter 2019):

$$269 \quad \varepsilon^2(\theta, \beta) = \sum_{j=1}^m n_j \cdot \left(F_{MS_i} - \frac{f_j}{n_j} \right) \quad (5)$$

270 where m is the number of bins into which similar LMM values are grouped; j is the bin index; and
271 n_j is the total number of cases in each bin, of which f_j are cases for which observed manifestations
272 reached or exceeded a given MS_i . While the adopted approach is attractive considering the large
273 number of compiled case histories (Porter 2019), fragility functions were found to be insensitive
274 to this choice (i.e., very similar model parameters were obtained using each of the methods above).
275 To investigate the uncertainty of fragility functions due to finite case-history data, non-parametric
276 bootstrap sampling (e.g., Diaconis and Efron 1983) was used to generate 10,000 realizations of
277 both the Canterbury and global datasets, with subsamples (i.e., realizations) randomly selected and
278 equal in size to that of the respective, original datasets. By fitting a fragility function to each
279 realization, distributions of possible function parameters are produced, thus quantifying finite-
280 sample uncertainty. All else being equal, this uncertainty should diminish as more case history
281 data is compiled and analyzed. For this study, the 16th, 50th, and 84th percentile fragility-functions
282 will be reported and discussed, though only the 50th percentile (or median) functions will be of
283 interest to most users.

284 **Results and Discussion**

285 Analyzing 15,223 liquefaction case histories, empirical fragility functions conditioned on LPI ,
286 LPI_{ISH} , and LSN were developed, each separately formulated using six triggering models,
287 implemented with and without CPT inverse filtering. All functions are defined by Eq. (4), such
288 that users can easily select fragility coefficients consistent with the analytics of their choosing. In
289 this regard, θ and β values for functions developed using the measured and “true” CPT data (i.e.,
290 inverse filtered) are presented in Tables 4 and 5, respectively. As discussed, the Canterbury and
291 global datasets deviate in the classification of manifestations. As a result, analyses of the global
292 dataset result in one function for “any manifestation”, whereas analyses of the Canterbury dataset

293 result in three functions for “minor,” “moderate,” and “severe manifestations.” In total, 144
294 functions are defined in Tables 4 and 5, from which select results will be plotted and discussed.

295 As demonstrated in Fig. 2a, the functions relate the probability of reaching or exceeding a
296 defined manifestation severity (MS_i) to a computed LMM value; in this case, BI14-LPI using
297 measured CPT data from Canterbury. As an example, the probabilities of manifestations being *at*
298 *least* minor, moderate, and severe at $LPI = 5$ are approximately 47%, 16%, and 1%, respectively,
299 per the median functions. Three observations from Fig. 2a, generally true of all $LMMs$, are: (1)
300 BI14-LPI is more effective at predicting the presence of *some* manifestation than it is at
301 distinguishing manifestation severity, as evidenced by the flatter functions as MS_i increases; (2)
302 finite-sample uncertainty increases as MS_i increases, as evidenced by the dispersion of bootstrap
303 simulations; and (3) uncertainty also increases as LPI increases, principally due to less data at very
304 large LPI . Whereas uncertainties in the functions for minor manifestations are relatively
305 inconsequential with respect to computed hazard and risk, those in the functions for severe
306 manifestations should potentially be considered, especially at large LPI . With simple arithmetic,
307 the fragility functions can also assess the probability that manifestations will be *in* a severity class
308 (i.e., $F_{MS_i} - F_{MS_{i+1}}$). This is demonstrated in Fig. 2b using the functions from Fig. 2a; for clarity,
309 only median functions are shown. Again using $LPI = 5$ as an example, the probabilities of
310 manifestations being none, minor, moderate, and severe are 53%, 31%, 15%, and 1%, respectively.

311 In Fig 3., median functions resulting from Canterbury (and shown in Fig. 2a) are compared
312 to results from the Global dataset, for which bootstrap simulations are also plotted. All functions
313 shown are based on BI14-LPI and measured CPT data (i.e., without inverse filtering). It can be
314 seen in Fig. 3 that the global function for “any manifestation” has a lesser probability, on average,
315 than the Canterbury function for “minor manifestation.” As an example, the LPI values

316 corresponding to 50% probability of exceedance, globally and in Canterbury, are respectively 5.5
317 and 7.5. One possible explanation is that historical criteria for documenting global case histories
318 as “yes” (i.e., some manifestation) tend to fall between the Green et al. (2014) criteria for “minor”
319 and “moderate” manifestations. This is plausible (e.g., given the lack of near-real-time remote
320 sensing for historic case histories) and could result in the noted discrepancy between Canterbury
321 and global results, which exists for most, but not all, of the developed functions. It can also be
322 seen in Fig. 3 that finite-sample uncertainty is relatively larger for the global dataset. This may be
323 attributable to the global data’s greater geologic, geomorphic, and seismologic diversity and/or
324 because the global field-data (e.g., CPTs, PGAs) were collected over many decades by different
325 investigators. There are also far fewer global case histories; all else being equal, greater finite-
326 sample uncertainty is thus expected. Given (i) the complications of directly comparing (e.g., via
327 hypothesis testing) the Canterbury and global functions; and (ii) the large finite-sample uncertainty
328 of the latter, we heuristically conclude that the functions resulting from the two datasets are
329 consistent. On this basis, use of the Canterbury functions elsewhere appears reasonable, but more
330 global case-history data is ultimately needed to confirm this, or to draw other conclusions.

331 Median fragility functions for *LPI*, computed using each of the six triggering models, are
332 shown for the Canterbury and global datasets in Figs. 4a and 4b, respectively. As seen in Fig. 4, the
333 relationship between expected manifestation severity and computed *LPI* is unique to the adopted
334 triggering model. Using $LPI = 5$ as an example, the probabilities of manifestations being at least
335 minor, using measured CPTs from Canterbury, are 57%, 34%, 49%, 54%, 47%, and 50% for the
336 RW98, AIJ01, MEA06, IB08, BI14, and GEA19 models, respectively. Using measured CPTs from
337 the global dataset, the probabilities of any manifestation are 44%, 29%, 37%, 41%, 38%, and 41%
338 using the same respective models. Therefore, *LPI* values tend to be highest when computed using

339 AIJ01 and lowest when computed using RW98, both globally and in Canterbury. Clearly, the
340 fragility coefficients obtained with one model should not be used in conjunction with another.

341 Selecting BI14-*LPI* as a representative example, the effects of CPT inverse-filtering on
342 fragility functions are shown for the Canterbury and global datasets in Figs. 5a and 5b,
343 respectively. In each case, the Boulanger and DeJong (2018) “baseline” parameters were used to
344 compute “true” CPT data. As inferable from Fig. 4a, inverse-filtering has the average tendency to
345 slightly reduce *LPI* values in Canterbury (notably, *LPI* also often increases). Overall, the result is
346 a shift of the formulated functions toward lesser *LPI*. At $LPI = 5$, for example, the probabilities of
347 exceeding minor, moderate, and severe manifestations increase by 4.1%, 4.3%, and 0.25%,
348 respectively, due to inverse filtering. This shift is often less pronounced in the global functions for
349 predicting any manifestation, ranging from 0.7% for BI14-*LPI* (as shown in Fig. 4b) to 6.43% for
350 AIJ01-*LPI*. While some variation exists, these trends generally also apply to all functions based
351 on LPI_{ISH} and LSN . While more rigorous analysis of the inverse-filtering procedure is ongoing, it
352 can be inferred from Fig. 4 (and β values in Table 4 vs. 5) that the procedure does not significantly
353 alter model efficacy (i.e., the ability to segregate sites with and without manifestations), either for
354 better or for worse. A limited parametric study was also performed by varying an influential
355 parameter in the procedure: $z'_{50,ref}$, which controls the “aggression” of the inversion, such that
356 changes to CPT data increase as $z'_{50,ref}$ increases. Specifically, the “baseline” $z'_{50,ref}$ value of
357 4.2 was varied from 3.4 to 5.0. While the reader is referred to Boulanger and DeJong (2018) for a
358 full explanation of $z'_{50,ref}$ (and the complete procedure), the results of this analysis are shown in
359 Fig. 5 using BI14-*LPI* and the Canterbury data. As expected, larger values of $z'_{50,ref}$ tend to further
360 diminish computed *LPI*, shifting the fragility functions in corresponding fashion. In addition, the
361 functions in Fig. 5 do not suggest marked improvement with respect to predictive performance,

362 regardless of the $z'_{50,ref}$ value. However, the intention of this study is not to recommend use or
363 disuse of the Boulanger and DeJong (2018) procedure, nor is it to intensively analyze the
364 procedure's performance. Rather, the intention is to provide users with fragility functions
365 conditioned on an array of liquefaction analytics. In this regard, the study's only recommendation
366 is to employ fragility coefficients in a manner perfectly consistent with their development. As
367 shown in Figs. 4-6, failure to do so would invariably introduce some degree of error.

368 **Demonstration**

369 Fragility-function application will be demonstrated via (i) a scenario earthquake simulation
370 in Christchurch, NZ; and (ii) within a probabilistic seismic-hazard analysis in Seattle, USA.

371 ***Scenario Earthquake Simulation: Alpine Fault, New Zealand***

372 New Zealand's 600-km long Alpine Fault (AF) represents a major seismic hazard for the
373 South Island. Believed capable of producing M_w 8 earthquakes and to have a 29% probability of
374 rupture in the next 50 years (Cochran et al. 2017), the next AF event will undoubtedly be
375 catastrophic for many. Yet, because there is no historic account of any AF earthquake (the last
376 occurred ca. 1717), the potential extent and severity of ground failure is highly uncertain.
377 Accordingly, to provide an example with utility beyond this paper, the fragility functions are first
378 applied in conjunction with simulated ground-motions (Bradley et al. 2017a) from an M_w 7.9 AF
379 scenario earthquake. Specifically, measured CPTs from Canterbury will be used to predict
380 liquefaction manifestations in the city of Christchurch and its environs. The physics-based
381 simulation of Bradley et al. (2017a), which explicitly models kinematic fault rupture, wave
382 propagation, and the 3D velocity structure of the subsurface, was obtained from the SeisFinder
383 portal (Bradley et al. 2017b). For this demonstration, predictions will be merged from the 18
384 fragility functions defined in Table 4 and based on the Canterbury dataset. This ensemble

385 approach, in which models are weighted in proportion to their predictive capabilities, is
386 conventional in seismic hazard analysis and has the advantage of avoiding large “swings” as a
387 result of changing a single adopted model. While the 18 functions could be given equal weighting
388 (i.e., 18^{-1} , or 0.055), a scheme derived from receiver-operating-characteristic (ROC) analysis
389 (Geyin et al. 2020) was adopted. Specifically, weights were assigned in proportion to the area
390 under the ROC curve – a measure of diagnostic efficiency – for each of the 18 models on which
391 fragility functions were conditioned. Taking predictive capabilities into account, the functions
392 received weights ranging from 0.049 to 0.059 (the weighting scheme is detailed in Tables S2 and
393 S3). Presented in Fig. 7 are the resulting probabilities of minor, moderate, and severe
394 manifestations. Notably, manifestations were previously shown to be overpredicted by popular
395 liquefaction analytics in areas of Southwest Christchurch during the 2010-2011 Canterbury
396 sequence (Maurer et al. 2014a). The non-trivial probabilities of moderate and severe
397 manifestations in these general areas, as loosely delineated on Fig. 7, should thus be viewed
398 skeptically. Nonetheless, the analyses do suggest at least a small probability of *some* manifestation
399 across much of the study area. These manifestations, in general, would likely have minor severity.

400 ***Return Period of Liquefaction Manifestations: Seattle, USA***

401 The return period (T_R) of liquefaction manifestations at a site of interest can be computed
402 using: (i) the fragility functions developed herein; (ii) CPT data from the site; and (iii) the PGA
403 hazard curve, which describes the mean annual frequency of PGA exceeding a given value at the
404 site’s location. Using fragility functions conditioned on LPI as an example, T_R is computed as:

$$405 \quad \lambda_{MS} = 1/T_R = \int_{LPI=0}^{\infty} F_{MS}(LPI) \cdot \left| \frac{d\lambda_{LPI}}{dLPI} \right| \cdot dLPI \quad (6)$$

406 where $F_{MS}(LPI)$ is the fragility function for a particular MS (e.g., minor, moderate, or severe) and
407 defined by Eq. (4); λ_{MS} is the mean annual exceedance frequency of the MS (the reciprocal of

408 which is T_R , in years); and $|d\lambda_{LPI}/dLPI|$ is the absolute value of the derivative of the LPI hazard
 409 curve, which describes the mean annual frequency of LPI exceeding a given value (λ_{LPI}), and
 410 which is computed from CPT data and the site-specific PGA hazard curve. Specifically, to compute
 411 a site's λ_{LPI} , the PGA hazard curve must first be deaggregated by earthquake magnitude. This
 412 requirement results from use of both PGA and magnitude as inputs for predicting liquefaction
 413 triggering (true of all six triggering models used in this study). λ_{LPI} is then computed as:

$$414 \quad \lambda_{LPI} = \sum_{j=1}^{N_{Mw}} \sum_{i=1}^{N_{PGA}} P(LPI > lpi | pga = pga_i, m = m_j) \Delta \lambda_{pgai,m_j} \quad (7)$$

415 where N_{Mw} and N_{PGA} are respectively the number of magnitude and PGA increments into which
 416 the computed seismic hazard is subdivided; $\Delta \lambda_{pgai,m_j}$ is the incremental annual-exceedance rate for
 417 intensity measure, $pgai$, and magnitude, m_j , which follows an established procedure in
 418 performance-based liquefaction modeling (Kramer and Mayfield 2007); and
 419 $P(LPI > lpi | pga = pga_i, m = m_j)$ is the binomial probability that LPI exceeds some threshold
 420 value, lpi , conditioned on PGA and M . This overall approach to computing λ_{LPI} is similar to those
 421 presented by Goda et al. (2001) and Green et al. (2020).

422 To demonstrate this process, a CPT from the South-of-Downtown (SODO) district of Seattle,
 423 USA, is analyzed. Deaggregated PGA hazard-curve data was obtained for the CPT's location
 424 (47.587130, -122.331487), which has D/E seismic site class, from the USGS (2019) Unified
 425 Hazard Tool, wherein the 2008 US National Seismic Hazard Model was adopted (Petersen et al.,
 426 2008). Using Eqs. 1 and 7, in conjunction with measured CPT data and the Boulanger and Idriss
 427 (2014) triggering model, the LPI hazard curve was computed and is shown in Fig. 8. This figure,
 428 which follows an approach analogous to those demonstrated by Goda et al. (2001) and Green et
 429 al. (2020) shows the expected annual rates at which different LPI values will be exceeded. Lastly,
 430 using this LPI hazard curve within Eq. 6, and computing $F_{MS}(LPI)$ with appropriate coefficients

431 from Table 4, the computed return periods of minor, moderate, and severe liquefaction
432 manifestations are 60, 127, and 709 years, respectively. Thus, and assuming a Poisson process, the
433 probabilities of minor, moderate, and severe manifestations occurring at least once in the next 100
434 years are 81%, 54%, and 13%, respectively.

435 Repeating this process for 43 CPTs from the Washington State Department of Natural
436 Resources (2019), the return period of minor manifestations is mapped in Fig. 9 for a 3 km² area
437 of SODO. In the context of hazard mapping, planning, and policy, this information is arguably of
438 much greater value than that derived from “probabilistic” analyses or maps focusing on a
439 classification threshold, the shortcomings of which were previously discussed. Historically,
440 manifestations were observed in the Fig. 9 study area – particularly that with lowest computed
441 return period – following earthquakes in 1949, 1965, and 2001 (Chleborad and Schuster 1990;
442 Bray et al. 2001). These manifestations were generally “minor” per the Green et al. (2014) criteria.
443 Assuming a Poisson process, and adopting (i) the computed return period of 60 years (see above);
444 and (ii) a 170-year exposure window beginning 1850 (ca. Seattle’s founding), the probability of
445 three observations is 22% (the only quantity more likely is two, having 23% probability). With
446 respect to the computed return period for severe manifestations (i.e., ~700 years), paleoliquefaction
447 from the nearby Duwamish River (Davis et al. 2019) suggests that “severe” manifestations have
448 occurred at least once, and possibly twice, during the last 1200 years. Assuming a Poisson process,
449 it could similarly be shown that these observations are consonant with the computed return period.
450 While discrepancies between observed and predicted return periods would not necessarily discredit
451 the latter, their close agreement nonetheless gives credence to the developed functions and results.

452 **Conclusions**

453 The severity of liquefaction manifested at the ground surface is a pragmatic proxy of damage
454 potential for infrastructure, making it well-suited for hazard mapping, planning, policy, and
455 preliminary site-assessment. Towards this end, empirical fragility functions were formulated to
456 predict the probability of liquefaction manifestations on free-field level ground. These functions
457 are extensions to popular deterministic liquefaction models, such that users need only select
458 fragility coefficients from Table 4 or 5; options were provided for six CPT-based triggering
459 models, one CPT-inversion filter, and three manifestation models. Fragility functions separately
460 developed from case histories globally and in Canterbury were found to be heuristically consistent.
461 This lends permissibility to the use of Canterbury functions elsewhere, which would allow for
462 manifestation severity to be predicted in higher resolution when desirable, yet additional global
463 case-history data is ultimately needed to confirm this, or to draw other conclusions.

464 While the proposed functions have a variety of uses, they are not intended to predict lateral
465 spreading, which is a distinct phenomenon influenced by factors not considered in this study, nor
466 can the functions explicitly predict damage to specific infrastructure assets. In this regard,
467 liquefaction could trigger at-depth and damage infrastructure without otherwise manifesting at the
468 surface, or could manifest at the surface without causing asset damage. Asset-specific assessments
469 of liquefaction potential and consequence are thus judicious. Moreover, these functions do not
470 replace the need for improved analytics that more effectively predict the triggering and
471 manifestation of liquefaction. As evident from all fragility functions developed herein, the models
472 on which these functions are conditioned have significant potential for improvement. As one
473 example, interbedded low-permeability soils may complicate prediction of a soil profile's
474 cumulative response by affecting the onset of liquefaction triggering and/or the morphology of
475 manifestation (e.g., Fiegel and Kutter 1994; Brennan and Madabhushi 2005; Özener, et al. 2008).

476 These affects are not considered by the models utilized herein, which may thus perform less
477 efficiently on profiles with complex stratigraphy (e.g., Juang et al., 2005; Maurer et al. 2015c; Yost
478 et al. 2019; Cubrinovski et al. 2019).

479 Moreover, the results of this study are tied to the data analyzed, which in effect is the present
480 sum of CPT case histories. The applicability of these results to other case-history data – particularly
481 that with different parameter space (e.g., soils with atypical composition, mineralogy, age, etc.) –
482 or to other models and procedures, is unknown. In addition, the presented findings should be
483 considered in the context of model regionality and possible bias. Ultimately, additional data will
484 confirm or update the fragility functions developed herein.

485 **Data Availability**

486 Some or all data, models, or code generated during the study are available from the
487 corresponding author, including Tables 4 and 5 as well as all data associated with the Canterbury
488 case-history dataset. Tables S1-S3 are available online in the ASCE library (www.ascelibrary.org)
489 and was compiled from data that may be available in full or part from the Next-Generation
490 Liquefaction Project (Brandenberg et al. 2020). In addition, all calculations demonstrated herein,
491 including CPT processing, may be performed using *Horizon* (Geyin and Maurer, 2020), a freely
492 available open-source program developed by the authors.

493 **Acknowledgements**

494 The presented study is based upon work supported by the National Science Foundation (NSF),
495 US Geological Survey (USGS), and Pacific Earthquake Engineering Research Center (PEER)
496 under Grant Nos. CMMI-1751216, G18AP-00006, and 1132-NCTRBM, respectively. However,
497 any opinions, findings, and conclusions or recommendations expressed in this paper are those of
498 the authors and do not necessarily reflect the views of NSF, USGS, or PEER.

499 **References**

500 Ahmadi, M.M., and Robertson, P.K. (2005). "Thin-layer effects on the CPT q_c measurement." *Canadian*
501 *Geotechnical Journal*, 42(5), 1302-1317.

502 Anselin, L. (1995). "Local Indicators of Spatial Association - LISA." *Geograph Analysis*, 27 (2): 93–115.

503 Architectural Institute of Japan (2001). *Recommendations for design of building foundations*, 486 p.

504 Bradley, B.A. (2010). "Epistemic uncertainties in component fragility functions." *EQS*, 26(1), 41-62.

505 Baker, J.W. (2015). "Efficient analytical fragility function fitting using dynamic structural
506 analysis." *EQS*, 31(1), 579-599.

507 Bradley, B.A. (2013). "Site-specific and spatially-distributed ground motion intensity estimation in the
508 2010-2011 Christchurch earthquakes." *Soil Dynamics and Earthquake Engineering*, 48, 35-47.

509 Bradley, B.A., Bae, S.E., Polak, V., Lee, R.L., Thomson, E.M. and Tarbali, K. (2017a). "Ground motion
510 simulations of great earthquakes on the Alpine Fault: effect of hypocenter location and comparison with
511 empirical modelling." *New Zealand Journal of Geology and Geophysics*, 60(3), 188-198.

512 Bradley, B. A., Savarimuthu, S., Lagrava, D., Huang, J., Motha, J., Polak, V., & Bae, S. (2017b).
513 "SeisFinder: A web application for extraction of data from computationally-intensive earthquake
514 resilience calculations." *SCEC Annual Meeting*; <<https://quakecoresoft.canterbury.ac.nz/seisfinder/>>

515 Brandenberg, S. J., Zimmaro, P., Stewart, J. P., Kwak, D. Y., Franke, K. W., Moss, R. E., ... Kramer, S.
516 L. (2020). "Next-generation liquefaction database." *Earthquake Spectra*, Doi:
517 10.1177/8755293020902477

518 Bray, J. D., Sancio, R., Kammerer, A. M., Merry, S., Rodriguez-Marek, A., Khazai, B., Chang, S., Bastani,
519 A., Collins, B., Hausler, E., Dreger, D., Perkins, W.J., and Nykamp, M. (2001). "Some Observations of
520 the Geotechnical Aspects of the February 28, 2001, Nisqually Earthquake in Olympia, South Seattle,
521 and Tacoma, Washington." *Report sponsored by NSF, PEER Center, UCB, University of Arizona,*
522 *Washington State University, Shannon and Wilson Inc., and Leighton and Associates*.

523 Boulanger, R.W. and Idriss, I.M. (2014). "CPT and SPT based liquefaction triggering procedures." *Center*
524 *for Geotech. Modeling*, Report No. UCD/CGM-14/01, University of California, Davis.

525 Boulanger, R.W. and DeJong, J.T. (2018). "Inverse filtering procedure to correct cone penetration data for
526 thin-layer and transition effects." *Cone Penetration Testing 2018*, Hicks, Pisano, and Peuchen, eds.,
527 Delft University of Technology, The Netherlands, 25-44.

528 Boulanger, R.W., Khosravi, M., Cox, B.R., DeJong, J.T. (2018). "Liquefaction Evaluation for an
529 Interbedded Soil Deposit: St. Teresa's School, Christchurch, New Zealand." *IACGE 2018 Geotechnical
530 and Seismic Research and Practices for Sustainability*, Chongqing, China, 21- 22 October 2018.

531 Brennan, A.J., and Madabhushi, S.P. (2005). "Liquefaction and drainage in stratified soil. *Journal of
532 Geotechnical and Geoenvironmental Engineering*, 131(7), 876-885.

533 Buck, J.R., Daniel, M.M, and Singer, A.C, 2002. *Computer Explorations in Signals and Systems Using
534 MATLAB®*, 2nd Edition. Upper Saddle River, NJ: Prentice Hall.

535 Chleborad, A.F., and Schuster, R.L. (1990). "Ground failure associated with the Puget Sound region
536 earthquakes of April 13, 1949, and April 29, 1965." *USGS Open-File Report 90-687*, 140 p.

537 Chen, Q., Wang, C., and Juang, C.H. (2016). "CPT-based evaluation of liquefaction potential accounting
538 for soil spatial variability at multiple levels." *J Geotech and Geoenvirons Engineering*, 142(2), 04015077.

539 Cochran, U.A., Clark, K.J., Howarth, J.D., Biasi, G.P., Langridge, R.M., Villamor, P., Berryman, K.R., and
540 Vandergoes, M.J. (2017). "A plate boundary earthquake record from a wetland adjacent to the Alpine
541 fault in New Zealand refines hazard estimates." *Earth and Planetary Science Letters*, 464, 175-188.

542 Cramer, C. H., Rix, G. J., & Tucker, K. (2008). "Probabilistic liquefaction hazard maps for Memphis,
543 Tennessee." *Seismological Research Letters*, 79(3), 416-423.

544 Cramer, C.H., Bauer, R.A., Chung, J.W., David Rogers, J., Pierce, L., Voigt, V., Mitchell, B., Gaunt, D.,
545 Williams, R.A., Hoffman, D. and Hempen, G.L., (2017). "St. Louis area earthquake hazards mapping
546 project: Seismic and liquefaction hazard maps." *Seismological Research Letters*, 88(1), 206-223.

547 Cramer, C. H., Dhar, M. S., & Arellano, D. (2018). "Update of the Urban Seismic and Liquefaction Hazard
548 Maps for Memphis and Shelby County, Tennessee: Liquefaction Probability Curves and 2015 Hazard
549 Maps." *Seismological Research Letters*, 89(2A), 688-701.

550 Cubrinovski, M., Rhodes, A., Ntritsos, N., and van Ballegooy, S., (2019). "System response of liquefiable
551 deposits." *Soil Dynamics and Earthquake Engineering*, 124, 212-229.

552 Davis, E., Atwater, B., Crider, J., and Garrison-Laney, C. (2019). "Seattle liquefaction features along the
553 Duwamish waterway, Washington." *Seismological Society of America Annual Meeting*, Seattle, WA.

554 Diaconis, P. and Efron, B. (1983). "Computer intensive methods in statistics." *Sci. Amer.*, 248(5), 116–130.

555 Fiegel, G. L., and Kutter, B. L. (1994). "Liquefaction mechanism for layered soils." *Journal of*
556 *Geotechnical and Geoenvironmental Engineering*, 120(4), 737-755.

557 Esri. (2020). "World Street Map" [basemap]. Scale Not Given. "World Street
558 Map." https://services.arcgisonline.com/ArcGIS/rest/services/World_Street_Map/MapServer (March 25, 2020).

559

560 Geyin, M., and Maurer, B.W. (2019). "An analysis of liquefaction-induced free-field ground settlement
561 using 1,000+ case-histories: observations vs. state-of-practice predictions." *GSP* 308, 489-498.

562 Geyin, M. and Maurer, B.W. (2020). "Horizon: CPT-based liquefaction risk assessment and decision
563 software." *DesignSafe-CI*, doi: 10.17603/ds2-2fky-tm46.

564 Geyin, M. Baird, A.J., and Maurer, B.W. (2020). "Field Assessment of Liquefaction Prediction Models
565 Based on Geotechnical vs. Geospatial Data, with Lessons for Each." *Earthquake Spectra*, DOI:
566 10.1177/8755293019899951.

567 Gathro, J. D., Bwambale, B., Andrus, R. D., & Heidari, T. (2018). "Liquefaction Probability Curves for
568 Three Surficial Sand Deposits near Charleston, South Carolina." *Geotechnical Earthquake Engineering*
569 and *Soil Dynamics V: Liquefaction Triggering, Consequences, and Mitigation*, 374-383. Reston, VA.

570 Goda, K., Atkinson, G.M., Hunter, J.A., Crow, H. and Motazedian, D. (2011). "Probabilistic liquefaction
571 hazard analysis for four Canadian cities." *Bull. of the Seismological Soc. of America*, 101(1), 190-201.

572 Green, R.A., Cubrinovski, M., Cox, B., Wood, C., Wotherspoon, L., Bradley, B, and Maurer, B. (2014).
573 "Select Liquefaction Case Histories from the 2010-2011 Canterbury Earthquake Sequence." *Earthquake*
574 *Spectra*, 30(1), 131-153.

575 Green, R. A., J. J. Bommer, A. Rodriguez-Marek, B. W. Maurer, P. J. Stafford, B. Edwards, P. P. Kruiver,
576 G. De Lange, and J. Van Elk (2019). "Addressing limitations in existing 'simplified' liquefaction
577 triggering evaluation procedures: application to induced seismicity in the Groningen gas field." *Bulletin*
578 *of Earthquake Engineering* 17(8), 4539-4557.

579 Green, R.A., Bommer, J., Stafford, P.J., Maurer, B.W., Kruiver, P.P., Edwards, B., Rodriguez-Marek, A.,
580 de Lange, G., Oates, S.J., Storck, T., Omidi, P., Bourne, S.J., van Elk, J.F. (2020). "Liquefaction hazard
581 of the Groningen region of the Netherlands due to induced seismicity." *Journal of Geotechnical and*
582 *Geoenvironmental Engineering, Accepted – In Press.*

583 Hayati, H., and Andrus, R. D. (2008). "Liquefaction potential map of Charleston, South Carolina based on
584 the 1886 earthquake." *Journal of Geotechnical and Geoenvironmental Engineering*, 134(6), 815–828.

585 Holzer, T. L. (2008). "Probabilistic liquefaction hazard mapping." *Geotechnical Earthquake Engineering*
586 and *Soil Dynamics IV*, 1-32. Reston, VA: American Society of Civil Engineers.

587 Holzer, T.L., Noce, T.E., Bennett, M.J., Tinsley, J.C., III, and Rosenburg, L.I. (2005). "Liquefaction at
588 Oceano, California, during the 2003 San Simeon earthquake." *BSSA*, 95(6), 2396–2411.

589 Holzer, T. L., Bennett, M. J., Noce, T. E., Padovani, A., and Tinsley, J. C., III. (2006). "Liquefaction hazard
590 mapping with LPI in the greater Oakland, California, area." *Earthquake Spectra*, 22(3), 693–708.

591 Idriss, I.M., and Boulanger, R.W. (2008). "Soil liquefaction during earthquakes." *Monograph MNO-12*
592 2008; Earthquake Engineering Research Institute, Oakland, CA, 261 pp.

593 Ishihara, K. (1985). "Stability of natural deposits during earthquakes." *Proc., 11th International Conference*
594 *on Soil Mechanics and Foundation Engineering*, San Francisco, CA, USA, 1, 321-376.

595 Iwasaki, T, Tatsuoka, F, Tokida, K, and Yasuda, S.A. (1978). "Practical method for assessing soil
596 liquefaction potential based on case studies at various sites in Japan." *2nd Int. Conf. on Microzonation*,
597 San Francisco, USA.

598 Iwasaki, T., Arakawa, T., Tokida, K. (1984). 'Simplified procedures for assessing soil liquefaction during
599 earthquakes." *Soil Dynamics and Earthquake Engineering*, 3(1), 49-58.

600 Kramer, S.L., Mayfield, R.T. (2007). "Return Period of Soil Liquefaction." *Journal of Geotechnical and*

601 *Geoenvironmental Engineering*, 133(7): 802-813.

602 Kwak, D. Y., Stewart, J. P., Brandenberg, S. J., & Mikami, A. (2016). "Characterization of seismic levee
603 fragility using field performance data." *EQS*, 32(1), 193-215.

604 Land Information New Zealand. (2020). "Topographic Data" [basemap]. Scale Not Given. "Topographic
605 Data." <https://data.linz.govt.nz/data/category/topographic> (March 25, 2020).

606 Lenz, A.J. and Baise, L.G. (2007). "Spatial variability of liquefaction potential in regional mapping using
607 CPT and SPT data." *Soil Dynamics and Earthquake Engineering*, 27(7), 690–702.

608 Luna, R. and Frost, J.D. (2000). "Treasure Island's Spatial Liquefaction Evaluation." *GSP*, 93, 306-320.

609 Lunne, T., Robertson, P.K., and Powell, J.M. (1997). *Cone Penetration Testing in Geotechnical Practice*.
610 Blackie Academic & Professional, London, U.K.

611 Maurer, B.W., Green, R.A., Cubrinovski, M., and Bradley, B.A., (2014a). "Evaluation of the liquefaction
612 potential index for assessing liquefaction hazard in Christchurch, New Zealand." *Journal of
613 Geotechnical and Geoenvironmental Engineering*, 140(7), 04014032.

614 Maurer, B.W., Green, R.A., Cubrinovski, M., and Bradley, B.A, (2014b). "Assessment of aging correction
615 factors for liquefaction resistance at sites of recurrent liquefaction." *10th U.S. National Conference on
616 Earthquake Engineering*, July 20-26, Anchorage, USA.

617 Maurer, B.W., Green, R.A., and Taylor, O.D.S. (2015a). "Moving towards an improved index for assessing
618 liquefaction hazard: lessons from historical data." *Soils and Foundations* 55(4), 778-787.

619 Maurer, B.W., Green, R.A., Cubrinovski, M., and Bradley, B., (2015b). "Assessment of CPT-based
620 methods for liquefaction evaluation in a liquefaction potential index framework." *Géotechnique*, 65(5),
621 328-336.

622 Maurer, B.W., Green, R.A., Cubrinovski, M., and Bradley, B. A. (2015c). "Fines-content effects on
623 liquefaction hazard evaluation for infrastructure during the 2010-2011 Canterbury, New Zealand
624 earthquake sequence." *Soil Dynamics and Earthquake Engineering* 76, 58-68.

625 Maurer, B.W., Green, R.A., van Ballegooy, S., and Wotherspoon, L., (2019). "Development of region-
626 specific soil behavior type index correlations for evaluating liquefaction hazard in Christchurch, New
627 Zealand." *Soil Dynamics and Earthquake Engineering*, 117, 96-105.

628 Moss, R.E.S. (2003). "CPT-based probabilistic assessment of seismic soil liquefaction initiation." Doctor
629 of Philosophy dissertation, Univ. of California, Berkeley, CA.

630 Moss R.E.S., Seed R.B., Kayen R.E., Stewart J.P., Der Kiureghian A., Cetin K.O. (2006). "CPT-based
631 probabilistic and deterministic assessment of in situ seismic soil liquefaction potential." *Journal of*
632 *Geotechnical and Geoenvironmental Engineering*, 132(8), 1032-1051.

633 NRC (2016). "State of the art and practice in the assessment of earthquake-induced soil liquefaction and its
634 consequences." *Committee on Earthquake Induced Soil Liquefaction Assessment*. National Research
635 Council, The National Academies Press, Washington, DC.

636 NZGD (2019). "New Zealand Geotechnical Database." <<https://www.nzgd.org.nz/>>

637 Özener, P., Özaydin, K., and Berilgen, M. (2008). "Numerical and physical modeling of liquefaction
638 mechanisms in layered sands." *Geotechnical Earthquake Engineering and Soil Dynamics* IV, 1-12.

639 Petersen, M. D., Frankel, A. D., Harmsen, S. C., Mueller, C. S., Haller, K. M., Wheeler, R. L., ... & Luco,
640 N. (2008). "Documentation for the 2008 update of the United States national seismic hazard maps."
641 United States Geological Survey.

642 Porter, K. (2019). *A Beginner's Guide to Fragility, Vulnerability, and Risk*. University of Colorado Boulder,
643 119 pp., <http://spot.colorado.edu/~porterka/Porter-beginnersguide.pdf>

644 Rashidian, V., and Gillins, D.T. (2018). "Modification of the liquefaction potential index to consider the
645 topography in Christchurch, New Zealand." *Engineering Geology* 232, 68-81.

646 Rix, G.J. and Romero, S. (2001). "Liquefaction Susceptibility Mapping in Memphis/Shelby County, TN"
647 United States Geological Survey Final Technical Report, Award No. 01-HQ-AG-0019.

648 Robertson, P.K., and Wride, C.E. (1998). "Evaluating cyclic liquefaction potential using cone penetration
649 test." *Canadian Geotechnical Journal*, 35(3), 442-459.

650 Robertson, P.K. (2011). "Automated detection of CPT transition zones." *Geotechnical News*, June 2011,
651 35-38.

652 Toprak, S., and Holzer, T. (2003). "Liquefaction potential index: field assessment." *Journal of*
653 *Geotechnical and Geoenvironmental Engineering*, 129(4), 315-322.

654 Treadwell, D.D. (1976). *The influence of gravity, prestress, compressibility, and layering on soil resistance*
655 *to static penetration*. Doctor of Philosophy dissertation, Univ. of California, Berkeley, CA.

656 USGS (2019). "Unified Hazard Tool." <<https://earthquake.usgs.gov/hazards/interactive/>>

657 van der Linden, T.I., De Lange, D.A. and Korff, M. (2018). "Cone penetration testing in thinly inter-layered
658 soils." *Proceedings of the Institution of Civil Engineers-Geotechnical Engineering*, 171(3), 215-231.

659 van Ballegooy, S., Malan, P., Lacrosse, V., Jacka, M.E., Cubrinovski, M., Bray, J.D., O'Rourke, T.D.,
660 Crawford, S.A., and Cowan, H. (2014a). "Assessment of liquefaction-induced land damage for
661 residential Christchurch." *Earthquake Spectra*, 30(1), 31-55.

662 van Ballegooy, S., Cox S.C., Thurlow C., Rutter H.K., Reynolds, T., Harrington, G., Fraser, J., and Smith,
663 T. (2014b). "Median water table elevation in Christchurch and surrounding area after the 4 September
664 2010 Darfield earthquake: Version 2." *GNS Science Report 2014/18*, 2014b.

665 van Ballegooy, S., Green, R.A., Lees, J., Wentz, F., and Maurer, B.W. (2015). "Assessment of various CPT
666 based liquefaction severity index frameworks relative to the Ishihara (1985) H_1 - H_2 boundary curves."
667 *Soil Dynamics and Earthquake Engineering*, 79, 347-364.

668 Washington State Department of Natural Resources (2019). "Washington Geologic Information Portal."
669 <https://geologyportal.dnr.wa.gov/>

670 Yost, K. M., Cox, B. R., Wotherspoon, L., Boulanger, R. W., van Ballegooy, S., and Cubrinovski, M.
671 (2019). "In situ investigation of false-positive liquefaction sites in Christchurch, New Zealand: Palinurus
672 Road Case History." *Geotechnical Special Publication 308*, Meehan et al. (eds), ASCE, 436-451.

673 Zhang, G., Robertson, P.K., Brachman, R. (2002). "Estimating Liquefaction Induced Ground Settlements
674 from CPT." *Canadian Geotechnical Journal*, 39, 1168-1180.

