

Compilation and Forecasting of Paleoliquefaction Evidence for the Strength of Ground Motions in the U.S. Pacific Northwest

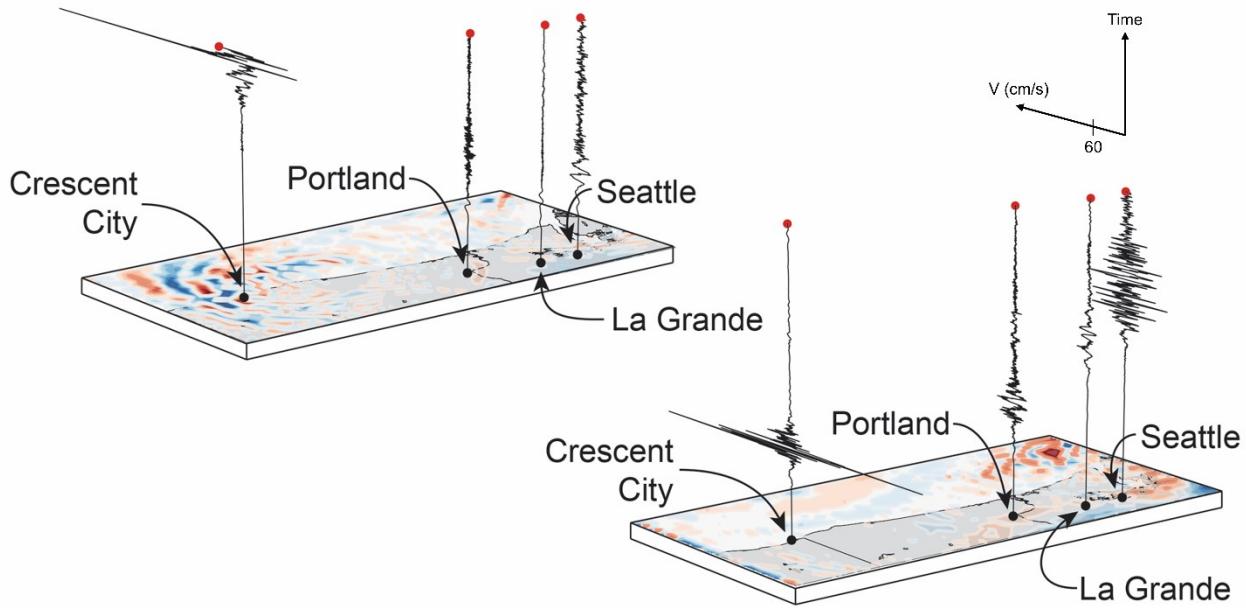
1 Ryan A. Rasanen¹, Nasser A. Marafi², and Brett W. Maurer¹

2 **Abstract:** In the U.S. Pacific Northwest (PNW), the historic earthquake record is often insufficient to
3 provide inputs to seismic-hazard analyses or to inform ground-motion predictions for certain seismic
4 sources (e.g., the Cascadia Subduction Zone, CSZ). As a result, paleoseismic studies are commonly
5 used to infer information about the seismic hazard. However, among the many forms of coseismic
6 evidence, soil liquefaction provides the best, if not only, evidence from which the intensities of
7 previous ground motions may be constrained. Accordingly, the overarching goal of this research is to
8 use paleoliquefaction to elucidate previous ground motions in the PNW – both for CSZ events and
9 others – and to further constrain the locations, magnitudes, and recurrence rates of such ruptures.
10 Towards that goal, this paper: (i) reviews current paleoliquefaction inverse-analysis methods and their
11 limited, prior applications in the PNW; (ii) compiles all PNW paleoliquefaction evidence from the
12 literature into a GIS database, resulting in data from 185 study sites (e.g., feature locations, types, sizes,
13 and ages); and (iii) develops maps – specific to the CSZ – that forecast paleoliquefaction for 30
14 different simulations of a CSZ event. These maps can be used to guide field explorations for new
15 evidence, such that they are conducted efficiently and strategically, considering the apparent utility of
16 evidence toward constraint of CSZ ground-motion models. Of additional utility, this process provides
17 regional ground-motion predictions for physics-based simulations of an M9 event, to include expected
18 site effects. Collectively, the maps of expected shaking intensity and liquefaction may be useful in
19 downstream hazard modelling, regional loss estimation, policy development, and science
20 communication. Ultimately, as more paleoliquefaction evidence is identified and studied, better
21 constraint of regional ground-motion hazards will result.

22 1. Introduction

23 1.1 Significance of Paleoliquefaction Evidence

24 In regions experiencing infrequent moderate-to-large earthquakes, the historic record may be
25 insufficient to provide accurate inputs to seismic-hazard analyses (i.e., the locations, magnitudes, and
26 recurrence-rates of fault ruptures) or to inform ground-motion predictions for certain seismic sources.
27 As an example, the 1700 A.D. Cascadia Subduction Zone (CSZ) earthquake was likely far bigger than


¹ Department of Civil and Environmental Engineering, University of Washington, Seattle USA.

² Risk Management Solutions, Newark, California USA.

any subsequent rupture in the U.S. Pacific Northwest (PNW), yet there is little-to-no eyewitness account of it (Thrush and Ludwin 2007), let alone ground-motion records. As a result, paleoseismic evidence must be relied on to elucidate the seismic hazard. In the case of the CSZ, the 1700 earthquake is believed to be one of approximately 40 similar events during the past 10,000 years, all judged to be M8.0 to M9.0 or greater, as inferred from dendrochronology (e.g., Atwater et al., 1991), turbidites (e.g., Goldfinger et al., 2012; Atwater et al., 2014), tsunami deposits (e.g., Peters et al., 2007), soil liquefaction (e.g., Obermeier 1995), microfossils (e.g., Engelhart et al., 2013), geochemical markers (e.g., O'Donnell et al., 2017), and seafloor morphology (e.g., Watt et al., 2017), among other indicators of seismicity. Collectively, this evidence has been used to infer a length of fault rupture, which leads to an estimate of earthquake magnitude (e.g., Petersen et al., 2014).

Given the premise of a full-fault M9 CSZ earthquake, various ground-motion predictions have been made (e.g., USGS, 2017). These include – most recently – a suite of broadband synthetic seismograms (i.e., ground-motion time histories) (Frankel et al., 2018a; Wirth et al., 2018) that predict motions on a 1-km grid across the PNW. This suite includes 30 different realizations to reflect the uncertainty of key parameters (e.g., the down-dip limit of fault rupture; the slip distribution and location of asperities; and hypocenter location). Given that the last CSZ event occurred in 1700, these parameters are unknown for all such events. Shown in Fig. 1 are two such realizations. While both simulate a full-fault M9 CSZ rupture, it can be seen that predicted ground-motions vary significantly in some locales (e.g., peak ground velocities may vary by 400%). By corollary, the expected impacts on the built and living environments would also be very different (Marafi et al., 2019, 2020).

Notably, the actual ground motions experienced in 1700 (and in other paleo events) can be determined only through inverse analysis of coseismic evidence. But, among the many paleoseismic artifacts that have been documented, only soil liquefaction and landslides are presently capable of “recording” the intensity of ground motions. As summarized in Table 1, the date of an earthquake, and therefore recurrence-rate, can be derived from many types of evidence (although some are more likely to illuminate older records, owing to preservation potential or ease of discovery). Considering the spatial extent of such evidence (e.g., the length of coastline affected), an earthquake’s location and magnitude may be estimated, at least crudely. However, most artifacts are only loosely correlated to the intensity of shaking, if at all. That is, the evidence may suggest that earthquake occurred, but do little or nothing to quantify the ground motions experienced. In this regard, soil liquefaction and landslides are more than just proxies of shaking, given that they could be used to quantitatively constrain its intensity across an affected region. This distinction arises because mechanistic models exist for predicting these phenomena as a function of ground-motion intensity measures (IMs).

Fig. 1. Two ground-motion predictions of a M9 CSZ earthquake, reflecting the influence of salient modeling uncertainties (traces are ground velocity for the duration of the event; colors show a snapshot of seismic waves at a moment in time). The sensitivity of predictions to modeling uncertainties is readily apparent via the large discrepancies at some locales (e.g., in Seattle). Simulations by Frankel et al. (2018a) and Wirth et al. (2018).

Table 1. Synopsis of evidence from which paleoseismic parameters may be derived.

Paleoseismic Evidence	Earthquake Parameters Obtainable from Evidence		
	Rupture Date / Recurrence Rate	Rupture Location and Magnitude	Resultant Ground Motions
Dendrochronology	✓	✓	✗
Diatoms / Microfossils	✓	✓	✗
Other Subsidence Markers	✓	✓	✗
Tsunami Deposits / Impacts	✓	✓	✗
On- & Off-Shore Turbidite Records	✓	✓	✗
On-Fault Evidence	✓	✓	✗
Landslides / Rockfall	✓	✓	✓
Soil Liquefaction	✓	✓	✓

61 In conventional hazard analyses, wherein the seismic loading is given, these models are widely
 62 used to predict future outcomes (e.g., liquefaction). In paleoseismic studies, wherein the outcome is
 63 given (e.g., liquefaction did or did not occur), the models can be inverted to back-calculate the ground
 64 motions that likely would, and would not, produce the observation. It should be noted, however, that

65 while paleoliquefaction features have been identified at over 180 locations in the PNW, including many
66 that formed ca. 1700, paleolandslides with constrained ages are less common. As an example,
67 landslides have yet to be linked to any CSZ earthquake (Struble et al. 2017). In addition, aseismic
68 landslides occur frequently and are difficult to distinguish from their seismic counterparts, whereas
69 aseismic ground failures resembling liquefaction are less common (e.g., Obermeier et al. 2011). Thus,
70 liquefaction presently provides the best, and perhaps only, evidence from which the intensity of
71 shaking in PNW paleoearthquakes may be quantified. This includes ruptures in the CSZ, but also on
72 crustal faults in the Puget-Willamette Lowlands (e.g., the Seattle and Whidbey Island Faults) which
73 have similarly not ruptured in modern history. The potential value of paleoliquefaction evidence has
74 previously been proven in many other seismic zones (e.g., Tuttle and Hartleb, 2012; Bastin et al.,
75 2016).

76 *1.2 Motivation and Objectives*

77 The long-term goal of this research is to use paleoliquefaction data to determine the strength of past
78 ground motions in the PNW – both for CSZ events and others – and to further elucidate the locations,
79 magnitudes, and recurrence rates of such ruptures. Towards that end, compilation of *regional* evidence
80 is needed to answer questions of greatest interest (e.g., “When, on which fault, and of what magnitude
81 was a paleoearthquake?” or “Which CSZ ground-motion simulations are plausible realizations of those
82 experienced in 1700?”). This will be shown subsequently through a review of paleoliquefaction
83 analytics. While analysis of an individual site could render ground motion IM values that likely would,
84 or would not, produce an observation at that site, there will inevitably be an infinite number of these
85 respective values. As an example, the minimum peak ground acceleration (*PGA*) requisite for
86 liquefaction in a highly susceptible soil is ~ 0.1 g (de Magistris et al., 2013). If paleoliquefaction is
87 observed at such a site, the *PGA* was therefore likely at least 0.1 g, but is otherwise unknown. A
88 similarly loose upper-bound constraint is obtainable from a site where no paleoliquefaction is observed,
89 if the subsurface has very low susceptibility. Moreover, most *PGA* values could result from a small,
90 nearby rupture, or from a large, distant rupture. The elucidation of regional ground-motion IM patterns
91 thus requires spatially distributed study sites having a range of liquefaction susceptibilities, with and
92 without observed manifestations of liquefaction. However, while many individual study sites have
93 been documented in the PNW, these data exist across numerous publications and have not been
94 compiled. Such an effort was undertaken nearly a decade ago in the Central-Eastern United States,
95 where paleoliquefaction evidence was aggregated by Tuttle and Hartleb (2012), the results of which
96 were used to inform seismic hazard analyses for nuclear facilities (NRC, 2012). The PNW has similarly

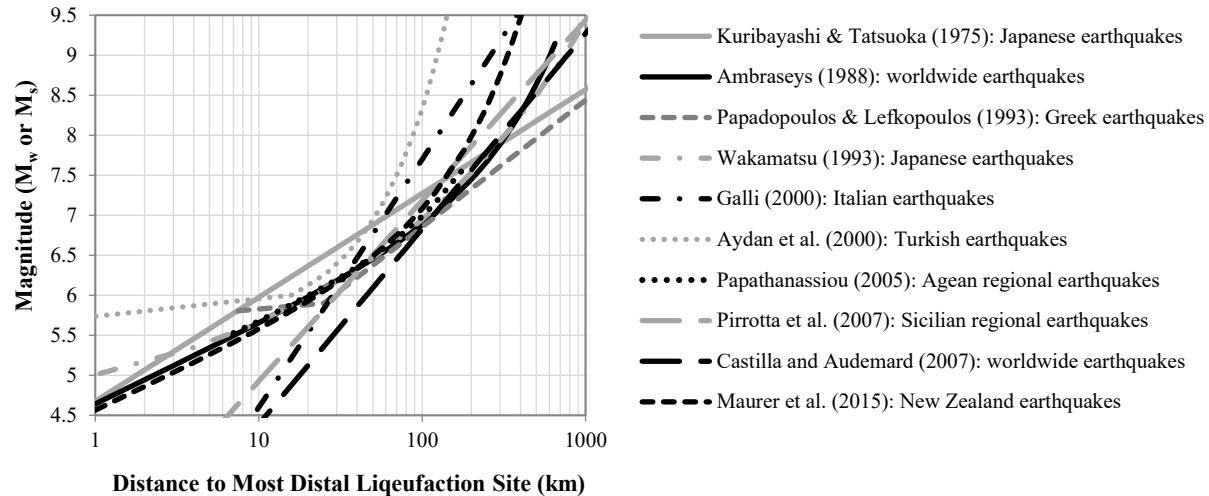
97 ambiguous seismic records but lacks an analogous resource. As a result, regional scale
98 paleoliquefaction studies have not been performed, and thus, the available field evidence has arguably
99 not been exploited. Accordingly, the first objective of this paper is to compile existing
100 paleoliquefaction evidence from the PNW into a community GIS database.

101 It is also critical that additional evidence be discovered, compiled, and analyzed, since better
102 constraint of regional ground-motions in past earthquakes will result. However, a field search of the
103 entire region would be extremely cost-prohibitive. Moreover, and using the CSZ as an example, there
104 are infinite locales where the confirmed presence or absence of 1700 liquefaction would do little to
105 inform or constrain ground-motion predictions (e.g., because various predictions lead to similar
106 expectations of liquefaction). For field pursuits to be conducted more efficiently and strategically, it
107 would be helpful to identify locations where uncertainties in ground-motion simulations (e.g., Frankel
108 et al. 2018a; Wirth et al. 2018) give rise to significant differences in liquefaction predictions. Thus, the
109 second objective of this paper is to develop maps – specific to the CSZ – that identify and prioritize
110 where paleoliquefaction evidence should be searched for. This will be achieved, in part, using 30
111 different physics-based ground motions simulations of an M9 CSZ earthquake.

112 In the following, a summary of paleoliquefaction analytics is first presented. It will highlight: (i)
113 the need to study evidence regionally; and (ii) prior applications of these analytics in the PNW, which
114 while limited, hint at the potential for paleoliquefaction to provide new insights into persistent
115 uncertainties. Next, the contents of the compiled paleoliquefaction database are described, and lastly,
116 maps that guide future field expeditions for evidence in the CSZ are developed and discussed.

117 **2. Summary of Paleoliquefaction Analysis Methods and Their Application in the PNW**

118 While paleoliquefaction has been widely documented in the PNW, there are few studies in which
119 seismic data has been derived from it (other than event age). Two of these studies are noted in the
120 ensuing summary, to include emphasis of their shortcomings. It should be stressed, however, that these
121 shortcomings are those of the tools then-available, which will serve to highlight recent advances. If not
122 for these and other seminal studies, the database compiled herein would not be possible.


123 The study of paleoliquefaction has three phases: (i) field identification and interpretation; (ii)
124 dating; and (iii) constraint of the earthquake magnitude and/or ground motion under which it formed.
125 The reader is referred to the overviews of field interpretation by Obermeier et al. (2001; 2005), and to
126 the field investigations of Obermeier and Dickenson (2000), Tuttle (2001), Talwani and Schaeffer
127 (2001), Cox et al. (2007), and Tuttle et al. (2002a; 2002b; 2005), among others, for specific case
128 studies. In addition, Sims and Garvin (1995), Quigley et al. (2013), Bastin et al. (2016), and Maurer et

129 al. (2019) discuss field interpretation specific to spatiotemporally clustered earthquakes. Once
130 identified, features may be dated via radiocarbon, optically stimulated luminescence, archeological or
131 stratigraphic context, and soil development indicators, such as weathering and biologic activity. A
132 comprehensive overview of paleoliquefaction dating methods is provided by Tuttle and Hartleb (2012).
133 The techniques by which earthquake magnitude and/or shaking intensity are quantitatively constrained
134 are generally called back- or inverse-analysis methods. The two most common to-date are the
135 “magnitude-bound” method (e.g., Ambraseys, 1988; Olson et al., 2005a; Maurer et al., 2015a) and
136 the “site-specific geotechnical analysis,” or for brevity, the “site-specific” method (e.g., Olson et al.,
137 2005b; Rodriguez-Marek and Ciani, 2008; Green et al., 2005, 2014).

138 *2.2 Magnitude-Bound Method*

139 The magnitude-bound method uses a correlation relating earthquake magnitude to the site-to-source
140 distance of the most distal site of liquefaction. Developed from observations in modern earthquakes,
141 these correlations traditionally use data from variable geologic-tectonic settings and provide a lower-
142 bound estimate of magnitude. As an example, Fig. 2 presents ten correlations from the literature.

143 One of these correlations was used by Bourgeois and Johnson (2001), who documented at least
144 three episodes of paleoliquefaction in Washington’s Snohomish River delta, with one episode dated
145 ca. 910-990, coinciding with possible events on the Seattle Fault and CSZ. Bourgeois and Johnson
146 (2001) deduced that: (1) a Seattle Fault rupture $\geq M_w 7$ would generate liquefaction 50 km away at the
147 study site; and (2) other faults in the southern Puget Lowland, 75-120 km away, would require
148 earthquakes $\geq M_w 6.5-7$ to do so. Importantly, the maximum site-to-source distance of liquefaction is
149 a function of numerous region- and site-specific factors. These include seismic source traits (e.g., focal
150 depth and mechanism), transmission characteristics (e.g., ground motion attenuation and site effects),
151 liquefaction susceptibility (e.g., density, fines-content, plasticity, and saturation); and subsurface
152 stratigraphy (e.g., the quantity, depth, and thickness of all liquefiable strata, and the properties of
153 overlying non-liquefiable strata), none of which is directly accounted for by empirical magnitude-bound
154 curves. Because these factors all vary (as reflected by the range of correlations in Fig. 2), region-
155 specific correlations can provide more accurate estimates than those developed from global data (Olson
156 et al., 2005a, 2005b; Maurer et al., 2015a). Shortcomings aside, the magnitude-bound method
157 inherently requires compilation of regional evidence, since the liquefaction field resulting from an
158 event must be fully delineated to properly ascribe a minimum rupture magnitude.

Fig. 2. Magnitude-bound curves for various geographic and tectonic settings, where site-to-source distance is quantified in terms of epicentral distance.

159 2.2 *Site-Specific Geotechnical Analysis*

160 The second, more technical site-specific method uses models based on in-situ geotechnical tests. In
 161 forward hazard analyses, wherein the seismic loading is given, these models predict the future
 162 triggering and manifestation of liquefaction (e.g., Green et al., 2019; Geyin and Maurer, 2020). In
 163 paleoliquefaction studies, wherein the outcome is given, the models are “inverted” to derive
 164 information about the causative earthquake. While implementations of the site-specific method have
 165 varied with time and place (e.g., Martin and Clough, 1990; Hayati and Andrus, 2008; Hu et al., 2002;
 166 Holzer et al., 2015; Gheibi et al., 2020; Rasanen and Maurer, 2021), variants can collectively: (i)
 167 identify combinations of rupture magnitude and ground-motion intensity likely to produce outcomes
 168 at individual sites (most applicable while the number of study sites is limited); (ii) probabilistically
 169 geolocate a seismic source from an evidence field and determine its magnitude (most applicable where
 170 faults are blind, or where prospective causative faults are plentiful); or (iii) compute the likelihood that
 171 a simulated ground-motion is a plausible realization of that experienced prior, as evidenced by the
 172 presence or absence of liquefaction (most applicable when competing forecasts are available).

173 With respect to the latter, and using the CSZ as an example, the likelihood that a ground-motion
 174 simulation represents a past event, given a set of field observations, may be computed as the product
 175 of the probabilities of those observations, conditioned on the simulation. Thus, the likelihood that a
 176 rupture had certain traits (e.g., location (L), geometry (G), and magnitude (M_w)...) given a set (x) of
 177 field observations at N different sites, can be computed as:

178 $Likelihood(L, G, M_w \dots | x) = P(X = x | L, G, M_w \dots) = \prod_{i=1}^N P(X_i = x_i | L, G, M_w \dots)$ (1)

179 Where $P(X_i = x_i | L, G, M_w \dots)$ is the probability of the observation at site i (liquefaction or no
 180 liquefaction) given an earthquake with parameters L , G , M_w , etc. By repeating for numerous
 181 simulations, the most plausible realizations of a past event can be probabilistically identified via the
 182 likelihood function (product of the probabilities of N observations), such that different combinations
 183 of L , G , M_w , etc. will be found more and less likely to produce the observed field evidence. Like the
 184 magnitude-bound approach, this method inherently relies on compilation of regionally distributed
 185 study sites. In Eq. (1), the probability of a field observation is computed as $P(\text{Liquefaction}|PGA, M_w)$
 186 if manifestations of liquefaction are observed, and as $1 - P(\text{Liquefaction}|PGA, M_w)$ otherwise.
 187 $P(\text{Liquefaction}|PGA, M_w)$ is the probability of observing liquefaction at a site, given ground-motion
 188 parameters PGA and M_w , as computed by a model of liquefaction triggering or, more ideally,
 189 liquefaction surface manifestation (embedded in which is a triggering model). As an example, Geyin
 190 and Maurer (2020) proposed fragility functions conditioned on three different liquefaction
 191 manifestation models (e.g., the liquefaction potential index, LPI , proposed by Iwasaki et al., 1978)
 192 computed using six different liquefaction triggering models (e.g., Green et al., 2019) such that users
 193 can select from, or average, 18 total functions. The results of such an analysis could in-turn inform
 194 CSZ modeling uncertainties such as: What were the extents of fault rupture? Where was the
 195 hypocenter? What was the direction of rupture propagation? Where were the rupture asperities?

196 The authors are aware of one prior application of the “site-specific” method in the PNW. Obermeier
 197 and Dickenson (2000) conducted field searches on six Columbia River islands, building upon and
 198 benefiting from many previous efforts (e.g., as compiled by Atwater, 1994). This resulted in the
 199 documented presence, or judged absence, of paleoliquefaction on each island, with features generally
 200 constrained to the year 1700 and decreasing in size and frequency moving inland. Obermeier and
 201 Dickenson (2000) used liquefaction models to back-calculate the $PGAs$ that occurred on this transect
 202 in 1700. Notably, they suggest that $PGAs$ were as low as 20% of those predicted by recent M9
 203 simulations (Frankel et al., 2018a; Wirth et al., 2018). As stated by Obermeier and Dickenson (2000):
 204 “Our interpreted levels of shaking are considerably lower than current estimates that use theoretical
 205 and statistical models to predict ground motions of subduction earthquakes in the Cascadia region.”

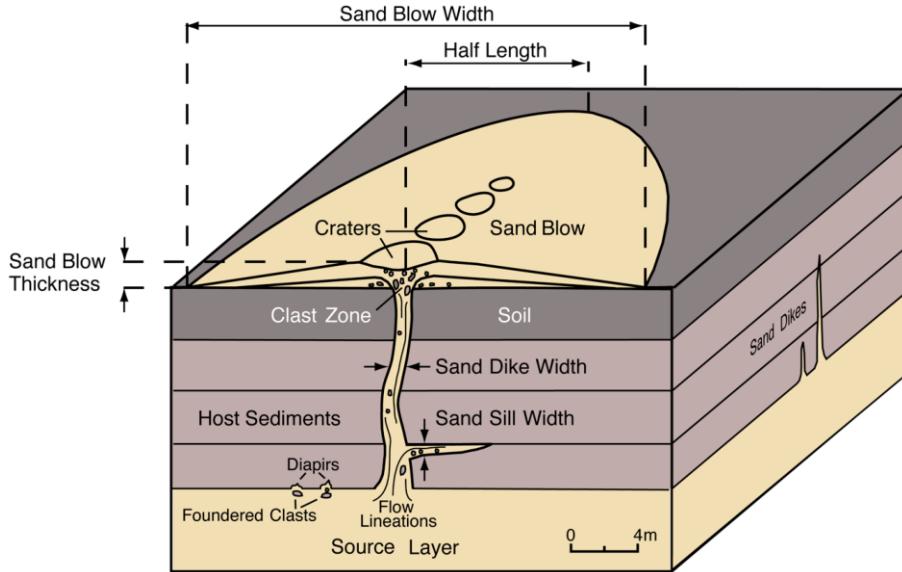
206 While these findings are provocative, they come with an important series of caveats. *First*,
 207 Obermeier and Dickenson (2000) utilized the liquefaction triggering model of Youd and Nobel (1997),
 208 to which standard penetration test (SPT) data from a site is input. However, the Youd and Nobel (1997)
 209 model is not used today - a sequence of major modifications and additions have since been made (e.g.,

210 to account for factors then unknown to be significant). *Second*, as new in-situ test methods have been
211 developed, SPT-based liquefaction triggering models have fallen out of favor, with the cone
212 penetration test (CPT) now recognized as the ideal (NRC, 2016). *Third*, because the study sites were
213 located on islands, SPT equipment was not actually deployed. In its place, a hand-held variant was
214 used (referred to today as a dynamic cone penetration test) and then correlated to SPT measurements
215 by unknown means. The results of this test were then input to the Youd and Nobel (1997) model, which
216 predicts liquefaction triggering at depth within a soil profile. *Fourth*, to predict whether liquefaction
217 that triggered at depth should be expected to manifest at the surface, Obermeier and Dickenson (2000)
218 utilized the Ishihara (1985) “H1-H2” chart (which predicts the thickness of a surficial crust needed to
219 suppress surface manifestation). However, when tested on more recent earthquakes, this method has
220 in some events exhibited prediction efficiencies similar to random guessing (van Ballegooy et al.
221 2015). Newer manifestation models informed by significantly larger datasets (e.g., van Ballegooy et
222 al. 2014; Maurer et al. 2015b) are now available. *Fifth*, none of the methods adopted by Obermeier and
223 Dickenson (2000) accounted for uncertainty (e.g., probabilistic liquefaction models were not available
224 at the time). Notably, deterministic liquefaction models like Youd and Nobel (1997) traditionally have
225 embedded conservatism, such that the binomial threshold for triggering corresponds to a relatively low
226 probability of liquefaction (e.g., 15%). The PGAs constrained by Obermeier and Dickenson (2000)
227 may thus correspond to the 15th percentile of what possibly occurred, rather than to a best estimate.

228 As stated by Obermeier and Dickenson (2000): “Our arguments are based largely on qualitative
229 inferences of liquefaction susceptibility supported by preliminary geotechnical data.” The true 1700
230 ground-motions thus remain enigmatic. Considering major advances in liquefaction analytics made
231 over the last 20 years, CSZ paleoliquefaction features can and should be investigated using modern
232 tools and methods. As concluded by Obermeier and Dickenson (2000): “More paleoliquefaction and
233 geotechnical field studies are needed to bracket the strength of shaking.”

234 3. Compilation of PNW Paleoliquefaction Evidence

235 Paleoliquefaction evidence in the PNW was compiled from 24 publications, as summarized in Table
236 2. The information compiled from each reference includes (when available): study site locations and
237 feature morphologies (e.g., sand-blow thickness and dike width); dating information; important
238 comments from the author; and citations to all original source documents, data, and figures.


Table 2. Literature reviewed and compiled in the paleoliquefaction database.

Reference	Study Region(s)	Reference ID
Atwater (1992)	Washington coast	1
Atwater (1994)	Columbia River	2
Atwater (2020)	Puget Sound (West Point), Washington	3
Bourgeois and Johnson (2001)	Puget Sound (Snohomish River delta), Washington	4
Briggs (1994)	Oregon coast	5
Clague et al. (1992)	Fraser River delta, British Columbia	6
Clague et al. (1997)	Fraser River delta (Annacis Island), British Columbia	7
Davis (2019)	Puget Sound (Duwamish River), Washington	8
Fiedorowicz (1997)	Oregon coast	9
Kelsey et al. (2002)	Oregon coast	10
Martin and Bourgeois (2012)	Hood Canal (Skokomish River delta and Lynch Cove), Washington; Lake Sammamish (Issaquah Creek), Washington	11
Obermeier (1995)	Chehalis River, Washington; Columbia River	12
Peterson and Madin (1997)	Columbia River; Washington coast; Oregon coast	13
Peterson et al. (2005)	Oregon coast	14
Peterson et al. (2008)	Oregon coast	15
Peterson et al. (2013)	Washington coast	16
Peterson et al. (2014)	Willamette River, Oregon; Oregon coast; Washington coast	17
Polenz et al. (2010)	Hood Canal (Skokomish Valley), Washington	18
Sherrod (2001)	Puget Sound, Washington	19
Sherrod et al. (2004)	Puget Sound, Washington	20
Sims (2002)	Calapooia River, Oregon	21
Takada and Atwater (2004)	Columbia River	22
Whistler et al. (2002)	Lake Sammamish (Issaquah Creek), Washington	23
Zehfuss (2005)	Puget Sound, Washington	24

239 Tuttle and Hartleb (2012), under the auspices of the Nuclear Regulatory Commission (NRC, 2012),
240 previously developed an analogous GIS database for the Central and Eastern United States, compiling
241 data for subsequent distribution to the research community. This seminal resource, which included
242 multiple seismic zones but did not extend west of the Mississippi River, serves as an excellent guide
243 for aggregating paleoliquefaction data elsewhere. To facilitate continuity between regions, the data
244 fields proposed by Tuttle and Hartleb (2012) were adopted with minor additions for the PNW. These
245 additions include fields to describe the thickness and lithology of the non-liquefiable capping layer, or
246 “crust”, as well as dendrochronological information, which field geologists have compiled at some
247 sites in the PNW. A complete listing of the data-field names is given in Table 3, as are detailed
248 descriptions of each attribute. Figure 3 illustrates several of these attributes, including: sand-blow
249 thickness, width, and length; dike width; and sill thickness.

Table 3. Paleoliquefaction database field names and their descriptions.

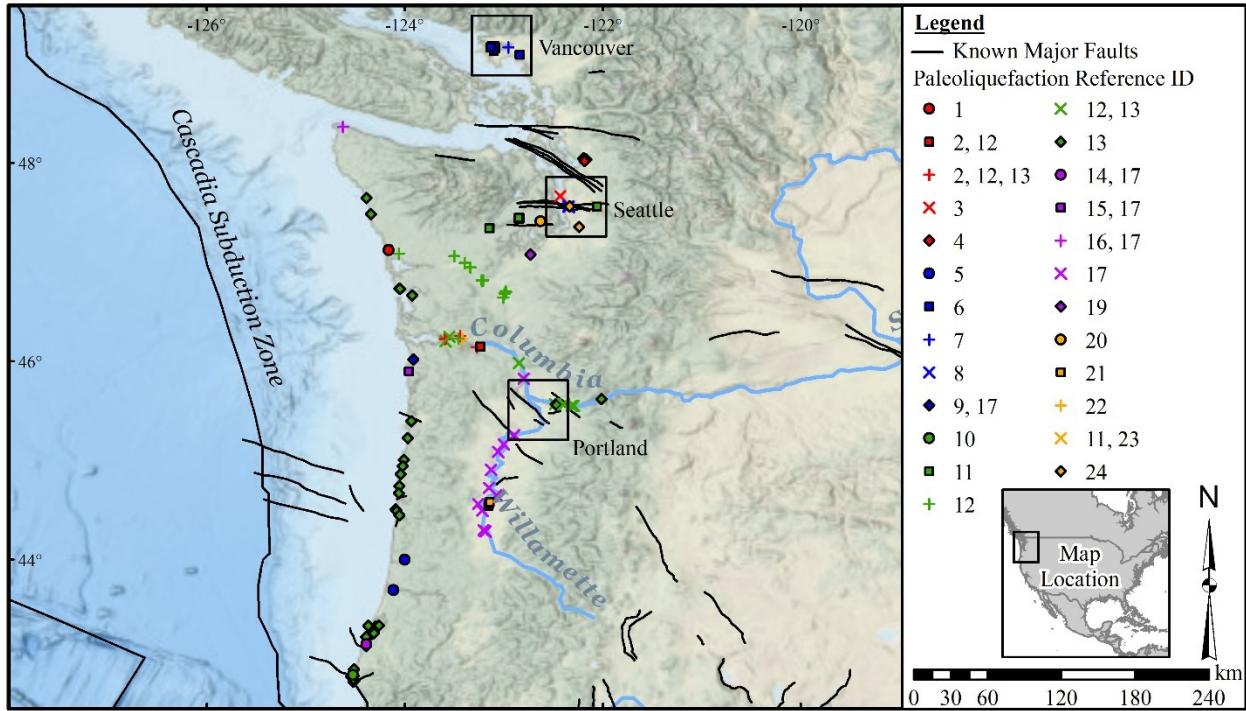
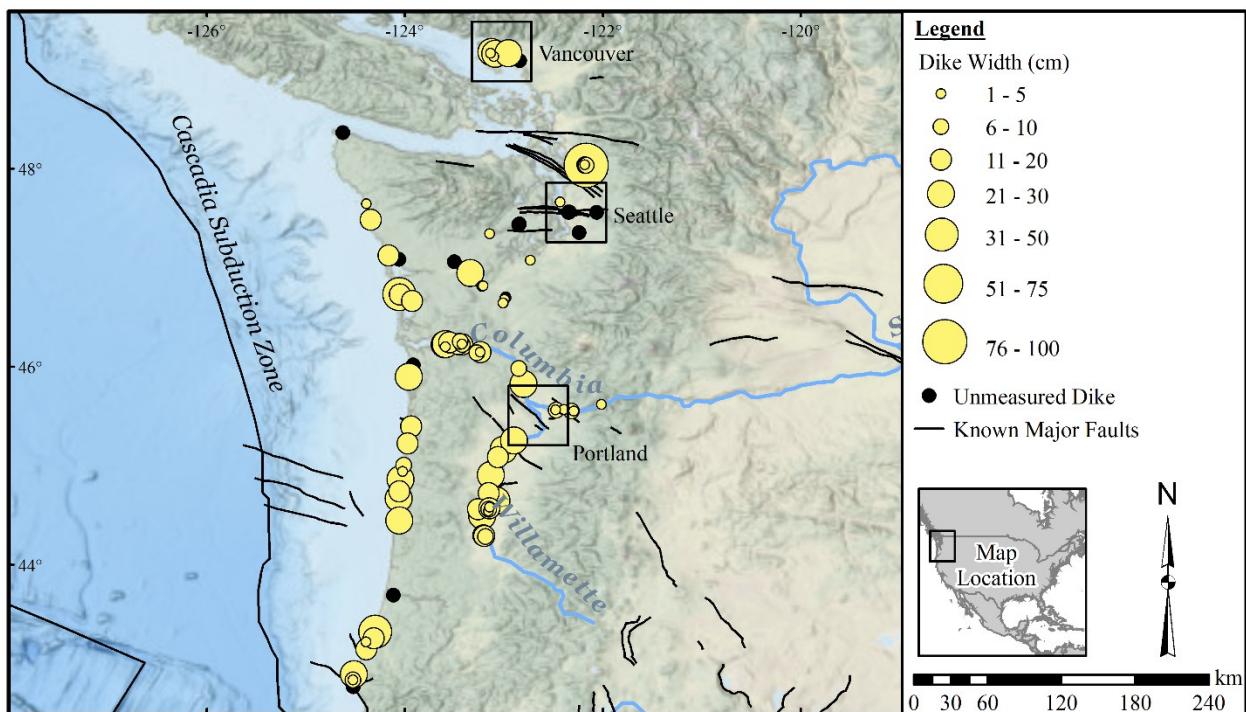
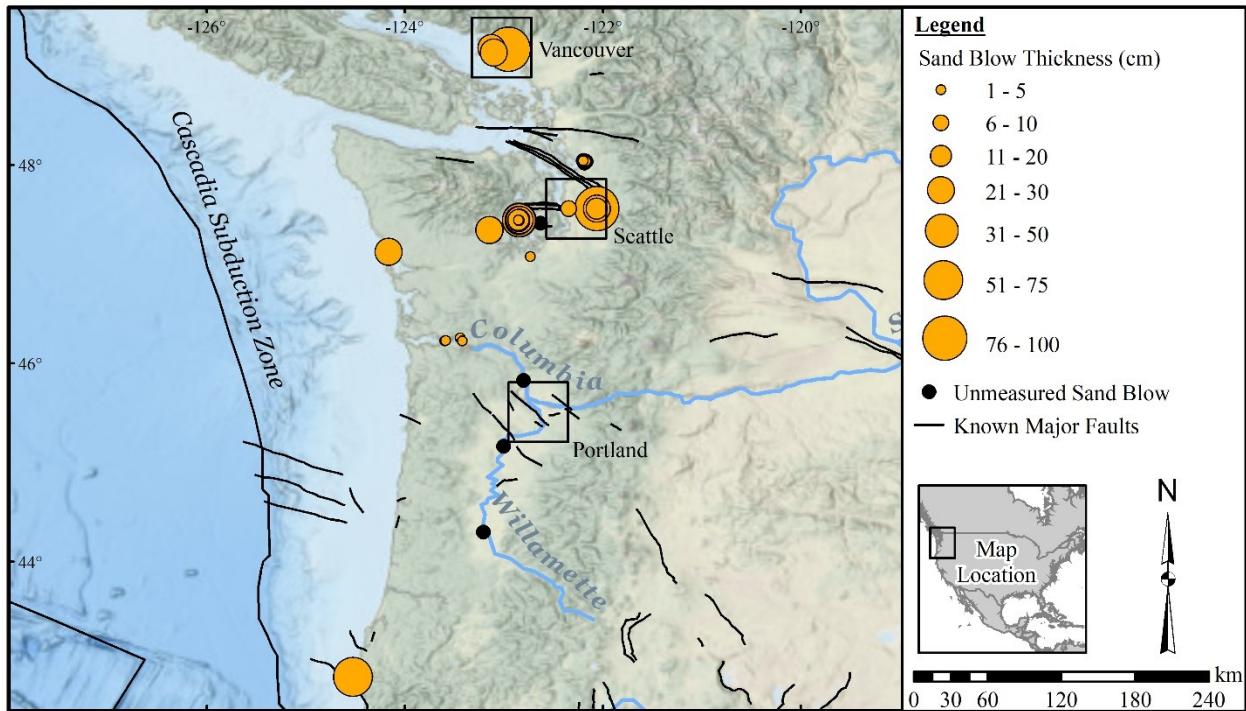

Field Name	Description
SITE_NAME	Alphabetic designator of study area.
FEAT_ID	Unique alphabetic identifier for paleoliquefaction features within the same study area (e.g., Columbia River-01 and Columbia River-02). If a letter is present after the number, then there are multiple liquefaction events in the geologic record at the same location (e.g., Columbia River-06a and Columbia River-06b).
XCOORD	Numeric value of longitude, in decimal degrees.
YCOORD	Numeric value of latitude, in decimal degrees.
COORD_ORIG	Alphabetic description of reference from which study site coordinates are derived from. Some locations were digitized from maps, rather than obtained directly from coordinates. Site coordinates, as given in reports, may also have uncertainty due to limited measurement precision. For example, several Peterson and Madin (1997) study sites were in water (likely from GPS measurement error). In some cases, obvious errors were corrected by the authors (e.g., moving the coordinates to a riverbank near the original coordinates). In other cases, coordinates in water were left as-is.
OBS_TYPE	Alphabetic description of where/how paleoliquefaction was discovered (e.g., river cut bank, trench, borehole, geoslice).
FEAT_TYPE	Alphabetic description of feature type observed (e.g., sand blow, dike, sill, soft sediment deformation).
SSD_DESCR	Alphabetic description of seismic related soft sediment deformation (SSD) features (e.g., convolute beds, flame structure).
FEAT_REF	Alphabetic description of reference where paleoliquefaction feature information was obtained.
SB_THICK	Numeric values of dimensions of sand blow thickness, sand blow width, sand blow length, dike width, and sill thickness, respectively. All dimensions are in cm and given as maximums. Of course, features may not be fully uncovered or delineated in the field, so maximum dimensions may be larger. Dimensions are either directly supplied by original authors or were inferred from to-scale figures. When available, sand blow thickness is measured adjacent to the vent. Sand blows are assumed circular, such that cross-sectional measurements of their size are assumed representative. The value "present" was assigned to sites where sand blows, dikes, or sills were documented but not measured.
SB_WIDTH	
SB_LENGTH	
DK_WIDTH	
SILL_THICK	
CAP_THICK	Numeric value for the thickness of the capping layer, if provided.
CAP_LITH	Alphabetic description of type of soil the capping layer is mainly composed of, if provided.
DIM_REF	Alphabetic description of reference which provides paleoliquefaction feature dimensions either specifically in writing, from tables, or from to-scale figures.
MAX_CAL_2S	Alphanumeric description of two standard deviation maximum calibrated age range specified as cal AD or cal BC.
MIN_CAL_2S	Alphanumeric description of two standard deviation minimum calibrated age range specified as cal AD or cal BC.
MAX_CAL	Numeric maximum calibrated age in years AD (negative values indicate years BC). The single value given for maximum calibrated age is the two standard deviation limit. For example, if a site has a two standard deviation maximum calibrated age range of 1413-1642 AD, then the maximum calibrated age is 1413 AD.
MIN_CAL	Numeric minimum calibrated age in years AD (negative values indicate years BC). The single value given for minimum calibrated age is the two standard deviation limit. For example, if a site has a two standard deviation minimum calibrated age range of 1461-1878 AD, then the minimum calibrated age is 1878 AD.
C14_REF	Alphabetic description of reference which provides calibrated age or radiocarbon age. For sources which only provided radiocarbon ages, the Stuiver et al. (2020) CALIB program was used to convert radiocarbon ages to calibrated ages.
DENDRO_MAX	Alphanumeric maximum calibrated age in years AD from tree ring data.
DENDRO_MIN	Alphanumeric minimum calibrated age in years AD from tree ring data.
DENDRO_REF	Alphabetic description of reference which provides the dendrochronology data.
PREFAGEEST	Alphanumeric preferred age estimate in the format given by original authors. Some authors give an exact year, such as 1700 AD (Atwater, 1994), while others give qualitative descriptors, such as "slightly older than 130 BC" or "significantly younger than 1150 BC" (Obermeier, 1995). Preferred ages are based on radiocarbon, stratigraphy, archeology, or other dating methods. Additional details are provided in the COMMENT field where helpful.
PREFAGEREFL	Alphabetic description of the source which provides the preferred age data.
STRAT	Alphabetic description of feature age based on stratigraphic relationships. For example, using the circa 1480 AD Mt St. Helen's ash layer to estimate a feature's age.
ARCHEO	Alphabetic description of feature age based on archaeological age data.
WEATHERING	Alphabetic description of degree of weathering of feature, or of surrounding sediments, to give an indication of the age of the feature or surrounding sediments.
COMMENT	Alphabetic description of salient comments/conclusions made by the original author(s), and other relevant information not captured in previous fields but extracted by the database compilers. There are three comment fields in total.

Fig. 3. Illustration of liquefaction-feature characteristics referenced in Table 3, including: sand-blow thickness, width, and length; dike width; and sill thickness. Figure from Tuttle and Hartleb (2012).



250 The resulting, curated dataset is available via the NHERI DesignSafe data depot at Rasanen et al.
 251 (2021) (<https://doi.org/10.17603/ds2-fqkr-h615>) and is provided as both a GIS map package and a
 252 flatfile spreadsheet. It should be noted, with respect to the attributes described in Table 3, that: (i) not
 253 all study sites contain information in all data fields (e.g., some lack dating information); (ii) many study
 254 sites have multiple liquefaction features, in which case features in a given locale are denoted by a single
 255 data point (e.g., Clague et al. (1992) documented 80 liquefaction features at a “site”, but only provided
 256 a range of their sizes, in lieu of describing individual features); (iii) both radiocarbon dating methods
 257 of radiometric and accelerator mass dating are considered to give C14 dates; (iv) while all features in
 258 the database are judged to be of seismic origin based on conclusions made by the original investigators
 259 and reassessed by the current authors, the possibility of an aseismic cause nonetheless persists. In this
 260 regard, the criteria proposed by Obermeier (1996) for inferring seismic origin, further demonstrated by
 261 Obermeier et al. (2011), were used to provisionally rule out the possibility that features in the PNW
 262 were produced by aseismic geologic or climatic conditions.

263 In total, 185 study sites were compiled, as mapped in Fig. 4, and are respectively located in British
 264 Columbia (8), Oregon (43), and Washington (109). Additional sites reside along the banks, or on
 265 islands, of the Columbia River (25), which divides Oregon and Washington. Sites are otherwise
 266 concentrated in British Columbia’s Fraser River delta, Oregon’s Willamette River valley,
 267 Washington’s Puget Sound, and in estuaries along the Pacific Coastline.

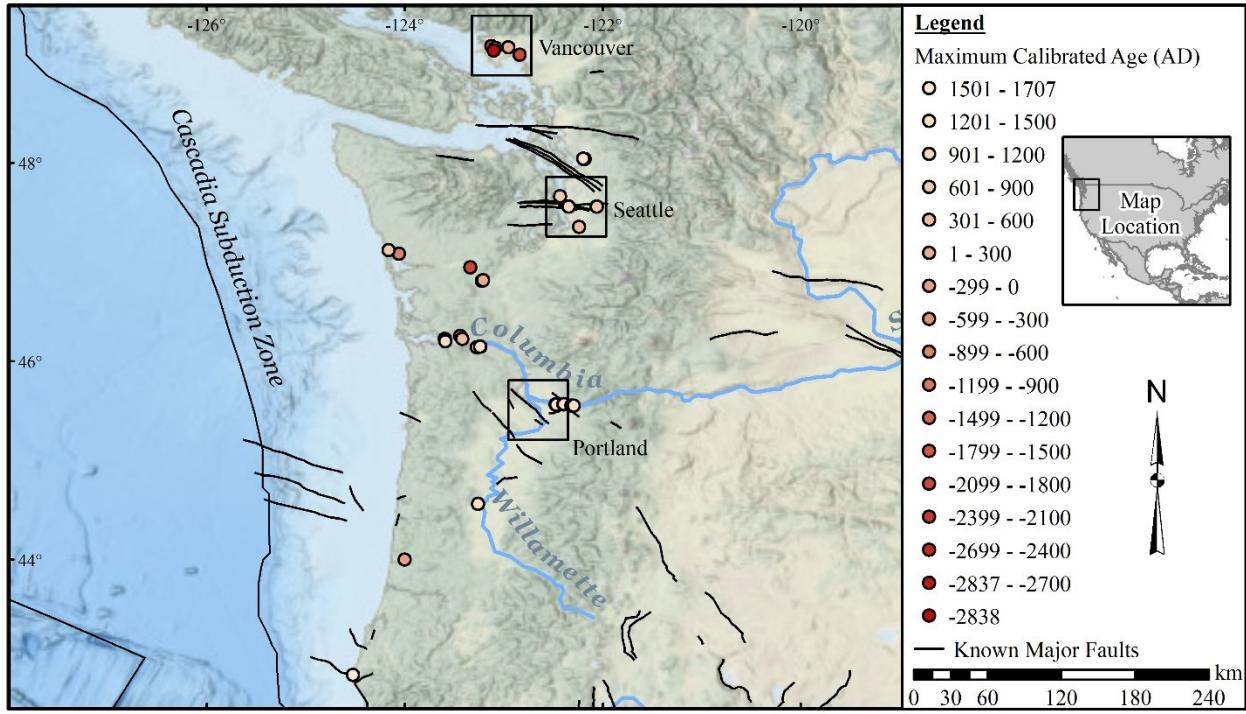


Fig. 4. Compilation of paleoliquefaction evidence. Reference IDs are given in Table 2.

268 The information compiled (see Table 3) allows for study sites to be symbolized by a variety of
 269 attributes (e.g., paleoliquefaction feature type, size, and age). Example products from the PNW
 270 database include the type of paleoliquefaction manifestation (e.g., sand blows or dikes) and the
 271 respective dimensions of the feature (e.g., sand blow thickness or dike width), as mapped in Fig. 5. In
 272 general, smaller, marginal features may more tightly constrain the intensity of past shaking, since this
 273 intensity was likely near the threshold for feature formation (i.e., for liquefaction triggering and
 274 manifestation). By corollary, larger features generally suggest prior loading far above such thresholds.
 275 However, because current liquefaction models predict the incidence of liquefaction manifestation more
 276 efficiently than the severity of manifestation (Maurer et al., 2015c), larger features may, at present,
 277 provide less quantitative constraint on the intensity of past shaking. The presence of large diameter
 278 features far from the coast (e.g., near the cities of Seattle and Vancouver) likely also indicates that not
 279 all features are associated with CSZ interface earthquakes, as will be further discussed. Additionally,
 280 as shown in Fig. 6, dating information – where available – can constrain the maximum calibrated age
 281 and/or minimum calibrated age (i.e., the dates which bound formation of a feature).

Fig. 5. Locations and sizes of paleoliquefaction features manifested as: (a) sand blows; and (b) dikes.

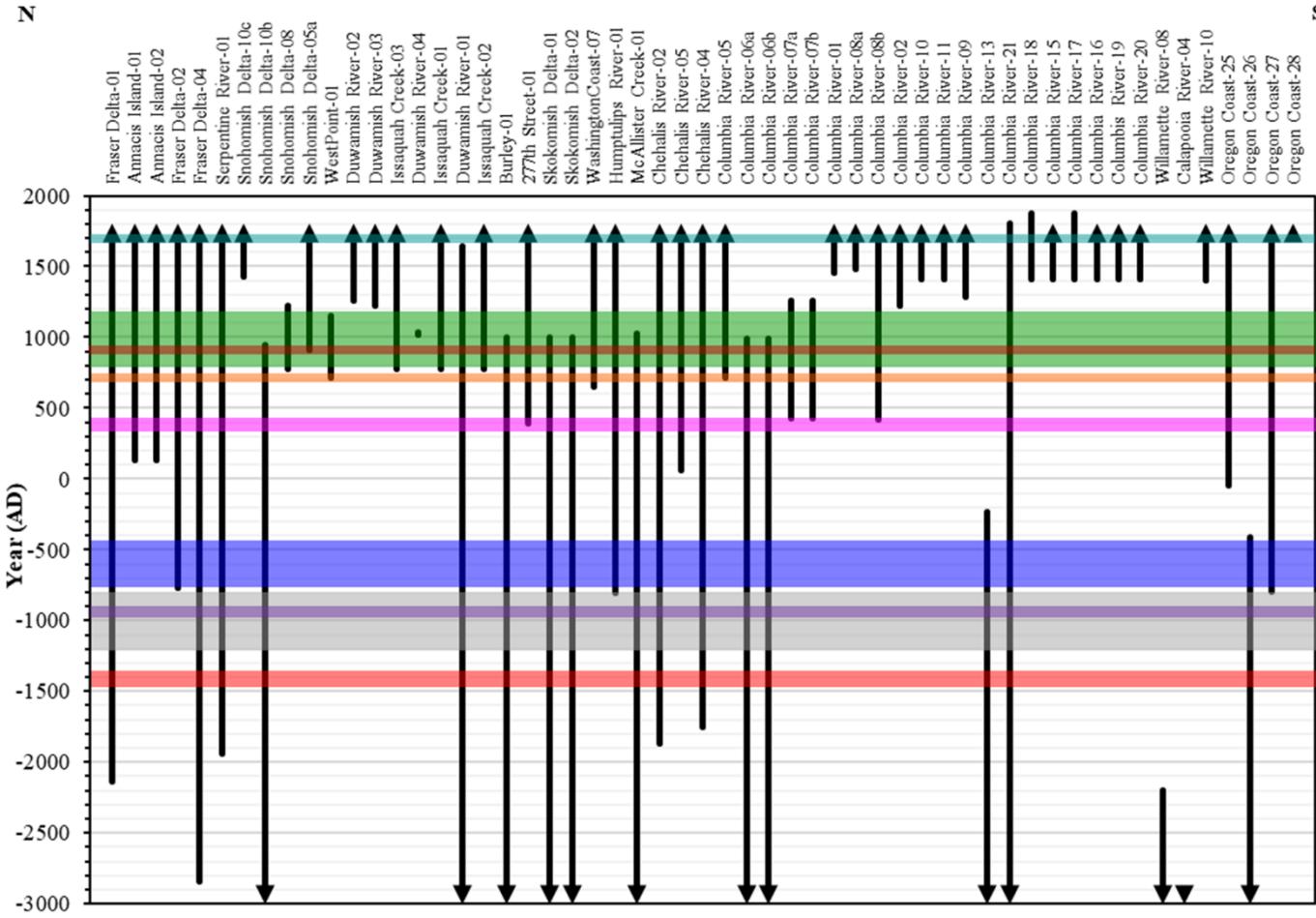


Fig. 6. Locations of paleoliquefaction features with dating information to constrain the maximum calibrated age (i.e., feature is younger than this date). Analogous figures can be developed to show the minimum calibrated age (i.e., feature is older than this date).

282 Of the 185 study sites compiled, 55 have liquefaction features with quantitatively constrained ages.
 283 Fig. 7 graphically depicts these constraints, juxtaposed against select historical earthquakes. Vertical
 284 lines denote the period in which a paleoliquefaction feature formed, with arrows denoting that either a
 285 minimum or maximum age is unknown. Superimposed are nine significant ruptures in the PNW, with
 286 emphasis on those which potentially could, or likely did, produce strong shaking where evidence was
 287 compiled. The constraints on these ruptures were collectively obtained from the paleoseismic studies
 288 of Atwater (1994, 1999), Satake et al. (1996), Atwater and Hemphill-Haley (1997), Atwater et al.
 289 (2003), and Kelsey et al. (2004). Other events proposed in the literature, such as the A.D. 770-1160
 290 Tacoma fault rupture (Sherrod et al., 2004) and earlier ruptures in the CSZ, are not included. To this
 291 we also add the possibility of undocumented ruptures on faults known and unknown. While the age
 292 ranges of many features are relatively large (e.g., spanning multiple known earthquakes), several
 293 authors provide more narrow, preferred ages by holistically weighing the evidence at a site. In this
 294 regard, Fig. 7 does not attempt to convey the nuanced judgement of original investigators, but rather,
 295 serves as a preliminary guide for further reading. As an example, Davis (2019) investigated four
 296 neighboring sites on the Duwamish River in Seattle. While dating does not strictly bound the minimum
 297 ages (i.e., latest dates of formation) for many of the features investigated, Davis (2019) concluded:

298 “none of the dikes observed are likely to be as young as the 1700 Cascadia earthquake.” Other authors
299 similarly reject, or adopt, the plausibility of certain events to have caused a given feature. Some identify
300 a particular causative event, such as the 1700 CSZ rupture (e.g., Atwater 1994; Satake et al., 1996)
301 while others qualify a quantitative constraint, such as “slightly older than 130 B.C.” or “significantly
302 younger than 1150 B.C.” (Obermeier, 1995). Preferred age estimates, and the rationale supporting
303 them, are provided in the data attributes (see Table 3).

304 Ultimately, the compiled database may be used to target study sites for: (i) dating (e.g., where
305 features are undated, or otherwise loosely constrained); and (ii) in-situ geotechnical tests, which are
306 needed to perform inverse-analysis of the shaking experienced (See *Section 2.2*). Towards this end, the
307 database notably lacks observations classified as negative (i.e., well documented sites judged capable
308 of preserving evidence, but where none is observed), from which upper bounds on the intensity of
309 shaking may be computed. While the aphorism “absence of evidence is not evidence of absence” holds
310 true for all paleoseismic research, the need nonetheless exists, where prudent, to explicitly judge sites
311 as “negative.” While further field reconnaissance is undoubtedly needed in the PNW, to include focus
312 on negative observations, such cases could at present be developed from the compiled database. That
313 is, at sites observed to be susceptible to liquefaction and inferred to be capable of preserving evidence
314 at a given time. As an example, liquefaction has yet to be tied to the 1700 CSZ rupture anywhere in
315 the Puget Sound (i.e., the region between Seattle and Vancouver), despite there being numerous sites
316 with recurrent liquefaction episodes. In total, 16 of the compiled study sites with age constraint – many
317 located in the Puget Sound – are likely not to have liquefied in the 1700 CSZ rupture (or at least, no
318 evidence has been found). In such cases, inverse-analyses would provide upper bounds on the intensity
319 of shaking. Ultimately, regardless of whether sites are “positive” or “negative,” a majority lack dating
320 and geotechnical tests, which are both costly to perform, but which are needed to fully exploit the
321 evidence. Accordingly, study sites should be selected for subsequent research in a strategic manner,
322 guided by the compiled database (e.g., such that meaningful constraint on shaking intensity might be
323 obtained).

Event	Age Range	References
Cascadia Subduction Zone	AD 1700	Atwater (1994); Satake et al. (1996)
Cascadia Subduction Zone	AD 790 – 1180	Atwater and Hemphill-Haley (1997); Atwater et al. (2003)
Seattle Fault	AD 900 - 930	Atwater (1999)
Cascadia Subduction Zone	AD 700 - 730	Atwater and Hemphill-Haley (1997); Atwater et al. (2003)
Cascadia Subduction Zone	AD 350 - 420	Atwater and Hemphill-Haley (1997); Atwater et al. (2003)
Cascadia Subduction Zone	BC 760 - 450	Atwater and Hemphill-Haley (1997); Atwater et al. (2003)
Cascadia Subduction Zone	BC 980 - 900	Atwater and Hemphill-Haley (1997); Atwater et al. (2003)
Southern Whidbey Island Fault	BC 1200 - 800	Kelsey et al. (2004)
Cascadia Subduction Zone	BC 1450 - 1360	Atwater and Hemphill-Haley (1997); Atwater et al. (2003)

Fig. 7. Dating constraints on the formation of paleoliquefaction features at 55 study sites, juxtaposed against select, major earthquakes in the PNW. Study sites are identified on the horizontal axis and ordered from north to south; vertical lines denote the period in which a feature formed.

324 4. Forecasting CSZ Paleoliquefaction

325 In addition to further study of existing (i.e., published) paleoliquefaction sites, it is important that new
 326 sites be developed, to include geotechnical testing and analysis. As more sites are identified and

327 analyzed, better constraint of regional ground-motions in past earthquakes will result. Yet, a field
 328 search of the entire PNW would be cost-prohibitive, and moreover, not all study sites will be of equal
 329 value. There are many locations where the presence or absence of liquefaction may do relatively little
 330 to constrain ground motions in a past event. For example, where: (i) the soil is unsusceptible to
 331 liquefaction, as is the case for most land; (ii) the soil is so susceptible to liquefaction that most ground-
 332 motion simulations predict liquefaction, even where motions differ; or (iii) most ground-motion
 333 simulations predict similar motions, and by corollary, lead to similar expectations of liquefaction. For
 334 field pursuits to be conducted more efficiently and strategically, it would be helpful to identify
 335 locations where uncertainties in ground-motion simulations (e.g., Frankel et al. 2018a; Wirth et al.
 336 2018) give rise to differences in the forecasted liquefaction response. Accordingly, maps – specific to
 337 the CSZ – are next developed to prioritize where paleoliquefaction evidence should be searched for.

338 *4.1 Geospatial Liquefaction Models*

339 While liquefaction is most effectively forecasted using models based on in-situ geotechnical tests (e.g.,
 340 Geyin and Maurer, 2020), such an approach is impractical at regional scale. As a result, regional maps
 341 of liquefaction hazard have traditionally been developed using geology maps, from which areal
 342 classifications of susceptibility are assumed. While this approach has been used in Cascadia (e.g.,
 343 Palmer et al., 2007), it does not consider seismic loading, and thus, does not explicitly predict
 344 liquefaction. More recently, “geospatial” liquefaction models have been proposed for regional
 345 applications. In lieu of directly measuring subsurface traits, geospatial models attempt to infer below-
 346 ground conditions from above-ground parameters (e.g., metrics of surface slope, mineralogy,
 347 roughness, wetness, and reflectance; distance to and elevation above rivers, streams, and other water
 348 bodies; and various mapped or remotely sensed values describing geology, geomorphology, bedrock
 349 and water depth, hydrology, climate, etc.). In effect, these parameters serve as proxies of subsurface
 350 traits. The efficiency of one such model (Rashidan and Baise, 2020) has been shown, in some settings,
 351 to rival that of more sophisticated models based on subsurface test data (Geyin et al., 2020). In the
 352 2001 Nisqually, Washington, earthquake, for example, it achieved 93% prediction efficiency when
 353 tested on all available field observations (Geyin et al., 2021). Accordingly, Rashidan and Baise (2020)
 354 will be adopted to compute the probability of liquefaction manifesting at the surface, defined as:

$$355 \quad PoL(X) = \begin{cases} (1 + e^{-X})^{-1} & \text{if } PGV > 3 \frac{cm}{s} \text{ and } PGA > 0.1 g \text{ and } V_{S30} < 620 m/s \\ 0 & \text{otherwise} \end{cases} \quad (2)$$

356 Where: PoL is the probability of liquefaction manifesting within a 100 m by 100 m grid; PGV is peak
357 ground velocity; PGA is peak ground acceleration; V_{S30} is the shear wave velocity time-averaged over
358 the upper 30 m; and X is a series of model parameters and coefficients defined as:

359
$$X = 8.801 + 0.334 \ln(PGV) - 1.918 \ln(V_{S30}) + 0.0005408 (precip) - 0.2054(d_w) - 0.0333(wtd) \quad (3)$$

360 In Eq. (3): PGV and V_{S30} are as previously defined; $precip$ is the mean annual precipitation (mm)
361 capped at 1700 mm; d_w is the closest distance (km) to a river or coastline; and wtd is the water table
362 depth (m). Each of these inputs is readily available and was implemented exactly as described in Zhu
363 et al. (2017) and Rashidan and Baise (2020). Specifically: V_{S30} was obtained from the Heath et al.
364 (2020) global V_{S30} map; $precip$ was obtained from the WorldClim database; wtd was obtained from the
365 Fan et al. (2013) global water-depth map; and d_w was calculated using river and coastline data from
366 the USGS HydroSHEDS database and the NOAA coastline dataset, respectively. These data sources
367 are elaborated upon in the Data Availability section. In addition to PoL , Rashidan and Baise (2020)
368 propose that the percent area of ground covered by liquefaction manifestation may be predicted as:

369
$$LSE(PoL) = 49.15 (1 + 42.4e^{-9.165PoL})^{-2} \quad (4)$$

370 Where LSE is liquefaction spatial extent (%) and PoL was previously defined and calculated in Eqs.
371 (2-3). Maps of both PoL and LSE will be generated for 30 different simulations of a CSZ earthquake.

372 *4.2 CSZ Ground-Motion Simulations*

373 Physics-based ground motion simulations, which explicitly model kinematic fault rupture, wave
374 propagation, and the subsurface velocity structure, are especially useful for studying seismic sources
375 that lack historic records, such as the CSZ. Physics-based simulations also help to elucidate and
376 quantify complex phenomena that may go undetected by empirical observations at discrete stations
377 (e.g., the effects of directivity, basins, and topography). Accordingly, Frankel et al. (2018a) and Wirth
378 et al. (2018) developed 30 physics-based realizations of a full-fault M9 CSZ rupture. This suite of
379 predictions includes variations in the hypocenter location, down-dip limit of fault rupture, slip
380 distribution, and locations of asperities. The down-dip rupture extent was varied to be consistent with
381 the logic tree adopted for the CSZ by Petersen et al. (2014) in the US National Seismic Hazard Map.
382 For each scenario, a total of 500,000 motions were generated on a 1 km² spacing for a region ranging
383 from Northern California to British Columbia, and from off the Pacific Coast to Central Washington

384 and Oregon. The resulting motions can be retrieved from Frankel et al. (2018b) and have been used to
385 forecast a variety of impacts on the built and living environment (e.g., Marafi et al., 2019, 2020).

386 *4.3 Site-Response Analysis*

387 Inherent to the Frankel et al. (2018a) and Wirth et al. (2018) suite of simulations is an assumed surficial
388 shear-wave velocity (V_s) of 600 m/s. That is, the predictions are for rock conditions and do not consider
389 the potential for local soil conditions to alter the amplitude and duration of incoming motions.
390 Therefore, to predict liquefaction using the Rashidan and Baise (2020) model, the CSZ ground-motion
391 simulations were first modified for surficial conditions using site-amplification factors derived from
392 wave-propagation site-response analyses (i.e., to propagate the motions from rock through softer
393 surficial materials, where present). Towards that end, profile measurements cannot feasibly be made
394 everywhere, given the regional scale of the analyses. Accordingly, site amplification factors were
395 computed, in part, using the Marafi et al. (2021) soil velocity model (SVM), which predicts profiles of
396 V_s versus depth (z), and which is specific to the PNW. Using this approach, $V_s(z)$ is defined as:

397

$$398 V_s(z) = \begin{cases} V_{s0} & , z < 2.5 \text{ m} \\ V_{s0} + 1000 \cdot \left(k \frac{z-2.5}{Z_{1.0}-2.5} \right)^{\frac{1}{n}} & , z \geq 2.5 \text{ m} \end{cases} \quad (5)$$

399

400 where: V_{s0} defines V_s at the surface; k controls the near-surface rate-of-change in V_s ; n controls the
401 rate-of-change in V_s at greater depths; $Z_{1.0}$ is the depth, in meters, where $V_s = 1 \text{ km/s}$; V_s and V_{s0} have
402 units of m/s; and z is depth in meters. To anchor the predicted V_s at $Z_{1.0}$, the parameter k is defined as:

403

$$404 k = \left(\frac{1000 - V_{s0}}{1000} \right)^n \quad (6)$$

405

406 Thus, to apply Eqs. 5 and 6 at any given location requires input variable $Z_{1.0}$ and model parameters V_{s0}
407 and n . Drawing from 909 V_s profiles measured in the Cascadia region, Marafi et al. (2021) modeled
408 and trained expressions for V_{s0} and n :

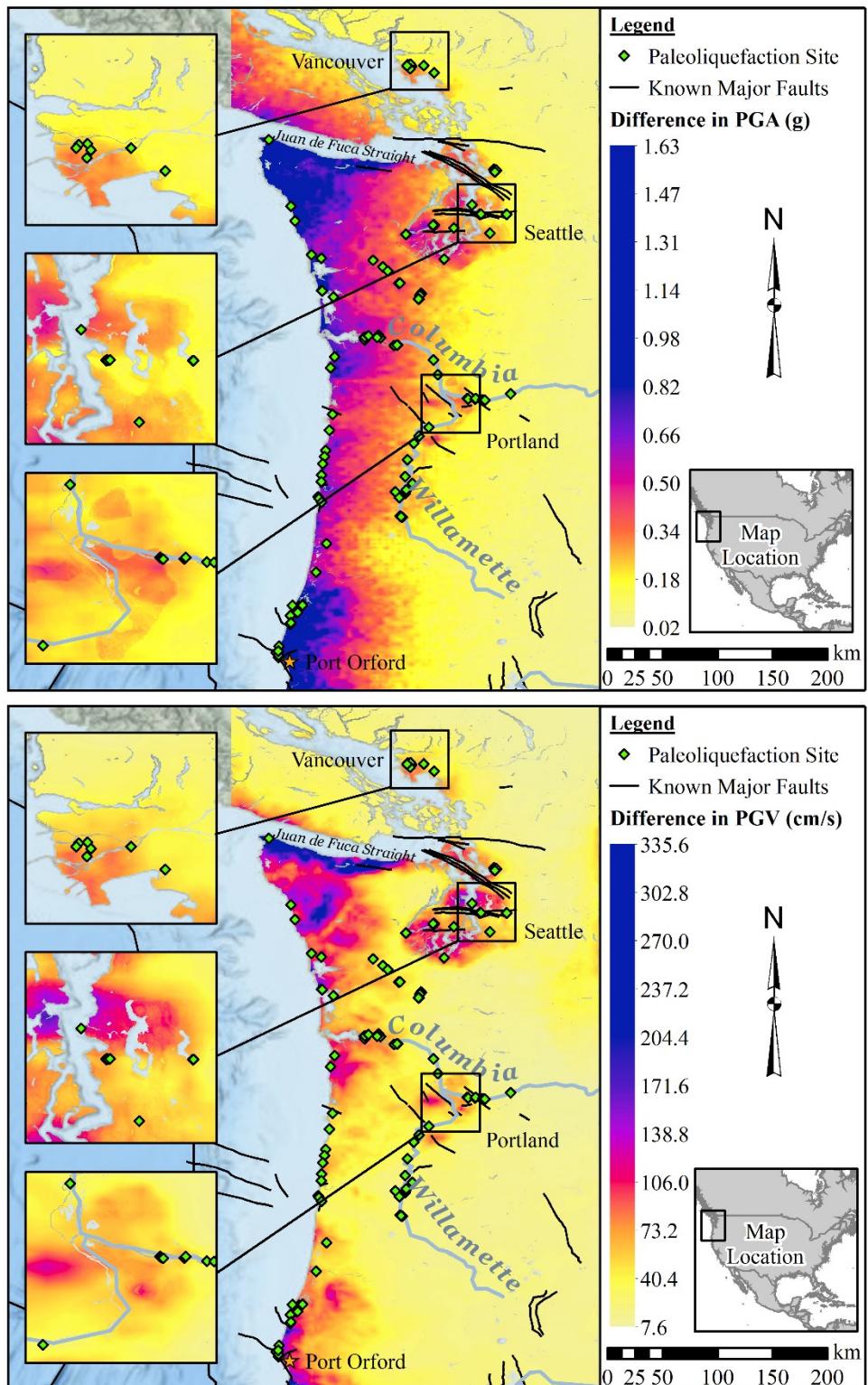
409

$$410 V_{s0} = a_0 + a_1 (V_{s30})^{a_2} \quad (7)$$

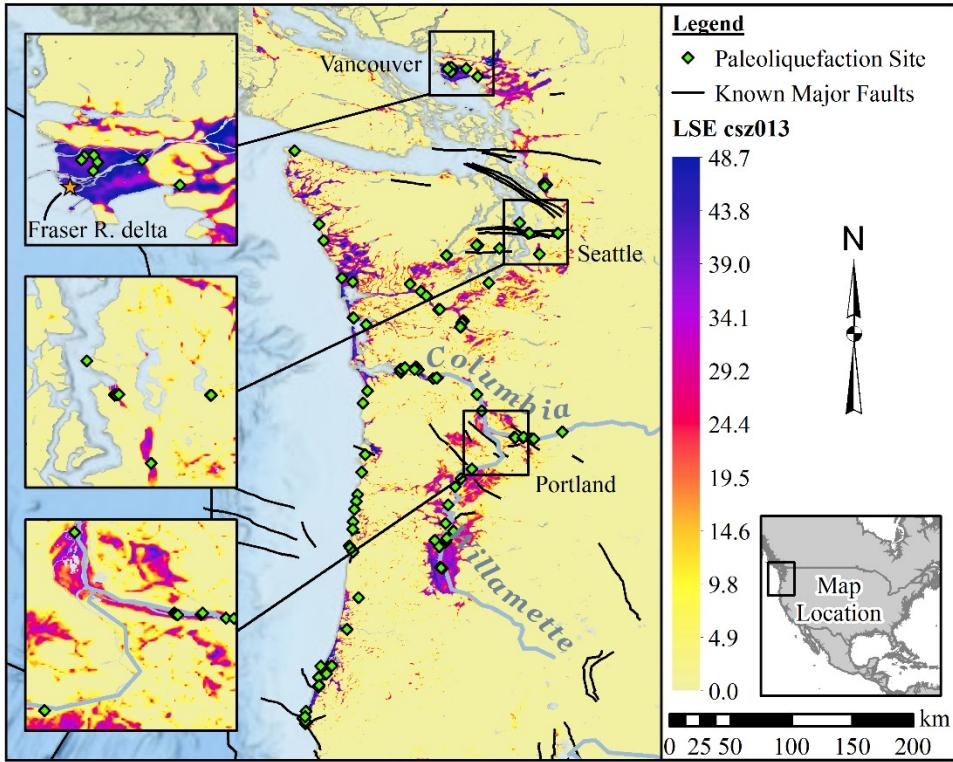
$$411 n = b_0 (V_{s30})^{b_1} (Z_{1.0})^{b_2} (V_{s30} Z_{1.0})^{b_3} \quad (8)$$

412

413 where: $a_0 = -629$; $a_1 = 434$; $a_2 = 0.122$; $b_0 = 0.00912$; $b_1 = 0.646$; $b_2 = -0.201$; $b_3 = 0.136$; and where
414 other variables are as previously defined. While the training profiles were distributed throughout
415 Washington, Oregon, and British Columbia, a majority were in the general vicinities of either Portland,
416 Seattle, or Vancouver, consistent with both the extent and concentration of compiled paleoliquefaction
417 study sites. For the present study, predictions of input variables V_{S30} and $Z_{1.0}$ were obtained from the
418 models of Heath et al. (2020) and Stephenson et al. (2017), respectively, as suggested by Marafi et al.
419 (2021). The Stephenson et al. (2017) community velocity model provides mapping of deep geologic
420 structure, but not of the near surface, and has a minimum V_s of 600 m/s. It thus provides the best means
421 of estimating $Z_{1.0}$ but is otherwise unsuitable for predicting ground motions at the surface.


422 While V_s profile measurements are not yet available at paleoliquefaction sites, the adopted SVM
423 was shown by Marafi et al. (2021) to provide significantly better predictions of profiles in the PNW
424 across all site conditions, as compared to other regional or general SVMs. This may be attributable to
425 Cascadia's numerous geologic basins and glaciated landscapes, which give rise to a wider range of
426 V_{S30} and $Z_{1.0}$ combinations than is typically found in other data-rich seismic zones (e.g., California).
427 Accordingly, the Marafi et al. (2021) SVM was used to estimate V_s profiles at 1 km² across a domain
428 consistent with that of the CSZ ground-motion simulations.

429 Each of the 500,000 simulation motions, for each of 30 realizations, was modified via equivalent
430 linear site-response analysis using pysra (Kottke, 2020), a Python implementation of the software
431 Strata (Kottke and Rathje, 2008). Motions were input to the predicted profiles at a V_s of 600 m/s,
432 consistent with the velocity at which they were computed. Nonlinear soil behavior was modeled per
433 Darendeli (2001) with the following inputs: plasticity index = 30; unit weight = 19.6 kN/m³; ground
434 water depth = 5 m; coefficient of at-rest earth pressure = 1.0; and overconsolidation ratio computed
435 per Wair et al. (2012). While systematic parameter variation was not undertaken, the most significant
436 findings were relatively insensitive to the selected inputs, relative to other uncertainties (e.g., that of
437 V_s versus depth). Ultimately, regional-scale analyses (i.e., analyses that do not use continuous
438 subsurface measurements) have inevitable limitations and uncertainties. The Marafi et al. (2021) SVM
439 is not a probabilistic model, nor are probabilistic estimates of its input parameters, V_{S30} and $Z_{1.0}$,
440 available. The lack of uncertainty quantification within the methods for site-response and liquefaction
441 should not be interpreted to mean that these and other uncertainties do not exist. As improved models of
442 the subsurface velocity structure are developed, or as site-specific measurements are made, the
443 accuracies of the site-response analyses performed herein will improve, and by corollary, so too will
444 forecasts of consequent liquefaction.


445 Following the approach described above, ground surface time-histories were obtained with the
446 same resolution and extents as the Frankel et al. (2018) and Wirth et al. (2018) simulations. For each
447 of the 500,000 motions per realization, PGV and PGA were computed considering the geometric mean
448 horizontal component of motion. These IMs were then linearly interpolated at a resolution of 100 m².
449 Mapped in Fig. 8, considering all 30 realizations, is the 5-to-95 percentile variation in expected PGA
450 and PGV . For many locations, these expected intensities vary significantly across the suite of
451 realizations (e.g., differences in PGA exceeding 1.5 g) despite all modeling a M9 rupture. Some of the
452 largest variations are seen: (i) on the Pacific Coast near the Juan de Fuca Strait in the north, and near
453 Port Orford, OR, in the vicinity of the CSZ's terminus in the south (driven by differing assumed
454 hypocenter locations, among other modeling variables); and (ii) where deep sediment basins have a
455 propensity to amplify differences in incoming motions (e.g., in the vicinities of Portland, Seattle, and
456 Vancouver). It can also be seen in Fig. 8 that some paleoliquefaction study sites are in areas of large
457 ground-motion uncertainty. This hints at the possibility for the presence or absence of paleoliquefaction
458 to constrain influential modeling variables, at least insofar as what occurred in A.D. 1700. In addition
459 to the maps shown in Fig. 8, the median expected PGA and PGV , considering all 30 realizations, are
460 mapped at full resolution in the Rasanen et al. (2021) GIS package, where the PNW paleoliquefaction
461 database is also found. These predicted ground-motion intensities could be used to forecast a variety
462 of regional-scale seismic impacts, in addition to liquefaction.

463 4.4 Results and Discussion

464 Liquefaction parameters PoL and LSE were forecasted across the PNW for each of the 30 modified
465 ground-motion predictions resulting from *Section 4.3*. Given the uncertainties inherent to regional
466 analyses, these products (i.e., liquefaction forecasts) should be viewed as preliminary tools: (i) to guide
467 future field reconnaissance efforts and site-specific geotechnical studies, as will be further discussed; and
468 (ii) to inform regional planning, policy, and science communication. As an example, LSE is mapped in
469 Fig. 9 for one CSZ realization (“csz013”). It can be seen, for this realization, that some of the largest
470 predicted LSE values are in the Fraser river delta of British Columbia. Notably, confirmed 1700 A.D.
471 liquefaction has yet to be discovered anywhere in the vicinity, despite there being other, apparently
472 older features at several study sites in the area. Thus, while site-specific geotechnical testing and
473 analysis would be needed to confirm the geospatial model's prediction, the results in Fig. 9 might
474 suggest that “csz013” is an unlikely realization of the motions experienced in 1700 A.D. Ultimately,
475 geotechnical analyses at several regionally distributed study sites would be needed to conclude this.

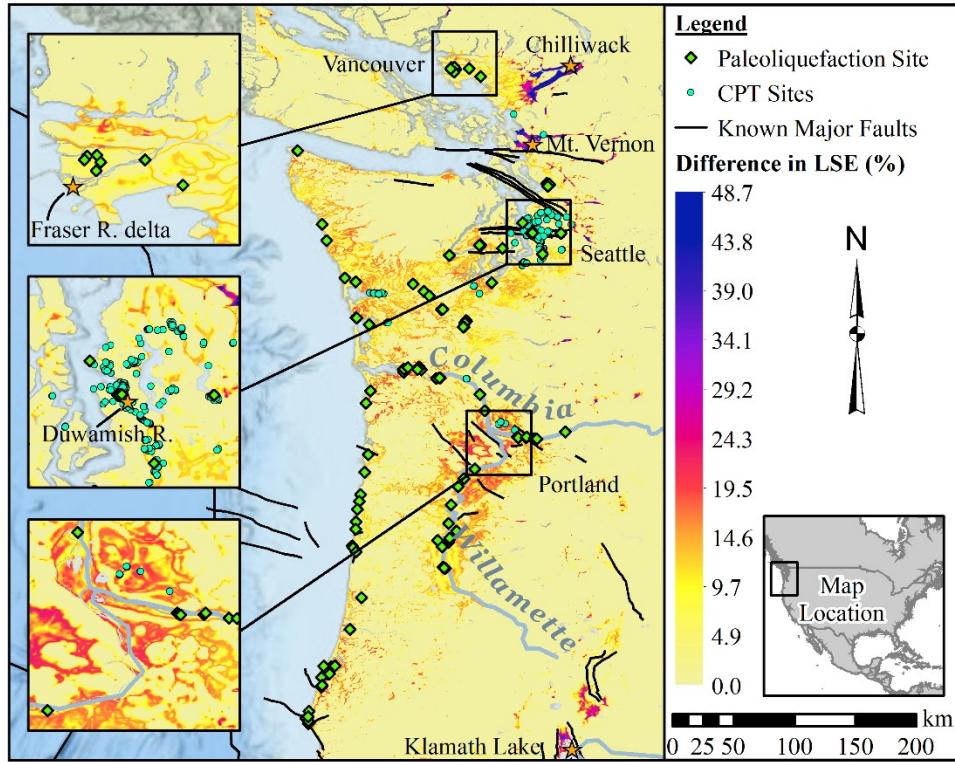

Fig. 8. Maps showing the 5-to-95 percentile variation in expected (a) PGA and (b) PGV, as computed from 30 different ground-motion simulations of a M9 CSZ earthquake. Expected shaking intensities vary significantly (e.g., by more than 1 g) depending on which simulation is adopted.

Fig. 9. Forecasted liquefaction spatial extent, *LSE* (%) computed for CSZ M9 ground-motion simulation “csz013” developed by Frankel et al. (2018a) and Wirth et al. (2018).

476 Analogous *PoL* and *LSE* forecasts are provided for each of the 30 CSZ M9 realizations, at full
 477 resolution, in the Rasanen et al. (2021) GIS package downloadable from <https://doi.org/10.17603/ds2-fqkr-h615>. Collectively, these forecasts may be used to identify locations: (i) where paleoliquefaction
 478 evidence is likely to be found; and (ii) where the expected liquefaction response differs across the suite
 479 of CSZ ground-motion realizations. As an example, the 5-to-95 percentile variation in *LSE*, considering
 480 all 30 realizations, is mapped in Fig. 10. Locations with large *LSE* differences are those where: (i) there
 481 are large differences in ground-motion intensity across realizations; and (ii) the subsurface is inferred
 482 to be susceptible to liquefaction. In this respect, differences in *LSE* increase as the inferred
 483 susceptibility to liquefaction increases, all else being equal. Fig. 10, which is included in the above
 484 GIS package, can thus be used to identify where the presence or absence of liquefaction would have
 485 greater potential to constrain the intensity of past shaking (i.e., where differences in *LSE* are greatest).
 486 In these locales, the presence or absence of features would be strongly at odds with some subset of the
 487 ground motion realizations, thereby diminishing their plausibility. Elsewhere, where differences in
 488 *LSE* are small, the presence or absence of features would potentially do little or nothing to constrain
 489 ground-motion models.

491 Regionally, some of the largest differences in *LSE* are (from south to north): near Klamath Lake,
492 OR; along the Skagit River in the vicinity of Mt. Vernon, WA; and along the Fraser River in the vicinity
493 of Chilliwack, BC. In each of these locales, predicted ground motions are sufficient for liquefaction in
494 some realizations, assuming the subsurface is highly susceptible, but mechanistically insufficient in
495 others, regardless of subsurface conditions. While paleoliquefaction has not been discovered in any of
496 these areas, it is unknown whether field searches have been undertaken. Specific to the three urban
497 centers highlighted in Fig. 10, relatively large *LSE* differences are predicted along the Columbia and
498 Willamette Rivers in Portland, along the Duwamish River in Seattle, and in the Fraser River delta near
499 Vancouver. In these urban areas, liquefaction manifestations are likely for some realizations of a CSZ
500 rupture, but unlikely for others. Paleoliquefaction features have been documented in each of these
501 urban areas, yet few, if any, of these were conceivably caused by the 1700 CSZ event (see Figure 7
502 and associated discussion). If these sites are judged not to have liquefied in 1700, the maximum shaking
503 intensity could be provisionally constrained via geotechnical testing (i.e., if the intensity were any
504 larger, liquefaction would be expected). Such analyses would also have the potential to inform regional
505 ground-motion models, given that some subset of realizations would be less likely to represent that
506 which occurred in 1700. Given the importance of geotechnical testing (e.g., CPTs) toward constraint
507 of shaking intensity, an additional strategy is to search for the presence or absence of paleoliquefaction
508 where testing has already been performed. That is, at locations where the subsurface is well
509 documented, and where a significant cost of inverse analysis is already paid for. Towards this end,
510 provided in the Rasanen et al. (2021) GIS package and mapped in Fig. 10, are the locations of many
511 hundreds of CPTs presently available from the Washington Dept. of Natural Resources. Many of these
512 CPTs, the data for which can be obtained from Jeschke et al. (2019), are in the vicinity of public lands
513 and waterways where paleoliquefaction can be searched for.

Fig. 10. The 5-to-95 percentile variation in expected LSE, as computed from 30 different ground-motion simulations of a M9 CSZ earthquake; paleoliquefaction and CPT sites are also mapped.

514 5. Conclusions

515 Paleoliquefaction provides the best, if not only, evidence from which the intensities of previous ground
 516 motions in the PNW may be constrained. Towards that ultimate goal, this paper first reviewed current
 517 paleoliquefaction inverse-analysis methods and their limited, prior applications in the PNW. Next, all
 518 existing PNW paleoliquefaction evidence was compiled from the literature into a GIS database for
 519 distribution to the engineering geology research community – the first such database compiled for the
 520 U.S. Pacific Northwest. This resulted in detailed data from 185 study sites (e.g., feature locations,
 521 types, sizes, and ages). Lastly, paleoliquefaction evidence was forecasted for 30 different physics-
 522 based ground motion simulations of a M9 CSZ earthquake. Collectively, these maps can be used to
 523 guide field explorations by engineering geologists for new evidence, considering both: (i) where
 524 evidence is likely to be found; and (ii) whether evidence is likely to provide meaning constraint of CSZ
 525 ground motion models. Of additional utility, this process resulted in the first ever suite of M9 CSZ
 526 ground-motion predictions for the Cascadia Region. In making these predictions, wave-propagation
 527 based site-response analyses were used to account for expected near-surface site effects. Together, the
 528 maps of expected shaking intensity and liquefaction may be useful in regional loss estimation, scenario

529 planning, and science communication. Ultimately, as more paleoliquefaction evidence is identified and
530 analyzed, better constraint of regional ground-motions in past earthquakes will result. This will
531 undoubtedly require unified collaboration between geoscientists, geoengineers, and other research
532 professionals. The products presented herein form a foundation for these efforts.

533 **6. Data Availability**

534 Available in digital format from NEHRI DesignSafe (<https://doi.org/10.17603/ds2-fqkr-h615>)
535 (Rasanen et al., 2021) are the: (i) PNW paleoliquefaction database; (ii) maps showing the predicted
536 median and variance of *PGA* and *PGV* across 30 simulations of a CSZ earthquake; (iii) maps of
537 forecasted *PoL* and *LSE* for 30 simulated CSZ earthquakes; and (iv) locations of existing CPTs, as
538 discussed in the text. In addition, all inputs required of the Rashidan and Baise (2020) geospatial
539 liquefaction model are globally available. Distance to river was computed from the Hydrological data
540 and maps based on Shuttle Elevation Derivatives at multiple Scales (HydroSHEDS) database
541 (<https://www.hydrosheds.org/page/hydrorivers>, accessed July 2019). Distance to coast was computed
542 from the National Oceanic and Atmospheric Administration coastline dataset
543 (<https://shoreline.noaa.gov/data/datasheets/medres.html>, accessed July 2019). Mean annual
544 precipitation was obtained from the WorldClim database (<https://worldclim.org/>, accessed July 2019).

545 **7. Acknowledgements**

546 The presented study is based on work supported by the National Science Foundation (NSF) under
547 Grant No. CMMI-1751216, by the NSF Graduate Research Fellowship Program under Grant No.
548 DGE-1762114, and by the University of Washington Royalty Research Fund (RRF). However, any
549 opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors
550 and do not necessarily reflect the views of the NSF or RRF.

551 **8. References**

- 552 Allen, T.I. and Wald, D.J. (2009). “On the use of high-resolution topographic data as a proxy for seismic site
553 conditions (Vs30).” *Bulletin of the Seismological Society of America* 99(2A): 935-943.
554 Ambrayses, N.N. (1988). “Engineering seismology.” *Earthquake Eng and Structural Dynamics* 17: 1-105.
555 Atwater, B.F. (1992). “Geologic Evidence for Earthquakes During the Past 2000 Years Along the Copalis River,
556 Southern Coastal Washington.” *Journal of Geophysical Research* 97(B2): 1901-1919.
557 Atwater, B.F. (compiler) (1994). “Geology of Holocene liquefaction features along the lower Columbia River
558 at Marsh, Brush, Price, Hunting, and Wallace Islands, Oregon and Washington.” *U.S. Geol. Surv. OpenFile
559 Rept.* 94-209, 30 pp.
560 Atwater, B.F. (1999). “Radiocarbon dating of a Seattle earthquake to A.D. 900–930.” *SRL* 70: 232.

- 561 Atwater, B.F., and Hemphill-Haley, E. (1997). "Recurrence Intervals for Great Earthquakes of the Past 3,500
562 Years at Northeastern Willapa Bay, Washington." *U.S. Geological Survey Paper 1576*.
- 563 Atwater, B.F., Stuiver, M., and Yamaguchi, D.K. (1991). "Radiocarbon test of earthquake magnitude at the
564 Cascadia subduction zone." *Nature* 353: 156-158.
- 565 Atwater, B.F., Carson, B., Griggs, G.B., Johnson, H.P., and Salmi, M.S. (2014). "Rethinking turbidite
566 paleoseismology along the Cascadia subduction zone." *Geology* 42(9): 827-830.
- 567 Atwater, B.F., Tuttle, M.P., Schweig, E.S., Rubin, C.M., Yamaguchi, D.K., and Hemphill-Haley, E. (2003).
568 "Earthquake recurrence inferred from paleoseismology." *Developments in Quaternary Science* 1: 331-348.
- 569 Aydan, O., Ulusay, R., Kumsar, H., and Tuncay, E. (2000). "Site investigation and engineering evaluation of the
570 Duzce-Bolu earthquake of November 12, 1999." *Turkish Earthquake Foundation, Istanbul*. Report No.
571 TDV/DR 09-51, 307 p.
- 572 Bastin, S., Bassett, K., Quigley, M.C., Maurer, B.W., Green, R.A., Bradley, B.A., and Jacobson, D. (2016). "Late
573 Holocene liquefaction at sites of contemporary liquefaction during the 2010-2011 Canterbury Earthquake
574 Sequence." *Bulletin of the Seismological Society of America* 106(3): 881-903.
- 575 Bourgeois, J., and Johnson, S.Y. (2001). "Geologic evidence of earthquakes at the Snohomish delta, Washington,
576 in the past 1200 yr." *Geological Society of America Bulletin* 113(4): 482-494.
- 577 Briggs, G.G. (1994). "Coastal Crossing of the Elastic Strain Zero-Isobase, Cascadia Margin, South Central
578 Oregon Coast." *Dissertations and Theses*. Paper 4739.
- 579 Castilla, R.A. and Audemard, F.A. (2007). "Sand blows as a potential tool for magnitude estimation of pre-
580 instrumental earthquakes." *Journal of Seismology* 11: 473-487.
- 581 Clague, J.J., Naesgaard, E., and Sy, A. (1992). "Liquefaction features on the Fraser delta: evidence for prehistoric
582 earthquakes?" *Canadian Journal of Earth Sciences* 29: 1734-1745.
- 583 Clague, J.J., Naesgaard, E., and Nelson, A.R. (1997). "Age and significance of earthquake-induced liquefaction
584 near Vancouver, British Columbia, Canada." *Can. Geotech. J.* 34: 53-62.
- 585 Cox, R.T., Hill, A.A., Larsen, D., Holzer, T., Forman, S.L., Noce, T., Gardner, C., and Morat, J. (2007).
586 "Seismotectonic implications of sand blows in the southern Mississippi Embayment." *Engineering Geology*
587 89: 278-299.
- 588 Darendeli, M. B. (2001). "Development of a new family of normalized modulus reduction and material damping
589 curves." PhD Dissertation, Dept. of Civil Engineering, University of Texas at Austin.
- 590 Davis, E. (2019). "Seattle liquefaction features along the Duwamish Waterway, Washington." *Seismological
591 Society of America Annual Meeting*, 23-26 April, Seattle, USA.
- 592 de Magistris, F. S., Lanzano, G., Forte, G., & Fabbrocino, G. (2013). "A database for PGA threshold in
593 liquefaction occurrence." *Soil Dynamics and Earthquake Engineering*, 54: 17-19.
- 594 Engelhart, S.E., Horton, B.P., Nelson, A.R., Hawkes, A.D., Witter, R.C., Wang, K., Wang, P.-L., and Vane,
595 C.H. (2013). "Testing the use of microfossils to reconstruct great earthquakes at Cascadia." *Geology* 41 (10):
596 1067-1070.
- 597 Fan, Y., Li, H., and Miguez-Macho, G. (2013). "Global patterns of groundwater table depth." *Science* 339: 940
598 943.
- 599 Fiedorowicz, B.K. (1997). "Geologic Evidence of Historic and Preshistoric Tsunami Inundation at Seaside,
600 Oregon." *M.S. Thesis*, Portland State University, Portland.
- 601 Frankel, A., Wirth, E., Marafi, N., Vidale, J., and Stephenson, W. (2018a). "Broadband Synthetic Seismograms
602 for Magnitude 9 Earthquakes on the Cascadia Megathrust Based On 3D Simulations and Stochastic
603 Synthetics (Part 1): Methodology and Overall Results." *Bulletin of the Seismological Society of America* 108
604 (5A): 2347-2369.

- 605 Frankel, A., Wirth, E., and Marafi, N. (2018b). "The M9 Project Ground Motions." DesignSafe-CI.
606 <https://doi.org/10.17603/DS2WM3W>.
- 607 Galli, P. (2000). "New empirical relationships between magnitude and distance for liquefaction." *Tectonophysics*
608 324: 169-187.
- 609 Geyin, M. and Maurer, B.W. (2020). "Fragility functions for liquefaction-induced ground failure." *Journal of*
610 *Geotechnical and Geoenvironmental Engineering* 146(12): 04020142.
- 611 Geyin, M., Baird, A.J., and Maurer, B.W. (2020). "Field assessment of liquefaction prediction models based on
612 geotechnical vs. geospatial data, with lessons for each." *Earthquake Spectra* 36(3): 1386-1411.
- 613 Geyin, M., Maurer, B.W., and Christofferson, K. (2021). "An AI-Driven, Mechanistically Grounded Geospatial
614 Liquefaction Model for Rapid Response and Planning." *Soil Dynamics and Earthquake Eng., In Review*.
- 615 Gheibi, E., Gassman, S., & Talwani, P. (2020). "Regional assessment of prehistoric earthquake magnitudes in
616 the South Carolina Coastal Plain." *Bulletin of Eng Geology and the Environment* 79(3): 1413-1427.
- 617 Goldfinger, C., Nelson, C.H., Morey, A.E., Johnson, J.E., Patton, J.R., Karabanov, E., Gutiérrez-Pastor, J.,
618 Eriksson, A.T., Gràcia, E., Dunhill, G., Enkin, R.J., Dallimore, A., and Vallier, T., (2012). "Turbidite event
619 history - methods and implications for Holocene paleoseismicity of the Cascadia subduction zone." *U.S.
620 Geological Survey Professional Paper 1661-F*, 170 pg.
- 621 Green, R.A., Olson, S.M., and Obermeier, S.F. (2005). "Geotechnical analysis of paleoseismic shaking using
622 liquefaction effects: field examples." *Engineering Geology* 76: 263-293.
- 623 Green, R.A., Maurer, B.W., Bradley, B.A., Wotherspoon, L., and Cubrinovski, M. (2014). "Implications from
624 liquefaction observations in New Zealand for interpreting paleoliquefaction data in the central eastern United
625 States." *U.S. Geological Society Technical Report G12AP20002*, 97pp.
- 626 Green, R.A., Bommer, J.J., Rodriguez-Marek, A., Maurer, B.W., Stafford, P.J., Edwards, B., Kruiver, P.P., De
627 Lange, G. and Van Elk, J. (2019). "Addressing limitations in existing 'simplified' liquefaction triggering
628 evaluation procedures: application to induced seismicity in the Groningen gas field." *Bulletin of Earthquake
629 Engineering* 17(8): 4539-4557.
- 630 Hayati, H. and Andrus, R.D. (2008). "Liquefaction potential map of Charleston, South Carolina base on the 1886
631 earthquake." *Journal of Geotechnical and Geoenvironmental Engineering* 134(6): 815-828.
- 632 Heath, D., Wald, D. J., Worden, C. B., Thompson, E. M., and Smoczyk, G. (2020). "A Global Hybrid VS30
633 Map with a Topographic-Slope-Based Default and Regional Map Insets." *Earthquake Spectra* 36(3): 1570-
634 1584.
- 635 Holzer, T.L., Noce, T.E., and Bennett, M.J. (2015). "Strong ground motion inferred from liquefaction caused by
636 the 1811-1812 New Madrid, Missouri, Earthquakes." *Bulletin of the Seismological Society of America*
637 105(5): 2589-2603.
- 638 Hu, K., Gassman, S.L., and Talwani, P. (2002). "Magnitudes of prehistoric earthquakes in the South Carolina
639 Coastal Plain from geotechnical data." *Seismological Research Letters* 73(6): 979-991.
- 640 Ishihara, K. (1985). "Stability of natural deposits during earthquakes." In *International conference on soil
641 mechanics and foundation engineering. 11* (pp. 321-376).
- 642 Iwasaki, T., Tatsuoka, F., Tokida, K., and Yasud, S. (1978). "A practical method for assessing soil liquefaction
643 potential based on case studies at various sites in Japan." *2nd Intl Conf. Microzonation*.
- 644 Jeschke, D. A.; Eungard, D. W.; Troost, K. G.; Wisher, A. P. (2019). "Subsurface database of Washington State
645 - GIS data." *Washington Geological Survey Digital Data Series 11*, version 2.1, previously released August
646 2017 [http://www.dnr.wa.gov/publications/ger_portal_subsurface_database.zip].
- 647 Kelsey, H.M., Witter, R.C., Hemphill-Haley, E. (2002). "Plate-boundary earthquakes and tsunamis of the past
648 5500 yr, Sixes River estuary, southern Oregon. *GSA Bulletin* 114(3): 298-314.

- 649 Kelsey, H.M., Sherrod, B., Johnson, S.Y., and Dadisman, S.V. (2004). "Land-level changes from a late Holocene
650 earthquake in the northern Puget Lowland, Washington." *Geological Society of America* 32(6): 469-472.
- 651 Kottke, A.R. and Rathje, E.M. (2008). "Technical manual for Strata." Report No.: 2008/10. Pacific earthquake
652 engineering research center. Berkeley: University of California.
- 653 Kottke, A.R. (2020). "Site response analysis for Python." <https://doi.org/10.5281/zenodo.3522104>.
654 <https://github.com/arkottke/pysra>. Accessed 1 Feb 2020.
- 655 Kuribayahsi, E. and Tatsuoka, F. (1975). "Brief review of liquefaction during earthquakes in Japan." *Soils and*
656 *Foundations* 15(4): 81-92.
- 657 Marafi, N.A., Eberhard, M.O., Berman, J.W., Wirth, E.A., and Frankel, A.D. (2019). "Impacts of simulated M9
658 Cascadia subduction zone motions on idealized systems." *Earthquake Spectra* 35(3), 1261-1287.
- 659 Marafi, N.A., Makdisi, A.J., Eberhard, M.O., & Berman, J.W. (2020). "Impacts of an M9 Cascadia Subduction
660 Zone Earthquake and Seattle Basin on Performance of RC Core Wall Buildings." *Journal of Structural*
661 *Engineering* 146(2), 04019201.
- 662 Marafi, N. A., Grant, A., Maurer, B. W., Rateria, G., Eberhard, M. O., & Berman, J. W. (2021). "A generic soil
663 velocity model that accounts for near-surface conditions and deeper geologic structure." *Soil Dynamics and*
664 *Earthquake Engineering* 140: 106461.
- 665 Martin, J.R. and Clough, G.W. (1990). "Implications from a geotechnical investigation of liquefaction
666 phenomena associated with seismic events in the Charleston, SC area." Report to USGS Grant No. 14-08-
667 001-G-1348, Virginia Tech, Blacksburg, VA, 414 p.
- 668 Martin, M.A., and Bourgeois, J. (2012). "Vented sediments and tsunami deposits in the Puget Lowland,
669 Washington – differentiating sedimentary processes." *Sedimentology* 59: 419-444.
- 670 Maurer, B.W., Green, R.A., Quigley, M.C. and Bastin, S. (2015a). "Development of magnitude-bound relations
671 for paleoliquefaction analyses: New Zealand case study." *Engineering Geology* 197: 253-266.
- 672 Maurer, B.W., Green, R.A. and Taylor, O.D.S. (2015b). "Moving towards an improved index for assessing
673 liquefaction hazard: lessons from historical data." *Soils and Foundations* 55(4): 778-787.
- 674 Maurer, B.W., Green, R.A., Cubrinovski, M., and Bradley, B. (2015c). "Assessment of CPT-based methods for
675 liquefaction evaluation in a liquefaction potential index framework." *Géotechnique* 65(5): 328-336.
- 676 Maurer, B.W., Green, R.A., Wotherspoon, L.M. & Bastin, S. (2019). "The stratigraphy of compound sand blows
677 at sites of recurrent liquefaction: implications for paleoseismicity studies." *Earthquake Spectra* 35(3): 1421-
678 1440.
- 679 National Research Council (NRC) (2016). "State of the art and practice in the assessment of earthquake induced
680 soil liquefaction and its consequences." committee on earthquake induced soil liquefaction assessment
681 (Edward Kavazanjian, Jr., Chair, Jose E. Andrade, Kandian "Arul" Arulmoli, Brian F. Atwater, John T.
682 Christian, Russell A. Green, Steven L. Kramer, Lelio Mejia, James K. Mitchell, Ellen Rathje, James R. Rice,
683 and Yumie Wang), The National Academies Press, Washington, DC.
- 684 Nuclear Regulatory Commission (NRC) (2012). "Central and Eastern United States Seismic Source
685 Characterization for Nuclear Facilities." Tech.Rep.NUREG-2115, NRC, Rockville, MD.
- 686 O'Donnell III, R.J., Hawkes, A.D., Lane, C.S., Engelhard, S.E., Horton, B.P., Bobrowsky, P., Sawai, Y., Witter,
687 R.C., Nelson, A.R., and Tanigawa, K. (2017). "Assessing the utility of $\delta^{13}\text{C}$ and bulk geochemistry in
688 estuaries along the Cascadia subduction zone for coastal paleoseismology." *Geological Society of America*
689 *Abstracts with Programs* 49(6): 58-2.
- 690 Obermeier, S. F. (1995). "Preliminary estimates of the strength of prehistoric shaking in the Columbia River
691 Valley and the southern half of coastal Washington, with emphasis for a Cascadia Subduction Zone
692 earthquake about 300 years ago." *U.S. Geol. Surv. Open-File Rept.* 94-589, 46 pp.

- 693 Obermeier, S. F. (1996). "Use of liquefaction-induced features for paleoseismic analysis—an overview of how
694 seismic liquefaction features can be distinguished from other features and how their regional distribution and
695 properties of source sediment can be used to infer the location and strength of Holocene paleo-
696 earthquakes." *Engineering Geology*, 44(1-4): 1-76.
- 697 Obermeier, S.F. and Dickenson, S.E. (2000). "Liquefaction evidence for the strength of ground motions resulting
698 from late Holocene Cascadia subduction earthquakes, with emphasis on the event of 1700 A.D." *Bulletin of
699 the Seismological Society of America* 90(4): 876-896.
- 700 Obermeier, S.F., Pond, E.C., Olsen, S.M. with contributions by Green, R.A, Mitchell, J.K., and Stark, T.D.
701 (2001). "Paleoliquefaction studies in continental settings: geologic and geotechnical factors in interpretations
702 and back-analysis." U.S. Geological Survey Open-File Report 01-029.
- 703 Obermeier, S.F., Olson, S.M. and Green, R.A (2005). "Field occurrences of liquefaction-induced features: a
704 primer for engineering and geologic analysis of paleoseismic shaking." *Engineering Geology* 76: 209-234.
- 705 Obermeier, S.F., Olson, S.M., Green, R.A., Schweig, E., and Williams, R. (2011). "Clastic dikes and ground
706 fractures; seismic or not?" *Seismological Research Letters* 82: 335.
- 707 Olson, S.M., Green, R.A. and Obermeier, S.F. (2005a). "Revised magnitude bound relation for the Wabash
708 valley seismic zone of the central United States." *Seismological Research Letters* 76(6): 756-771.
- 709 Olson, S.M., Green, R.A. and Obermeier, S.F. (2005b). "Geotechnical analysis of paleoseismic shaking using
710 liquefaction features: a major updating." *Engineering Geology* 76: 235-261.
- 711 Palmer, S.P., Magsino, S.L., Bilderback, E.L., Poelstra, J.L., Folger, D.S.; Niggemann, R.A. (2007).
712 "Liquefaction susceptibility and site class maps of Washington State, by county." *Washington Division of
713 Geology and Earth Resources Open File Report 2004-20*.
- 714 Papadopoulos, G.A. and Lefkopoulos, G. (1993). "Magnitude-distance relations for liquefaction in soil from
715 earthquakes." *Bulletin of the Seismological Society of America* 83(3): 925-938.
- 716 Papathanassiou, G., Pavlides, S., Christaras, B. and Pitilakis, K. (2005). "Liquefaction case histories and
717 empirical relations of earthquake magnitude versus distance from the broader Aegean region." *Journal of
718 Geodynamics* 40: 257-278.
- 719 Peters, R., Jaffe, B., and Gelfenbaum, G. (2007). "Distribution and sedimentary characteristics of tsunami
720 deposits along the Cascadia margin of western North America." *Sed Geo* 200: 372-386.
- 721 Petersen, M.D., Moschetti, M.P., Powers, P.M., Mueller, C.S., Haller, K.M., Frankel, A.D., Zeng, Y., Rezaeian,
722 S., Harmsen, S.C., Boyd, O.S., Field, N., Chen, R., Rukstales, K.S., Luco, N., Wheeler, R.L., Williams, R.A.
723 and Olsen, A.H. (2014). "Documentation for the 2014 update of the United States national seismic hazard
724 maps." USGS Open-File Report 2014-1091, 243 p.
- 725 Peterson C.D. and Madin, I.P. (1997). "Coseismic Paleoliquefaction Evidence in the Central Cascadia Margin,
726 USA." *Oregon Geology* 59, 51-74.
- 727 Peterson, C.D., Cruikshank, K.M., Jol, H.M. and Schilichting, R.B. (2008). "Minimum Runup Heights of
728 Paleotsunami from Evidence of Sand Ridge Overtopping at Cannon Beach, Oregon, Central Cascadia
729 Margin, USA." *Journal of Sedimentary Research* 78: 390-409. <http://dx.doi.org/10.2110/jsr.2008.044>
- 730 Peterson, C.D., Cruikshank, K.M., Darienzo, M.E., Wessen, G., Butler, V. and Sterling, S. (2013). "Coseismic
731 Subsidence and Paleotsunami Runup Records from Latest Holocene Deposits in the Waatch Valley, Neah
732 Bay, Northwest Washington, USA: Links to Great Earthquakes in the Northern Cascadia Margin." *Journal
733 of Coastal Research*, 29, 157-172. <http://dx.doi.org/10.2112/JCOASTRES-D-12-00031.1>
- 734 Peterson, C.D., et al. (2014). "Large-Scale Fluidization Features from Late Holocene Coseismic
735 Paleoliquefaction in the Willamette River Forearc Valley, Central Cascadia Subduction Zone, Oregon, USA."
736 *Open Journal of Earthquake Research*, 3: 82-99

- 737 Peterson, C.D., Jol, H.M. and Alldritt, K. (2005). "Reconnaissance Subsurface Investigation of Bandon Marsh,
738 Oregon." U.S. Fish and Wildlife Service, Newport.
- 739 Pirrotta, C., Barbano, M.S., Guarnieri, P. and Gerardi, F. (2007). "A new dataset and empirical relationships
740 between magnitude/intensity and epicentral distance for liquefaction in central-eastern Sicily." *Annals of
741 Geophysics* 50(6): 763-774.
- 742 Polenz, M., Czajkowski, J.L., Paulin, G.L., Contreras, T.A., Miller, B.A., Martin, M.E., Walsh, T.J., Logan,
743 R.L., Carson, R.J., Johnson, C.N., Skov, R.H., Mahan, S.A., Cohan, C.R. (2010). "Geological Map of the
744 Skokomish Valley and Union 7.5-minute Quadrangles, Mason County, Washington. *Washington Division of
745 Geology and Earth Resources Open File Report 2010-3*, 1 sheet, scale 1:24,000, with 21 p. text.
- 746 Quigley, M.C., Bastin, S., Bradley, B.A. (2013). "Recurrent liquefaction in Christchurch, New Zealand, during
747 the Canterbury earthquake sequence." *Geology* 41: 419-422.
- 748 Rasanen, R., Marafi, N.A., and Maurer, B.W. (2021). "Compilation and Forecasting of Paleoliquefaction
749 Evidence for the Strength of Ground Motions in the U.S. Pacific Northwest: A Digital Dataset (Version 2)."
750 DesignSafe-CI. <https://doi.org/10.17603/ds2-fqkr-h615>.
- 751 Rasanen, R., and Maurer, B.W. (2021). "Probabilistic seismic source location and magnitude via inverse analysis
752 of liquefaction evidence." *Earthquake Spectra*, In Review, Elsevier.
- 753 Rashidian, V., and Baise, L.G. (2020). "Regional efficacy of a global geospatial liquefaction model."
754 *Engineering Geology* 272: 105644.
- 755 Rodriguez-Marek, A., and Ciani, D. (2008). "Probabilistic methodology for the analysis of paleoliquefaction
756 features." *Engineering Geology* 96(3): 159-172.
- 757 Satake, K., Shimazaki, K., Tsuji, Y. & Ueda, K. (1996). "Time and size of a giant earthquake in Cascadia inferred
758 from Japanese tsunami record of January 1700." *Nature* 379, 246-249.
- 759 Sherrod, B.L. (2001). "Evidence for earthquake-induced subsidence about 1100 yr ago in coastal marches of
760 southern Puget Sound, Washington." *Geo Soc of America Bull* 113(10): 1299-1311.
- 761 Sherrod, B., Brocher, T.M., Weaver, C.S., Bucknam, R.C., Blakely, R.J., Kelsey, H.M., Nelson, A.R., Haugerud,
762 R. (2004). "Holocene fault scarps near Tacoma, Washington, USA." *Geological Society of America* 32(1):
763 9-12.
- 764 Sims, J.D. & Garvin, C.D. (1995). "Recurrent liquefaction induced by the 1989 Loma Prieta earthquake and
765 1990 and 1991 aftershocks: implications for paleoseismicity studies." *Bulletin of the Seismological Society
766 of America* 85(1): 51-65.
- 767 Sims, J.D. (2002). "Paleoliquefaction Study of the Willamette River Valley, Portland to Corvallis, Oregon." *US
768 Geological Survey*, Reston, Element II under Contract 02HQGR0021
- 769 Stephenson, W.J., Reitman, N.G., and Angster, S.J., (2017). "P- and S-wave velocity models incorporating the
770 Cascadia subduction zone for 3D earthquake ground motion simulations, version 1.6." *U.S. Geological
771 Survey Open-File Report 2017-1152*, 17 p., <https://doi.org/10.3133/ofr20171152>.
- 772 Struble, W., Roering, J., Burns, W.J., Black, B., Calhoun, N., and Wetherell, L.R. (2017). "Propensity for deep-
773 seated landslides in the Oregon coastal ranges during Cascadia megathrust earthquake through
774 dendrochronological dating of landslide-dammed lakes." *GSA Abstracts* 49(6): 58-7.
- 775 Stuiver, M., Reimer, P.J., and Reimer, R.W. (2020). CALIB 7.1 [WWW program] at <http://calib.org>, accessed
776 2020-3-18.
- 777 Takada, K. and Atwater, B.F. (2004). "Evidence for Liquefaction Identified in Peeled Slices of Holocene
778 Deposits along the Lower Columbia River, Washington." *BSSA* 94: 550-575.
- 779 Talwani, P. and Schaeffer, W.T. (2001). "Recurrence rates of large earthquakes in the South Carolina coastal
780 plain based on paleoliquefaction data." *Journal of Geophysical Research* 106: 6621-6642.

- 781 Thrush, C., and Ludwin, R.S. (2007). "Finding fault: Indigenous seismology, colonial science, and the
782 rediscovery of earthquakes and tsunamis in Cascadia." *American Indian Culture and Res J* 31(4): 1-24.
- 783 Tuttle, M.P. (2001). "The use of liquefaction features in paleoseismology: lessons learned in the New Madrid
784 seismic zone, central United States." *Journal of Seismology* 5: 361-380.
- 785 Tuttle, M. and Hartleb, R. (2012). "CEUS Paleo-liquefaction Database, Uncertainties Associated with Paleo-
786 liquefaction Data, and Guidance for Seismic Source Characterization: Central and Eastern United States
787 Seismic Source Characterization for Nuclear Facilities, Appendix E." Report NUREG-2115, U.S. Nuclear
788 Regulatory Commission (NRC), Rockville, MD.
- 789 Tuttle, M.P., Dyer-Williams, K., and Barstow, N.L. (2002a). "Paleoliquefaction study of the Clarendon-Lindon
790 fault system, western New York State." *Tectonophysics* 353: 263-286.
- 791 Tuttle, M.P., Schweig, E.S., Sims, J.D., Lafferty, R.H., Wolf, L.W. and Haynes, M.L. (2002b). "The earthquake
792 potential of the New Madrid Seismic Zone." *Bull of the Seismological Society of America* 92(6): 2080-2089.
- 793 Tuttle, M.P., Schweig, E.S., Campbell, J., Thomas, P.M., Sims, J.D. and Lafferty, R.H. (2005). "Evidence for
794 New Madrid earthquakes in A.D. 300 and 2350 B.C." *Seismological Research Letters* 76: 489-501.
- 795 USGS (2017). "M 9.3 scenario earthquake – Cascadia megathrust – whole CSZ characteristic M branch."
796 *USGS National Earthquake Information Center*, available from <
797 https://earthquake.usgs.gov/scenarios/eventpage/bssc2014cascadia_sub0_m9p34_se#executive>.
- 798 van Ballegooij, S., Malan, P., Lacroix, V., Jacka, M.E., Cubrinovski, M., Bray, J.D., O'Rourke, T.D., Crawford,
799 S.A. and Cowan, H. (2014). "Assessment of liquefaction-induced land damage for residential Christchurch."
800 *Earthquake Spectra* 30(1): 31-55.
- 801 Wair, B. R., DeJong, J. T., & Shantz, T. (2012). "Guidelines for estimation of shear wave velocity profiles."
802 Pacific Earthquake Engineering Research Center.
- 803 Wakamatsu, K. (1993). "History of soil liquefaction in Japan and assessment of liquefaction potential based on
804 geomorphology." A Thesis in the Department of Architecture Presented in Partial Fulfillment of the
805 Requirements for the Degree of Doctor of Engineering, Waseda University, Tokyo, Japan.
- 806 Watt, J.T., Brothers, D.A., Bennett, S.E.K., Kluesner, J.W., Roland, E., Conrad, J.E., Sliter, R.W., Dartnell, P.,
807 Goldfinger, C., Patton, J., Michalak, M.J., Sherrod, B.L., Gomberg, J., and Wells, R.E. (2017). "Toward a
808 systematic characterization of Cascadia upper plate morphology, structure, and Quaternary deformation
809 history: an integrated onshore-offshore approach." *GSA Abstracts* 49(6): 58.
- 810 Whistler, J.E., Atwater, B.F. and Montgomery, D.R. (2002). "Holocene liquefaction near the Seattle fault at the
811 Issaquah Creek delta". *Eos* 83: S22B-1036.
- 812 Wirth, E.A., Frankel, A.D., Marafi, N., Vidale, J. E., and Stephenson, W. J. (2018). "Broadband Synthetic
813 Seismograms for Magnitude 9 Earthquakes on the Cascadia Megathrust based on 3-D Simulations and
814 Stochastic Synthetics (Part 2): Rupture Parameters and Variability." *Bulletin of the Seismological Society of
815 America*, 108 (5A): 2370-2388.
- 816 Youd, T.L., and Noble, S.K. (1997). "Liquefaction criteria based on statistical and probabilistic analyses."
817 In *Proc., NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, NCEER Technical Rep. No:*
818 *NCEER-97 22*:201-205.
- 819 Zehfuss, Z.H. (2005). "Distal records of sandy Holocene lahars from Mount Rainier, Washington". Ph.D.
820 dissertation, University of Washington, Seattle, Washington.
- 821 Zhu, J., Baise, L.G., and Thompson, E.M. (2017). "An updated geospatial liquefaction model for global
822 application." *Bulletin of the Seismological Society of America*, 107(3): 1365–1385.