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A Generic Soil Velocity Model that Accounts for Near-
Surface Conditions and Deeper Geologic Structure

Marafi, N.A.l, Grant, A.2, Maurer, B.W.3, Rateria, G.*, Eberhard. M.O.5, and
Berman, J.W.°

Near-surface soil conditions can significantly alter the amplitude and frequency content of
incoming ground motions — often with profound consequences for the built environment — and are
thus important inputs to any ground-motion prediction. Previous soil-velocity models (SVM) have
predicted shear-wave velocity profiles based on the time-averaged shear-wave velocity in the
upper 30 m (Vs30). This article presents a generic soil-velocity model that accounts both for near-
surface conditions (Vs30) and deeper geologic structure, as represented to the depth at which the
profile reaches a velocity of 1.0 km/s (Z1.0). To demonstrate the advantages of our new SVM, we
apply it to the Cascadia Region of North America, where numerous geologic basins and glaciated
landscapes give rise to a wide range of Vs3o and Z;.9 combinations. This soil velocity model yields
good estimates of site response across all site conditions, and significantly improves upon a model
calibrated using only Vsso data. In conjunction with existing models that describe the deep velocity
structure of the region (e.g., Stephenson et al., 2017), the proposed model is particularly suited for
use in regional-scale predictions of site response, liquefaction, landslides, infrastructure damage,
and loss. The proposed methodology is broadly applicable to the development of SVMs elsewhere,
and with improved understanding of near-surface and deep velocity structures, can facilitate more

accurate ground-motion predictions globally.
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INTRODUCTION

Subsurface seismic-wave velocity (i.e., site condition) can significantly affect ground-motion
amplitude and frequency content. Reliable estimates of these velocities are thus needed to better
predict ground motions and coseismic phenomena, such as liquefaction, landslides, infrastructure
damage, and loss. For situations where detailed in-situ measurements are not available, such as
regional-scale hazard assessments, estimates of subsurface conditions (e.g., via a soil-velocity

model) are needed to approximate site response.

Accordingly, efforts have been made to better understand and predict seismic wave velocity
profiles in the absence of direct measurement (e.g., among many, Boore and Joyner, 1997; Holzer
etal., 2005; Allen and Wald, 2007; Castellaro et al., 2008; Boore et al., 2011; Boore, 2016; Parker
et al., 2017). These efforts have typically focused more on predicting the time-averaged shear-
wave velocity in the upper 30 m (Vs30), a required input to empirical ground-motion prediction
equations, and less on explicitly predicting the variation of shear-wave velocity (Vs) with depth, a
required input to ground-motion prediction methods based on wave propagation (e.g., Schnabel et

al., 1972).

Boore and Joyner (1997) proposed a soil-velocity model (SVM) for the western U.S. that has
been used in many applications (e.g., Frankel et al. 2018). More recently, Shi and Asimaki (2018)
proposed a California-based SVM conditioned on V539 and based on the functional form of Vrettos
(1996). Provided a prediction of Vs3o (e.g., using a proxy- or geology-based estimate), this model
predicts Vs as a function of depth (z):

VSO B z<25m

Vs(2) (M

B Vso(1+k(z — 2.5))%, z>25m
where Vso, k, and n are fitting parameters conditioned on Vs3o and defined in Shi and Asimaki
(2018). This model: (1) provides depth-continuous predictions of near-surface stratigraphy; (2)
can be implemented at relatively fine spatial resolution (i.e., the resolution of the input Vss3p); and
(3) was fit to a large set of measured profiles distributed throughout California. However, having
been based only on data from California, the applicability of the Shi and Asimaki (2018) model to

other regions is unknown.

Soil velocity models are particularly important for physics-based simulations of earthquake

ground motions and consequent impacts at a regional scale. Such simulations are especially useful
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in regions with a paucity of historical records (e.g., where the earthquake return-period exceeds
the observation interval), examples of which include the Alpine Fault Zone of New Zealand
(Bradley et al., 2017), the New Madrid Seismic Zone of the Central U.S. (Ramirez-Guzman et al.,
2015), and the Cascadia Subduction Zone of North America (Frankel et al., 2018; Wirth et al.,
2018). In addition to populating gaps in ground-motion datasets, physics-based simulations help
to elucidate and quantify complex ground-motion phenomena (e.g., the effects of directivity,
basins, and topography) via explicit modeling of kinematic fault rupture, wave propagation, and
the subsurface velocity structure. With respect to the latter, physics-based simulations often rely
on so-called “Community Velocity Models” (CVMs), which map predictions of ¥, versus depth
across large areas. While numerous CVMs have been developed worldwide (e.g., among many,
Magistrale et al., 2009; Cramer et al., 2016; Small et al., 2017, Stephenson et al., 2017), these
models often: (1) are concerned more with predicting deep geologic structure, such as basin
geometry, and less with near-surface conditions that can also significantly alter motions; and (2)
have coarse spatial resolution. For example, Stephenson et al. (2017) provide V; profiles for
approximately 60 million hectares of the Cascadia Subduction Zone. While this model was
recently utilized in physics-based simulations (e.g. Frankel et al. 2018, Wirth et al. 2018), it: (1)
has a minimum Vs of 600 m/s, which corresponds to soft rock, and thus ignores the presence and
influence of softer soils; and (2) has a minimum grid spacing at the ground surface of 200 m
laterally and 100 m vertically, which is a coarser resolution than is typically used in geotechnical

analysis.

In this paper, we propose a new soil-velocity model that accounts not only for Vssg, but also
for the deeper velocity structure (which could be characterized by CVMs). Such a model would
be particularly useful for regions in which the deeper velocity structure varies greatly. For example,
the Cascadia region, considered herein to include Oregon, Washington, and southern British
Columbia (Canada), is a geologically and topographically complex region. The Cascadia forearc
is composed of multiple coastal mountain ranges, a north-south spanning lowland, and the Cascade
volcanic arc. Deep sedimentary basins underly major population centers throughout the region
(e.g., the Georgia, Everett, Seattle, Tacoma, and Tualatin basins) that significantly affect surface
ground motions compared to equivalent non-basin sites (e.g., Marafi et al., 2017, Wirth et al.,
2018; Roten et al., 2019). How shallow velocity profiles in basin and non-basin sites may differ is
therefore of critical interest for the development of regional ground-motion predictions that

incorporate near-surface soil conditions.

Marafi et al. — 3



83
84
85
86
87
88

89

90
91
92
93
94
95
96
97
98
99
100
101
102
103

To provide a baseline with which to compare the performance of the proposed model, the
performance of the Shi and Asimaki (2018) model, based solely on Vss3g data, is herein evaluated
for the Cascadia region. By accounting for the deeper geologic structure, our proposed model
provides better estimates of shear-wave velocity with depth, and by corollary, better estimates of
local site amplification for a wide range of site and geological conditions, as compared to Shi and

Asimaki (2018).

Evaluation of Shi and Asimaki (2018) Model in the Cascadia Region

The performance of the Shi and Asimaki (2018) (SA18) SVM in Cascadia was evaluated using
909 Vs profiles compiled by Ahdi et al. (2017) from Oregon, Washington, and British Columbia
(Canada). These profiles were digitized from reports by state and national geologic surveys (e.g.,
Washington Division of Natural Resources, U.S. Geological Survey). For this dataset, Figure 1
quantifies the accuracies of SA18 predictions as a function of depth via the difference between the
natural-log of the predicted Vs (In Vssais) and the natural-log of the measured Vs (In V), termed
the Vsresidual. As shown in Figure 1, the medians of the Vs residuals are relatively small at depths
less than 50 m, and again, for depths between 600 m and 1000 m. For example, the S0 percentile
Vs residual reaches peak values of: +0.14 in the upper 50 m (~15% overprediction of Vs) and -0.19
between depths of 600 m and 1000 m (~17% underprediction). In contrast, the velocity estimates
exhibit strong bias at depths between 50 m and 600 m, in which the 50" percentile Vs residual
reaches peak values of +0.84 (~132% overprediction). In addition, the variance of residuals
indicates that even at depths where the median residual is zero, 32% of Vs profiles are either under-

or overpredicted by at least 32%.

0 T T T T 0 T T
sol | 200 f 1
E_ E_ 400 | 1
£ 100} 1 =
ko3 & e00f i
150 [ — 50t Per. T 800 F ]
- 16 8 84t o
200—3 -2 -1 0 1 2 3 1000—3 =2 2 3
(a) In Vsl SA18 — In VS (b) In VS, SA18 — In Vs

Figure 1. Shear-wave velocity (Vs) residuals (predictions from Shi and Asimaki, 2018) versus

depth for 909 profiles compiled by Ahdi et al. (2017) for depths up to (a) 200 m; and (b) 1000 m.
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Thus, when SA18 is applied to Cascadia, it: (1) tends to severely overpredict Vs in some
settings, which will later be identified as thick soil deposits in basins; and (2) has large prediction
variance, even when the median residual is zero. This suggests that motions predicted at the ground
surface would, in some locations, be inaccurate for many spectral periods. Accordingly, we
propose a new model that introduces conceptual improvements to the SA18 formulation by
integrating information about the deeper geologic structure. A Cascadia-specific SVM is then
developed using Vs profiles from the Cascadia region. Wave-propagation-based site-response
analyses were used to quantify the performance of the new Cascadia SVM and identify the
geologic conditions where these improvements are most critical to accurately predicting

earthquake ground motions.

PROPOSED MODEL

A modified version of the SA18 model is proposed for predicting Vs (2):

Vso ,z<25m
Vi(2) = g N
+(2) Vso+1000 - (kzju—f;s)" z>25m

(22)

where Vso defines Vs at the surface; k controls the initial, near-surface rate-of-change in Vi, n
controls the rate-of-change in V at greater depths; Z; ¢ is the depth, in meters, where Vs = 1 km/s;

Vs and Vso have units of m/s; and z is depth in meters.

Prior to settling on the functional form of the proposed SVM, other forms such polynomials
were tested but deemed unfavorable because the equations: (a) highly deviated from the Shi and
Asimaki (2018) model; (b) became too complex/non-unique to fit, with many regressed
coefficients; (c) provided no additional accuracy; and (d) resulted in unrealistic predictions of soil
profiles with input variables that were outside the parameter space of the dataset. The proposed

functional form is believed to provide a “balanced” solution.

The proposed SVM builds conceptually on SA18 (Eq. 1) in two ways. First, the function
defined in Eq. 1 is modified so that parameters & and Vso have reduced interaction. This parameter
interaction is not consistent with the Cascadia data and results in non-unique solutions, such that
various model inputs result in a similar Vs profile, complicating model optimization. Second, to

benefit from, and coalesce with, CVMs that map deep geologic structure, the predicted Vs is
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anchored to 1000 m/s at depth Z;.9, which roughly corresponds to the top of tertiary sedimentary
rock. During model development, Z; o was obtained from field measurements, whereas in forward
use, it can be obtained from a regional CVM (e.g., Stephenson et al., 2017). Values of n < 1 result
in convex profiles, such that the rate-of-change in V increases with depth; values of n > 1 result
in concave profiles, such that the rate-of-change in Vs decreases with depth; and values of n = 1
result in constant rate-of-change in V5. To anchor the predicted Vs at Z;.9, the parameter k is defined
as:

k= (M)" (2b)

1000

Accordingly, to apply Egs. 2a and 2b at any given location requires input variable Z; 9 and

model parameters Vso and n. The prediction of these parameters will be discussed subsequently.

Shear Wave Velocity Profile Dataset

A subset of 218 Vs profiles from the Ahdi et al. (2017) compilation where Z; 9 was directly
measured from the velocity profile was used in this study. These data were compiled from multiple
sources and methods (including downhole, seismic cone, P-S suspension, and various non-invasive
geophysical methods) and detailed in Ahdi et al. (2017). Shown in Figures 2 and 3, respectively,
are the Vs30-Z1.0 parameter space and geographic locations for this subset. It can be seen in Figure
2 that the Vs3o parameter space extends from 112 m/s to 871 m/s and is consistently populated,
whereas the Z;.o parameter space extends from 5 m to 890 m but is unpopulated between ~100 m
and 200 m. This gap in Zi o corresponds to a geographic clustering, as mapped in Figure 3, such
that profiles with Z; 9o > 200 m are mostly from sites located in the Fraser River Delta of British
Colombia (180 profiles), whereas all profiles with Zjo < 200 m are from sites in Oregon and
Washington (38 profiles). The profiles are sourced predominantly from surficial geologic units
mapped as Quaternary sediment, including 70% in alluvium variants (e.g., loam, overbank, flood)

and 15% in peat.
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Figure 2. Distribution of Vs30 and Z;.0 from measured profiles in which Vs reaches 1000 m/s.
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Figure 3. Map of measured profiles in which Vs reaches 1000 m/s.

Notably, a scarcity of Z; 9 measurements eliminated 76% of the Ahdi et al. (2017) data from
the dataset, since Z;.¢is required in Eq. 2a. This scarcity is attributable to the difficulty and expense
of deep profiling, which is often motivated in British Columbia by petroleum exploration (e.g.,
Hunter et al., 1998). In this regard, the lack of deep Z;» measurements elsewhere should not be
inferred as an absence of such conditions. To the contrary, profiles with Z;.o > 200 m are abundant
in the Puget-Willamette lowland of Oregon and Washington (e.g., in the Everett, Seattle, Tacoma,
Portland, and Tualatin sub-basins), where Z; o may occasionally reach 1000 m (Yount et al., 1985;
Mpyer et al., 2005; McPhee et al., 2014; Ahdi et al., 2017; Stephenson et al., 2017). Whereas V

measurements are plentiful within these basins, the measurements rarely exceed a depth of 100 m.

Alternative depth to velocity (Zy) inputs to Eq. 2 were explored (e.g., Zo.s) to increase the
available points in the dataset. However, such alternatives: (1) only marginally increased the size

of the dataset; (2) did not measurably improve the accuracy of the final SVM; and (3) are not as
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common as Z, in ground motion modeling, thereby potentially hindering transferability of the
proposed model to other regions. Ultimately, as shown in Figure 2, there is a need for deep,
continuous profiling of sedimentary basins in Washington and Oregon, which will confirm or

update the model proposed herein.

Fitting Model Parameters

Using the subset of the Ahdi et al. dataset, model parameters Vs, and n were determined for
each profile. This was achieved by minimizing the error between the measured Vs and that

predicted by Eq. 2, with error for each profile computed as:

1
Eys = Ezlivzllln Vs,predicted (ZL') —In Vs,measured (ZL')| (3)

In Eq. 3, each profile is discretized into 1-m thick layers, z; is the depth from the surface to the
midpoint of layer i, and N is the total number of layers for that profile. Only sediment layers with
Vs < 1000 m/s were included in the error term, since the proposed model is intended to coalesce
with a CVM at Z; 9. Optimal parameters Vs, and n were found using the Nelder-Mead algorithm
(Gao and Han, 2012, with a convergence tolerance of le-8) to minimize &y, which can be

expressed as:
{Vso,n} = argmin gy “

As examples of the results of this procedure, Figure 4 shows the fitted profiles from two sites: (a)
a low-Vs30, high-Z o site; and (b) a high-Vs30, low-Z1 o site. In each case the optimal Vg, and n are
shown, as is the prediction of Vi-versus-depth from SA18 (i.e., Eq. 1). It can be seen that SA18 is

problematic at the high-Z1 ¢ site, where Vs is difficult to predict in the absence of Z1 o information.

Site ID: 104199VD, Vs30=257 m/s, Z10=589 m Site ID: 7027-B, Vs30=642 m/s, Z10=23 m
£ 200 | £
= = 20
- 400 - Measured Profile - Measured Profile
a Optimal Profile \ a Optimal Profile
600 |~ (Vs0=254, n=0.43) 5 a0b T (Vso=152,n=6.63) 4
= SA18 Prediction = SA18 Prediction
600 L 1 L 1 il L L L
0 200 400 600 800 1000 0 200 400 600 800 1000
(@ Vs, mis (b) Vs, mis
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Figure 4. Shear-wave velocity (V) versus depth for (a) a low-Vss30, high-Z;.¢ site; and (b) a high-

Vss0, low-Z; o site.

Repeating this process for all profiles, Figure 5 summarizes the optimal, fitted model
parameters, plotted with respect to each profile’s measured Vs3p and Z10. As can be observed from
the binned, average behavior in Figure 5a, Vs tends to increase as Vssg increases. This was also
observed in California for the SA18 model and is expected, given the link between Vs at the ground
surface and Vs time-averaged over the top 30 m. In contrast, V59 shows no correlation to Z;.¢ for
the dataset (Figure 5b). While it is mathematically necessary that Vs approach 1000 m/s as Z;.
approaches zero, the lack of any other trend is unsurprising, given that surficial soil deposits may

be stiff or weak, and shallow or deep, independent of the rock that lies beneath.

Parameter n, which relates to the rate-of-change in Vs at greater depths, increases with
increasing V3o (Figure 5¢) and decreases with increasing Z;. ¢ (Figure 5d). This indicates that in
profiles with high V30 and low Z;9, Vs tends to increase rapidly at shallow depth and gradually
thereafter, whereas in profiles with low Vs3o and high Z1 .0, Vs tends to increase gradually at shallow
depth, then more rapidly at depths approaching Z;9. While these behaviors were expected, the
inclusion of Z;.0 in Eq. 2, and preservation of reasonable Vs30-Z1.0 behavior, represents an important
conceptual advance. As will be demonstrated, this can result in significantly more accurate

estimates of site-response relative to models that do not account for deeper geologic structure.
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Figure 5. Optimal values of model parameter Vs as a function of measured (a) Vs3o and (b) Z;.0;

Optimal values of model parameter » as a function of measured (c) Vsso and (d) Z;.0.

In addition to the trends investigated in Figure 5, correlations between the model parameters
(i.e., n and Vsp) and other potential predictor variables were explored, including mapped glacial
history, surficial geologic unit, and various geospatial parameters (e.g., surface mineralogy,
roughness, and wetness; distance to, and elevation above, rivers, streams, and other water bodies;
and compound-topographic-index). Some of these predictors showed promise for future study,
particularly with a larger dataset, but they were not included in the current model. In this regard,
future research could identify and include additional predictors of Vs as part of global modeling
efforts. In the next section, the prediction of model parameters Vso and # is explored using predictor

variables Vs3o and Z; 0.

Predicting Model Parameters

Informed by the trends observed in Figure 5a, parameter Vso is modelled using input variable

Vs30 and the following functional form:

Vso = ag + a3 (Vs30)* Q)

Marafi et al. — 10
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where ao is the y-axis intercept (i.e., Vso when Vs3o = 0); a1 and az controls the rate of variation of
Vso with Vs3o. Coefficients ao, a1, and a» were determined by minimizing the prediction error of

Vso, expressed as:
.1
{a¢,a1,a,} = arg mln;Z}’Lllln Vso,j — InVso—optimar j |Wj (6)

where Vsp is computed by Eq. 5; Vso-oprimat 1S the optimal value of Vo computed for each profile by
Eq. 4; and w is a profile-specific weighting factor that mitigates bias from geographic clustering
of the dataset. In particular, a majority of the profiles were sourced from the Fraser River Delta, as
shown in Figures 2 and 3. Accordingly, w normalizes errors in proportion to the number of profiles
from the Fraser Delta and elsewhere, such that both subsets have equal weighting. Ideally, the
weighting function should be further disaggregated to account for error bias from other regions
(i.e., Seattle and Portland), however, doing so would have resulted in an unreasonably small
sample size by which to normalize errors. Following this approach, coefficients a,, a,, and
a, were found using the Nelder-Mead algorithm (Gao and Han, 2012, with a convergence
tolerance of 1e-8), and are summarized in Table 1. These coefficients give physically reasonable
predictions for all Vs3> 100 m/s, although the dataset is populated only from 112 m/s < Vs39 <
871 m/s. The resulting calibrated model for parameter Vs is a function of Vs is plotted in Figure
6.

Marafi et al. — 11
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Table 1. Optimized Model Coefficients

Coefficient Value Coefficient Value

ao -629 by 0.00912
a, 434 b, 0.646
a, 0.122 b, -0.201
- - b3 0.136
1000 T T T
— Eq.5
800 Fraser River Delta .
) Other
£ 600} |
S 400} -~ |
200k /
0 1

0 20 400 600 800 1000
Vsao, m/s

Figure 6. Model parameter Vs predicted by Eq. 5 as a function of Vs3p. Markers indicate the

fitted, or optimal, Vsy values for each Vs profile.

Informed by the trends observed in Figures 5¢ and 5d, parameter n is predicted using input

variables Vs3g and Z; 9 with the following functional form:

n= bo(Vsso)b1 (Z1.0)bZ (VS3OZI.0)b3 7

where by is the initial slope, b1 is the exponent on the V3o term, b is the exponent on the Z; o term,
and b3 is the exponent on the Vs3p-Z;¢ interaction term. Coefficients bo, b1, b2, and b3 were

determined by minimizing the prediction error of n, expressed as:
L1
{bo, b1, by, b3} = argmin— 3L, [Inn; — INNopeimar,j| Wy (®)

where n is computed by Eq. 7; nopimal is the optimal n for each profile computed by Eq. 4; and w
is as previously defined. Coefficients bo, b1, b2, and b3 were again determined using the Nelder-
Mead algorithm (Gao and Han, 2012, with a convergence tolerance of 1e-8) and are summarized

in Table 1. These coefficients give physically reasonable predictions for all Vs30 and Z;.0.

Marafi et al. — 12
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The resulting predicted values for parameter n are plotted as a function of Vs and Z;0 as a
color contour in Figure 7a. Parameter &, which depends on predictions of both Vs and n (see Eq.
2b), is depicted similarly in Figure 7b. Consistent with trends previously observed in individual
profiles, sites with low-Vs30 and high-Z; ¢ have predicted » < 1 and predicted & approaching 1.0,
meaning that the predicted Vs increases gradually at shallow depth, then more rapidly at depths
approaching Z;.¢. In contrast, sites with high-Vs39 and low-Z;.o have predicted n > 1 and predicted
k approaching zero, meaning that the predicted Vs increases rapidly at shallow depth and gradually
thereafter. Also shown in Figure 7 is the Vs30-Z1.0 parameter space of the dataset (transparent

circles). It should be noted that predictions beyond this space are extrapolations of the data.

Predicted n (Eq. 7) Predicted k (Eq. 2b)
1000 2.00 1000 1.04
500 1.75 500 0.96
1.50 0.88
£ 1.25 £ 0.80
: 1(;3 100 < 123 0.72
N 0.75 N 0.64
0.50 0.56
10 | Database 0.25 10§ o Database 0.48
(a) B 100 200 300 500 1000 R (b)5 100 200 300 500 1000 bal

V30, mis Vs30, m/s

Figure 7. Model parameters (a) n and (b) k predicted by Eqgs. 7 and 2b, respectively, as a
function of Vssp and Z;.o.

To assess whether these predictions exhibit bias for any ranges of Vszp and Z;.9, prediction
residuals are quantified in Figure 8 as the difference between the natural-log of the predicted
parameter (In Vsoprea OF In npreq) and the natural-log of the optimal parameter (In Vso,oprimar OF In
Nopiimat). Figures 8a and 8b show the Vo residuals, which average -0.023 and are nearly constant
with respect to Vs3p and Z; 9. Similarly, Figures 8c and 8d show the n residuals, which average -
0.013 but show significant negative bias for the highest-Z; ¢ bin in Figure 8d. This bin only contains
five profiles, so it is possible that it is a statistical outlier, but it is also possible that the model
underestimates the concavity of the deepest profiles. Accordingly, we conclude that Vso- and n-
residuals are acceptable with respect to the model’s input variables, Vs3o and Z;0, but also

acknowledge that additional field data are needed for further model calibration.
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Figure 8. (a) Vso residuals with respect to Vsso; (b) Vso residuals with respect to Z;.0; (c) n
residuals with respect to Vsso; and (d) n residuals with respect to Z;.o (All residuals are in natural

log units).

EVALUATION OF PROPOSED MODEL

The proposed SVM is defined by Egs. 2, 5, and 7, along with the coefficients provided in Table

1. Figure 9 shows examples of Vs profiles predicted by the SVM, corresponding to Vs3o = 200,

400, 600, and 800 m/s, and Z;.9 = 50, 200, and 400 m. These predictions are consistent with trends

observed in the dataset. Extrapolations beyond the parameter space of the dataset are physically

reasonable, though the SVM is intended to coalesce with a CVM at Vs = 1000 m/s and was not

trained on measurements exceeding 1000 m/s. In the ensuing sections, we evaluate the

performance of the proposed model in several ways.
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Figure 9. Shear-wave velocity with respect to depth for sites with various Vs3o (in m/s) and (a)
Z1.0=>50m; (b) Z1.0=200 m; and (c) Z;.p =400 m.

Predicted Profile Vs30 Versus Input Vsg

Given that V3 is an input to the SVM (and may be estimated using one of several proxy- or
geology-based models), predicted profiles would ideally have a Vs3o consistent with the assumed
input. To evaluate this consistency, Vs residuals are quantified in Figure 10a and defined as
In(Vs30,predicted) — 1In(Vs30,input), Where the latter is the input value and the former is Vs30 computed
from the resulting, predicted Vs profile (i.e., using Eq. 2). These residuals were computed for a
wide range of values of Vg3 and Z; and are depicted in Figure 10a as a color contour. An
analogous analysis was performed for SA18 and is shown in Figure 10b. In each case, the Vsso-

Z .0 parameter space of the Cascadia dataset is also plotted.

The computed values of Vsso for the SA18 profiles are consistent with the input V3o, with 96%
of dataset profiles having a V3o residual less than + 0.1 (i.e., £ 10% error). However, SA18 gives
undefined or implausible results for Vs3p <~140 m/s. Using the proposed Cascadia SVM, 53% of
dataset profiles have a Vsso residual less than + 0.1 and 73% have a residual less than = 0.25. It can
also be seen in Figure 10a that some combinations of Vs3p and Z; ¢ result in very large residuals.
However, these combinations are generally unlikely to exist, low Vs30 (< 200 m/s) and low Z;¢ (<
40m), or high Vs30 (> 500 m/s) and high Z;9 (> 50 m), having no representation in the Ahdi et al.
(2017) dataset. Lastly, while strict compliance with V3 is ideal, such constraint can lead to large
errors at greater depths. In this respect, the Cascadia SVM represents a compromise, reproducing
Vs30 adequately but not identically, in favor of better prediction of ¥V at z > 30 m and overall

improved site response estimation (subsequent section).
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Figure 10. Vs30 residual, as a function of input Z;.9 and V3o, for the (a) proposed Cascadia SVM;
and (b) SA18 SVM.

Predicted Versus Measured Vs Profile

To evaluate the proposed SVM’s performance at all depths, Vs residuals were computed in the
same manner done for SA18 in Figure 1. However, to provide a consistent comparison, the
evaluation of SA18 is repeated for the subset of profiles and is shown in Figure 11. These results
are very similar to those in Figure 1, from which it may be inferred that the subset profiles are
representative of the larger Ahdi et al. (2017) dataset. SA18 predictions are again relatively
accurate for z < 50 m and z > 600 m but tend to have much larger errors at depths in between.
Specifically, the median Vs residual reaches peak values of: -0.25 in the upper 50 m (~28%
underprediction); -0.18 between depths of 600 m and 1000 m (~16% underprediction); and +0.85
between depths of 50 m and 600 m (~150% overprediction). The largest overpredictions generally
correspond to soft, thick soil deposits in deep basins, which are underrepresented in the SA18

dataset.

Residuals for the Cascadia SVM, incorporating both Vssp and Z;.9, are shown in Figure 12.
Here, the median Vs residual reaches peak values of: -0.088 in the upper 50 m (~8%
underprediction); -0.33 between depths of 600 m and 1000 m (~28% underprediction); and -0.13
between depths of 50 m and 600 m (~12% underprediction). Thus, the proposed SVM performs
significantly better at depths up to 600 m, beyond which the model accuracies are similar. In
addition, the variance of residuals is less in the upper 100 m using the proposed SVM and similar

to SA18 at other depths.
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Figure 11. V residuals (predictions from SA18) for (a) depths up to 200 m; and (b) depths
up to 1000 m, considering 218 profiles compiled by Ahdi et al. (2017). Positive residual indicate
an overprediction by the model (i.e., SA18).
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Figure 12. Vs residuals (predictions from our proposed Cascadia SVM) for depths: (a) up to
200 m; and (b) up to 1000 m, considering 218 profiles compiled by Ahdi et al. (2017). Positive
residual indicate an overprediction by the model (i.e., our SVM).

To assess whether these predictions exhibit bias (i.e., consistently positive or negative
residuals) for any ranges of V30 and Z;.9, the residuals from Figure 11 and 12 are parsed into four
bins in Figure 13 and 14: (a) low Vs3o and low Z;, (b) low Vs3g and high Z;, (c) high Vs3 and
low Z;.0; and (d) high Vs3p and high Z;9. Considering depths up to 200 m, the average absolute
values of the Vs residuals (using the proposed SVM) in these respective bins are 0.44, 0.15, 0.31,
and 0.25 (Figure 14). By comparison, and as shown in Figure 13, SA18 produces analogous Vs
residuals in these respective bins of 0.45, 0.89, 0.46, and 0.53. This suggests the proposed SVM
better predicts Vs than SA18 for all bins. Notably, both SVMs resulted in larger residuals for

profiles with low Vssg and low Z; o (Figure 13a and Figure 14a). However, as previously discussed,

Marafi et al. — 17



324
325

326

327
328
329
330
331

the dataset contains relatively fewer profiles with low Z; . In this regard, a larger set of field

measurements is needed to assess this behavior.
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Figure 13. Vs residuals (predictions from SA18) from Figure 11 binned on: (a) low Vs3p and low
Z1.0, (b) low Vs30 and high Z;.9, (c) high Vs30 and low Z;.0; and (d) high V30 and high Z; 9. Positive
residual indicate an overprediction by the model (i.e., SA18).
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Figure 14. V residuals from Figure 12 binned on: (a) low V30 and low Z;.9, (b) low Vs39 and
high Z;.9, (c) high Vs30 and low Z;.0; and (d) high Vs3o and high Z; ¢. Positive residual indicate an
overprediction by the model (i.e., our SVM).

Expected Site Response: Predicted Versus Measured Vs

While the preceding evaluation shows that the proposed SVM significantly improves
predictions of Vs in Cascadia, it is important to evaluate the consequences for expected ground
motions. That is, to what extent do inaccuracies in the predicted velocity structure result in
erroneous estimates of site response? To assess the similarity of ground-motion predictions using

measured versus predicted profiles, wave-propagation-based site response analyses were
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performed on: (1) V; profiles measured in the field; and (2) predictions of those Vs profiles made
by SA18 and the SVM proposed herein. This was achieved via equivalent linear site-response
analysis using pysra (Kottke, 2020), a Python implementation of the software Strata (Kottke and
Rathje, 2008). Nonlinear material behavior was modelled using Darendeli (2001) with the
following material assumptions: (1) plasticity index of 30; (2) soil density of 19.6 kN/m?; (3)
ground water depth of 5 m; (4) at-rest earth pressure coefficient of 1.0; and (5) an over-
consolidation ratio computed per Wair et al. (2012). Nonetheless, the most salient findings of these
analyses were ultimately insensitive to the assumed material properties. Results are first presented
in greater detail for two representative site conditions, considering two input motions. The results

of replicate analyses on a large set of Vs profiles are then summarized.

First, the two Ahdi et al (2017) profiles shown in Figure 4 were selected to represent: (1) a soft
site (Vs30 =257 m/s) with high Z; 9 (589 m), and (2) a stiff site (Vs30 = 642 m/s) with low Z; (23
m). Each profile was subjected to two horizontal input motions from the NGA-West-2 database
(PEER, 2014): (1) a low-intensity record (PGA = 0.06 g) from the 1976 My5.91 Friuli earthquake
on a site with Vs3 = 650 m/s (Record Sequence Number [RSN] 133); and (2) a high-intensity
record (PGA = 0.65 g) from the 2007 My6.8 Chuetsu-Oki earthquake on a site with Vs3p =610 m/s
(RSN 4845). These motions were input at depths consistent with the near-surface velocities on

which they were recorded.

The implications of V; prediction for expected site response were studied via ratios of surface-
to-input spectral acceleration (S,), as shown in Figure 15 for the four representative combinations
of site conditions and input motions. Such ratios were computed for each combination, namely
using: (1) Vs as measured in the field; (2) Vs as predicted by SA18; and (3) V5 as predicted by the
proposed SVM. As shown in Figures 15a and 15b, differences between expected motions on the
site with high V39 and low Z; ¢ are generally minor for measured versus predicted profiles. For
these conditions, SA18 and the proposed SVM predict V; profiles that are similar to one another,
and to the measured profile, leading to similar estimates of site response. The differences that do
arise from measured versus predicted profiles are partly attributable to the smooth gradient of each

SVM, such that neither can predict strong impedance contrasts within a profile.

In contrast, as shown in Figures 15¢ and 15d, large differences in expected motions arise for
the site with low Vs3g and high Z;.¢. For these conditions, the proposed SVM performs significantly

better, whereas SA 18 predicts a soil profile that is stiffer and shorter than actual (i.e., it overpredicts
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Vs at intermediate depths, as shown in Figure 11). This results in erroneous estimates of site
response, such that S, is overpredicted at shorter periods (< ~0.5 sec) and underpredicted at longer

periods (> ~2 sec).
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Figure 15. Ratios of surface-to-input acceleration response-spectra (S,surfuce / Sa,inpur) for
measured versus predicted V; profiles, considering representative site and loading conditions: (a)
high V30, low Z;.0; low input-PGA, (b) high Vs, low Z;.9, high input-PGA; (c) low V3o, low
Z1.0, low input-PGA; and (d) low Vs30, low Z;.9, high input-PGA.

Next, this comparison was repeated for all 218 Ahdi et al. (2017) profiles with measured Z; 0.
These results are summarized in Figure 16 via the ratio of predicted-to-actual S, amplification,
where “predicted” and “actual” respectively refer to analyses using predicted and measured V. A
ratio of 1.0 indicates that expected S, values on predicted and measured profiles are identical.
Further, these results are parsed by Z;.9, such that ratios from sites with Z;.9 < 100 m are shown in
Figures 16a and 16b while those from sites with Z; 9 > 100 m are shown in Figures 16c and 16d.
These results generally mirror those presented above. Considering all profiles with Z; 9 < 100 m,
the two SVMs result in estimates of site response that are similar. These estimates are also
generally consistent with those derived from measured profiles, as indicated by average Si-

amplification ratios near unity. Conversely, considering all profiles with Z; 9 > 100 m, the two
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SVMs result in drastically different estimates of site response. As shown in Figures 16¢ and 16d,
the proposed Cascadia SVM results in ground motions that, on average, are very similar to those
expected on measured profiles. In contrast, SA18 results in motions with considerably higher-than-
actual S, across shorter periods and considerably lower-than-actual S, across longer periods. These
mispredictions would have important ramifications for the expected, consequent impacts within
Cascadia’s basins. For example, in Figure 17, S,-amplification ratios at natural periods (7;) of 0.2
sec, 1 sec, and 3 sec are extracted from Figure 16 for each profile and plotted with respect to Z.o.
It is again clear that as Z; increases, the proposed SVM performs better, with SA18 tending to

overpredict shorter-period motion and underpredict longer-period motion.
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Figure 16. Predicted-to-actual S, amplification (“predicted” and “actual” refer to analyses
using predicted and measured V, respectively) for: (a) Z;.0 < 100 m, low input-PG4; (b) Z;.0 <
100 m, high input-PG4; (c) Z1.0> 100 m, low input-PG4; and (d) Z1.0 > 100 m, high input-PGA4.
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Figure 17. Predicted-to-actual S, amplification, as a function of Z, ¢, at natural periods (75) of:
(a) 0.2 sec; (b) 1.0 sec, and (¢) 3.0 sec.

Conclusions

This study presents a new general soil velocity model (SVM) for prediction of V; profiles. Such
models are critical to the evaluation of local amplification of ground motions at sites where
detailed, site-specific profiles are not available (e.g., regional assessments). The new model builds
on previous work by accounting not only for near-surface soil conditions (Vs30), but also deeper
geologic structure (Z;.9). The model requires input variables Vs3p and Z;.9, which can be estimated
without a detailed soil investigation. Vs3 can be estimated using several proxy- or geology-based
methods (e.g., Wald and Allen, 2007; Ahdi et al., 2017), and Z;¢ can be estimated from
Community Velocity Models (e.g., Stephenson et al., 2017), which provide detailed mapping of

deeper geologic structure, but not of the near-surface.

The proposed SVM was calibrated with data from the Cascadia region and improves upon a
California-specific model (Shi and Asimaki, 2018) based on Vs3o alone, resulting in significantly
more accurate estimates of site-response in Cascadia’s deeper basins while still capturing shallow-
site conditions. The new SVM gives physically reasonable predictions for Vs3> 100 m/s and Z;.¢
>2.5 mup to a depth of Z;.9, where the model is intended to coalesce with a CVM. The model was
not trained on ¥V measurements exceeding 1000 m/s, so for depths beyond Z; ¢, it is expected that
the profile would be given by the CVM. In addition, relatively few existing Vy measurements in
the region reach 1000 m/s, limiting the dataset utilized herein. As more Z; o data become available,
the accuracy of this SVM will improve, in turn improving ground-motion predictions across the
region. Additionally, it is assumed here that Z;o scales with ‘true’ basin depth and that the

underlying CVM accurately captures the velocity structure at large depths. Special cases where
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large velocity inversions exist due to intermediate layers are beyond the scope of this work and
would require site- and basin-specific modeling. Lastly, while this model was implemented for
Cascadia, the modeling approach demonstrated herein is globally applicable and is particularly

likely to be beneficial in regions with deep basins.
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