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Abstract: The predicted severity of liquefaction manifested at the ground surface is a popular and 4 

pragmatic proxy of damage potential for infrastructure. Towards this end, the Liquefaction 5 

Potential Index (LPI) and similar models are commonly used, and often codified, to predict surface 6 

manifestations on level ground. These predictions typically use deterministic thresholds from the 7 

literature - obtained via calibration on case-history data - to classify the expected manifestation. 8 

While widely adopted, such thresholds obscure the uncertainty of expected outcomes and are 9 

incompatible with probabilistic frameworks. Proposed thresholds are also intimately tied to the 10 

liquefaction analytics used to compute them and to the methodology used to select them, each of 11 

which can conflict with forward applications, leading to erroneous predictions. Accordingly, using 12 

15,223 case histories from 24 earthquakes, this study develops fragility functions that 13 

probabilistically predict surficial manifestations of liquefaction using triggering and manifestation 14 

models popular in practice. Deterministic workflows are easily extended by selecting appropriate 15 

fragility coefficients; options are provided for six CPT-based triggering models, one CPT-16 

inversion filter, three manifestation models, and three manifestation severities. Model application 17 

is demonstrated by predicting: (i) liquefaction manifestations in Christchurch, NZ, resulting from 18 

an Alpine Fault earthquake, wherein a logic-tree is used to ensemble predictions from 18 models; 19 

and (ii) the return period of liquefaction manifestations in the SODO district of Seattle, USA, 20 

wherein predictions are compared to historical observations.    21 
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Introduction 22 

Proposed herein are fragility functions for probabilistically predicting the occurrence and 23 

severity of liquefaction-induced land damage on level ground. These functions are developed as 24 

extensions to deterministic liquefaction triggering and manifestation models popular in practice, 25 

such that users need only select fragility coefficients, presented in Tables 4 and 5, corresponding 26 

to the models of choice. Following development and analysis of the fragility functions, application 27 

is demonstrated via (i) a scenario earthquake simulation, and (ii) within a probabilistic seismic-28 

hazard analysis.     29 

The severity of soil liquefaction manifested at the ground surface is a pragmatic proxy of 30 

damage potential for many types of infrastructure (e.g., shallow foundations and lifelines). The 31 

greater the severity of surface manifestation, the greater the likelihood of damage. By way of this 32 

proxy, manifestation models have been proposed to link the computed factor of safety against 33 

liquefaction triggering (FSliq) at-depth within a profile to damage potential at the surface. Iwasaki 34 

et al. (1978) proposed what may be the first manifestation model – the Liquefaction Potential Index 35 

(LPI) – which has been used in countless studies worldwide (e.g., among many, Luna and Frost 36 

2000; Rix and Romero 2001; Holzer et al. 2006; Lenz and Baise 2007; Hayati and Andrus 2008, 37 

Chen et al. 2016; Boulanger et al. 2018). Other manifestation models also in current use include, 38 

but are not limited to, the Liquefaction Severity Number (LSN) (van Ballegooy et al. 2014a) and a 39 

modified version of LPI termed LPIISH (Maurer et al. 2015a). 40 

Central to the typical use of these and similar models, which will be defined subsequently, are 41 

proposed index thresholds for classifying the expected risk or severity of manifestation. For 42 

example, Iwasaki et al. (1984) proposed that risk of manifestation is “low” at sites where LPI ≤ 5, 43 

“high” where 5 < LPI ≤ 15, and “very high” where LPI > 15. Some, but not all, evaluations of LPI 44 



following more recent earthquakes (e.g., Toprak and Holzer 2003; Holzer et al. 2005; Maurer et 45 

al. 2014a) have supported the Iwasaki et al. (1984) classification thresholds. In similar fashion, 46 

Tokin and Taylor (2013) proposed that manifestations should be “little to none” at sites where LSN 47 

< 10; “minor” where 10 < LSN < 20; “moderate to severe” where 20 < LSN < 40; and “major” 48 

where LSN > 40. Thus, an LPI of 5 and an LSN of 10 to 20 may correspond to similar expected 49 

outcomes. While manifestation models are widely employed in this manner – using deterministic 50 

classification thresholds - it is often unappreciated that such thresholds have innate limitations. 51 

Namely, they (i) are unique to the liquefaction analytics used to compute them; (ii) are tied to the 52 

method used to select them, and by corollary, to the relative consequences of misprediction 53 

assumed therein; and (iii) inherently conceal the probabilities of possible outcomes. These 54 

limitations are elaborated as follows. 55 

First, many liquefaction triggering models are available to predict FSliq, an input to LPI, 56 

LPIISH, LSN, and other manifestation models. These models typically yield different FSliq values 57 

for the same soil profile and seismic loading, and thus different manifestation model predictions 58 

(Lee et al. 2003; Maurer et al. 2015b). For example, using data from the 2010-2011 Canterbury, 59 

New Zealand, earthquakes, Maurer et al. (2015b) found that the relationship between expected 60 

manifestation severity and computed LPI was unique to the adopted triggering model. That is, each 61 

had different optimal classification thresholds. Other procedural variants, such as differences in 62 

CPT data processing, correction, or filtering (e.g., Boulanger and DeJong 2018) could 63 

systematically alter FSliq values, further biasing proposed thresholds.    64 

Second, researchers have used different methods and justifications – often unstated or 65 

nonstandard - to select classification thresholds. For example, Iwasaki et al. (1984) found that 66 

among 87 study sites, 80% of sites with manifestations had LPI > 5 and 70% of sites without 67 



manifestations had LPI < 5; this led to their proposal of LPI = 5 as a classification threshold for 68 

predicting manifestations. Implicit to this, and any such threshold, is an assumed economy of 69 

misprediction. Iwasaki et al. (1984) implicitly treated the costs of false positives (manifestations 70 

are expected but not observed) and false negatives (manifestations are observed but not expected) 71 

as similar. If Iwasaki et al. (1984) instead assumed that false negatives were significantly more 72 

costly than false positives – which is true of many engineering projects – then their proposed 73 

threshold would presumably be less than LPI = 5. In other words, the threshold would be not that 74 

which minimizes the rate of mispredictions, but rather, that which minimizes the cost of 75 

mispredictions. Thus, researchers assuming different misprediction economies will invariably 76 

propose different classification thresholds. This presents a problem for forward use when the 77 

misprediction economy implicit to a proposed threshold either is unknown or differs from that 78 

desired in forward analysis.  79 

Due at least partly to the combined effects of the above, proposed thresholds vary significantly 80 

for the same manifestation model and what appear to be equivalent expected outcomes. For 81 

example, Iwasaki et al. (1984), Toprak and Holzer (2003), Lee et al. (2003), Kang et al. (2014), 82 

Papathanassiou et al. (2015), and Maurer et al. (2015b), each calibrating LPI on case-history data, 83 

proposed LPI thresholds of 5, 5, 13, 14, 13.5, and 5, respectively, for binomially classifying the 84 

expected occurrence and non-occurrence of surface manifestation. It follows that classification 85 

thresholds proposed by one study could be far from optimal (i.e., result in erroneous predictions) 86 

when applied to the methods of another. It is reasonable to assume this is true of other 87 

manifestation models, such as LPIISH and LSN, though analogous suites of studies are unavailable.  88 

Third, deterministic classifications mask the uncertainty of ground failure and are 89 

incompatible with fully probabilistic frameworks, leading to incomplete characterizations of 90 



hazard and risk. All existing liquefaction models are imperfect. As a result, and counter to how 91 

classification thresholds may be interpreted, multiple outcomes are always possible at a given 92 

classifier index value. For example, considering the popular threshold of LPI = 5 for predicting 93 

manifestations, two sites with respective LPI values of 5.01 and 4.99 could be classified differently 94 

(e.g., “hazardous” vs. “non-hazardous”, “damage likely” vs. “damage unlikely”, etc.) even though 95 

the probability of liquefaction manifestation is identical. Moreover, because this probability is 96 

unknown, many “probabilistic” studies have resigned to compute the probability that some 97 

classification threshold will be exceeded – commonly LPI = 5 – in lieu of computing the 98 

probability of some physical outcome. Various liquefaction hazard assessments in North America 99 

have employed LPI in this way, computing either the probability or return period of LPI exceeding 100 

a threshold value (e.g., Cramer et al. 2008, 2017, 2018; Holzer 2008; Gathro et al. 2018; Goda et 101 

al. 2011). However, because the probabilistic relationship between LPI and liquefaction 102 

manifestation is not well defined, the results of these assessments cannot be properly interpreted 103 

in the context of hazard and risk. The probability of LPI exceeding a classification threshold could 104 

be 50% at a site of interest, but what is the probability of liquefaction manifestation? This latter, 105 

more meaningful probability is unknown and could be nearly any value between 0 and 100%, 106 

depending on the means and methods used to select the threshold. 107 

Accordingly, motivated by these uncertainties and limitations, the objective of this study is to 108 

formulate fragility functions that probabilistically predict the occurrence and severity of 109 

liquefaction manifestations on free-field level ground. Analyzing 15,223 case histories compiled 110 

from 24 earthquakes in 9 countries, fragility functions will be conditioned on the LPI, LPIISH, and 111 

LSN manifestation models. Given the observed dependence of these models on the procedures 112 

used to compute their inputs, functions will be separately proposed using six CPT-based triggering 113 



models, each implemented with and without CPT inversion via the Boulanger and DeJong (2018) 114 

procedure. This will result in fragility functions for 36 distinct liquefaction models (i.e., 3 115 

manifestation models x 6 triggering models x 2 CPT processing possibilities), allowing users to 116 

select fragility coefficients consistent with the models they utilize.  117 

Data 118 

This study analyzes 15,223 case histories, as summarized in Table 1. However, since the 119 

majority were compiled from three earthquakes in the Canterbury region of New Zealand, fragility 120 

functions will be separately developed and compared for these and the other 21 events, henceforth 121 

respectively referred to as the “Canterbury dataset” and “Global dataset.”  122 

Canterbury Earthquake Dataset 123 

Earthquakes occurring over the last decade in the Canterbury region of New Zealand have 124 

resulted in case-history data of unprecedented quantity and quality. The present study analyzes 125 

data compiled from the Mw7.1, 4 Sept. 2010 Darfield earthquake, the Mw6.2, 22 Feb. 2011 126 

Christchurch earthquake, and the Mw5.7, 14 Feb. 2016 Christchurch earthquake. This effort built 127 

on a series of successive compilations (Maurer et al. 2014a, 2015c, 2019), augmenting the largest 128 

by more than 50% and resulting in a total of 14,948 case histories (following exclusions discussed 129 

subsequently). The case histories consist of classifications of liquefaction manifestations, 130 

geotechnical and hydrological data, and ground-motion intensity measures. 131 

The fragility functions to be developed herein will predict manifestations of liquefaction on 132 

free-field level ground – specifically the occurrence and severity of liquefaction ejecta – rather 133 

than any other metric of land damage. Sites with lateral spreading were expressly removed from 134 

the dataset because the LPI, LPIISH, and LSN manifestation models do not fully account for the 135 

factors which cause lateral spreading and thus may predict it poorly (e.g., Maurer et al. 2015b; 136 



Rashidian and Gillins 2018). Observations of liquefaction ejecta were compiled by the authors and 137 

classified as “none,” “minor,” “moderate,” and “severe” using criteria modified from Green et al. 138 

(2014) and given in Table 2. This was accomplished using high-resolution satellite imagery and 139 

reconnaissance reports available in the New Zealand Geotechnical Database (NZGD, 2019). Cases 140 

for which surface manifestations could not be reliably classified are not included in the dataset. Of 141 

the resulting 14,948 cases compiled from Canterbury, 65% are classified as “none” and 35% are 142 

cases in which manifestations were observed and classified in accordance with Table 2.  143 

CPT data was compiled from the New Zealand Geotechnical Database at sites where 144 

liquefaction manifestations were classified as described above. In compiling case-histories, CPTs 145 

were rejected: (1) if the depth of “pre-drill” significantly exceeded the depth to ground water; and 146 

(2) if inferred from geospatial autocorrelation analysis (Anselin 1995) to have prematurely 147 

terminated (e.g., due to impedance from gravel) at a depth beneath which liquefiable soil could be 148 

present. Additional coverage of the CPT data and autocorrelation analyses is provided in Maurer 149 

et al. (2014a, 2015b); further processing and use of the CPT data are discussed subsequently. 150 

Ground water depths at CPT locations were obtained from the time-dependent regional models of 151 

van Ballegooy et al. (2014b), which were derived, in part, using monitoring data from ~1000 152 

piezometers. Peak Ground Accelerations (PGAs) were estimated via the Bradley (2013) method, 153 

which has previously been used in Canterbury research (e.g., Maurer et al. 2014b; van Ballegooy 154 

et al. 2015) and which geostatistically coalesces instrumentally-recorded PGAs with PGAs from 155 

ground-motion prediction equations. 156 

Global Dataset 157 

To compare fragility functions in Canterbury with regions worldwide, 274 case histories were 158 

compiled from 21 global earthquakes in nine countries. These cases were obtained from the 159 



existing literature, including CPT soundings, observations of liquefaction, and estimations of 160 

ground water depth and PGA, as generally reported by original investigators. When available, 161 

refinements were adopted from more recent literature. Whereas liquefaction in Canterbury was 162 

intensively cataloged via reconnaissance and remote sensing, the case histories in the global 163 

dataset are typically documented in less detail, often with scant information about the nature or 164 

severity of manifestation. Since most global cases do not support use of the Green et al. (2014) 165 

classification criteria, a binomial “Manifestation” or “No Manifestation” classification was 166 

adopted instead. The implications of using two classification schemes will be discussed later. Of 167 

the 274 cases compiled, 58% are “Manifestation” and 42% are “No Manifestation.” To properly 168 

recognize all sources of data used to compile the global dataset, data and references are provided 169 

in Table S1 (electronic supplement) for each case history. In this regard, the data assemblages of 170 

Moss (2003) and Boulanger and Idriss (2014) greatly assisted the present effort.   171 

Methodology 172 

Fragility functions will be conditioned on three liquefaction manifestation models, each 173 

computed using six CPT-based liquefaction triggering models, implemented with and without CPT 174 

inverse filtering. These models, and the symbology henceforth used to identify them, are 175 

summarized in Table 3. The methodologies underlying the CPT processing, liquefaction modeling, 176 

and fragility function development are detailed as follows. In addition, all calculations performed 177 

herein can be carried out via the open-source software program Horizon (Geyin and Maurer, 2020).   178 

CPT Processing Methodology 179 

The CPT offers advantages among in-situ tests used to predict liquefaction (NRC 2016). Yet, 180 

as a penetration test, the CPT is still potentially limited by the volume of soil mobilized around the 181 

cone, which acts as a physical low-pass filter on the true soil stratigraphy. This filter removes 182 



information from the high spatial frequencies, such as the data defining a thin soil stratum or the 183 

interface between two disparate soils. These smoothing effects, which are commonly referred to 184 

as “thin layer” and “transition” effects, have long been recognized and studied (e.g., Treadwell 185 

1976; Lunne et al. 1997; Ahmadi and Robertson 2005; Robertson 2011; van der Linden 2016). 186 

While chart-based methods exist for manually correcting these effects on CPT data, Boulanger 187 

and DeJong (2018) proposed the first programmable procedure. This methodology, referred to as 188 

an “inverse filtering and interface detection” procedure, predicts the “true” CPT profile from 189 

measured CPT values. Since these measured values reflect a filtered view of reality, their 190 

correction would improve subsurface characterization. As a demonstration of the methodology, 191 

CPT data is shown in Fig. 1, both with and without correction.  192 

While the performance of Boulanger and DeJong’s (2018) procedure has not yet been 193 

evaluated in the literature, its use can change a site’s perceived liquefaction hazard, with the 194 

direction and magnitude of change dependent on numerous factors. Considering this potential 195 

influence, and that the Boulanger and DeJong (2018) procedure could soon become popular, both 196 

measured and “true” CPT data will be used to develop fragility functions, thereby providing users 197 

with the same option. While the reader is referred to Boulanger and DeJong (2018) for complete 198 

details, the procedure’s “baseline” parameters were used to compute “true” CPT data. This was 199 

the case both for the methods which invert tip resistance and sleeve friction, and that which detects 200 

and corrects stratigraphic interfaces. These defaults can conceivably be calibrated via site-specific 201 

study (e.g., from borings adjacent to a CPT), but the information compiled for this study either 202 

was insufficient to attempt calibration or provided insufficient statistical support to justify it. 203 

However, the sensitivity of results to these parameters will be investigated and discussed later in 204 



the paper. As part of the processing methodology, CPT tip- and sleeve-measurements were aligned 205 

using cross-correlation (Buck et al. 2002), both for measured and “true” CPT data.  206 

Liquefaction Triggering and Manifestation Model Methodology 207 

Six triggering models, as summarized in Table 3, were used to compute the factor-of-safety 208 

against liquefaction (FSliq) vs. depth for each CPT. While the reader is referred to these 209 

publications for complete details, two nuances pertinent to this study are as follows. First, prior to 210 

using any of the six models, liquefaction susceptibility was inferred using the CPT soil-behavior-211 

type index (Ic) (Robertson and Wride 1998), such that soils with Ic > 2.50 were assumed not 212 

susceptible. This criterion was developed specifically for the Canterbury dataset using lab and field 213 

test data (Maurer et al. 2019). However, because an Ic threshold of 2.50 is within the range of 214 

general, commonly used values (e.g., 2.4-2.6) (Youd et al. 2001), this criterion is also adopted in 215 

analyses of the global dataset. Ultimately, the results of this study were insensitive to this decision. 216 

Second, for liquefaction-susceptible soils, the IB08, BI14, and Gea19 models compute liquefaction 217 

resistance as a function of fines-content (FC). Accordingly, FC was estimated for the Canterbury 218 

dataset using a Canterbury-specific Ic – FC correlation (Maurer et al. 2019), and for the global 219 

dataset using a global Ic – FC correlation (Boulanger and Idriss 2014), with the latter estimating 220 

FC to be ⁓10% less for a given Ic.  221 

Next, the results from triggering analysis were input to the LPI, LSN, and LPIISH manifestation 222 

models, which have been given other general names in the literature, including liquefaction hazard 223 

frameworks, vulnerability parameters, and damage indices. Nomenclature aside, these models 224 

have the same basic objective - to characterize the system-response of a liquefiable soil profile, 225 

thereby linking seismic demand to ground failure.   226 

The Liquefaction Potential Index (LPI) is defined as (Iwasaki et al. 1978): 227 



𝐿𝑃𝐼 =  ∫ 𝐹(𝐹𝑆𝑙𝑖𝑞) ∙ 𝑤(𝑧) d𝑧
20 𝑚

0
                                                         (1) 228 

where F(FSliq) and w(z) are functions that weight the respective influences of FSliq and depth, z, 229 

on surface manifestation. Specifically, F(FSliq) = 1 – FSliq for FSliq ≤ 1 and F(FSliq) = 0 otherwise; 230 

w(z) = 10 – 0.5𝑧. LPI thus assumes that surface manifestation depends on the thickness of all 231 

liquefied strata in a profile’s upper 20 m, their proximity to the ground surface, and the amount by 232 

which FSliq in each stratum is less than 1.0. Given this definition, LPI can range from zero to 100.  233 

A modified LPI was proposed by Maurer et al. (2015a) and inspired by Ishihara (1985), who 234 

proposed limit-state curves for predicting manifestations as a function of the “crust” thickness 235 

(H1), among other factors. Using these curves, Maurer et al. (2015a) modified LPI to include the 236 

observed influence of H1. Given its provenance, the result was termed LPIISH and is defined by: 237 

𝐿𝑃𝐼𝐼𝑆𝐻 =  ∫ 𝐹(𝐹𝑆𝑙𝑖𝑞) ∙ 𝑤(𝑧) d𝑧
20 𝑚

𝐻1
                                                   (2a) 238 

where 239 

𝐹(𝐹𝑆𝑙𝑖𝑞) = {
1 − 𝐹𝑆𝑙𝑖𝑞   𝑖𝑓 𝐹𝑆𝑙𝑖𝑞 ≤ 1 ∩  𝐻1 ∙ 𝑚(𝐹𝑆𝑙𝑖𝑞) ≤ 3

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                               (2b) 240 

𝑚(𝐹𝑆𝑙𝑖𝑞) = exp (
5

25.56(1−𝐹𝑆𝑙𝑖𝑞)
) − 1                                                  (2c) 241 

In Eq. (2a), F(FSliq) and w(z) have the same objective as in LPI, but are functionally different, such 242 

that F(FSliq) accounts for the crust thickness through parameter H1 and w(z) is defined by w(z) = 243 

25.56 ∙ z-1. Maurer et al. (2015a) recommended a minimum H1 of 0.4 m, even if liquefiable soils 244 

are present at shallower depths. Provided this constraint, LPIISH can range from zero to 100. 245 

The Liquefaction Severity Number (LSN) is adapted from methods for estimating post-246 

liquefaction volumetric strain (e.g., to predict ground settlement), modified to include a power-247 

law depth weighting function (van Ballegooy et al. 2014a): 248 

𝐿𝑆𝑁 = ∫ 𝜀𝑣  ∙ 𝑤(𝑧) d𝑧
20 𝑚

0
                                                              (3) 249 



where 𝜀𝑣 is volumetric strain (%) and w(z) = 10 ∙ z-1. While there are many methods to estimate 𝜀𝑣 250 

(e.g., Geyin and Maurer 2019), van Ballegooy et al. (2014a) used that of Zhang et al. (2002), which 251 

we also adopt. LSN values can surpass 100 if liquefiable soils are near the surface, but typically 252 

are between zero and 100. These values are not quantities of predicted settlement, but rather, are 253 

index values á la LPI and LPIISH that correlate to the probability of surface manifestation.  254 

Fragility Function Methodology 255 

The probability of surface manifestations reaching or exceeding a defined manifestation 256 

severity (MSi), given a computed liquefaction manifestation model (LMM) value, is herein denoted 257 

𝐹𝑀𝑆𝑖
(𝐿𝑀𝑀), where i corresponds to the severity of manifestation (e.g., 1 = minor, 2 = moderate, 258 

etc.). Adopting the lognormal cumulative distribution function, as is common for fragility 259 

functions (e.g., Bradley 2010; Kwak et al. 2016), and which best fit the data relative to other 260 

distributions (e.g., beta, chi-squared), 𝐹𝑀𝑆𝑖
(𝐿𝑀𝑀) is defined by: 261 

𝐹𝑀𝑆𝑖
(𝐿𝑀𝑀) = Φ (

𝑙𝑛(𝐿𝑀𝑀)−𝑙𝑛(𝜃)

𝛽
)                                               (4) 262 

where Φ is the Gaussian cumulative distribution function and θ and β are the distribution’s median 263 

and logarithmic standard deviation, respectively. In this context, θ is the value of the LMM (i.e., 264 

LPI, LPIISH, or LSN) corresponding to a 50% probability of exceeding a given MSi .   265 

Several methods exist for fitting fragility functions to empirical data (e.g., Baker 2015; Porter 266 

2019). These include: (1) maximum likelihood estimation; (2) logistic regression; or (3) as utilized 267 

in this work, minimizing the squared error term, ε2 (θ, β), defined as (Porter 2019): 268 

𝜀2(𝜃, 𝛽) = ∑ 𝑛𝑗 · (𝐹𝑀𝑆𝑖
− 

𝑓𝑗

𝑛𝑗
)𝑚

𝑗=1                                                  (5) 269 



where m is the number of bins into which similar LMM values are grouped; j is the bin index; and 270 

nj is the total number of cases in each bin, of which fj are cases for which observed manifestations 271 

reached or exceeded a given MSi. While the adopted approach is attractive considering the large 272 

number of compiled case histories (Porter 2019), fragility functions were found to be insensitive 273 

to this choice (i.e., very similar model parameters were obtained using each of the methods above). 274 

To investigate the uncertainty of fragility functions due to finite case-history data, non-parametric 275 

bootstrap sampling (e.g., Diaconis and Efron 1983) was used to generate 10,000 realizations of 276 

both the Canterbury and global datasets, with subsamples (i.e., realizations) randomly selected and 277 

equal in size to that of the respective, original datasets. By fitting a fragility function to each 278 

realization, distributions of possible function parameters are produced, thus quantifying finite-279 

sample uncertainty. All else being equal, this uncertainty should diminish as more case history 280 

data is compiled and analyzed. For this study, the 16th, 50th, and 84th percentile fragility-functions 281 

will be reported and discussed, though only the 50th percentile (or median) functions will be of 282 

interest to most users.  283 

Results and Discussion 284 

Analyzing 15,223 liquefaction case histories, empirical fragility functions conditioned on LPI, 285 

LPIISH, and LSN were developed, each separately formulated using six triggering models, 286 

implemented with and without CPT inverse filtering. All functions are defined by Eq. (4), such 287 

that users can easily select fragility coefficients consistent with the analytics of their choosing. In 288 

this regard, θ and β values for functions developed using the measured and “true” CPT data (i.e., 289 

inverse filtered) are presented in Tables 4 and 5, respectively. As discussed, the Canterbury and 290 

global datasets deviate in the classification of manifestations. As a result, analyses of the global 291 

dataset result in one function for “any manifestation”, whereas analyses of the Canterbury dataset 292 



result in three functions for “minor,” “moderate,” and “severe manifestations.” In total, 144 293 

functions are defined in Tables 4 and 5, from which select results will be plotted and discussed.  294 

As demonstrated in Fig. 2a, the functions relate the probability of reaching or exceeding a 295 

defined manifestation severity (MSi) to a computed LMM value; in this case, BI14-LPI using 296 

measured CPT data from Canterbury. As an example, the probabilities of manifestations being at 297 

least minor, moderate, and severe at LPI = 5 are approximately 47%, 16%, and 1%, respectively, 298 

per the median functions. Three observations from Fig. 2a, generally true of all LMMs, are: (1) 299 

BI14-LPI is more effective at predicting the presence of some manifestation than it is at 300 

distinguishing manifestation severity, as evidenced by the flatter functions as MSi increases; (2) 301 

finite-sample uncertainty increases as MSi increases, as evidenced by the dispersion of bootstrap 302 

simulations; and (3) uncertainty also increases as LPI increases, principally due to less data at very 303 

large LPI. Whereas uncertainties in the functions for minor manifestations are relatively 304 

inconsequential with respect to computed hazard and risk, those in the functions for severe 305 

manifestations should potentially be considered, especially at large LPI. With simple arithmetic, 306 

the fragility functions can also assess the probability that manifestations will be in a severity class 307 

(i.e., 𝐹𝑀𝑆𝑖
 - 𝐹𝑀𝑆𝑖+1

). This is demonstrated in Fig. 2b using the functions from Fig. 2a; for clarity, 308 

only median functions are shown. Again using LPI = 5 as an example, the probabilities of 309 

manifestations being none, minor, moderate, and severe are 53%, 31%, 15%, and 1%, respectively.  310 

In Fig 3., median functions resulting from Canterbury (and shown in Fig. 2a) are compared 311 

to results from the Global dataset, for which bootstrap simulations are also plotted. All functions 312 

shown are based on BI14-LPI and measured CPT data (i.e., without inverse filtering). It can be 313 

seen in Fig. 3 that the global function for “any manifestation” has a lesser probability, on average, 314 

than the Canterbury function for “minor manifestation.” As an example, the LPI values 315 



corresponding to 50% probability of exceedance, globally and in Canterbury, are respectively 5.5 316 

and 7.5. One possible explanation is that historical criteria for documenting global case histories 317 

as “yes” (i.e., some manifestation) tend to fall between the Green et al. (2014) criteria for “minor” 318 

and “moderate” manifestations. This is plausible (e.g., given the lack of near-real-time remote 319 

sensing for historic case histories) and could result in the noted discrepancy between Canterbury 320 

and global results, which exists for most, but not all, of the developed functions. In can also be 321 

seen in Fig. 3 that finite-sample uncertainty is relatively larger for the global dataset. This may be 322 

attributable to the global data’s greater geologic, geomorphic, and seismologic diversity and/or 323 

because the global field-data (e.g., CPTs, PGAs) were collected over many decades by different 324 

investigators. There are also far fewer global case histories; all else being equal, greater finite-325 

sample uncertainty is thus expected. Given (i) the complications of directly comparing (e.g., via 326 

hypothesis testing) the Canterbury and global functions; and (ii) the large finite-sample uncertainty 327 

of the latter, we heuristically conclude that the functions resulting from the two datasets are 328 

consistent. On this basis, use of the Canterbury functions elsewhere appears reasonable, but more 329 

global case-history data is ultimately needed to confirm this, or to draw other conclusions.  330 

Median fragility functions for LPI, computed using each of the six triggering models, are 331 

shown for the Canterbury and global datasets in Figs. 4a and 4b, respectively. As see in Fig. 4, the 332 

relationship between expected manifestation severity and computed LPI is unique to the adopted 333 

triggering model. Using LPI = 5 as an example, the probabilities of manifestations being at least 334 

minor, using measured CPTs from Canterbury, are 57%, 34%, 49%, 54%, 47%, and 50% for the 335 

RW98, AIJ01, MEA06, IB08, BI14, and GEA19 models, respectively. Using measured CPTs from 336 

the global dataset, the probabilities of any manifestation are 44%, 29%, 37%, 41%, 38%, and 41% 337 

using the same respective models. Therefore, LPI values tend to be highest when computed using 338 



AIJ01 and lowest when computed using RW98, both globally and in Canterbury. Clearly, the 339 

fragility coefficients obtained with one model should not be used in conjunction with another.   340 

Selecting BI14-LPI as a representative example, the effects of CPT inverse-filtering on 341 

fragility functions are shown for the Canterbury and global datasets in Figs. 5a and 5b, 342 

respectively. In each case, the Boulanger and DeJong (2018) “baseline” parameters were used to 343 

compute “true” CPT data. As inferable from Fig. 4a, inverse-filtering has the average tendency to 344 

slightly reduce LPI values in Canterbury (notably, LPI also often increases). Overall, the result is 345 

a shift of the formulated functions toward lesser LPI. At LPI = 5, for example, the probabilities of 346 

exceeding minor, moderate, and severe manifestations increase by 4.1%, 4.3%, and 0.25%, 347 

respectively, due to inverse filtering. This shift is often less pronounced in the global functions for 348 

predicting any manifestation, ranging from 0.7% for BI14-LPI (as shown in Fig. 4b) to 6.43% for 349 

AIJ01-LPI. While some variation exists, these trends generally also apply to all functions based 350 

on LPIISH and LSN. While more rigorous analysis of the inverse-filtering procedure is ongoing, it 351 

can be inferred from Fig. 4 (and β values in Table 4 vs. 5) that the procedure does not significantly 352 

alter model efficacy (i.e., the ability to segregate sites with and without manifestations), either for 353 

better or for worse. A limited parametric study was also performed by varying an influential 354 

parameter in the procedure: 𝑧′50,𝑟𝑒𝑓, which controls the “aggression” of the inversion, such that 355 

changes to CPT data increase as 𝑧′50,𝑟𝑒𝑓 increases. Specifically, the “baseline” 𝑧′50,𝑟𝑒𝑓 value of 356 

4.2 was varied from 3.4 to 5.0. While the reader is referred to Boulanger and DeJong (2018) for a 357 

full explanation of 𝑧′50,𝑟𝑒𝑓 (and the complete procedure), the results of this analysis are shown in 358 

Fig. 5 using BI14-LPI and the Canterbury data. As expected, larger values of 𝑧′50,𝑟𝑒𝑓 tend to further 359 

diminish computed LPI, shifting the fragility functions in corresponding fashion. In addition, the 360 

functions in Fig. 5 do not suggest marked improvement with respect to predictive performance, 361 



regardless of the 𝑧′50,𝑟𝑒𝑓 value. However, the intention of this study is not to recommend use or 362 

disuse of the Boulanger and DeJong (2018) procedure, nor is it to intensively analyze the 363 

procedure’s performance. Rather, the intention is to provide users with fragility functions 364 

conditioned on an array of liquefaction analytics. In this regard, the study’s only recommendation 365 

is to employ fragility coefficients in a manner perfectly consistent with their development. As 366 

shown in Figs. 4-6, failure to do so would invariably introduce some degree of error.  367 

Demonstration 368 

Fragility-function application will be demonstrated via (i) a scenario earthquake simulation 369 

in Christchurch, NZ; and (ii) within a probabilistic seismic-hazard analysis in Seattle, USA.      370 

Scenario Earthquake Simulation: Alpine Fault, New Zealand 371 

New Zealand’s 600-km long Alpine Fault (AF) represents a major seismic hazard for the 372 

South Island. Believed capable of producing Mw8 earthquakes and to have a 29% probability of 373 

rupture in the next 50 years (Cochran et al. 2017), the next AF event will undoubtedly be 374 

catastrophic for many. Yet, because there is no historic account of any AF earthquake (the last 375 

occurred ca. 1717), the potential extent and severity of ground failure is highly uncertain. 376 

Accordingly, to provide an example with utility beyond this paper, the fragility functions are first 377 

applied in conjunction with simulated ground-motions (Bradley et al. 2017a) from an Mw7.9 AF 378 

scenario earthquake. Specifically, measured CPTs from Canterbury will be used to predict 379 

liquefaction manifestations in the city of Christchurch and its environs. The physics-based 380 

simulation of Bradley et al. (2017a), which explicitly models kinematic fault rupture, wave 381 

propagation, and the 3D velocity structure of the subsurface, was obtained from the SeisFinder 382 

portal (Bradley et al. 2017b). For this demonstration, predictions will be merged from the 18 383 

fragility functions defined in Table 4 and based on the Canterbury dataset. This ensemble 384 



approach, in which models are weighted in proportion to their predictive capabilities, is 385 

conventional in seismic hazard analysis and has the advantage of avoiding large “swings” as a 386 

result of changing a single adopted model. While the 18 functions could be given equal weighting 387 

(i.e., 18-1, or 0.055), a scheme derived from receiver-operating-characteristic (ROC) analysis 388 

(Geyin et al. 2020) was adopted. Specifically, weights were assigned in proportion to the area 389 

under the ROC curve – a measure of diagnostic efficiency – for each of the 18 models on which 390 

fragility functions were conditioned. Taking predictive capabilities into account, the functions 391 

received weights ranging from 0.049 to 0.059 (the weighting scheme is detailed in Tables S2 and 392 

S3). Presented in Fig. 7 are the resulting probabilities of minor, moderate, and severe 393 

manifestations. Notably, manifestations were previously shown to be overpredicted by popular 394 

liquefaction analytics in areas of Southwest Christchurch during the 2010-2011 Canterbury 395 

sequence (Maurer et al. 2014a). The non-trivial probabilities of moderate and severe 396 

manifestations in these general areas, as loosely delineated on Fig. 7, should thus be viewed 397 

skeptically. Nonetheless, the analyses do suggest at least a small probability of some manifestation 398 

across much of the study area. These manifestations, in general, would likely have minor severity.   399 

Return Period of Liquefaction Manifestations: Seattle, USA 400 

The return period (TR) of liquefaction manifestations at a site of interest can be computed 401 

using: (i) the fragility functions developed herein; (ii) CPT data from the site; and (iii) the PGA 402 

hazard curve, which describes the mean annual frequency of PGA exceeding a given value at the 403 

site’s location. Using fragility functions conditioned on LPI as an example, TR is computed as: 404 

𝜆𝑀𝑆 = 1
𝑇⁄

𝑅
= ∫ 𝐹𝑀𝑆(𝐿𝑃𝐼) · |

𝑑𝜆𝐿𝑃𝐼

𝑑𝐿𝑃𝐼
|

∞

𝐿𝑃𝐼=0
· 𝑑𝐿𝑃𝐼                                      (6) 405 

where FMS (LPI) is the fragility function for a particular MS (e.g., minor, moderate, or severe) and 406 

defined by Eq. (4); 𝜆𝑀𝑆 is the mean annual exceedance frequency of the MS (the reciprocal of 407 



which is TR, in years); and |𝑑𝜆𝐿𝑃𝐼/𝑑𝐿𝑃𝐼| is the absolute value of the derivative of the LPI hazard 408 

curve, which describes the mean annual frequency of LPI exceeding a given value (𝜆𝐿𝑃𝐼), and 409 

which is computed from CPT data and the site-specific PGA hazard curve. Specifically, to compute 410 

a site’s 𝜆𝐿𝑃𝐼, the PGA hazard curve must first be deaggregated by earthquake magnitude. This 411 

requirement results from use of both PGA and magnitude as inputs for predicting liquefaction 412 

triggering (true of all six triggering models used in this study). 𝜆𝐿𝑃𝐼 is then computed as: 413 

𝜆𝐿𝑃𝐼 = ∑ ∑ 𝑃(𝐿𝑃𝐼 > 𝑙𝑝𝑖| 𝑝𝑔𝑎 = 𝑝𝑔𝑎𝑖, 𝑚 =  𝑚𝑗)Δ𝜆𝑝𝑔𝑎𝑖,𝑚𝑗

𝑁𝑃𝐺𝐴
𝑖=1

𝑁𝑀𝑤
𝑗=1                      (7) 414 

where NMw and NPGA are respectively the number of magnitude and PGA increments into which 415 

the computed seismic hazard is subdivided; Δλpgai,mj is the incremental annual-exceedance rate for 416 

intensity measure, pgai, and magnitude, mj, which follows an established procedure in 417 

performance-based liquefaction modeling (Kramer and Mayfield 2007); and 418 

𝑃(𝐿𝑃𝐼 > 𝑙𝑝𝑖| 𝑝𝑔𝑎 = 𝑝𝑔𝑎𝑖, 𝑚 =  𝑚𝑗) is the binomial probability that LPI exceeds some threshold 419 

value, lpi, conditioned on PGA and M. This overall approach to computing 𝜆𝐿𝑃𝐼 is similar to those 420 

presented by Goda et al. (2001) and Green et al. (2020). 421 

To demonstrate this process, a CPT from the South-of-Downtown (SODO) district of Seattle, 422 

USA, is analyzed. Deaggregated PGA hazard-curve data was obtained for the CPT’s location 423 

(47.587130, -122.331487), which has D/E seismic site class, from the USGS (2019) Unified 424 

Hazard Tool, wherein the 2008 US National Seismic Hazard Model was adopted (Petersen et al., 425 

2008). Using Eqs. 1 and 7, in conjunction with measured CPT data and the Boulanger and Idriss 426 

(2014) triggering model, the LPI hazard curve was computed and is shown in Fig. 8. This figure, 427 

which follows an approach analogous to those demonstrated by Goda et al. (2001) and Green et 428 

al. (2020) shows the expected annual rates at which different LPI values will be exceeded. Lastly, 429 

using this LPI hazard curve within Eq. 6, and computing FMS (LPI) with appropriate coefficients 430 



from Table 4, the computed return periods of minor, moderate, and severe liquefaction 431 

manifestations are 60, 127, and 709 years, respectively. Thus, and assuming a Poisson process, the 432 

probabilities of minor, moderate, and severe manifestations occurring at least once in the next 100 433 

years are 81%, 54%, and 13%, respectively.  434 

Repeating this process for 43 CPTs from the Washington State Department of Natural 435 

Resources (2019), the return period of minor manifestations is mapped in Fig. 9 for a 3 km2 area 436 

of SODO. In the context of hazard mapping, planning, and policy, this information is arguably of 437 

much greater value than that derived from “probabilistic” analyses or maps focusing on a 438 

classification threshold, the shortcomings of which were previously discussed. Historically, 439 

manifestations were observed in the Fig. 9 study area – particularly that with lowest computed 440 

return period – following earthquakes in 1949, 1965, and 2001 (Chleborad and Schuster 1990; 441 

Bray et al. 2001). These manifestations were generally “minor” per the Green et al. (2014) criteria. 442 

Assuming a Poisson process, and adopting (i) the computed return period of 60 years (see above); 443 

and (ii) a 170-year exposure window beginning 1850 (ca. Seattle’s founding), the probability of 444 

three observations is 22% (the only quantity more likely is two, having 23% probability). With 445 

respect to the computed return period for severe manifestations (i.e., ~700 years), paleoliquefaction 446 

from the nearby Duwamish River (Davis et al. 2019) suggests that “severe” manifestations have 447 

occurred at least once, and possibly twice, during the last 1200 years. Assuming a Poisson process, 448 

it could similarly be shown that these observations are consonant with the computed return period. 449 

While discrepancies between observed and predicted return periods would not necessarily discredit 450 

the latter, their close agreement nonetheless gives credence to the developed functions and results. 451 

Conclusions 452 



The severity of liquefaction manifested at the ground surface is a pragmatic proxy of damage 453 

potential for infrastructure, making it well-suited for hazard mapping, planning, policy, and 454 

preliminary site-assessment. Towards this end, empirical fragility functions were formulated to 455 

predict the probability of liquefaction manifestations on free-field level ground. These functions 456 

are extensions to popular deterministic liquefaction models, such that users need only select 457 

fragility coefficients from Table 4 or 5; options were provided for six CPT-based triggering 458 

models, one CPT-inversion filter, and three manifestation models. Fragility functions separately 459 

developed from case histories globally and in Canterbury were found to be heuristically consistent. 460 

This lends permissibility to the use of Canterbury functions elsewhere, which would allow for 461 

manifestation severity to be predicted in higher resolution when desirable, yet additional global 462 

case-history data is ultimately needed to confirm this, or to draw other conclusions.  463 

While the proposed functions have a variety of uses, they are not intended to predict lateral 464 

spreading, which is a distinct phenomenon influenced by factors not considered in this study, nor 465 

can the functions explicitly predict damage to specific infrastructure assets. In this regard, 466 

liquefaction could trigger at-depth and damage infrastructure without otherwise manifesting at the 467 

surface, or could manifest at the surface without causing asset damage. Asset-specific assessments 468 

of liquefaction potential and consequence are thus judicious. Moreover, these functions do not 469 

replace the need for improved analytics that more effectively predict the triggering and 470 

manifestation of liquefaction. As evident from all fragility functions developed herein, the models 471 

on which these functions are conditioned have significant potential for improvement. As one 472 

example, interbedded low-permeability soils may complicate prediction of a soil profile’s 473 

cumulative response by affecting the onset of liquefaction triggering and/or the morphology of 474 

manifestation (e.g., Fiegel and Kutter 1994; Brennan and Madabhushi 2005; Özener, et al. 2008). 475 



These affects are not considered by the models utilized herein, which may thus perform less 476 

efficiently on profiles with complex stratigraphy (e.g., Juang et al.,2005; Maurer et al. 2015c; Yost 477 

et al. 2019; Cubrinovski et al. 2019).  478 

Moreover, the results of this study are tied to the data analyzed, which in effect is the present 479 

sum of CPT case histories. The applicability of these results to other case-history data – particularly 480 

that with different parameter space (e.g., soils with atypical composition, minerology, age, etc.) – 481 

or to other models and procedures, is unknown. In addition, the presented findings should be 482 

considered in the context of model regionality and possible bias. Ultimately, additional data will 483 

confirm or update the fragility functions developed herein. 484 

Data Availability 485 

Some or all data, models, or code generated during the study are available from the 486 

corresponding author, including Tables 4 and 5 as well as all data associated with the Canterbury 487 

case-history dataset. Tables S1-S3 are available online in the ASCE library (www.ascelibrary.org) 488 

and was compiled from data that may be available in full or part from the Next-Generation 489 

Liquefaction Project (Brandenberg et al. 2020). In addition, all calculations demonstrated herein, 490 

including CPT processing, may be performed using Horizon (Geyin and Maurer, 2020), a freely 491 

available open-source program developed by the authors.  492 
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