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CPT-Based Liquefaction Case Histories Compiled
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Earthquakes occurring over the last decade in the Canterbury region of New Zealand
have resulted in liquefaction case-history data of unprecedented quantity. This provides
the profession with a unique opportunity to advance the prediction of liquefaction
occurrence and consequences. Towards that end, this paper presents a curated dataset
containing ~15,000 cone-penetration-test-based liquefaction case histories compiled
from three earthquakes in Canterbury. The compiled, post-processed data is presented
in a dense array structure, allowing researchers to easily access and analyze a wealth
of information pertinent to free-field liquefaction response (i.e., triggering and surface
manifestation). Research opportunities using this data include, but are not limited to,
the training or testing of new and existing liquefaction-prediction models. The many
methods used to obtain and process the case-history data are detailed herein, as is the
structure of the compiled digital file. Lastly, recommendations for analyzing the data

are outlined, including nuances and limitations that users should carefully consider.

Introduction

Within the six years following the 4 Sept. 2010 My 7.1 Darfield earthquake, which triggered

widespread liquefaction in the city of Christchurch, New Zealand, and its environs, 21 additional
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M,, > 5 earthquakes occurred within ~20 km of the city’s center. While some liquefaction was
observed in at least 10 of these events (Quigley et al., 2013), damaging liquefaction was most
notably triggered by ruptures on 22 Feb 2011, 13 June 2011, 23 Dec 2011, and 14 Feb 2016. A
comprehensive summary of the first three of these, including tectonic and geologic settings,
seismology, and effects, is provided by Quigley et al. (2016). Specific to liquefaction, observed
consequences included: damage to low-, mid-, and high-rise structures, resulting in widespread
loss of building stock (e.g., Cubrinovski et al., 2011; van Ballegooy et al., 2014a; Bray et al.,
2014); failure of water, wastewater, power, and communications networks (e.g., O’Rourke et al.,
2014; Kwasinski et al., 2014; Tang et al., 2014); loss of road, rail, bridge, and levee functionality
(e.g., Green et al. 2011; Wotherspoon et al., 2011; Cubrinovski et al., 2014); and impairment of
port infrastructure (e.g., Chalmers et al., 2013).

The presence of these effects in a major urban center facilitated and motivated the collection
of vast amounts of data, including seismologic, hydrologic, geospatial, and geotechnical
measurements, much of which was uploaded to the open access Canterbury Geotechnical Database
(CERA, 2013), now the New Zealand Geotechnical Database (NZGD, 2020). These bulk, raw
ingredients constitute the makings of an unprecedented quantity of liquefaction case histories,
which can be used to train or test predictive models. While several “tiers” of liquefaction prediction
model exist (Geyin et al., 2020a), most prevalent models in practice are based on in-situ
geotechnical tests, among which the cone-penetration-test (CPT) has important advantages (NRC,
2016). Yet, while such models are widely used to predict liquefaction, they have to-date been
trained on relatively modest datasets. For example, the CPT-based liquefaction triggering model
of Boulanger and Idriss (2014), when developed, was trained on essentially all published case
histories from all earthquakes combined, or 255 datapoints. Accordingly, this study compiles a
curated digital dataset of approximately 14,500 — 15,500 CPT-based case-histories from three
earthquakes in Canterbury —namely the Sept. 2010 My7.1, Feb. 2011 My6.2, and Feb. 2016 My5.7
earthquakes — with the exact total depending on criteria discussed subsequently. The post-
processed data is presented in a structure array (i.e., a single file), allowing researchers to readily
access and analyze a wealth of information pertinent to free-field liquefaction response. As shown
in Figure 1, this considerably augments the data available for model training and testing (by at
least 50x), presenting the profession with a unique opportunity to advance the science of

liquefaction prediction.
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In the following sections, the methods used to obtain, process, and populate the database are
first detailed, with each “datapoint” including: (i) identifying information (e.g., geographic
coordinates); (ii) processed CPT data, both with and without inverse-filtering and interface
correction (Boulanger and DeJong, 2018); (iii) peak ground acceleration (PGA) and earthquake
magnitude (M,); (iv) groundwater table (GWT) depth; and (v) the classified occurrence and
severity of liquefaction manifestation at the ground surface, with explicit focus on free-field level
ground sites. Next, the structure and formatting of the resulting data array are described, and lastly,
recommendations for analyzing the data are discussed, including nuances, uncertainties, and

limitations that users should carefully consider.
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Figure 1. Chronology of CPT-based liquefaction case histories, as compiled by Geyin et al. (2020a).

Methodology

Case histories were compiled from the Sept. 2010 My7.1, Feb. 2011 My6.2, and Feb. 2016 My5.7
earthquakes. This effort built upon successive compilations (Maurer et al., 2014, 2015a),
augmenting the largest by more than 50%. While data could potentially also be compiled from the
aforementioned events of 13 June and 23 Dec 2011, these events are complicated by the occurrence
of multiple, similar-magnitude ruptures only minutes-to-hours apart (Bradley, 2016). As a result,
reconnaissance captured the compounded effects of multiple events (complicating observations of

response) and pore pressures were elevated at the start of latter events (complicating predictions
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of response). We thus choose not to present these data, focusing instead on three events without

this obfuscating circumstance.

CPT Data and Processing

CPT data was obtained from the New Zealand Geotechnical Database (NZGD, 2020) at sites where
liquefaction manifestations could be reliably classified, as discussed subsequently. During this
process, CPTs were rejected if inferred from geospatial autocorrelation analyses (Anselin, 1995)
to have terminated prematurely (e.g., due to impedance from gravel), such that liquefiable soils
potentially exist at greater depth. The local geology of Christchurch is well characterized, with
dense, non-liquefiable soils typically found at a certain depth and unlikely to be underlain by looser
soils that contribute to liquefaction hazard. In particular, beach, estuarine, and coastal swamp
sediments were deposited across Christchurch as sea level rose during the late Pleistocene and
Holocene, reaching a peak ~6,500 years before present, with the coastline located 1-2 km west of
the present-day city center (Brown et al., 1995). Since then, alluvial deposition has resulted in
progradation of the coast to its present location (Brown et al., 1995). Collectively, the deposits
resulting from coastline transgression and progradation are known as the Christchurch formation
and overlay Pleistocene gravels (i.e., the Riccarton Gravel formation). The terrestrial thickness of
the Christchurch formation is greatest beneath the present-day coastline and tapers from east to
west, terminating around the mid-Holocene coastal highstand, beyond which the surface geology
is characterized by the Springston formation of alluvial gravels and sands (Begg and Jones, 2012).
Thus, where the Springston formation dominates (and in some areas of the Christchurch
formation), gravelly soils force CPT termination at shallow depth (< 20 m).

Figure 2 maps the expected, surficial geologic units as described in Table 1, and the locations
and termination depths of CPT soundings. The termination-depth trends shown in Figure 2b
generally agree with the known geologic profile, such that these depths diminish from east to west.
While the possibility of liquefiable soils at greater depths exists, it was assumed for this study that
their limits are generally defined by CPT termination depths. However, the database was first
parsed using an Anselin Local Morans I analysis (Anselin, 1995) to identify and remove outliers
with sounding depths statistically less than the spatial average (i.e., soundings more likely to have

prematurely terminated before reaching the Riccarton Gravel formation).
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Figure 2. Case-history locations in context of: (a) surifical geologic units, as described in Table 1; and (b)
CPT sounding termination depths, as discussed in the text.

Table 1. Surficial Geologic Units of Study Area.

Geologic . . Percent (%) of
Unit Description Source CPTs in Unit
A Alluvial sand and silt of overbank deposits Brown (1975) 59.39
. Brown &
B Peat swamps now drained Weeber (1992) 2.24
C Fixed dune sand and beach deposits Brown (1975) 35.34
D Saline sand, silt and peat of drained lagoons and estuaries Brown & 2.26
’ p g Weeber (1992) :
E Fluviatile gravel, sand, and silt of historic river flood channel Brown & 0.43
u eg , sand, silt of histo er floo S| Weeber (1992) .
100 While the CPT offers advantages among in-situ tests used to predict liquefaction, it is still

101  limited by the volume of soil mobilized around the cone. As an intermediate-to-large-strain

102 penetration test, this mobilized zone acts as a physical “low-pass filter” on the true soil
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stratigraphy, removing information from the low spatial wavelengths, such as the data defining a
thin soil stratum or the interface between two disparate soils. These spatial smoothing effects,
which are commonly referred to as “thin layer” and “transition” effects, have long been recognized
and studied (e.g., Treadwell 1976; Lunne et al. 1997; Ahmadi and Robertson 2005; Robertson
2011; van der Linden 2018). While chart-based methods exist for manually correcting these effects
on CPT data, Boulanger and DeJong (2018) proposed the first programmable procedure. This
methodology, referred to as an “inverse filtering and interface detection” procedure, predicts the
“true” CPT profile from measured CPT values. Since these measured values reflect a filtered view
of reality, their correction would improve subsurface characterization. As a demonstration of the
methodology, CPT data from Christchurch is shown in Figure 3, both with and without correction.

While the performance of Boulanger and DeJong’s (2018) procedure is currently being
evaluated (e.g., Yost et al. 2020), its use can change a site’s perceived liquefaction hazard, with
the direction and magnitude of change dependent on numerous factors. Considering this potential
influence, and that the Boulanger and DeJong (2018) procedure might prove to be efficacious, both
measured and “true” CPT data are provided in the database. While the reader is referred to
Boulanger and DeJong (2018) for complete details, the procedure’s “baseline” parameters were
used to compute “true” CPT data. This was the case for both the subroutine that inverts tip
resistance and sleeve friction, and that which detects and corrects stratigraphic interfaces. These
defaults can conceivably be calibrated via site-specific study (e.g., from borings adjacent to a
CPT), but the information compiled for this study either was insufficient to attempt calibration or
provided insufficient statistical support to justify it. As part of the processing methodology, CPT
tip- and sleeve-measurements were aligned using statistical cross-correlation (Buck et al. 2002),
both for measured and “true” CPT data. In addition, CPT data was infilled in the “pre-drill” zone
(i.e., where borings were used to safety bypass pavements or utilities, most often to a depth of ~1
m where applicable (~40% of CPTs were pre-drilled)). In the absence of this correction, the
recorded data is that of noise as the cone penetrates an open boring. Accordingly, CPT data was
sampled 15 cm beyond the recorded depth of pre-drill, then uniformly applied to the pre-drill
interval. While this provides reasonable data for approximating soil unit weights, and by corollary,
in-situ stresses below the pre-drill zone, users should consider the relative depths of pre-drill and
groundwater when analyzing case histories, as further discussed herein. As part of this process,

CPTs with unknown pre-drill depth were preemptively removed from the dataset, as were CPTs
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134 with pre-drill depth exceeding 2.5 m. All CPT processing was completed using the software
135  Horizon (Geyin and Maurer, 2020a), a freely-available program developed by the authors.
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Figure 3. Example CPT data with (i.e. “true”) and without (i.e. “measured”) inverse-filtering and interface
correction via the Boulanger and DeJong (2018) procedure, as implemented in the software Horizon (Geyin
and Maurer, 2020a).

136  Liquefaction Manifestations

137  Emphasis was placed on compiling case histories from free field level-ground sites, with the
138  occurrence and severity of surface manifestation defined primarily by liquefaction ejecta. In this
139 respect, sites with other indicators of liquefaction (e.g., evidence from ground-motions or
140  foundation settlements) were expressly omitted. While ~7% of case histories were characterized
141 by a predominance of lateral spreading, the majority were compiled from level-ground sites. In

142 particular, surface manifestations were observed at CPT sites following at least one of the three
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aforementioned earthquakes and manually classified by the authors as “none,” “marginal,”

29 ¢¢

“moderate,” “severe,” “lateral spreading,” or “severe lateral spreading” using criteria modified
from Green et al. (2014) and given in Table 2; the identifying codes assigned herein to each
classification are also provided. This was accomplished using high-resolution satellite imagery and
reconnaissance reports available in the New Zealand Geotechnical Database (NZGD, 2020).
Classifications were based on a circular sample area, centered on each CPT, with approximate
radius of 10 m. Representative observations of manifestation classifications are provided in
Appendix A. Sites where surface manifestations could not be reliably classified following an event
are denoted as “unknown” and coded “10” (i.e., sites where manifestations were classified
following at least one earthquake, but not all three, which was the case for ~18% of study sites).
Of the resulting 15,890 compiled case histories, 61% were classified as “none” and 39% are cases
in which manifestations were observed and classified in accordance with Table 2. Owing to

nuances that will be discussed subsequently, the quantity of data best suited for model training and

testing is ultimately reduced to ~14,500 — 15,500 cases.

Table 2. Criteria used to classify liquefaction manifestations (after Green et al. 2014).

Classification SR Criteria
ID
None 0 No observed liquefaction ejecta or lateral spreading
Minor 1 Small, isolated liquefaction features less than a vehicle width; <5% of

ground surface is covered by ejecta; no lateral spreading.

Groups of liquefaction features greater than a vehicle width; 5-40% of
Moderate 2 ground surface is covered by ejecta; streets are generally passable; no
lateral spreading.

Adjoining large liquefaction features that are greater than a vehicle width;
Severe 3 >40% of ground surface is covered by ejecta; streets are generally
impassable; no lateral spreading.

Ejection of liquefied material at the ground surface may be observed, but
4 lateral spreading is the predominant manifestation and damage
mechanism. Measured crack-displacement widths are less than 200 mm.

Lateral
Spreading

Ejection of liquefied material at the ground surface may be observed, but
5 lateral spreading is the predominant manifestation and damage
mechanism. Measured crack-displacement widths exceed 200 mm.

Severe Lateral
Spreading

Insufficient information to reliably classify: out of bounds, no reliable

Unknown 10 . . . .
documentation, obscured or otherwise ambiguous imagery.
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Hydrologic Data

GWT depths at CPT locations were obtained from the time-dependent models of van Ballegooy et
al. (2014b). These models, which reflect seasonal and local fluctuations across the region, were
derived in part using long-term monitoring data from a network of ~1000 monitoring wells and
provide a best estimate of GWT depths at the time of each earthquake. Well measurements were
corrected for elevation changes caused by the earthquakes using digital elevation models derived
from ground-based surveys and airborne LiDAR (Light Detection and Ranging). River and
coastline data were used to shape and position GWT contours at places of significant groundwater-
surface water interaction (van Ballegooy et al., 2014b). The median GWT diminishes from 10+ m
elevation (relative to sea level) west of Christchurch to less than 1 m elevation in the eastern
suburbs (i.e., near the coast), roughly consistent with the change in ground elevation. The GWT
depth is generally 1-2.5 m beneath much of the study area but reaches 5 m west of the city center.
A histogram of GWT depth for all compiled case histories is shown in Figure 4a.
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Figure 4. Histograms of: (a) ground water table (GWT) depth; and (b) peak ground acceleration (PGA) for
case histories compiled in the curated dataset.

Peak Ground Accelerations (PGAs)

PGA i1s to-date the most common ground-motion intensity measure (IM) for quantifying seismic
demand in liquefaction models. Among other standard IMs, it has been shown to be the most
efficient predictor of pore-pressure generation and the initiation of liquefaction (Sideras, 2019). In

this study, PGAs were estimated at CPT sites via the Bradley (2014) method, which has been used
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widely in research related to the Canterbury earthquakes (e.g., van Ballegooy et al. 2015; Geyin et
al. 2020a; Geyin and Maurer 2020b). This method geostatistically coalesces instrumentally
recorded PGAs with predictions from ground-motion models (GMMs), where the former were
recorded by more than 20 near-source strong-motion stations (SMS) (e.g., Bradley and

Cubrinovski, 2011; Bradley, 2012). Using this approach, the PGA at SMS, i, is expressed as:
In (PGA) = pinpea, (Site, Rup) + 7 + &, (1)

where In(PGA,) is the natural logarithm of the observed PGA at SMS i; uynpgy, (Site, Rup) is the
mean of the natural logarithm of PGA at SMS i predicted by a GMM, which is a function of site

and rupture parameters; # is the inter-event residual; and &; is the intra-event residual. Within

Equation 1, a GMM predicts a PGA distribution:

In(PGAi) ~ N( tinpca; » oy + 06 ), (2)

where X ~ N(uy, 6) is shorthand notation for X having a normal distribution with mean, z, and
variance, 2. By definition, all PGAs recorded in a given earthquake have the same inter-event
residual, 7. Conversely, the intra-event residual, ¢;, varies from site to site but is correlated spatially
due to similarities in path and site effects. Accordingly, PGAs at SMS locations can be used to
compute conditional distributions of PGAs at CPT locations. First, the Bradley (2013) New
Zealand GMM was used to compute the unconditional distribution of PGAs at SMS locations. A
mixed-effects regression was then used to determine the inter-event residual, #, and the intra-event
residuals, &;’s, for each strong-motion station (e.g., Abrahamson and Youngs 1992; Pinheiro et al.
2008). Second, the covariance matrix of intra-event residuals was computed by accounting for the
spatial correlation between SMS locations and a test site of interest. The joint distribution of intra-

event residuals at a site of interest and the SMS is given as:

; 2
gsite _ 07 |0sice Z12
[SSMstation] =N <[0]' ;21 Zos ’ €)
where X ~ N(uy, X) is shorthand notation for X having a multivariate normal distribution with
mean Uy and covariance matrix X (i.e., same as above, but in vector form, with bold denoting

vectors or matrices); and aszsite is the variance of the intra-event residual at the site of interest. In

Equation 3, the covariance matrix has been expressed in a partitioned fashion to elucidate the
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subsequent computation of the conditional distribution of £, The individual elements of the

covariance matrix were computed from:
X(i, /) = pij OsiCs (4)

where p;; is the spatial correlation of intra-event residuals between two locations i and j, and o
and o, are the standard deviations of the intra-event residual at locations i and j. Based on the joint
site

distribution of intra-event residuals given by Equation 3, the conditional distribution of & was

computed from Johnson and Wichern (2007):
i Mstation] _ -1 Mstati 2 -1
[SSltelgs statwn] =N(Z2- 250" &s station O hite — 2253250
_ _ 2
= N(.ugsltfﬂ ¢SMstation, Ugsite | SSMstation) ()

Using the conditional distribution of the intra-event residual given by Equation 5 and substituting

into Equation 2, the conditional distribution of PGA at a site of interest, PGAg;¢e, 18:
2
[In PGAite | In PGAgystation] = N(.ulnPGAi + N+ U _site) smstation, O _site, ESMstation) (6)

That is, the conditional distribution of PGA is a lognormal random variable completely
defined by the conditional median and conditional uncertainty (i.e., lognormal standard deviation).
Intuitively, in cases where a CPT is located far from any SMS, the conditional distribution (i.e.,
final estimate of PGA) is similar to the unconditional distribution (i.e., GMM estimate of PGA),
and for a CPT very near to a SMS, the conditional distribution approaches the value observed at
the SMS. The conditional median and conditional uncertainty of PGA, both of which are given in
the dataset, were computed at CPT sites using the spatial correlation model of Goda and Hong
(2008). A histogram of the median PGA values for all case histories is shown in Figure 4b.

One benefit of the adopted approach is that uncertainty is explicitly computed, rather than
subjectively assigned, which prior compilations and studies of liquefaction case-history data have
been resigned to. With respect to the computed values, GMMs generally have standard deviations
0f ~0.45-0.55 in the natural log of PG4, though it can be larger in some cases (e.g., Bradley 2013).
In the compiled database, this parameter varies from 0.045 to 0.55, with a median of ~0.33. Thus,
the PGA uncertainty is generally much less than that which would be obtained using a GMM alone.

Any percentile, x, of the conditional PG4 distribution may be computed as:
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PGA, = PGAs * exp (NOjnpga) (7)

where PGA,, is the value of PGA for the x™ percentile, PGAx, is the conditional median, oy,,p¢ 4 is
the conditional lognormal standard deviation, and » is the “z-value” of the standard normal
distribution for the x™ percentile, which is the number of standard deviations from the median. As
an example, the 16™ and 84™ percentiles of a PGA distribution are computed using » values of -1
and 1, respectively, and the PGAsq and ay,p¢4 values computed for each case history. Maps of
these values are available in the New Zealand Geotechnical Database (NZGD, 2020). Additional
information describing the preceding methodology is provided by Bradley and Hughes (2012).

Data Structure

The compiled post-processed data is presented in a structure array (i.e., a single file), with each
case history including: identifying information (e.g., ID, geographic coordinates); CPT data, both
with and without inverse-filtering and interface correction; earthquake magnitude (M,); the
median and uncertainty (i.e., lognormal standard deviation) of the conditional PGA; GWT depth;
and the classified occurrence and severity of surficial liquefaction manifestation.

The curated dataset is available via the NHERI DesignSafe Cyber-Infrastructure data depot
at Geyin et al. (2020b) (https://doi.org/10.17603/ds2-tygh-ht91) and provided in both Matlab data
format and as a python data frame. The data fields, classes, contents, and their units are described
in Table 3 and its accompanying footnotes. The structure of the data array is depicted in Figure 5
and arranged such that case histories are principally sorted by a CPT identification (ID) number,
wherein multiple liquefaction case histories may be accessed. Event-specific data fields (e.g., My
and PGA) are 3 x 1 arrays containing information from the 2010, 2011, and 2016 earthquakes,
respectively. CPT measurements, which are depth-dependent but not event-specific, are /; x 1
arrays, where /; is the length of CPT i. Other fields include CPT ID, geographic coordinates, pre-
drill depth, and test date. To provide users with a benchmark against which data re-use scripts may
be verified, all relevant data is provided for one case-history site in Appendix B. Recommendations
for analyzing these data are next discussed, including important nuances and limitations that users

should consider prior to analysis.
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Table 3. Data fields, typologies, descriptions, and units.

Field Class Content

ID cell !CPT identifier assigned in the field (non-unique)
CPTname char CPT name assigned by the current authors (unique)
FILEname char File name from which CPT data was obtained (unique)
Date datetime | Date CPT conducted

NorthingNZMG | double | NZMG —y coordinate
EastingNZMG double | NZMG — x coordinate
NorthingWGS84 | double | WGS —y coordinate
Easting WGS84 | double | WGS —x coordinate

depth double | Depth below the ground surface [m]

qc double | Measured tip resistance [kPa]

qc_inv double | ?True tip resistance [kPa]

fs double Measured sleeve friction resistance [kPa]

fs_inv double ’True sleeve friction resistance [kPa]

u2 double | CPT pore pressure measurement, if present [kPa]

pd double | Pre-drill depth [m]

Magnitude struct 3Earthquake moment magnitude (My)

PGA struct SEvent-specific conditional median peak ground acceleration [g]
PGAsigma struct SEvent-specific conditional lognormal standard deviation of PGA
GWT struct 3Event-specific groundwater table depth [m]

Manifestation struct 34Classified type/severity of surface manifestation

ICPT IDs from original CPT data (.csv or .xIsx files), which were recorded by field engineers and are non-unique in the dataset.
Processed per the Boulanger and DeJong (2018) procedure; specifically, using the “baseline” inversion model.

3There are three earthquakes within the fields from which event-specific data is compiled: Mw7.1 4 Sept 2010 (Yr2010), Mw6.2 22
Feb 2011 (Yr2011), and My5.7 14 Feb 2016 (Yr2016).

4The occurrence/severity of surface manifestation was manually classified for each CPT location in each earthquake per the criteria
in Table 2. Classifications are based on a circular sample area, centered on each CPT, with approximate radius of 10 m.
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Figure 5. Depiction of the Canterbury case-history dataset structure array.

Discussion: Data Nuances, Alternatives, and Analysis

The compiled, post-processed data allows researchers to easily access and analyze a wealth of
information pertinent to in-situ site characterization and free-field liquefaction response (i.e.,
triggering and surface manifestation). Research opportunities using this data include, but are not
limited to: (1) methods for quantifying/simulating subsurface spatial variability; (ii) training or
testing of new and existing liquefaction-prediction models; (iii) temporal assessment of CPT data
during shaking sequences, including use of aging-correction factors for liquefaction prediction
(i.e., Kpr); and (iv) evaluation of CPT inversion filters in the context of liquefaction model
performance. Prior to such analyses, however, users should carefully consider several important
data nuances, alternatives, and limitations. These topics are discussed as follows and ordered by:
(1) additional data exclusion criteria; (ii) alternative sources of data; (ii1) correlations and decisions

for analysis; and (iv) lingering uncertainties.
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Additional Data Exclusion Criteria

GWT and CPT Pre-drill Depths. As discussed previously, CPTs in which the pre-drill depth
exceeded 2.5 m were preemptively removed from the dataset. For the remainder of CPTs, the pre-
drill interval (typically ~1 m when present) was infilled with CPT data from just below the pre-
drill (i.e., where the sensors began penetrating undisturbed soil). While this provides reasonable
data for estimating in-situ stresses, users performing liquefaction studies should consider the
relative depths of pre-drill and groundwater. Case histories in which the depth of pre-drill exceeds
that of the groundwater have additional uncertainty, given that CPT data below the expected water
table is extrapolated, rather than measured. A histogram of the GWT depth minus pre-drill depth
is shown in Figure 6 for the 15,890 compiled case histories. Of these, 1,503 have pre-drill depth
exceeding the GWT depth. However, this differential exceeds 0.5 m for just 420 cases, and exceeds
1 m for just 52 cases. Nonetheless, analysts might exclude some or all such cases to avoid near-
surface site-characterization uncertainty. Some 1D liquefaction manifestation models, for
example, are especially sensitive to this uncertainty owing to depth-weighting functions (e.g.,

Ballegooy et al., 2014a; Maurer et al., 2015b).

25 -125 0 125 25 3.5 5

GWT Depth - Pre-drill Depth [m]

Figure 6. Histogram of ground water table (GWT) depth minus pre-drill depth, for compiled case histories.

PGAs. Profiles subjected to a PGA less than the expected threshold for inducing pore pressure
(Dobry et al. 1982) might not provide meaningful data for testing liquefaction analytics. That is,
if the expected peak strain is less than the volumetric threshold shear-strain for a very loose soil,

the absence of liquefaction is easily predicted by judgment. Using such cases to test liquefaction
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models could thus increase the prediction efficiency in a misleading manner. Accordingly, analysts
might select a site-specific PGA threshold for excluding data, or a general threshold considering
the most susceptible soil that could be encountered (e.g., de Magistris et al., 2013). Considering
all compiled cases, 0.096 g was the lowest PGA for which surface manifestation of liquefaction
was observed, albeit this is distinctly different from that which may induce pore pressure at depth.

Of the 15,890 compiled case histories, 98 have PGA less than 0.075 g (see Figure 4b).

Model Applicability. Lateral spreading is a distinct manifestation of liquefaction influenced by
topographic factors that were not compiled in this study, but which could be sampled (e.g., ground
slope, distance to free face). However, users should consider whether such case histories are
appropriate for model training or testing. As an example, 1D liquefaction manifestation models
may not fully account for the factors known to cause lateral spreading and can thus predict it poorly
(e.g., Maurer et al. 2015c; Rashidian and Gillins 2018). Accordingly, for some purposes, it may
be most appropriate to exclude such cases from analysis. Of the 15,890 compiled case histories,
1,110 are cases in which lateral spreading was the predominant manifestation of liquefaction. For

further coverage of lateral spreading in Canterbury, see Cubrinovski and Robinson (2016).

Alternative Sources of Data

Ground Motions. As previously outlined, PGAs were obtained by statistically coalescing strong-
motion records with GMM predictions (Bradley 2014), the general concept of which is common,
and which could be used to obtain other IMs of interest. Notably, liquefaction likely occurred at
some SMS sites during the Canterbury earthquakes, potentially effecting measured PGAs and in-
turn the adopted approach. In particular, evidence of liquefaction was observed in several SMS
records from the 22 Feb 2011 earthquake (e.g., Bradley and Cubrinovski 2011), namely: (i) high-
frequency acceleration spikes, inferred to result from cyclic mobility/dilation response (Kramer et
al. 2016); and (i) subsequent reduction in high-frequency motion, inferred to result from the
softening of liquefaction (Kramer et al. 2016). One such example is shown in Figure 7. It can be
seen that a recorded PGA, if associated with a high-frequency dilation spike, could exceed the peak
acceleration prior to liquefaction, and possibly, that which would have occurred in its absence (i.e.,
from the time of liquefaction onward). Wotherspoon et al. (2015) identified four such SMS records
(station codes CBGS, CCCC, NNBS, and REHS) and proposed reducing PGAs to those observed

prior to interpreted dilation spikes. Adopting these values within a liquefaction analysis,

Page 16 of 34



317
318
319
320
321
322
323
324
325
326
327
328
329
330

Upadhyaya et al. (2019) suggested that existing prediction models performed slightly better using
the corrected values. However, given that liquefaction obscures SMS records following its onset,
the “true” PGAs cannot be known. Whereas dilation spikes may inflate the PG4, selecting a peak
value prior to any evidence of liquefaction may artificially depress it. Nonetheless, users should
be aware of this issue.

Regardless of which PGAs are used within the adopted Bradley (2014) approach, they could
be less accurate when complex local phenomena are not captured by empirical predictions (e.g.,
the effects of rupture directivity, basin-generated surface waves, and near-surface stratigraphic and
topographic features). In contrast, physics-based simulations can provide insight into these
phenomena via explicit modeling of kinematic fault rupture, wave propagation, and the subsurface
velocity structure, thereby predicting IM patterns more accurately. Users may thus be interested in
the physics-based simulations of Bradley et al. (2017), which predict both common IMs and full
acceleration time-series for each of the three earthquakes in the dataset. These may be obtained at

case-history coordinates via the SeisFinder (2020) web portal.
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Figure 7. Ground-motion records (SMS code NNBS) during the: (a) My7.1 Sept 2010 Darfield; and (b)
My6.2 Feb 2011 Christchurch earthquakes, showing the effects of liquefaction on recorded PGAs.

Page 17 of 34



331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

350

351
352
353
354
355
356
357
358
359

Liquefaction Manifestations. As previously discussed, surface manifestations were manually
classified at individual CPT sites using a circular sample with 15 m radius. Inherent to this process,
which required hundreds-to-thousands of hours to complete, sites where manifestations could not
be reliably classified are denoted “unknown.” These sites either lacked ground reconnaissance
data, were beyond the bounds of high-resolution satellite imagery, had obscured or otherwise
ambiguous imagery, or lacked sufficient and consistent information to support classification.
Following a similar approach, but without concern for CPT locations or compiling case histories,
Townsend et al. (2016) presented maps for the Sept 2010 and Feb 2011 earthquakes wherein
observed manifestations are enclosed by polygons and assigned a confidence rating of “certain,”
“probable,” “possible,” or “uncertain.” These polygons could supplement/replace the
classifications made herein or could provide additional quality control. While Townsend et al.
(2016) provide a high-quality dataset, caveats for use include: (i) polygons and ratings are for
positive observations only (i.e., they do not explicitly delineate negative observations or assign the
confidence therein, although a lack of liquefaction may be inferred where polygons are not
present); (ii) the mapping does not classify the severity of liquefaction, which may be useful for
model training/testing; and (iii) due to the scale of polygons (e.g., that of building parcels), a
polygon may be classified as positive but lack manifestations over some or much of its surface
area. For these reasons, the classifications made herein may differ from those of Townsend et al.

(2016). Nonetheless, users should be aware of this excellent database and consider its use.

Correlations and Decisions for Analysis

Liquefaction Susceptibility. Existing “simplified stress-based” triggering models (e.g., Robertson
and Wride 1998; Moss et el. 2006; Boulanger and Idriss 2014; Green et al. 2019) are not intended
to be applied to high plasticity, fine grained, “non-liquefiable” soils, which could result in less
accurate predictions of cyclic response, and for which other, more appropriate methods exist (e.g.,
Boulanger and Idriss 2007). Soils not susceptible to liquefaction triggering are thus generally
identified and screened from analysis, consistent with the development of the models. Various
criteria based on lab indices have been proposed for this purpose (e.g., Polito 2001; Seed et al.
2003; Bray and Sancio 2006; Boulanger and Idriss 2006), an overview of which is given by Green

and Ziotopoulou (2015). However, while soil samples may be obtained using a CPT push-sampler,
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continuous sampling and testing to assess susceptibility is prohibitively expensive. For this reason,
the CPT soil-behavior-type index (/) proposed by Jeffries and Davies (1993) and modified by
Robertson and Wride (1998) is generally used to assess susceptibility by way of correlations with
lab criteria. For example, an /. = 2.6 threshold is common, such that soils with /. <2.6 are inferred
to be liquefiable (Robertson and Wride 1998). However, because /. boundaries between soil types
are approximate, regional refinement may be needed for optimal efficiency (e.g., Pease 2010; Li
et al. 2007). Accordingly, analysts of the data compiled herein may be interested in the
susceptibility correlations of Maurer et al. (2019), developed specifically for soils in Christchurch.

Using these correlations, the probability that a soil is “susceptible” to liquefaction is:

1
Psusceplible (]C) =1- (D[%] (8)

where @ is the Gaussian cumulative distribution function; x» is the median value of the distribution
(the value of /. corresponding to 50% probability); and £ is the logarithmic standard deviation.
Using this form, Maurer et al. (2019) correlated /. to four criteria based on Atterberg limits, the
coefficients for which are provided in Table 4, and an example of which is shown in Figure 8.
Here, “susceptible” generically refers to the varying definitions adopted by the respective works.
For example, the Boulanger and Idriss (2006) criterion was explicitly developed to determine the
most appropriate analysis procedure for predicting cyclic response, based on whether the soil’s
expected behavior is “sand-like” or “clay-like.” For deterministic analyses in which a single /.
threshold is desired, the median value of the probability distribution (x») is recommended, such

that soils with /. exceeding x» are not susceptible per the underlying criterion.

Table 4. Model coefficients for /.-susceptibility relationship (Equation 8) (Maurer et al. 2019).

Susceptibility Criterion /] Xons
Boulanger and Idriss (2006) 0.0851 2.5031
Polito (2001) 0.0988 2.5474
Seed et al. (2003) 0.1348 2.6214
Bray and Sancio (2006) 0.1275 2.7315
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Figure 8. The probability of liquefaction susceptibility per the Boulanger and Idriss (2006) criterion as a
function of measured /.. The range of deterministic /. thresholds commonly used in practice is also
highlighted (Maurer et al., 2019).

Fines Content. Some liquefaction models use fines content (/'C) as a predictive variable. As with
liquefaction susceptibility, FC is best measured directly, but continuous sampling and
measurement is not feasible for a large CPT campaign. Accordingly, CPT correlations developed
from global data are commonly used to estimate F'C but can often be improved via regional
calibration. Analysts testing or training response models may thus be interested in the regional /.
— FCcorrelations of Lees et al. (2015a) and Maurer et al. (2019). Lees et al. (2015a) calibrated the

general /. — F'C correlation of Boulanger and Idriss (2014), wherein F'C (%) is estimated as:
FC=80 .+ Crc)— 137 9)

where Crcis a calibration parameter that may adjust the general correlation (i.e., Crc= 0) to region-
specific conditions. Analyzing 2,600 F'C measurements from Canterbury, Lees et al. (2015a)
proposed that Crc = 0.2 was optimal. Using a similar amount of data but different processing and

regression methods, Maurer et al. (2019) proposed that FC be estimated as:
urc = 80.645 1. — 128.5967 (10)

where prcis the mean estimate of FC (%), limited to 0% < FC (%) < 100%. Guidance on using
this correlation probabilistically is given in Maurer et al. (2019). A comparison of the Maurer et

al. (2019) correlation and others, along with data from Christchurch, is shown in Figure 9.
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Figure 9. Canterbury /. — F'C data and correlations (Lees et al. 2015a; Maurer et al. 2019), and comparison
with the generic Robertson and Wride (1998) and Boulanger and Idriss (2014) correlations.

Soil Density. Total and effective vertical stresses are integral to CPT data processing and a common
input to liquefaction models. While the authors are unaware of calibrated, Canterbury-specific
correlations for estimating soil unit weights, several global correlations are available, including
Mayne et al. (2010) and Robertson and Cabal (2010), with the latter being used in previous
Canterbury earthquake research by the authors (e.g., Green et al. 2018; Geyin and Maurer 2019).
While liquefaction models may be relatively insensitive to the adopted correlation, users should

consider constraints, as needed and reasonable, to limit physically indefensible values.

GWT at Time of Testing. As discussed, the database contains event specific GWT depths, which
are an estimate of conditions immediately prior to each earthquake. These may be used to infer the
depth of saturation for assessing liquefaction susceptibility (to be further discussed) but may differ
from the GWT depths at the time of testing, which are needed for CPT stress-normalization as part
of routine data processing. While regional hydrologic models are unavailable for CPT test dates,
which are shown in Figure 10a, most CPTs (~90%) were performed between 22 Feb 2011 and 30
Sept 2013. In addition, it can be seen in Figures 10b and 10c that GWT depths in Feb 2011 were
typically ~1% shallower relative to Sept 2010 and ~14% deeper relative to Feb 2016. In the

absence of more rigorous modeling, adopting a GWT depth either interpolated from the three
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estimates available, or simply averaged from the Feb 2011 and Feb 2016 values (since most CPTs
were performed during this time), may provide a reasonable estimate for CPT stress normalization.
Estimates could also be obtained from analyses of the CPT u2 data, although the reliability of this

data due to issues with porous stone saturation, etc. is unknown for the compiled database.
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Figure 10. Case-history database statistics: (a) Monthly histogram of CPT test dates; (b) GWT depths from
Sept 2010 versus Feb 2011; (¢) GWT depths from Feb 2011 versus Feb 2016.

Model Training, Testing, and Bias. Historically, publications proposing, calibrating, or evaluating
liquefaction models often lack standard test metrics (e.g., Maurer et al. 2015d), hindering
quantifications and comparisons of model performance. Receiver-operating-characteristic (ROC)
analyses (e.g., Fawcett 2006) are ubiquitous in medical diagnostics and data science (Zou 2007),
and increasingly, are being adopted in geotechnical modelling (e.g., Oommen et al. 2010; Zhu et
al. 2017; Green et al. 2017; Upadhyaya et al. 2020). ROC analyses provide a standard and objective

assessment of prediction efficiency via the area-under-the-ROC-curve (AUC) and are relatively
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insensitive to sampling imbalance (i.e., unequal positives and negatives). Analysts using the
curated data to test or train liquefaction models should similarly adopt standard, objective, and
repeatable measures of performance, be it ROC analyses or some other. In addition, while the
Canterbury earthquakes resulted in a wealth of data, this data nonetheless samples the geologic
and seismologic setting of one region, the findings from which may or may not translate elsewhere.
Analysts should carefully consider sampling bias and weigh results from Canterbury with those
from global case-histories (e.g., Brandenberg et al. 2020). Given that the compiled Canterbury
database is much larger than that resulting from all other earthquakes combined, the finite-sample
uncertainty of model performance should be computed for each respective database (e.g., via
bootstrap sampling) and used to test for statistical significance. That is, to illustrate the sensitivity
of performance to the data available for analysis, and to assess whether differences could arise
from chance (i.e., due to finite sampling) and not because one model is better than another. As an
example, p-values specific to ROC analyses may be computed per DeLong et al. (1988), an
application of which is presented in Geyin et al. (2020a) for liquefaction case-history data.

Lingering Uncertainties

GWT Depth and Saturation. 1t is established that liquefaction resistance and degree of saturation
are inversely related, all else being equal (e.g., Ishihara and Tsukamoto 2004; Hossain et al. 2013),
and that soil beneath the apparent GWT can conceivably be less than 100% saturated (e.g., due to
seasonal or tidal fluctuations, or to biologic activity). This phenomenon has been inferred from
crosshole p-wave velocities (Cox et al. 2018) at select locations in Christchurch and investigated
as a possible cause of observed mispredictions of liquefaction by popular models (McLaughlin
2017; Boulanger et al. 2018; Yost et al. 2019; Ntritsos and Cubrinovski, 2020). One detailed study
of this issue is that of McLaughlin (2017), who analyzed 31 cases in Christchurch and computed
liquefaction potential index (LPI) values with and without various corrections. These included
corrections for partial saturation, site-specific /'C, and inverse filtering and interface correction.
While evidence of partial saturation was found at some locations, the corrections to LPI were
typically minor compared to those made for F'C and inverse filtering. The results of McLaughlin
(2017) indicate that partial saturation beneath the GWT could potentially be important at some
sites, but in general, does not sufficiently or consistently explain mispredictions of liquefaction.

Nonetheless, uncertainties pertaining to partial saturation persist, but could only be adequately
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addressed via extensive additional in-situ testing and/or regional hydrologic modeling. Owing to
the rarity of p-wave measurements in parallel with CPTs, it is unknown whether partial saturation

beneath the GWT is present in other case-histories, previously collected elsewhere globally.

CPT Spacing in Time. As discussed, multiple case-histories were often developed from a single
site (i.e., CPT) affected by multiple earthquakes, wherein the event-specific GWT, PGA, and
response were known. This raises the question of whether a CPT performed at one moment in time
(predominantly between Feb 2011 and Sept 2013; see Figure 10a) is representative of a soil profile
at multiple other times when earthquakes occurred? This will be addressed in three parts.

First, does the approach taken break from precedent? When considering all liquefaction case
histories published to-date (e.g., Boulanger and Idriss 2014), in-situ testing has been performed:
(1) well in advance of an earthquake; (ii) months-to-years after an earthquake; (iii) decades after
an earthquake; and (iv) all scenarios in between. Additionally, between the time of in-situ testing
and the occurrence of an earthquake, or between the time of the occurrence of an earthquake and
in-situ testing, it is often the case that multiple other earthquakes of varying intensity have affected
a site. In the authors’ opinion, there has historically been no standard, or best practice, for the
relative timing of in-situ testing when publishing liquefaction case-histories. The Boulanger and
Idriss (2014) global database contains cases representing each of the four scenarios above, with
multiple case histories based on the same CPT. Of the 255 case histories compiled therein, 25%
are cases in which one CPT was used to develop multiple case histories. As an example, four case
histories were developed from one CPT effected by earthquakes occurring over a 10-year span.

Second, does CPT data change over time once deposited or disturbed? Increases in the
strength and stiffness of sands over time, or “aging effects,” have been widely investigated.
Temporal gains have been discerned both from penetration resistance, with reported gains of 3-
7% per log-cycle in years (Mesri et al. 1990; Kulhawy and Mayne 1990), and from liquefaction
resistance (i.e., CRR), with reported gains of 9-17% per log-cycle in years (Arango et al. 2000;
Hayati and Andrus 2009; Saftner et al. 2015). It has thus been proposed that aging effects may be
resolved into gains measurable by intermediate-to-large-strain penetration data and gains in
liquefaction resistance, where the latter is influenced by small-strain fabric phenomena difficult to
detect at large strain (Leon et al. 2006). Of relevance to the compilation of case histories, CPT
measurements could conceivably vary with time, particularly over short time scales following

liquefaction. For example, assuming the rates above, and that a soil is “reset” following
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liquefaction, CPT resistance measured 1 month after an earthquake could be 3-7% less than if
measured 1 year later. While such changes are plausible, they would be difficult to distinguish
from site variability and measurement uncertainty, and to-date, have not been considered in case-
history publications.

Third, does CPT data change due to repeated disturbance from shaking, and if so, does the
magnitude and direction of change (e.g., an increase or decrease in penetration resistance) depend
on whether liquefaction did or did not occur? A closely related, but different question, is whether
liquefaction resistance changes due to prior shaking/liquefaction, even if CPT data does not
change? Researchers have sought answers to these questions using a variety of approaches: (i)
CPT testing in the field before and after shaking/liquefaction (e.g., Lees et al. 2015b; Finno et al.
2016); (i) CPT testing in centrifuge and shaking-table models, before and after
shaking/liquefaction (e.g. Darby et al. 2016; Dobry et al. 2019); and (iii) cyclic triaxial and cyclic
simple-shear tests wherein samples were subjected to multiple shaking/liquefaction sequences
(e.g., Haetal. 2011; Wang et al. 2013). Various conclusions were collectively drawn from these
experiments, including: (i) penetration resistance increases; (ii) penetration resistance decreases;
(ii1) penetration resistance does not change, even after severe liquefaction; (iv) penetration
resistance changes in some parts of the profile but not others; (v) the magnitude and direction of
the change in penetration resistance depends on the number of previous shaking cycles, and on the
pore pressure generated by those cycles; and (vi) liquefaction resistance may change, independent
of whether this change is detected via CPT data. Most relevant to the current effort, perhaps, is the
work of Lees et al. (2015b), who studied pairs of CPTs performed at 30 locations before and after
the 22 Feb 2011 Christchurch earthquake, concluding that CPT measurements did not change in a
statistically significant manner.

In summary, the approach taken by this study is consistent with past precedent. Additionally,
questions pertaining to CPT data and soil response during earthquake sequences — which are very
worthy of investigation — have not been adequately resolved to suggest when CPTs should or
should not be used to compile liquefaction case histories. However, the compiled dataset could
potentially be analyzed to further study these issues in the field, making use of the provided CPT

coordinates and test dates.
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Conclusions

Earthquakes occurring over the last decade in Canterbury, New Zealand, resulted in liquefaction
case-history data of unprecedented quantity. Accordingly, this paper presented a curated dataset
containing ~15,000 CPT-based liquefaction case-histories compiled from three earthquakes in this
sequence. The compiled, post-processed data was provided in a dense array structure, allowing
researchers to easily access and analyze information pertinent to CPT-based site characterization
and free-field liquefaction response. Research opportunities using this data include, but are not
limited to, the training or testing of new and existing liquefaction-prediction models. The many
methods used to obtain and process the case-history data were detailed herein, as was the structure
of the compiled file. Numerous recommendations for analyzing the data were also outlined,

including nuances and limitations that users should carefully consider prior to analysis.
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