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Abstract: Engineering geologists routinely perform liquefaction hazard assessments using data from the 2 

cone penetration test (CPT). However, the volume of soil mobilized by the CPT acts as a low-pass filter 3 

on the true stratigraphy, potentially removing information such as the data defining a thin layer of soil or 4 

the interface between two dissimilar soils. The Boulanger and DeJong (2018) CPT inversion procedure, 5 

which aims to correct these effects, is herein evaluated in the context of CPT-based liquefaction model 6 

performance. Using over 15,000 case-histories from 24 earthquakes parsed into 2 datasets, 18 different 7 

liquefaction models are studied, resulting in 36 performance trials. In 1 of these trials, the CPT inversion 8 

procedure increases model efficiency to a statistically significant degree, but in 23 others it significantly 9 

decreases efficiency. This decline in performance tends to grow as profiles become more stratified. To 10 

explore remedies, a liquefaction triggering curve is rederived from inverted CPT data, such that its training 11 

and forward implementation are made consistent. Nonetheless, this exacerbates the decline in prediction 12 

efficiency. Ultimately, the results of this study are not a direct assessment of the pioneering Boulanger 13 

and DeJong (2018) procedure. However, the results do provide evidence that this procedure – when 14 

applied to existing CPT-based liquefaction models – may provide no demonstrable performance benefit. 15 

Keywords: cone penetration test; thin layer corrections; liquefaction model 16 

1. Introduction 17 

Cone Penetration Test (CPT) measurements, which principally include cone-tip resistance (qc) and 18 

sleeve friction (fs), may be used to infer various soil properties and behaviors. The CPT, for example, has 19 

significant benefits over other tests on which liquefaction models have been based (NRC 2016). In this 20 

regard, engineering geologists routinely carry out liquefaction hazard studies, both locally and regionally, 21 

using CPT data (e.g., among many, Juang et al. 2009; Heidari and Andrus, 2010; Khoshnevisan et al., 22 

2015; Zhang et al. 2016, 2018; Chen et al., 2016; Gheibi et al., 2016; Hasek and Gassman, 2019; Bastin 23 

et al., 2020; Norini et al. 2021). However, because the CPT is an intermediate-to-large-strain penetration 24 

test, its measurements are still potentially obfuscated by the volume of mobilized soil. That is, qc and fs 25 

are influenced by soil conditions both relatively proximal to, and distal from, the CPT sensors. While CPT 26 
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measurements are recorded at discrete depths – typically 1-2 cm intervals – they sample a mobilized zone 27 

of influence that may extend ~10-30 cone diameters from the qc sensor (Boulanger and DeJong 2018), 28 

with the zone growing and shrinking as a function of soil properties. For the industry standard 10 cm2 29 

cone, this equates to a zone 0.35-1.05 m thick. This mobilized zone effectively acts as a “low-pass filter” 30 

on the true soil stratigraphy, filtering information from the low spatial wavelengths, such as the data 31 

defining a thin layer of soil or the interface between two dissimilar soils. These spatial smoothing effects, 32 

which are often called “thin layer” and “transition” effects, have been investigated by many authors (e.g., 33 

van der Linden 2018; Ching et al. 2015; Robertson 2011; Ahmadi and Robertson 2005; Lunne et al. 1997; 34 

Treadwell 1976). Although chart-based methods have been proposed to manually correct CPT data for 35 

these effects, Boulanger and DeJong (2018) proposed what may be the first fully automated approach. 36 

This “inverse filtering and interface detection” procedure attempts to correct CPT measurements to their 37 

“true” values. Since the direct measurements reflect conditions averaged over a volume, rather than at 38 

discrete points, their correction would invariably improve CPT site characterization. As an example, CPT 39 

data is shown in Fig. 1, with and without correction by the Boulanger and DeJong (2018) procedure. 40 

 
Fig. 1. CPT data with (i.e. “true”) and without (i.e. measured) inverse-filtering and interface correction per 

Boulanger and DeJong (2018), as implemented in the software Horizon (Geyin and Maurer 2020a). 
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The efficacy of the Boulanger and DeJong (2018) procedure has yet to be rigorously studied in the 41 

literature, but its adopted can change the computed liquefaction hazard at a site, with the magnitude and 42 

direction of change dependent on many factors. Moreover, this procedure was recently incorporated into 43 

software programs that predict liquefaction and its consequences (e.g., CLiq by Geologismiki 2020; 44 

Horizon by Geyin and Maurer 2020a). Accordingly, the objective of this paper is to assess the Boulanger 45 

and DeJong (2018) procedure in the context of CPT-based liquefaction model performance. That is, to 46 

determine whether use of the procedure improves prediction-model efficiency. Using field case histories 47 

from 24 earthquakes parsed into 2 datasets, 18 different liquefaction models will be studied, resulting in 48 

36 performance trials. Uncertainty due to finite sampling will be accounted for and used to establish 49 

statistical significance. Ultimately, the results of these trials spur further inquiries that expand on the initial 50 

objective, and which are introduced later in the paper.  51 

In the following, the Boulanger and DeJong (2018) procedure is first succinctly summarized. The 18 52 

liquefaction models in which this procedure will be evaluated, and the field case-history data to which it 53 

will be applied, are then identified. Lastly, the methodologies for evaluating predictive performance are 54 

described and trial results are presented and discussed.  55 

2. Summary of the Boulanger and DeJong (2018) Procedure 56 

The correction of CPT data can be idealized as the conversion of measured qc and fs values, or qm and 57 

f m, to the “true” values qt and f t, which would be obtained if measurements reflected conditions at discrete 58 

points. This can be viewed as an inverse problem, with the goal of determining the “true” values via 59 

inversion of what was measured. As illustrated in Fig. 2 (in this case for tip resistance), qm may deviate 60 

from qt near layer interfaces because the measurements are influenced by materials both above and below 61 

the interface, even though the measurement is recorded at a discrete depth. In the case shown in Fig. 2, 62 

qm is artificially increased in the upper soft clay as the cone approaches, and is influenced by, the 63 

underlying dense sand. The opposite occurs in the dense sand as the cone approaches the underlying soft 64 

clay. That is, qm is artificially decreased when the cone begins to sense the softer material. These errors 65 

are commonly referred to as  “transistion” or “interface” effects. It can also be seen in Figure 2 that should 66 

the dense sand be insufficiently thick for the cone to receive no influence, at least momentarily, from the 67 

soft clay either above or below it, then qm in the dense sand will never reach its true value. Of course, the 68 

opposite would occur in a soft, loose stratum sandwhiched by denser strata. While these latter errors have 69 

the same root cause as transition effects (i.e., measurement over a volume) they are often separetely 70 

referred to as “thin layer” effects.  71 
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Fig. 2. Conceptual schematic showing cone penetration in layered soil. The measured cone-tip resistance 

(qm) deviates from the “true” resistance (qt) that would be measured in each material if measurements 

reflected conditions at discrete points (modified from Mo et al. 2017).  

Nomenclature aside, the Boulanger and DeJong (2018) procedure aims to correct these collective 72 

effects by viewing qm as the convolution of qt with a physical low-pass filter (wc) over a zone of influence 73 

(a depth window 60 times that of the cone diameter (dc), centered at the cone tip). With this approach, qm 74 

is computed as:  75 

𝑞𝑚(𝑧) = 𝑞𝑡(𝑧) ∗ 𝑤𝑐(𝑧)                                                        (1) 76 

where qm, qt, and wc are a function of depth, z, and the asterisk indicates convolution, which is the integral 77 

of the point-wise multiplication of qt(z) and wc(z), as a function of the amount that one of the functions is 78 

shifted relative to the other. While complete details will not be given here, 𝑤𝑐(𝑧) is a function of two 79 

other terms: 𝑤1, which decreases the relative influence of any soil as its distance from the cone tip 80 

increases; and 𝑤2, which weights the influence of soil above or below the cone tip based on whether those 81 

soils are stronger or weaker than that immediately at the tip. Specifically, it is assumed that 𝑞𝑚 receives 82 

more influence from the soil immediately near the tip when that soil is relatively weaker than the 83 

surrounding soil. Conversely, it is assumed that qm receives less influence from the soil immediately near 84 

the tip when that soil is relatively stronger than the surrounding soil. In essence, the Boulanger and DeJong 85 

(2018) technique identifies the qt that, when convolved with wc, best predicts qm. As part of this procedure, 86 

additional filters are used to smooth high frequency noise considering the CPT sampling interval, thereby 87 

increasing the speed and likelihood of convergence to an optimal solution. 88 

Following estimation of qt via inversion of qm, Boulanger and DeJong (2018) propose, at least for the 89 

time being, that f t be estimated from qt. Specifically, the proposed “inversion” of f 
m follows the 90 
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assumption that both inverted and measured pairs of normalized tip resistance (Q) and normalized sleeve 91 

friction ratio (F) lie along the same radial line originating from the origin of the Soil Behavior Type Index, 92 

Ic, proposed by Robertson and Wride (1998), which maps in Q-F space. In effect, this approach changes 93 

Ic near interfaces, and in-turn the inferred soil type (e.g., the inferred susceptibility to liquefaction) but 94 

results in relatively minimal changes to Ic otherwise (i.e., away from interfaces). Following the initial 95 

development of qt and f t profiles, a separate procedure detects and corrects interfaces based on the rate of 96 

change of qt with respect to depth. In total, the Boulanger and DeJong (2018) procedure has five 97 

parameters, for which recommended “baseline” values were provided: z’50,ref = 4.2; mz50 = 0.5; mz = 3; mq 98 

= 2; and mt = 0.1. While complete details are provided in Boulanger and DeJong (2018), these baseline 99 

parameters were herein adopted to compute “true” CPT data. It is plausible that these values could be 100 

calibrated at the site-specific level (e.g., using high resolution borings adjacent to a CPT). This would 101 

change the magnitude of correction and the sensing and development distances, thereby potentially 102 

improve identification of thin layers. However, the information compiled for this study was generally 103 

insufficient to attempt calibration and, when available, provided insufficient statistical support to justify 104 

it. As part of the CPT processing methodology, statistical cross-correlation (Buck et al. 2002) was used 105 

to align tip- and sleeve-measurements, both for the measured and “true” CPT data. All CPT processing, 106 

including implementation of the Boulanger and DeJong (2018) procedure, was completed using the open-107 

source software Horizon (Geyin and Maurer 2020a).   108 

3. Liquefaction Models  109 

The Boulanger and DeJong (2018) procedure will be evaluated in the context of CPT-based 110 

liquefaction model performance. That is, whether use of the procedure improves or worsens their 111 

prediction efficiency. Towards that end, six triggering models based on the so-called “simplified stress-112 

based” framework, first envisioned by Whitman (1971) and Seed and Idriss (1971), are herein adopted: 113 

Green et al. (2019), Boulanger and Idriss (2014), Idriss and Boulanger (2008), Moss et al. (2006), 114 

Architectural Institute of Japan (2001), and Robertson and Wride (1998). However, because these models 115 

predict triggering at specific depths below ground, a true evaluation of their performance requires 116 

subsurface exploration or instrumentation (i.e., to assess whether predicted and actual responses agree). 117 

This could potentially be achieved in advance of an earthquake using buried sensors (e.g., Holzer et al. 118 

2007) or after an earthquake using vision penetrometers (Raschke and Hryciw 1997) or geoslicers (Nakata 119 

and Shimazaki 1997). Yet, case histories with such data are exceedingly rare and still may not result in 120 

definitive interpretations of what did, and did not, liquefy (e.g., Takada and Atwater 2004). As a result, 121 
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nearly all existing case-histories document only whether liquefaction manifestations were observed at the 122 

ground surface. Accordingly, to compare subsurface predictions of liquefaction against surface 123 

observations, the predictions from each triggering model will be input to three different models that 124 

predict surficial manifestations of liquefaction: Maurer et al. (2015a), van Ballegooy et al. (2014), and 125 

Iwasaki et al. (1978), who developed models termed LPI, LSN, and LPIISH, respectively. In this study, 126 

“liquefaction model” therefore refers to the use of two models in series: one triggering model and one 127 

manifestation model. The independent performance of these models can simply not be assessed via any 128 

practical, objective means. A summary of the 18 models to be used (6 triggering models x 3 manifestation 129 

models), and the symbols that will be used to identify them, is provided in Table 1.  130 

Table 1. Summary of Liquefaction Triggering and Manifestation Models used in this Study. 

Model Type Symbol 

Robertson & Wride (1998) Triggering RW98 

Arch. Institute Japan (2001) Triggering AIJ01 

Moss et al. (2006) Triggering Mea06 

Idriss & Boulanger (2008) Triggering IB08 

Boulanger & Idriss (2014) Triggering BI14 

Green et al. (2019) Triggering Gea19 

Iwasaki et al. (1978) Manifestation LPI 

van Ballegooy et al. (2014) Manifestation LSN 

Maurer et al. (2015) Manifestation LPIISH 

4. Liquefaction Case-History Data 131 

A total of 15,223 liquefaction case histories from 24 earthquakes will be analyzed, as listed in Table 132 

2. However, because most of these cases are from three earthquakes in New Zealand’s Canterbury 133 

province, analyses will be carried out separately for these and the remaining 21 events, henceforth referred 134 

to as the “Canterbury dataset” and “global dataset,” respectively. Each case history includes estimates of 135 

groundwater depth and peak ground acceleration (PGA), CPT data, and observations of the presence or 136 

absence of surficial liquefaction manifestations.  137 
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Table 2. Summary of Liquefaction Case-Histories Analyzed (after Geyin et al. 2020b) 

Date Event Country 
Magnitude 

(Mw) 

Number of 

Case Histories 

16/6/1964 Niigata Japan 7.60 3 

9/2/1971 San Fernando USA 6.60 2 

4/2/1975 Haicheng China 7.00 2 

27/7/1976 Tangshan China 7.60 10 

15/10/1979 Imperial Valley USA 6.53 7 

9/6/1980 Victora (Mexicali) Mexico 6.33 5 

26/4/1981 Westmorland USA 5.90 9 

26/5/1983 Nihonkai-Chubu Japan 7.70 2 

28/10/1983 Borah Peak USA 6.88 3 

2/3/1987 Edgecumbe New Zealand 6.60 23 

24/11/1987 Elmore Ranch USA 6.22 2 

24/11/1987 Superstition Hills USA 6.54 8 

18/10/1989 Loma Prieta USA 6.93 67 

17/1/1994 Northridge USA 6.69 3 

16/1/1995 Hyogoken-Nambu Japan 6.90 21 

17/8/1999 Kocaeli Turkey 7.51 16 

20/9/1999 Chi-Chi Taiwan 7.62 34 

8/6/2008 Achaia-Ilia Greece 6.40 2 

4/4/2010 Baja Mexico 7.20 3 

11/3/2011 Tohoku Japan 9.00 7 

20/5/2012 Emilia Italy 6.10 46 

4/10/2010 Darfield New Zealand 7.10 5371 

22/2/2011 Christchurch New Zealand 6.20 4806 

14/2/2016 Christchurch New Zealand 5.70 4771 

The Canterbury data was sourced from Geyin et al. (2020a, 2021), who compiled liquefaction case-138 

histories from the: (i) Mw7.1, 4 Sept. 2010 Darfield earthquake; (ii) Mw6.2, 22 Feb. 2011 Christchurch 139 

earthquake; and (iii) Mw5.7, 14 Feb. 2016 Christchurch earthquake. The Geyin et al. (2020a, 2021) 140 

database built upon earlier compilations from Canterbury (Maurer et al. 2014, 2015b), resulting in 15,890 141 

case histories. Of those, 14,948 were ultimately selected for analysis in the present study. Cases were 142 

excluded when: (i) the predominant manifestation of liquefaction was lateral spreading, since the 143 

manifestation models adopted herein are not intended to predict it; (ii) the depth of CPT pre-drill 144 

significantly exceeded that of the groundwater, since CPT data in the pre-drill zone must be estimated 145 

rather than measured (e.g., by extrapolating upward from just below the pre-drill); or (iii) the estimated 146 

median PGA was less than 0.075 g, since such cases may not provide meaningful tests of prediction 147 

efficiency, given that the absence of liquefaction is easily predicted by judgement. With respect to 148 

manifestations, Geyin et al. (2020a, 2021) classified each case history as “none,” “marginal,” “moderate,” 149 

“severe,” “lateral spreading,” or “severe lateral spreading” using criteria from Green et al. (2014), wherein 150 

classifications were based on a circular sample centered on each CPT, with approximate radius of 10 m. 151 

In this study, liquefaction-model performance will be judged on the ability to predict surficial 152 
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manifestations of liquefaction on free-field level ground. Cases with other expressions of liquefaction, 153 

such as lateral spreading, foundation movements, or evidence from ground-motions are removed because 154 

the adopted liquefaction models are not designed to predict these expressions. To facilitate model 155 

assessment, the Geyin et al. (2020a, 2021) case histories are binomially classified as “No Manifestation” 156 

and “Manifestation,” where the latter are cases with either “minor,” “moderate,” or “severe” 157 

manifestations. Of the resulting cases assembled from Canterbury, 65% are “No Manifestation” and 35% 158 

are “Manifestation.” The reader is referred to Geyin et al. (2020a, 2021) for further details relevant to data 159 

collection and processing, and where the complete Canterbury dataset may be obtained.  160 

To compare results from Canterbury with regions elsewhere, 275 case histories from 21 global 161 

earthquakes will be analyzed in parallel. These cases were sourced from Geyin and Maurer (2021), who 162 

compiled case-history data from the literature. Whereas documentation of liquefaction in Canterbury was 163 

aided by remote sensing, case histories elsewhere are often preserved in less detail, occasionally with few 164 

details about the nature of manifestation. Thus, while manifestations were again classified binomially 165 

using the Green et al. (2014) criteria, uncertainty is unavoidably present. Among these 275 case histories, 166 

42% are “No Manifestation and 58% are “Manifestation.” The reader is referred to Geyin et al. (2021) for 167 

further details, and where the complete global dataset may be obtained. The Canterbury and Global 168 

datasets were previously studied by Geyin et al. (2020b), who compared the efficacies of various 169 

geospatial and geotechnical liquefaction models, and by Geyin and Maurer (2020b), who developed 170 

fragility functions for predicting the probability of liquefaction-induced ground failure. In the current 171 

study, these datasets are used to rigorously evaluate whether the Boulanger and DeJong (2018) procedure 172 

improves CPT-based liquefaction model performance.  173 

5. Liquefaction Model Methodology 174 

All calculations described in this section were performed with the software Horizon (Geyin and Maurer 175 

2020a), which has been used in previous research (e.g., Geyin et al. 2020b). The six triggering models 176 

listed in Table 1 were each used to compute the factor-of-safety against liquefaction (FSliq) vs. depth. As 177 

part of this process, liquefaction susceptibility was first inferred using the CPT soil-behavior-type index 178 

(Ic) (Robertson and Wride 1998). Using a criterion developed from lab and field data in Canterbury 179 

(Maurer et al. 2019), soils with Ic > 2.5 were assumed not susceptible. However, because this value is 180 

within the range of common, generic thresholds (e.g., 2.4-2.6) (Youd et al. 2001), it was also applied to 181 

the global dataset. Ultimately, the most salient findings of this study are found to be independent of this 182 

criterion, as will be further discussed. For soils deemed susceptible, the IB08, BI14, and Gea19 models 183 



9 

 

(see Table 1) consider the influence of fines-content (FC) on liquefaction resistance. Accordingly, an Ic – 184 

FC model specific to Canterbury (Maurer et al. 2019) was used for the Canterbury dataset while a generic 185 

Ic – FC correlation (Boulanger and Idriss 2014) was used for the global dataset. The six triggering models 186 

were otherwise implemented as proposed by the respective publications in Table 1. 187 

The predictions of FSliq vs. depth made by each triggering model were then input to LPI, LPIISH, and 188 

LSN, which all have the same objective - to characterize the cumulative response of a soil profile in the 189 

free field, thereby predicting manifestations of liquefaction at the ground surface. For brevity, the 190 

formulae describing LPI, LSN, and LPIISH are not given here but are provided in Geyin et al. (2020c). 191 

Their implementation is exactly as described in Geyin et al. (2020c) and mirrors that in popular practice.  192 

6. Performance Evaluation 193 

Receiver-operating-characteristic (ROC) analyses are a popular diagnostic tool to evaluate models 194 

(e.g., Fawcett 2006; Zou 2007) and are widely used in geoscience and geoengineering (e.g., among many, 195 

Lin et al. 2021; Upadhyaya et al. 2021; Ju et al. 2020; Sarma et al. 2020). In this study, ROC analyses 196 

will be used to: (i) quantify the efficiency of liquefaction models; and (ii) assess whether “true” CPT data 197 

improves that efficiency to a statistically significant degree. In all classification problems (e.g., predicting 198 

whether sites have observations of liquefaction), “positive” and “negative” observations overlap when 199 

plotted as a function of a diagnostic model index (e.g., LPI, LSN, etc.). As an example, two distributions 200 

are plotted in Figure 3a. ROC curves plot the true-positive prediction rate (RTP) (i.e., the rate at which 201 

positives, or liquefaction manifestations, are correctly predicted) versus the false-positive prediction rate 202 

(RFP) (i.e., the rate at which negatives, or a lack of liquefaction manifestations, are correctly predicted) 203 

for a range of classification “thresholds,” which are used to predict outcomes. Values above a threshold 204 

predict positives and those below a threshold predict negatives. Figure 3b depicts the relationship between 205 

the observations, thresholds, and ROC curve.  206 

As a model segregates the distributions of positive and negative outcomes more efficiently (i.e., the 207 

distributions have less overlap), a corresponding ROC curve trends toward a point at the coordinates (0,1) 208 

in ROC space, indicating the existence of a threshold value that perfectly separates the distributions (i.e., 209 

the model is perfectly efficient). Conversely, random guessing appears as a 1:1 line in ROC space, in 210 

which case the model has no utility and the positive and negative distributions perfectly overlap. For this 211 

reason, the area under a ROC curve (AUC) is widely adopted to characterize model efficiency (e.g., 212 

Fawcett 2006). AUC also has statistical significance. In this case, it is the likelihood that sites with 213 

manifestations have larger model values than sites without manifestations. In this regard, it is equivalent 214 



10 

 

to the nonparametric Wilcoxon statistic (Hanley and Mc Neil 1982). In the case of a perfectly efficient 215 

model, AUC = 1.0 (or 100%), whereas with random guessing AUC = 0.5 (or 50%). Better prediction 216 

models thus have higher AUC. With this approach, false-positive predictions (liquefaction is predicted 217 

but is not observed) and false-negative predictions (liquefaction is not predicted but is observed) are given 218 

equal importance. In other words, AUC reflects the overall misprediction rate, rather than treating either 219 

false positives or false negatives as being more important. Another desirable feature of AUC is its relative 220 

insensitivity to class imbalance. Suppose a hypothetical dataset includes 1 positive case and 99 negative 221 

cases. For this dataset, a hypothetical model that predicts negative outcomes 100% of the time would be 222 

99% accurate, even though the model is objectively useless. For this reason, model accuracy – while 223 

commonly reported – is a poor metric unless the positive and negative classes are equal in size. Other oft-224 

reported performance metrics that similarly focus on only positive or negative predictions, such as 225 

sensitivity and specificity (e.g., Powers 2011), would be similarly inappropriate for the aims of this study.  226 

AUC, however, would appropriately characterize this model’s lack of utility by finding a value near 0.5. 227 

Accordingly, AUC will be used to quantify model performance in each of the 36 performance trials. 228 

  

Fig. 3. ROC analyses: (a) positive and negative observations vs. computed LPI; (b) derivative ROC curve, 

and depiction of how the efficiency of a diagnostic test is assessed via AUC (after Geyin et al. 2020b).  

 

To account for the finite availability of case histories within each dataset (i.e., the Canterbury and 229 

global datasets), bootstrap simulations (e.g., Diaconis and Efron 1983) will be used to quantify the finite-230 

sample uncertainty of AUC for each model. This will characterize the sensitivity of results to the data 231 
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chosen for study and be used to assess whether differences in AUC could arise from chance (i.e., due to 232 

finite samples) and not because one model is truly better. Tests of significance will be carried out via the 233 

ROC-specific DeLong et al. (1988) methodology. This approach computes the P-values, or probabilities, 234 

that two AUC samples could have come from the same distribution. In each of the 36 trials, model 235 

performance using measured CPT data will be compared to that using “true” CPT data to determine which, 236 

if any, is statistically better. Since this method is predicated on AUC normality, both Anderson-Darling 237 

and Lilliefors tests (Anderson and Darling 1952; Lilliefors 1967) were used to confirm, with 95% 238 

confidence, that all AUC samples came from a normally distributed family.  239 

7. Results and Discussion 240 

Using the data and methodology above, liquefaction manifestations were predicted for CPT-based case 241 

histories by 18 models, both with and without correction by the Boulanger and DeJong (2018) procedure. 242 

To illustrate how model performance will be evaluated using ROC analysis, results will first be shown 243 

for one model, following which summary statistics from all models are presented. In Figures 4a and 4b, 244 

results using the Gea19 – LPI model (i.e., the Gea19 triggering model and LPI manifestation model) are 245 

shown for the global dataset using measured and “true” CPT data, respectively. In each figure, 95%-246 

confidence intervals (CIs) were computed from a total of 10,000 bootstrapped samples. The median ROC 247 

curve is the same as that resulting from an analysis of all data without resampling. It can be seen, for this 248 

model and dataset, that use of the Boulanger and DeJong (2018) correction procedure decreases the 249 

median AUC by 1.62% (i.e., predictions are less efficient), counter to what ideally should occur.  250 

 

Fig. 4. ROC analysis of Gea19-LPI model performance in predicting surficial manifestations of 

liquefaction for the global dataset: (a) measured CPT data; and (b) “true” CPT data.    
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From identical ROC analyses of all 18 models, summary statistics are compiled in Figures 5a and 5b 251 

for the global and Canterbury datasets, respectively, wherein the resulting shift in AUC from using the 252 

Boulanger and DeJong (2018) procedure is plotted. Shown for each of 36 trials is the median shift in AUC 253 

and the 95% CI on that shift, sorted by the year each model was proposed.  254 

 

Fig. 5. Summary of change in liquefaction-model performance – quantified by AUC – for 18 models to 

which the Boulanger and DeJong (2018) procedure was applied, ordered by year proposed: (a) global 

dataset; and (b) Canterbury dataset. Markers denote median shift in AUC; bars are 95% confidence 

intervals on that shift; all model acronyms are identified in Table 1. 

As shown in Figure 5, the behavior exhibited by Gea19-LPI in Figure 4 (i.e., the decline in median 255 

AUC using “true” CPT data) is also true of all 18 models when tested on the global dataset, and true of 256 

14 models when tested on the Canterbury dataset. Considering all models, the average changes in AUC 257 

owed to using “true” CPT data are respectively -2.8% and -0.47% for the global and Canterbury datasets; 258 

the average 95% CIs on these changes are respectively -11.50% to 5.29% and -1.51% to 0.53%. The larger 259 

finite-sample uncertainty of the global dataset is expected given its much smaller size, all else being equal. 260 

Its larger uncertainty may also be further augmented by the relative geomorphic and seismologic diversity 261 

of the global dataset and/or because the data collection methods (e.g., ground-motion estimates, CPTs) 262 

varied somewhat with time and place.  263 

When assessing the apparent, general decline in performance using “true” CPT data, it should be noted 264 

that some of the global cases used to test performance in Figure 5a were also previously used to train 265 
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triggering models when they were originally developed. That is, the models were previously trained using 266 

the same measured CPT data that is now being using to test them, which might reasonably result in bias 267 

that favors the measured data and disfavors the “true” data obtained from Boulanger and DeJong (2018). 268 

In this regard, the percentage of test data previously used in training varies from 0% (e.g., RW98) to ~75% 269 

(e.g., Gea19). However, the matter of bias is more complicated. First, the developers of triggering models, 270 

to the degree then possible, manually corrected for interface and thin-layer effects using chart-based 271 

solutions or judgement, mitigating the possibility of the aforementioned bias. Second, while a case history 272 

may have been used to train a triggering model, this training was performed using a judgement-based 273 

manifestation model (i.e., an analyst selected the so-called “critical layer” using their judgement to 274 

analyze an observation at the ground surface; they did not use LPI, LSN, or LPIISH in-reverse to select it). 275 

Similarly, LPI, LSN, and LPIISH were not formulated or optimized using case-history data, but rather, were 276 

developed heuristically and then retrospectively shown to provide useful predictions on field data. In this 277 

respect, the training and test datasets used herein might be considered wholly different. Complications 278 

aside, it can be seen in Figure 5a that the 18 models perform relatively similarly on the global dataset, 279 

despite the large variability in possible bias. Regarding the Canterbury data, the BI14 and Gea19 280 

triggering models, when originally proposed, were trained on a dataset of which 20% was from 281 

Canterbury, whereas all other models were trained independent of Canterbury data. It can be seen in 282 

Figure 5b that while the BI14 and Gea19 models do exhibit worse performance with CPT inversion, 283 

relative to others, these models perform very similar to the unbiased IB08 model, to which they owe their 284 

analytical provenance. Thus, there is no readily apparent difference between models with and without 285 

conceivable bias. Nonetheless, the possibility that models may perform better if retrained on “true” CPT 286 

data will be explored later.   287 

It was found that in 32 of the 36 trials performed, AUC decreased because of CPT inversion. To 288 

determine whether these changes in AUC are statistically significant, P-values were computed per DeLong 289 

et al. (1988) to compare the performance of each model with and without CPT inversion. These values 290 

are given in Table 3 and are the probabilities that two AUC samples (i.e., one model with and without 291 

CPT inversion) come from the same parent distribution. Thus, when P-values are small, an observed 292 

difference in AUC is more likely the result of CPT inversion and less likely a consequence of finite-sample 293 

uncertainty. Small P-values occur when (i) two AUC values are dissimilar; and/or (ii) the uncertainties of 294 

those AUC values are small. The common significance level of 0.05 is adopted for these analyses, meaning 295 

that two models are classified as “significantly” different if the difference is at least 95% probable. Using 296 

this approach, Table 3 summarizes, for each of 36 trials, whether CPT inversion made the efficiency of a 297 

liquefaction model better or worse and whether that change was significant.  298 
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Notable observations from Table 3 are: (i) of the 32 out of 36 trials in which performance decreased 299 

using “true” data, those decreases were significant in 23 trials and insignificant in the remaining 9; (ii) of 300 

the 4 out of 36 trials in which performance increased, those increases were significant in 1 trial and 301 

insignificant in the remaining 3. While these findings would invariably change if the adopted significance 302 

threshold were changed (say, from 0.05 to 0.10), the findings would nonetheless suggest a lack of 303 

demonstrable improvement using the Boulanger and DeJong (2018) procedure, as implemented herein. 304 

Additional inquiries will be investigated in the following.    305 

Table 3. P-Value Matrix to Compare Model Performance With and Without CPT Inversion. 

Triggering 

Model 

Manifestation 

Model 

AUC Better or Worse with CPT Inversion? 

(p-value)1 

Global Dataset Canterbury Dataset 

RW98  

LPI Worse (0.0765) Worse (0.0424) 

LPIISH Worse (0.0333) Worse (0.0001) 

LSN Worse (0.0804) Worse (0.0003) 

AIJ01  

LPI Worse (0.0004) Better (0.0511) 

LPIISH Worse (0.0005)  Better (0.0972) 

LSN Worse (0.0002) Worse 0.0121) 

MEA06 

LPI Worse (0.0044) Better (0.0007) 

LPIISH Worse (0.0087) Better (0.1823) 

LSN Worse (0.0077) Worse (0.0772) 

IB08  

LPI Worse (0.077) Worse (0.0001) 

LPIISH Worse (0.025) Worse (0.0001) 

LSN Worse (0.1534) Worse (0.0001) 

BI14  

LPI Worse (0.2565) Worse (0.0001) 

LPIISH Worse (0.0123) Worse (0.0001) 

LSN Worse (0.2111) Worse (0.0001) 

GEA19 LPI Worse (0.1386) Worse (0.0001) 
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LPIISH Worse (0.0165) Worse (0.0001) 

LSN Worse (0.109) Worse (0.0001) 

1Probability that AUC using measured CPT data and AUC using “true” CPT data could be from the same distribution. Values less 

than 0.05 are classified as statistically “significant”, in which case significance is indicated with shading.  

7.1 General Shifts in Perceived Hazard 306 

Towards identifying conditions under which “true” CPT data changes the efficiency of liquefaction 307 

models, the general causes of shifting predictions are next investigated. Plotted in Figure 6 are Gea19-308 

LPI values computed using measured CPT data versus “true” data, for both the global and Canterbury 309 

datasets. The Boulanger and DeJong (2018) procedure, on average, minimally alters the computed Gea19-310 

LPI value, with average changes of +0.04 and -0.76 for the global and Canterbury datasets, respectively. 311 

For a minority of cases, however, the computed value changes by as much as ±5 or ±10. Of course, profiles 312 

inferred to be relatively homogenous from CPT data plot near the 1:1 line in Figure 6, since the Boulanger 313 

and DeJong (2018) procedure will minimally alter such data. By corollary, profiles plotting well above or 314 

below the 1:1 line tend to be interbedded. From an investigation of all such outliers, two representative 315 

cases are next highlighted.  316 

  
Fig. 6. Computed Gea19-LPI values using measured CPT data versus “true” CPT data corrected by the 

Boulanger and DeJong (2018) procedure: (a) global dataset; and (b) Canterbury dataset.  
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Plotted in Figure 7 is a case history from Canterbury in which the computed Gea19-LPI value increased 

from 5.7 to 16.8 following CPT inversion. The Boulanger and DeJong (2018) procedure both decreased 

and increased the measured qc in thin layers, albeit by relatively small margins. However, the perceived 

hazard increased substantially because of a downward Ic shift in some layers. Specifically, where the 

procedure perceives that a thin layer of susceptible sand is sandwiched between softer unsusceptible soils, 

which may artificially decrease measured qc and increase measured Ic, the procedure attempts to correct 

these effects. Thus, while the corrective increase in qc increases liquefaction resistance, the decrease in Ic 

changes the inferred soil type to one that is susceptible to liquefaction. It stands to reason, then, that CPT 

inversion may increase the perceived hazard for one level of seismic loading (e.g., that in Figure 7) but 

decrease the perceived hazard for a different, lesser level of seismic loading. 

  

Fig. 7. Computed Gea19-LPI values using measured CPT data versus “true” CPT data corrected by the 

Boulanger and DeJong (2018) procedure [Canterbury case history #5510 from Geyin et al. (2020a, 2021)]. 
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Plotted in Figure 8 is a case history from the global dataset in which the computed Gea19-LPI value 

decreased from 34.5 to 22.51 following CPT inversion. In this case the predominant effect of the 

Boulanger and DeJong (2018) procedure was to increase measured qc in some thin layers by a significant 

margin (much more than in Figure 7). This may be due to the inferred interbedded layers in Figure 8 being 

relatively thinner and surrounded by relatively softer material. While these corrections are conceptually 

reasonable, their accuracy cannot be directly assessed without “true” CPT data from calibration chamber 

tests or numerical simulations. Nonetheless, the preceding examples demonstrate that large upward or 

downward shifts in the perceived hazard can occur in highly interbedded profiles, particularly when the 

involved soils are transitional in nature with Ic values near the threshold for discriminating susceptibility.  

 

Fig. 8. Computed Gea19-LPI values using measured CPT data versus “true” CPT data corrected by the 

Boulanger and DeJong (2018) procedure [global case history #95 from Geyin and Maurer 2021)]. 
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Given that large shifts in the perceived hazard are often associated with Ic values moving above or 318 

below the Ic = 2.5 threshold for discriminating susceptibility, the sensitivity of previous results to this 319 

threshold should be assessed. In Figure 7, for example, Gea19-LPI increased significantly because Ic 320 

values initially just above 2.5 (and thus inferred to be unsusceptible) were adjusted by the Boulanger and 321 

DeJong (2018) procedure to just below 2.5. Had the Ic = 2.5 threshold been increased in this case and 322 

others (e.g., to account for uncertainty in whether sleeve friction is inverted correctly), then CPT inversion 323 

could result in less drastic changes to the perceived hazard. To investigate whether the results summarized 324 

in Figure 5 and Table 3 would change if a different Ic cutoff were used, all previous analyses were repeated 325 

using cutoffs ranging from 2.5 to 3.5 in increments of 0.1. The results of these analyses, which are 326 

summarized in Figure 9, indicate that prior findings were insensitive to the Ic cutoff. That is, CPT 327 

inversion tends to slightly decrease model efficiency independent of the cutoff. While CPT inversion 328 

does, for some of the 18 models, slightly improve efficiency when very high cutoffs (e.g., Ic > 3.2) are 329 

used, those efficiencies are initially much less than optimal. Thus, while CPT inversion may technically 330 

increase model performance in this range of the Ic-cutoff domain, there is no compelling reason to employ 331 

these high cutoffs, or to use CPT inversion with the liquefaction models assessed herein. 332 

  

Fig. 9. Liquefaction-model performance – quantified by AUC – with and without CPT inversion, plotted 

as a function of the Ic cutoff used to infer liquefaction susceptibility: (a) global dataset; and (b) Canterbury 

dataset. Solid lines denote the average AUC across all six triggering models using measured CPT data; 

dotted lines denote the same average using “true” CPT data. 
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7.3 Correlations Between Geomorphology and Shifts in Model Efficiency 333 

While large shifts in the perceived hazard may occur in profiles inferred to be highly interbedded, it is 334 

not yet clear whether the observed, general decline in liquefaction-model efficiency is directly connected 335 

to such profiles. For this investigation we focus on the Canterbury dataset, which provides case histories 336 

from different geologic units, with differing degrees of “interbeddedness,” having experienced similar 337 

ground motions. Figure 10a shows the expected, surficial geologic units in the vicinity of Christhurch as 338 

mapped by Brown (1975) and Brown and Weeber (1992), and the locations of CPT soundings in the 339 

Canterbury dataset. The units in Figure 10a are: (A) Alluvial sand and silt of overbank deposits; (B) Peat 340 

swamps now drained; (C) Fixed dune sand and beach sand deposits; (D) Saline sand, silt and peat of 341 

drained lagoons and estuaries; and (E) Fluviatile gravel, sand, and silt of historic flood channels. 342 

 

Fig. 10. (a) Mapped geologic units of the Canterbury database, as described in Table 4, and CPT 

locations; (b) Intra-unit AUCs computed from Gea19-LPI predictions using measured CPT data; (c) the 

change to intra-unit AUC values due to CPT inversion by the Boulanger and DeJong (2018) procedure. 

Intra-unit ROC analyses were performed on the five geologic units in Table 4, resulting in AUC values 343 

for each model within each unit. These values convey the efficiency with which a model separates cases 344 

with and without manifestations of liquefaction, independent of cases in all other units. Results for the 345 

Gea19-LPI model using measured CPT data are mapped in Figure 10b and are representative of all other 346 

models. A spatial dependence may be observed, such that AUC values are highest in the east (e.g., dune 347 

and beach deposits) and 6-7% lower in the west (e.g., alluvial sand and silt overbank deposits). The less 348 

efficient performance of liquefaction models in western Christchurch was previously noted by other 349 

investigators (e.g., Beyzaei et al. 2017; McLaughlin 2017; Boulanger et al. 2019). Mapped in Figure 10c 350 
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are the shifts in AUC, within each unit, resulting from CPT inversion. While a statistically significant 351 

overall decrease in AUC was previously computed for the study area, performance actually locally 352 

increased in some units (where performance initially tended to be better) and locally decreased in others 353 

(where performance initially tended to be worse).   354 

In the search for traits by which study sites in Canterbury may be further segregated, a quantitative 355 

“interbeddedness index,” or the number of inferred soil type changes per meter, is proposed. Here, we 356 

adopt the following Ic boundaries proposed by Robertson and Wride (1998), which segregate soils into 357 

different behavior types: Ic = 1.31, 2.05, 2.6, 2.95, and 3.6. As an example, Robertson and Wride (1998) 358 

proposed that Ic = 2.05 separates silty sand from sandy silt. We limit this index to the upper 10 m of each 359 

CPT, given that LPI, LSN, and LPIISH assume that surface expression is largely a result of response in the 360 

upper 10 m of a profile. Adopting this index, the Canterbury dataset was binned based on inferred soil 361 

type changes per meter, wherein a moving bin width of 0.5 changes per meter, and a moving bin increment 362 

of 0.25 changes per meter, were adopted. As was done previously, 10,000 bootstrap simulations were 363 

performed in each bin to quantify finite-sample uncertainty.  364 

Using the Gea19-LPI model as a representative example, AUC values are shown in Figure 11a as a 365 

function of interbeddedness. It can be seen that as the number of inferred soil type changes per meter 366 

increases from zero to seven, the median AUC decreases by ~10%. Thus, prior to CPT inversion, 367 

liquefaction models tend to perform worse as profiles become more interbedded. In this respect, it is well 368 

documented in lab, numerical, and field research that interbedded low-permeability soils can influence 369 

the triggering and surface expression of liquefaction (e.g., Fiegel and Kutter 1994; Ozutsumi et al. 2002; 370 

Brennan and Madabhushi 2005; Juang et al. 2005; Özener, et al. 2008; Maurer et al. 2015c; Cubrinovski 371 

et al. 2019). Despite this, none of the triggering or manifestation models evaluated herein explicitly 372 

consider this influence. As such, the performance exhibited in Figure 11a could be considered 373 

unsurprising but could also be partly ameliorated via correction of thin layer effects. With respect to this 374 

possibility, Figure 11b shows the resulting change in AUC due to CPT inversion. As could be expected, 375 

there is little to no change in model efficiency for profiles without inferred soil type changes. However, 376 

in highly interbedded profiles, inversion tends to exacerbate the discrepancy seen in Figure 11a. That is, 377 

when many soil type changes are inferred, CPT inversion decreases liquefaction model efficiency, counter 378 

to what ideally would occur. As could be expected, and as shown in Figure 12, there exists in the 379 

Canterbury dataset a strong correlation between mapped surficial geology and the inferred 380 

interbeddedness of soil profiles. Where interbeddedness is greatest, liquefaction models tend to perform 381 

worse initially and tend to be made worse by CPT inversion.  382 
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Fig. 11. Gea19-LPI model performance as a function of profile interbeddedness (i.e., inferred soil type 

changes per meter): (a) AUC prior to CPT inversion; (b) Change in AUC due to CPT inversion.  

 

Fig. 12. Profile interbeddedness (i.e., inferred soil type changes per meter, as described in the text) across 

the Canterbury database study area.  
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7.4 Development and Assessment of a Liquefaction Model Trained on “True” CPT Data 383 

As discussed, the results in Figure 5 (i.e., changes in AUC due to CPT inversion, considering all 18 384 

models) do not suggest testing bias against “true” CPT data. Nonetheless the possibility persists that 385 

liquefaction models could perform better if they were both trained and tested on such data. To explore 386 

this possibility, the BI14 triggering model is herein retrained on case history data to which CPT inversion 387 

has been applied. Boulanger and Idriss (2014) define their limit-state triggering curve as:  388 

𝐶𝑅𝑅𝑀=7.5,𝜎𝑣
′=1𝑎𝑡𝑚 = exp (

𝑞𝑐1𝑁𝑐𝑠

113
+ (

𝑞𝑐1𝑁𝑐𝑠

1000
)

2

− (
𝑞𝑐1𝑁𝑐𝑠

140
)

3

+ (
𝑞𝑐1𝑁𝑐𝑠

137
)

4

− 𝐶𝑜 + 𝜀ln(𝑅))            (5) 389 

Where Co is a fitting parameter that serves to scale the relationship and which has a recommended value 390 

of 2.60, and where ln(R) is normally distributed with a mean of 0.0 and recommended standard deviation 391 

of ln(R) = 0.20. Due to historical precedent, Boulanger and Idriss (2014) proposed that their deterministic 392 

triggering model (which was herein evaluated as BI14) correspond to a triggering probability (PL) of 393 

~16%. As such, their deterministic model is defined by the equation above when ln(R) = -0.20 and is 394 

plotted in Figure 13 as a black line (note that by removing the 𝜀ln(𝑅) term in Eq. (5), the deterministic 395 

curve is defined using Co = 2.8). Adopting the optimization/training routine of BI14 exactly as prescribed 396 

therein, the BI14 triggering model was first retrained with measured CPT data using 81% of the BI14 397 

dataset (the authors were unable to obtain the raw CPT data for the remaining 19%). Owing to this 398 

difference, an optimal Co of 2.87 was found (as compared to the value of 2.80 proposed by BI14), creating 399 

a new baseline for comparison. This triggering curve in shown in Figure 13 as a dashed orange line.  400 
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Fig. 13. Retraining of the Boulanger and Idriss (2014) triggering curve using “true” CPT data from, as 

described in the text. Vectors indicate the change to case-history datapoints resulting from CPT inversion. 

 

 

Next, the Boulanger and DeJong (2018) inversion procedure was applied to the partial BI14 database, 401 

and “critical layers” proposed by BI14 for those cases were resampled. The resulting shift of each case-402 

history point in triggering space is shown in Figure 13, wherein red vectors indicate shifts for cases with 403 

manifestations of liquefaction and green vectors indicate shifts for cases without manifestations of 404 

liquefaction. While CPT inversion both decreased and increased qc1Ncs (cone tip resistance, normalized 405 

for overburden pressure and adjusted for fines content), the average changes were +16.24 and +14.67 for 406 

cases with and without manifestations, respectively. The corresponding changes in 𝐶𝑆𝑅𝑀=7.5, 𝜎𝑉
′ =1 (cyclic 407 

stress ratio, normalized for overburden pressure and adjusted for earthquake magnitude) were respectively 408 

-0.007 and -0.005. This lesser change in CSR is unsurprising, given the lesser dependence of CSR on soil 409 

properties, relative to qc1Ncs. Repeating the BI14 optimization procedure, but training on “true” CPT data, 410 

the optimal Co was 3.18 (compared to 2.87 using measured data). Given the shift of this curve, which is 411 

shown in Figure 13 as a solid purple line, it appears that “true” data is not optimally compatible with a 412 

model trained on measured data. Accordingly, using the version of BI14 newly trained on “true” data, the 413 

preceding ROC analyses of case-histories were repeated on the global and Canterbury “true” datasets. 414 

However, relative to the AUCs obtained by applying the original BI14 model to measured data, those 415 
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obtained by applying the new BI14 model to “true” data were less. Using BI14-LPI as an example, AUC 416 

was 1.2% less in both the global and Canterbury datasets.  417 

The final question, then, is whether any triggering curve can be found to improve predictions of 418 

liquefaction manifestations when inverted CPT data is used? To investigate, the C0 parameter in Eq. (5) 419 

was varied from 1.5 to 5.0 in increments of 0.1, which is analogous to changing the probability 420 

associated with liquefaction triggering from 16% to various other values. For each C0, BI14-LPI 421 

predictions were recomputed for each case history using “true” data, after which AUC values were 422 

computed for the global and Canterbury datasets. The results of these analyses, which are summarized in 423 

Figure 14, show that while AUCs computed from “true” data may be slightly improved using C0 values 424 

different from the BI14 default of 2.8, these AUCs are still less than those computed from measured data. 425 

Thus, there exists no triggering curve obtainable via C0 recalibration for which CPT inversion 426 

demonstrably improves the efficiency of liquefaction predictions.  427 

 

Fig. 14. BI14-LPI AUC values with and without inversion, as a function of the BI14 parameter C0. 

8. Caveats and Limitations 428 

The presented findings are inherently tied to the datasets studied herein. The applicability of these 429 

findings to other datasets (e.g., soils of unusual age, minerology, composition, etc.) – or to other 430 

methodologies, is unknown. The phrases “true CPT data” and “CPT inversion” refer specifically to the 431 

Boulanger and DeJong (2018) inversion procedure using “baseline” parameters, as implemented in the 432 

software Horizon. As previously discussed, it is plausible these parameters could be calibrated at the site-433 
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specific level to potentially improve identification and correction of thin layers. As an example, it is 434 

inherently a challenge to distinguish graded strata (i.e., fining upwards or downwards) from relatively 435 

distinct material interfaces, since both appear as a rate of change in CPT data, and since both naturally 436 

occur. While the procedure includes a baseline parameter for flagging material interfaces, its selection 437 

invariably includes subjectivity that ideally could be confirmed by borehole sampling or knowledge of 438 

local geology. In the present study, all globally available liquefaction case histories are studied. As a 439 

result, site-specific calibration was not undertaken, but could conceivably improve performance. In 440 

addition, it should be emphasized that the Boulanger and DeJong (2018) procedure was not directly 441 

evaluated, and as such, nothing can be directly concluded about its efficacy. That is, its ability to 442 

accurately correct CPT data for multiple thin-layer effects was not assessed. This would require CPT 443 

calibration chamber data or numerical simulations of such data, both in uniform and layered deposits. 444 

When analyzing field case histories, as done in this study, only the combined performance of a CPT 445 

inversion procedure and a liquefaction model can be quantified. In this regard, the Boulanger and DeJong 446 

(2018) procedure might improve liquefaction predictions using some triggering and/or manifestation 447 

models other than those utilized in this study. Similarly, the procedure might provide utility in other 448 

geotechnical applications. That is, the lack of utility observed herein could be due to fundamental 449 

limitations in the liquefaction models, rather than to limitations of the procedure itself. However, given 450 

that model performance at-best increased insignificantly (but most often, decreased significantly), it is 451 

unlikely that minor adjustments to liquefaction models would alter this outcome. Ultimately, additional 452 

data will confirm or update the findings presented herein and summarized below. 453 

9. Conclusions 454 

The Boulanger and DeJong (2018) CPT inversion procedure was evaluated in the context of CPT-455 

based liquefaction model performance. Using field case-histories parsed into 2 datasets, 18 different 456 

liquefaction models were studied, resulting in 36 performance trials. In only 1 trial did the CPT inversion 457 

procedure increase model efficiency to a statistically significant degree, while in 23 others it significantly 458 

decreased efficiency. This decline in performance, which was independent of the Ic cutoff used to infer 459 

liquefaction susceptibility, tended to grow as profiles became more stratified, opposite of what ideally 460 

should occur. To explore possible remedies, a liquefaction triggering curve was rederived from inverted 461 

CPT data, such that its training and forward implementation were made consistent. Nonetheless, this 462 

exacerbated the decline in prediction efficiency when applied to field case histories. Moreover, no readily 463 

conceivable triggering curve could be found to improve predictions of liquefaction when inverted CPT 464 
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data was used. Ultimately, the results of this study are not a direct assessment of the pioneering Boulanger 465 

and DeJong (2018) procedure. However, the results do provide strong evidence that this procedure may 466 

provide no demonstrable performance benefit when applied to existing CPT-based liquefaction models. 467 

This conclusion should be weighed against caveats and limitations discussed in the preceding section.  468 
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