
 

 

Marafi et al. — 1 

A Generic Soil Velocity Model that Accounts for Near-1 

Surface Conditions and Deeper Geologic Structure 2 

Marafi, N.A.1, Grant, A.2, Maurer, B.W.3, Rateria, G. 4, Eberhard. M.O.5, and 3 

Berman, J.W.6 4 

Near-surface soil conditions can significantly alter the amplitude and frequency content of 5 

incoming ground motions – often with profound consequences for the built environment – and are 6 

thus important inputs to any ground-motion prediction. Previous soil-velocity models (SVM) have 7 

predicted shear-wave velocity profiles based on the time-averaged shear-wave velocity in the 8 

upper 30 m (VS30). This article presents a generic soil-velocity model that accounts both for near-9 

surface conditions (VS30) and deeper geologic structure, as represented to the depth at which the 10 

profile reaches a velocity of 1.0 km/s (Z1.0). To demonstrate the advantages of our new SVM, we 11 

apply it to the Cascadia Region of North America, where numerous geologic basins and glaciated 12 

landscapes give rise to a wide range of VS30 and Z1.0 combinations. This soil velocity model yields 13 

good estimates of site response across all site conditions, and significantly improves upon a model 14 

calibrated using only VS30 data. In conjunction with existing models that describe the deep velocity 15 

structure of the region (e.g., Stephenson et al., 2017), the proposed model is particularly suited for 16 

use in regional-scale predictions of site response, liquefaction, landslides, infrastructure damage, 17 

and loss. The proposed methodology is broadly applicable to the development of SVMs elsewhere, 18 

and with improved understanding of near-surface and deep velocity structures, can facilitate more 19 

accurate ground-motion predictions globally.  20 
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INTRODUCTION 22 

Subsurface seismic-wave velocity (i.e., site condition) can significantly affect ground-motion 23 

amplitude and frequency content. Reliable estimates of these velocities are thus needed to better 24 

predict ground motions and coseismic phenomena, such as liquefaction, landslides, infrastructure 25 

damage, and loss. For situations where detailed in-situ measurements are not available, such as 26 

regional-scale hazard assessments, estimates of subsurface conditions (e.g., via a soil-velocity 27 

model) are needed to approximate site response.  28 

Accordingly, efforts have been made to better understand and predict seismic wave velocity 29 

profiles in the absence of direct measurement (e.g., among many, Boore and Joyner, 1997; Holzer 30 

et al., 2005; Allen and Wald, 2007; Castellaro et al., 2008; Boore et al., 2011; Boore, 2016; Parker 31 

et al., 2017). These efforts have typically focused more on predicting the time-averaged shear-32 

wave velocity in the upper 30 m (VS30), a required input to empirical ground-motion prediction 33 

equations, and less on explicitly predicting the variation of shear-wave velocity (VS) with depth, a 34 

required input to ground-motion prediction methods based on wave propagation (e.g., Schnabel et 35 

al., 1972).  36 

Boore and Joyner (1997) proposed a soil-velocity model (SVM) for the western U.S. that has 37 

been used in many applications (e.g., Frankel et al. 2018). More recently, Shi and Asimaki (2018) 38 

proposed a California-based SVM conditioned on VS30 and based on the functional form of Vrettos 39 

(1996). Provided a prediction of VS30 (e.g., using a proxy- or geology-based estimate), this model 40 

predicts VS as a function of depth (z): 41 

 𝑉𝑠(𝑧) = {
𝑉𝑆0              , 𝑧 < 2.5 m

𝑉𝑆0(1 + 𝑘(𝑧 − 2.5))
1

𝑛, 𝑧 ≥ 2.5 m
     (1) 42 

where VS0, k, and n are fitting parameters conditioned on VS30 and defined in Shi and Asimaki 43 

(2018). This model: (1) provides depth-continuous predictions of near-surface stratigraphy; (2) 44 

can be implemented at relatively fine spatial resolution (i.e., the resolution of the input VS30); and 45 

(3) was fit to a large set of measured profiles distributed throughout California. However, having 46 

been based only on data from California, the applicability of the Shi and Asimaki (2018) model to 47 

other regions is unknown. 48 

Soil velocity models are particularly important for physics-based simulations of earthquake 49 

ground motions and consequent impacts at a regional scale. Such simulations are especially useful 50 
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in regions with a paucity of historical records (e.g., where the earthquake return-period exceeds 51 

the observation interval), examples of which include the Alpine Fault Zone of New Zealand 52 

(Bradley et al., 2017), the New Madrid Seismic Zone of the Central U.S. (Ramirez-Guzman et al., 53 

2015), and the Cascadia Subduction Zone of North America (Frankel et al., 2018; Wirth et al., 54 

2018). In addition to populating gaps in ground-motion datasets, physics-based simulations help 55 

to elucidate and quantify complex ground-motion phenomena (e.g., the effects of directivity, 56 

basins, and topography) via explicit modeling of kinematic fault rupture, wave propagation, and 57 

the subsurface velocity structure. With respect to the latter, physics-based simulations often rely 58 

on so-called “Community Velocity Models” (CVMs), which map predictions of Vs versus depth 59 

across large areas. While numerous CVMs have been developed worldwide (e.g., among many, 60 

Magistrale et al., 2009; Cramer et al., 2016; Small et al., 2017, Stephenson et al., 2017), these 61 

models often: (1) are concerned more with predicting deep geologic structure, such as basin 62 

geometry, and less with near-surface conditions that can also significantly alter motions; and (2) 63 

have coarse spatial resolution. For example, Stephenson et al. (2017) provide Vs profiles for 64 

approximately 60 million hectares of the Cascadia Subduction Zone. While this model was 65 

recently utilized in physics-based simulations (e.g. Frankel et al. 2018, Wirth et al. 2018), it: (1) 66 

has a minimum Vs of 600 m/s, which corresponds to soft rock, and thus ignores the presence and 67 

influence of softer soils; and (2) has a minimum grid spacing at the ground surface of 200 m 68 

laterally and 100 m vertically, which is a coarser resolution than is typically used in geotechnical 69 

analysis. 70 

In this paper, we propose a new soil-velocity model that accounts not only for VS30, but also 71 

for the deeper velocity structure (which could be characterized by CVMs). Such a model would 72 

be particularly useful for regions in which the deeper velocity structure varies greatly. For example, 73 

the Cascadia region, considered herein to include Oregon, Washington, and southern British 74 

Columbia (Canada), is a geologically and topographically complex region. The Cascadia forearc 75 

is composed of multiple coastal mountain ranges, a north-south spanning lowland, and the Cascade 76 

volcanic arc. Deep sedimentary basins underly major population centers throughout the region 77 

(e.g., the Georgia, Everett, Seattle, Tacoma, and Tualatin basins) that significantly affect surface 78 

ground motions compared to equivalent non-basin sites (e.g., Marafi et al., 2017, Wirth et al., 79 

2018; Roten et al., 2019). How shallow velocity profiles in basin and non-basin sites may differ is 80 

therefore of critical interest for the development of regional ground-motion predictions that 81 

incorporate near-surface soil conditions.  82 
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To provide a baseline with which to compare the performance of the proposed model, the 83 

performance of the Shi and Asimaki (2018) model, based solely on VS30 data, is herein evaluated 84 

for the Cascadia region. By accounting for the deeper geologic structure, our proposed model 85 

provides better estimates of shear-wave velocity with depth, and by corollary, better estimates of 86 

local site amplification for a wide range of site and geological conditions, as compared to Shi and 87 

Asimaki (2018). 88 

Evaluation of Shi and Asimaki (2018) Model in the Cascadia Region 89 

The performance of the Shi and Asimaki (2018) (SA18) SVM in Cascadia was evaluated using 90 

909 VS profiles compiled by Ahdi et al. (2017) from Oregon, Washington, and British Columbia 91 

(Canada). These profiles were digitized from reports by state and national geologic surveys (e.g., 92 

Washington Division of Natural Resources, U.S. Geological Survey). For this dataset, Figure 1 93 

quantifies the accuracies of SA18 predictions as a function of depth via the difference between the 94 

natural-log of the predicted VS (ln VS,SA18) and the natural-log of the measured VS (ln VS), termed 95 

the VS residual. As shown in Figure 1, the medians of the VS residuals are relatively small at depths 96 

less than 50 m, and again, for depths between 600 m and 1000 m. For example, the 50th percentile 97 

VS residual reaches peak values of: +0.14 in the upper 50 m (~15% overprediction of VS) and -0.19 98 

between depths of 600 m and 1000 m (~17% underprediction). In contrast, the velocity estimates 99 

exhibit strong bias at depths between 50 m and 600 m, in which the 50th percentile VS residual 100 

reaches peak values of +0.84 (~132% overprediction). In addition, the variance of residuals 101 

indicates that even at depths where the median residual is zero, 32% of VS profiles are either under- 102 

or overpredicted by at least 32%.  103 

 
Figure 1. Shear-wave velocity (Vs) residuals (predictions from Shi and Asimaki, 2018) versus 

depth for 909 profiles compiled by Ahdi et al. (2017) for depths up to (a) 200 m; and (b) 1000 m. 

(a) (b) 
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Thus, when SA18 is applied to Cascadia, it: (1) tends to severely overpredict VS in some 104 

settings, which will later be identified as thick soil deposits in basins; and (2) has large prediction 105 

variance, even when the median residual is zero. This suggests that motions predicted at the ground 106 

surface would, in some locations, be inaccurate for many spectral periods. Accordingly, we 107 

propose a new model that introduces conceptual improvements to the SA18 formulation by 108 

integrating information about the deeper geologic structure. A Cascadia-specific SVM is then 109 

developed using VS profiles from the Cascadia region. Wave-propagation-based site-response 110 

analyses were used to quantify the performance of the new Cascadia SVM and identify the 111 

geologic conditions where these improvements are most critical to accurately predicting 112 

earthquake ground motions.  113 

PROPOSED MODEL 114 

A modified version of the SA18 model is proposed for predicting VS (z): 115 

 𝑉𝑠(𝑧) = {

𝑉𝑆0         , 𝑧 < 2.5 𝑚

𝑉𝑆0+1000 ∙ (𝑘
𝑧−2.5

Z1.0−2.5
)

1

𝑛
, 𝑧 ≥ 2.5 𝑚

 116 

  (2a) 117 

where VS0 defines VS at the surface; k controls the initial, near-surface rate-of-change in Vs; n 118 

controls the rate-of-change in Vs at greater depths; Z1.0 is the depth, in meters, where VS = 1 km/s; 119 

Vs and VS0 have units of m/s; and z is depth in meters.   120 

Prior to settling on the functional form of the proposed SVM, other forms such polynomials 121 

were tested but deemed unfavorable because the equations: (a)  highly deviated from the Shi and 122 

Asimaki (2018) model; (b) became too complex/non-unique to fit, with many regressed 123 

coefficients; (c) provided no additional accuracy; and (d) resulted in unrealistic predictions of soil 124 

profiles with input variables that were outside the parameter space of the dataset. The proposed 125 

functional form is believed to provide a “balanced” solution. 126 

The proposed SVM builds conceptually on SA18 (Eq. 1) in two ways. First, the function 127 

defined in Eq. 1 is modified so that parameters k and VS0 have reduced interaction. This parameter 128 

interaction is not consistent with the Cascadia data and results in non-unique solutions, such that 129 

various model inputs result in a similar VS profile, complicating model optimization. Second, to 130 

benefit from, and coalesce with, CVMs that map deep geologic structure, the predicted VS is 131 
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anchored to 1000 m/s at depth Z1.0, which roughly corresponds to the top of tertiary sedimentary 132 

rock. During model development, Z1.0 was obtained from field measurements, whereas in forward 133 

use, it can be obtained from a regional CVM (e.g., Stephenson et al., 2017). Values of n < 1 result 134 

in convex profiles, such that the rate-of-change in Vs increases with depth; values of n > 1 result 135 

in concave profiles, such that the rate-of-change in Vs decreases with depth; and values of n = 1 136 

result in constant rate-of-change in Vs. To anchor the predicted Vs at Z1.0, the parameter 𝑘 is defined 137 

as: 138 

 𝑘 = (
1000−𝑉𝑆0

1000
)

𝑛

 (2b) 139 

Accordingly, to apply Eqs. 2a and 2b at any given location requires input variable Z1.0 and 140 

model parameters VS0 and n. The prediction of these parameters will be discussed subsequently.  141 

Shear Wave Velocity Profile Dataset 142 

A subset of 218 Vs profiles from the Ahdi et al. (2017) compilation where Z1.0 was directly 143 

measured from the velocity profile was used in this study. These data were compiled from multiple 144 

sources and methods (including downhole, seismic cone, P-S suspension, and various non-invasive 145 

geophysical methods) and detailed in Ahdi et al. (2017). Shown in Figures 2 and 3, respectively, 146 

are the VS30-Z1.0 parameter space and geographic locations for this subset. It can be seen in Figure 147 

2 that the VS30 parameter space extends from 112 m/s to 871 m/s and is consistently populated, 148 

whereas the Z1.0 parameter space extends from 5 m to 890 m but is unpopulated between ~100 m 149 

and 200 m. This gap in Z1.0 corresponds to a geographic clustering, as mapped in Figure 3, such 150 

that profiles with Z1.0 > 200 m are mostly from sites located in the Fraser River Delta of British 151 

Colombia (180 profiles), whereas all profiles with Z1.0 < 200 m are from sites in Oregon and 152 

Washington (38 profiles). The profiles are sourced predominantly from surficial geologic units 153 

mapped as Quaternary sediment, including 70% in alluvium variants (e.g., loam, overbank, flood) 154 

and 15% in peat.  155 
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Figure 2. Distribution of VS30 and Z1.0 from measured profiles in which VS reaches 1000 m/s. 

 

Figure 3. Map of measured profiles in which VS reaches 1000 m/s. 

Notably, a scarcity of Z1.0 measurements eliminated 76% of the Ahdi et al. (2017) data from 156 

the dataset, since Z1.0 is required in Eq. 2a. This scarcity is attributable to the difficulty and expense 157 

of deep profiling, which is often motivated in British Columbia by petroleum exploration (e.g., 158 

Hunter et al., 1998). In this regard, the lack of deep Z1.0 measurements elsewhere should not be 159 

inferred as an absence of such conditions. To the contrary, profiles with Z1.0 > 200 m are abundant 160 

in the Puget-Willamette lowland of Oregon and Washington (e.g., in the Everett, Seattle, Tacoma, 161 

Portland, and Tualatin sub-basins), where Z1.0 may occasionally reach 1000 m (Yount et al., 1985; 162 

Myer et al., 2005; McPhee et al., 2014; Ahdi et al., 2017; Stephenson et al., 2017). Whereas Vs 163 

measurements are plentiful within these basins, the measurements rarely exceed a depth of 100 m.  164 

Alternative depth to velocity (Zx) inputs to Eq. 2 were explored (e.g., Z0.6) to increase the 165 

available points in the dataset. However, such alternatives: (1) only marginally increased the size 166 

of the dataset; (2) did not measurably improve the accuracy of the final SVM; and (3) are not as 167 
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common as Z1.0 in ground motion modeling, thereby potentially hindering transferability of the 168 

proposed model to other regions. Ultimately, as shown in Figure 2, there is a need for deep, 169 

continuous profiling of sedimentary basins in Washington and Oregon, which will confirm or 170 

update the model proposed herein. 171 

Fitting Model Parameters 172 

Using the subset of the Ahdi et al. dataset, model parameters 𝑉𝑆0 and 𝑛 were determined for 173 

each profile. This was achieved by minimizing the error between the measured VS and that 174 

predicted by Eq. 2, with error for each profile computed as: 175 

 𝜀𝑉𝑠 =
1

𝑁
∑ |ln 𝑉𝑠,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑧𝑖) − ln 𝑉𝑠,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑧𝑖)|𝑁

𝑖=1  (3) 176 

In Eq. 3, each profile is discretized into 1-m thick layers, 𝑧𝑖 is the depth from the surface to the 177 

midpoint of layer 𝑖, and 𝑁 is the total number of layers for that profile. Only sediment layers with 178 

Vs ≤ 1000 m/s were included in the error term, since the proposed model is intended to coalesce 179 

with a CVM at Z1.0. Optimal parameters 𝑉𝑆0 and 𝑛 were found using the Nelder-Mead algorithm 180 

(Gao and Han, 2012, with a convergence tolerance of 1e-8) to minimize 𝜀𝑉𝑠, which can be 181 

expressed as:  182 

 {𝑉𝑆0, 𝑛} = arg min 𝜀𝑉𝑠                                           (4) 183 

As examples of the results of this procedure, Figure 4 shows the fitted profiles from two sites: (a) 184 

a low-VS30, high-Z1.0 site; and (b) a high-VS30, low-Z1.0 site. In each case the optimal 𝑉𝑆0 and 𝑛 are 185 

shown, as is the prediction of Vs-versus-depth from SA18 (i.e., Eq. 1). It can be seen that SA18 is 186 

problematic at the high-Z1.0 site, where VS is difficult to predict in the absence of Z1.0 information.  187 

 

(b) (a) 



 

 

Marafi et al. — 9 

Figure 4. Shear-wave velocity (Vs) versus depth for (a) a low-VS30, high-Z1.0 site; and (b) a high-

VS30, low-Z1.0 site. 

Repeating this process for all profiles, Figure 5 summarizes the optimal, fitted model 188 

parameters, plotted with respect to each profile’s measured VS30 and Z1.0. As can be observed from 189 

the binned, average behavior in Figure 5a, VS0 tends to increase as VS30 increases. This was also 190 

observed in California for the SA18 model and is expected, given the link between VS at the ground 191 

surface and VS time-averaged over the top 30 m. In contrast, VS0 shows no correlation to Z1.0 for 192 

the dataset (Figure 5b). While it is mathematically necessary that VS0 approach 1000 m/s as Z1.0 193 

approaches zero, the lack of any other trend is unsurprising, given that surficial soil deposits may 194 

be stiff or weak, and shallow or deep, independent of the rock that lies beneath.  195 

Parameter n, which relates to the rate-of-change in VS at greater depths, increases with 196 

increasing VS30 (Figure 5c) and decreases with increasing Z1.0 (Figure 5d). This indicates that in 197 

profiles with high VS30 and low Z1.0, Vs tends to increase rapidly at shallow depth and gradually 198 

thereafter, whereas in profiles with low VS30 and high Z1.0, Vs tends to increase gradually at shallow 199 

depth, then more rapidly at depths approaching Z1.0. While these behaviors were expected, the 200 

inclusion of Z1.0 in Eq. 2, and preservation of reasonable VS30-Z1.0 behavior, represents an important 201 

conceptual advance. As will be demonstrated, this can result in significantly more accurate 202 

estimates of site-response relative to models that do not account for deeper geologic structure.  203 
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Figure 5. Optimal values of model parameter VS0 as a function of measured (a) VS30 and (b) Z1.0; 

Optimal values of model parameter n as a function of measured (c) VS30 and (d) Z1.0. 

In addition to the trends investigated in Figure 5, correlations between the model parameters 204 

(i.e., n and VS0) and other potential predictor variables were explored, including mapped glacial 205 

history, surficial geologic unit, and various geospatial parameters (e.g., surface mineralogy, 206 

roughness, and wetness; distance to, and elevation above, rivers, streams, and other water bodies; 207 

and compound-topographic-index). Some of these predictors showed promise for future study, 208 

particularly with a larger dataset, but they were not included in the current model. In this regard, 209 

future research could identify and include additional predictors of Vs as part of global modeling 210 

efforts. In the next section, the prediction of model parameters VS0 and n is explored using predictor 211 

variables VS30 and Z1.0. 212 

Predicting Model Parameters 213 

Informed by the trends observed in Figure 5a, parameter VS0 is modelled using input variable 214 

VS30 and the following functional form:  215 

 𝑉𝑆0 = 𝑎0 + 𝑎1(𝑉𝑆30)𝑎2  (5) 216 

(a) (b) 

(c) (d) 
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where a0 is the y-axis intercept (i.e., VS0 when VS30 = 0); a1 and a2 controls the rate of variation of 217 

VS0 with VS30. Coefficients a0, a1, and a2 were determined by minimizing the prediction error of 218 

VS0, expressed as: 219 

 {𝑎0, 𝑎1, 𝑎2} = arg min
1

𝑚
∑ |ln 𝑉𝑆0,𝑗 − ln 𝑉𝑆0−𝑜𝑝𝑡𝑖𝑚𝑎𝑙,𝑗|𝑤𝑗

𝑚
𝑗=1  (6) 220 

where VS0 is computed by Eq. 5; VS0-optimal is the optimal value of VS0 computed for each profile by 221 

Eq. 4; and w is a profile-specific weighting factor that mitigates bias from geographic clustering 222 

of the dataset. In particular, a majority of the profiles were sourced from the Fraser River Delta, as 223 

shown in Figures 2 and 3. Accordingly, w normalizes errors in proportion to the number of profiles 224 

from the Fraser Delta and elsewhere, such that both subsets have equal weighting. Ideally, the 225 

weighting function should be further disaggregated to account for error bias from other regions 226 

(i.e., Seattle and Portland), however, doing so would have resulted in an unreasonably small 227 

sample size by which to normalize errors. Following this approach, coefficients 𝑎0, 𝑎1, and 228 

𝑎2 were found using the Nelder-Mead algorithm (Gao and Han, 2012, with a convergence 229 

tolerance of 1e-8), and are summarized in Table 1. These coefficients give physically reasonable 230 

predictions for all VS30 > 100 m/s, although the dataset is populated only from 112 m/s < VS30 < 231 

871 m/s. The resulting calibrated model for parameter VS0 is a function of VS30 is plotted in Figure 232 

6. 233 

  234 
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 235 

Table 1. Optimized Model Coefficients  

Coefficient Value Coefficient Value 

𝑎0 -629 𝑏0 0.00912 

𝑎1 434 𝑏1 0.646 

𝑎2 0.122 𝑏2 -0.201 

- - 𝑏3 0.136 

 236 

 
Figure 6. Model parameter VS0 predicted by Eq. 5 as a function of VS30. Markers indicate the 

fitted, or optimal, VS0 values for each VS profile. 

Informed by the trends observed in Figures 5c and 5d, parameter n is predicted using input 237 

variables VS30 and Z1.0 with the following functional form: 238 

 𝑛 = 𝑏0(𝑉𝑆30)𝑏1(𝑍1.0)𝑏2(𝑉𝑆30𝑍1.0)𝑏3  (7) 239 

where b0 is the initial slope, b1 is the exponent on the VS30 term, b2 is the exponent on the Z1.0 term, 240 

and b3 is the exponent on the VS30-Z1.0 interaction term. Coefficients b0, b1, b2, and b3 were 241 

determined by minimizing the prediction error of n, expressed as: 242 

 {𝑏0, 𝑏1, 𝑏2, 𝑏3} = arg min
1

𝑚
∑ |ln 𝑛𝑗 − ln 𝑛𝑜𝑝𝑡𝑖𝑚𝑎𝑙,𝑗|𝑤𝑗

𝑚
𝑗=1  (8) 243 

where n is computed by Eq. 7; noptimal is the optimal n for each profile computed by Eq. 4; and w 244 

is as previously defined. Coefficients b0, b1, b2, and b3 were again determined using the Nelder-245 

Mead algorithm (Gao and Han, 2012, with a convergence tolerance of 1e-8) and are summarized 246 

in Table 1. These coefficients give physically reasonable predictions for all VS30 and Z1.0. 247 
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The resulting predicted values for parameter n are plotted as a function of VS30 and Z1.0 as a 248 

color contour in Figure 7a. Parameter k, which depends on predictions of both VS0 and n (see Eq. 249 

2b), is depicted similarly in Figure 7b. Consistent with trends previously observed in individual 250 

profiles, sites with low-VS30 and high-Z1.0 have predicted n < 1 and predicted k approaching 1.0, 251 

meaning that the predicted Vs increases gradually at shallow depth, then more rapidly at depths 252 

approaching Z1.0. In contrast, sites with high-VS30 and low-Z1.0 have predicted n > 1 and predicted 253 

k approaching zero, meaning that the predicted Vs increases rapidly at shallow depth and gradually 254 

thereafter. Also shown in Figure 7 is the VS30-Z1.0 parameter space of the dataset (transparent 255 

circles). It should be noted that predictions beyond this space are extrapolations of the data. 256 

 
Figure 7. Model parameters (a) n and (b) k predicted by Eqs. 7 and 2b, respectively, as a 

function of VS30 and Z1.0. 

To assess whether these predictions exhibit bias for any ranges of VS30 and Z1.0, prediction 257 

residuals are quantified in Figure 8 as the difference between the natural-log of the predicted 258 

parameter (ln VS0,pred or ln npred) and the natural-log of the optimal parameter (ln VS0,optimal or ln 259 

noptimal). Figures 8a and 8b show the VS0 residuals, which average -0.023 and are nearly constant 260 

with respect to VS30 and Z1.0. Similarly, Figures 8c and 8d show the n residuals, which average -261 

0.013 but show significant negative bias for the highest-Z1.0 bin in Figure 8d. This bin only contains 262 

five profiles, so it is possible that it is a statistical outlier, but it is also possible that the model 263 

underestimates the concavity of the deepest profiles. Accordingly, we conclude that VS0- and n-264 

residuals are acceptable with respect to the model’s input variables, VS30 and Z1.0, but also 265 

acknowledge that additional field data are needed for further model calibration. 266 

  267 

(b) (a) 
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Figure 8. (a) VS0 residuals with respect to VS30; (b) VS0 residuals with respect to Z1.0; (c) n 

residuals with respect to VS30; and (d) n residuals with respect to Z1.0 (All residuals are in natural 

log units). 

EVALUATION OF PROPOSED MODEL 268 

The proposed SVM is defined by Eqs. 2, 5, and 7, along with the coefficients provided in Table 269 

1. Figure 9 shows examples of VS profiles predicted by the SVM, corresponding to VS30 = 200, 270 

400, 600, and 800 m/s, and Z1.0 = 50, 200, and 400 m. These predictions are consistent with trends 271 

observed in the dataset. Extrapolations beyond the parameter space of the dataset are physically 272 

reasonable, though the SVM is intended to coalesce with a CVM at VS = 1000 m/s and was not 273 

trained on measurements exceeding 1000 m/s. In the ensuing sections, we evaluate the 274 

performance of the proposed model in several ways. 275 

(a) (b) 

(d) (c) 
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Figure 9. Shear-wave velocity with respect to depth for sites with various VS30 (in m/s) and (a) 

Z1.0 = 50 m; (b) Z1.0 = 200 m; and (c) Z1.0 = 400 m.  

Predicted Profile VS30 Versus Input VS30  276 

Given that VS30 is an input to the SVM (and may be estimated using one of several proxy- or 277 

geology-based models), predicted profiles would ideally have a VS30 consistent with the assumed 278 

input. To evaluate this consistency, VS30 residuals are quantified in Figure 10a and defined as 279 

ln(VS30,predicted) – ln(VS30,input), where the latter is the input value and the former is VS30 computed 280 

from the resulting, predicted Vs profile (i.e., using Eq. 2). These residuals were computed for a 281 

wide range of values of VS30 and Z1.0 and are depicted in Figure 10a as a color contour. An 282 

analogous analysis was performed for SA18 and is shown in Figure 10b. In each case, the VS30-283 

Z1.0 parameter space of the Cascadia dataset is also plotted.  284 

The computed values of VS30 for the SA18 profiles are consistent with the input VS30, with 96% 285 

of dataset profiles having a VS30 residual less than ± 0.1 (i.e., ± 10% error). However, SA18 gives 286 

undefined or implausible results for VS30 < ⁓140 m/s. Using the proposed Cascadia SVM, 53% of 287 

dataset profiles have a VS30 residual less than ± 0.1 and 73% have a residual less than ± 0.25. It can 288 

also be seen in Figure 10a that some combinations of VS30 and Z1.0 result in very large residuals. 289 

However, these combinations are generally unlikely to exist, low VS30 (< 200 m/s) and low Z1.0 (< 290 

40m), or high VS30 (> 500 m/s) and high Z1.0 (> 50 m), having no representation in the Ahdi et al. 291 

(2017) dataset. Lastly, while strict compliance with VS30 is ideal, such constraint can lead to large 292 

errors at greater depths. In this respect, the Cascadia SVM represents a compromise, reproducing 293 

VS30 adequately but not identically, in favor of better prediction of Vs at z > 30 m and overall 294 

improved site response estimation (subsequent section).  295 

(a) (b) (c) 
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Figure 10. VS30 residual, as a function of input Z1.0 and VS30, for the (a) proposed Cascadia SVM; 

and (b) SA18 SVM. 

Predicted Versus Measured VS Profile 296 

To evaluate the proposed SVM’s performance at all depths, VS residuals were computed in the 297 

same manner done for SA18 in Figure 1. However, to provide a consistent comparison, the 298 

evaluation of SA18 is repeated for the subset of profiles and is shown in Figure 11. These results 299 

are very similar to those in Figure 1, from which it may be inferred that the subset profiles are 300 

representative of the larger Ahdi et al. (2017) dataset. SA18 predictions are again relatively 301 

accurate for z < 50 m and z > 600 m but tend to have much larger errors at depths in between. 302 

Specifically, the median VS residual reaches peak values of: -0.25 in the upper 50 m (~28% 303 

underprediction); -0.18 between depths of 600 m and 1000 m (~16% underprediction); and +0.85 304 

between depths of 50 m and 600 m (~150% overprediction). The largest overpredictions generally 305 

correspond to soft, thick soil deposits in deep basins, which are underrepresented in the SA18 306 

dataset.  307 

Residuals for the Cascadia SVM, incorporating both VS30 and Z1.0, are shown in Figure 12. 308 

Here, the median VS residual reaches peak values of: -0.088 in the upper 50 m (~8% 309 

underprediction); -0.33 between depths of 600 m and 1000 m (~28% underprediction); and -0.13 310 

between depths of 50 m and 600 m (~12% underprediction). Thus, the proposed SVM performs 311 

significantly better at depths up to 600 m, beyond which the model accuracies are similar. In 312 

addition, the variance of residuals is less in the upper 100 m using the proposed SVM and similar 313 

to SA18 at other depths.  314 

(b) (a) 
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Figure 11. Vs residuals (predictions from SA18) for (a) depths up to 200 m; and (b) depths 

up to 1000 m, considering 218 profiles compiled by Ahdi et al. (2017). Positive residual indicate 

an overprediction by the model (i.e., SA18). 

  
Figure 12. Vs residuals (predictions from our proposed Cascadia SVM) for depths: (a) up to 

200 m; and (b) up to 1000 m, considering 218 profiles compiled by Ahdi et al. (2017). Positive 

residual indicate an overprediction by the model (i.e., our SVM). 

To assess whether these predictions exhibit bias (i.e., consistently positive or negative 315 

residuals) for any ranges of VS30 and Z1.0, the residuals from Figure 11 and 12 are parsed into four 316 

bins in Figure 13 and 14: (a) low VS30 and low Z1.0, (b) low VS30 and high Z1.0, (c) high VS30 and 317 

low Z1.0; and (d) high VS30 and high Z1.0. Considering depths up to 200 m, the average absolute 318 

values of the Vs residuals (using the proposed SVM) in these respective bins are 0.44, 0.15, 0.31, 319 

and 0.25 (Figure 14). By comparison, and as shown in Figure 13, SA18 produces analogous Vs 320 

residuals in these respective bins of 0.45, 0.89, 0.46, and 0.53. This suggests the proposed SVM 321 

better predicts Vs than SA18 for all bins. Notably, both SVMs resulted in larger residuals for 322 

profiles with low VS30 and low Z1.0 (Figure 13a and Figure 14a). However, as previously discussed, 323 

(b) (a) 

(b) (a) 
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the dataset contains relatively fewer profiles with low Z1.0. In this regard, a larger set of field 324 

measurements is needed to assess this behavior.  325 

Figure 13. Vs residuals (predictions from SA18) from Figure 11 binned on: (a) low VS30 and low 

Z1.0, (b) low VS30 and high Z1.0, (c) high VS30 and low Z1.0; and (d) high VS30 and high Z1.0. Positive 

residual indicate an overprediction by the model (i.e., SA18). 

Figure 14. Vs residuals from Figure 12 binned on: (a) low VS30 and low Z1.0, (b) low VS30 and 

high Z1.0, (c) high VS30 and low Z1.0; and (d) high VS30 and high Z1.0. Positive residual indicate an 

overprediction by the model (i.e., our SVM). 

Expected Site Response: Predicted Versus Measured VS  326 

While the preceding evaluation shows that the proposed SVM significantly improves 327 

predictions of VS in Cascadia, it is important to evaluate the consequences for expected ground 328 

motions. That is, to what extent do inaccuracies in the predicted velocity structure result in 329 

erroneous estimates of site response? To assess the similarity of ground-motion predictions using 330 

measured versus predicted profiles, wave-propagation-based site response analyses were 331 

(a) (b) (c) (d) 

(d) (a) (c) (b) 
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performed on: (1) Vs profiles measured in the field; and (2) predictions of those Vs profiles made 332 

by SA18 and the SVM proposed herein. This was achieved via equivalent linear site-response 333 

analysis using pysra (Kottke, 2020), a Python implementation of the software Strata (Kottke and 334 

Rathje, 2008). Nonlinear material behavior was modelled using Darendeli (2001) with the 335 

following material assumptions: (1) plasticity index of 30; (2) soil density of 19.6 kN/m3; (3) 336 

ground water depth of 5 m; (4) at-rest earth pressure coefficient of 1.0; and (5) an over-337 

consolidation ratio computed per Wair et al. (2012). Nonetheless, the most salient findings of these 338 

analyses were ultimately insensitive to the assumed material properties. Results are first presented 339 

in greater detail for two representative site conditions, considering two input motions. The results 340 

of replicate analyses on a large set of VS profiles are then summarized.  341 

First, the two Ahdi et al (2017) profiles shown in Figure 4 were selected to represent: (1) a soft 342 

site (VS30 = 257 m/s) with high Z1.0 (589 m), and (2) a stiff site (VS30 = 642 m/s) with low Z1.0 (23 343 

m). Each profile was subjected to two horizontal input motions from the NGA-West-2 database 344 

(PEER, 2014): (1) a low-intensity record (PGA = 0.06 g) from the 1976 Mw5.91 Friuli earthquake 345 

on a site with VS30 = 650 m/s (Record Sequence Number [RSN] 133); and (2) a high-intensity 346 

record (PGA = 0.65 g) from the 2007 Mw6.8 Chuetsu-Oki earthquake on a site with VS30 = 610 m/s 347 

(RSN 4845). These motions were input at depths consistent with the near-surface velocities on 348 

which they were recorded.  349 

The implications of Vs prediction for expected site response were studied via ratios of surface-350 

to-input spectral acceleration (Sa), as shown in Figure 15 for the four representative combinations 351 

of site conditions and input motions. Such ratios were computed for each combination, namely 352 

using: (1) Vs as measured in the field; (2) Vs as predicted by SA18; and (3) Vs as predicted by the 353 

proposed SVM. As shown in Figures 15a and 15b, differences between expected motions on the 354 

site with high VS30 and low Z1.0 are generally minor for measured versus predicted profiles. For 355 

these conditions, SA18 and the proposed SVM predict Vs profiles that are similar to one another, 356 

and to the measured profile, leading to similar estimates of site response. The differences that do 357 

arise from measured versus predicted profiles are partly attributable to the smooth gradient of each 358 

SVM, such that neither can predict strong impedance contrasts within a profile.  359 

In contrast, as shown in Figures 15c and 15d, large differences in expected motions arise for 360 

the site with low VS30 and high Z1.0. For these conditions, the proposed SVM performs significantly 361 

better, whereas SA18 predicts a soil profile that is stiffer and shorter than actual (i.e., it overpredicts 362 
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Vs at intermediate depths, as shown in Figure 11). This results in erroneous estimates of site 363 

response, such that Sa is overpredicted at shorter periods (< ~0.5 sec) and underpredicted at longer 364 

periods (> ~2 sec).  365 

 
Figure 15. Ratios of surface-to-input acceleration response-spectra (Sa,surface / Sa,input) for 

measured versus predicted Vs profiles, considering representative site and loading conditions: (a) 

high VS30, low Z1.0; low input-PGA, (b) high VS30, low Z1.0, high input-PGA; (c) low VS30, low 

Z1.0, low input-PGA; and (d) low VS30, low Z1.0, high input-PGA. 

Next, this comparison was repeated for all 218 Ahdi et al. (2017) profiles with measured Z1.0. 366 

These results are summarized in Figure 16 via the ratio of predicted-to-actual Sa amplification, 367 

where “predicted” and “actual” respectively refer to analyses using predicted and measured Vs. A 368 

ratio of 1.0 indicates that expected Sa values on predicted and measured profiles are identical. 369 

Further, these results are parsed by Z1.0, such that ratios from sites with Z1.0 < 100 m are shown in 370 

Figures 16a and 16b while those from sites with Z1.0 > 100 m are shown in Figures 16c and 16d. 371 

These results generally mirror those presented above. Considering all profiles with Z1.0 < 100 m, 372 

the two SVMs result in estimates of site response that are similar. These estimates are also 373 

generally consistent with those derived from measured profiles, as indicated by average Sa-374 

amplification ratios near unity. Conversely, considering all profiles with Z1.0 > 100 m, the two 375 

(d) (c) 

(b) (a) 
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SVMs result in drastically different estimates of site response. As shown in Figures 16c and 16d, 376 

the proposed Cascadia SVM results in ground motions that, on average, are very similar to those 377 

expected on measured profiles. In contrast, SA18 results in motions with considerably higher-than-378 

actual Sa across shorter periods and considerably lower-than-actual Sa across longer periods. These 379 

mispredictions would have important ramifications for the expected, consequent impacts within 380 

Cascadia’s basins. For example, in Figure 17, Sa-amplification ratios at natural periods (Tn) of 0.2 381 

sec, 1 sec, and 3 sec are extracted from Figure 16 for each profile and plotted with respect to Z1.0. 382 

It is again clear that as Z1.0 increases, the proposed SVM performs better, with SA18 tending to 383 

overpredict shorter-period motion and underpredict longer-period motion.  384 

 
Figure 16. Predicted-to-actual Sa amplification (“predicted” and “actual” refer to analyses 

using predicted and measured Vs, respectively) for: (a) Z1.0 < 100 m, low input-PGA; (b) Z1.0 < 

100 m, high input-PGA; (c) Z1.0 > 100 m, low input-PGA; and (d) Z1.0 > 100 m, high input-PGA. 

  

(d) (c) 

(a) (b) 
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Figure 17. Predicted-to-actual Sa amplification, as a function of Z1.0, at natural periods (Tn) of: 

(a) 0.2 sec; (b) 1.0 sec, and (c) 3.0 sec. 

Conclusions 385 

This study presents a new general soil velocity model (SVM) for prediction of Vs profiles. Such 386 

models are critical to the evaluation of local amplification of ground motions at sites where 387 

detailed, site-specific profiles are not available (e.g., regional assessments). The new model builds 388 

on previous work by accounting not only for near-surface soil conditions (VS30), but also deeper 389 

geologic structure (Z1.0). The model requires input variables VS30 and Z1.0, which can be estimated 390 

without a detailed soil investigation. VS30 can be estimated using several proxy- or geology-based 391 

methods (e.g., Wald and Allen, 2007; Ahdi et al., 2017), and Z1.0 can be estimated from 392 

Community Velocity Models (e.g., Stephenson et al., 2017), which provide detailed mapping of 393 

deeper geologic structure, but not of the near-surface.  394 

The proposed SVM was calibrated with data from the Cascadia region and improves upon a 395 

California-specific model (Shi and Asimaki, 2018) based on VS30 alone, resulting in significantly 396 

more accurate estimates of site-response in Cascadia’s deeper basins while still capturing shallow-397 

site conditions. The new SVM gives physically reasonable predictions for VS30 ≥ 100 m/s and Z1.0 398 

> 2.5 m up to a depth of Z1.0, where the model is intended to coalesce with a CVM. The model was 399 

not trained on Vs measurements exceeding 1000 m/s, so for depths beyond Z1.0, it is expected that 400 

the profile would be given by the CVM. In addition, relatively few existing Vs measurements in 401 

the region reach 1000 m/s, limiting the dataset utilized herein. As more Z1.0 data become available, 402 

the accuracy of this SVM will improve, in turn improving ground-motion predictions across the 403 

region. Additionally, it is assumed here that Z1.0 scales with ‘true’ basin depth and that the 404 

underlying CVM accurately captures the velocity structure at large depths. Special cases where 405 

(a) (b) (c) 
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large velocity inversions exist due to intermediate layers are beyond the scope of this work and 406 

would require site- and basin-specific modeling. Lastly, while this model was implemented for 407 

Cascadia, the modeling approach demonstrated herein is globally applicable and is particularly 408 

likely to be beneficial in regions with deep basins.  409 
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