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Evaluation of a Cone Penetration Test Thin-Layer Correction Procedure
in the Context of Global Liquefaction Model Performance

Mertcan Geyin' and Brett W. Maurer!

Abstract: Engineering geologists routinely perform liquefaction hazard assessments using data from the
cone penetration test (CPT). However, the volume of soil mobilized by the CPT acts as a low-pass filter
on the true stratigraphy, potentially removing information such as the data defining a thin layer of soil or
the interface between two dissimilar soils. The Boulanger and DeJong (2018) CPT inversion procedure,
which aims to correct these effects, is herein evaluated in the context of CPT-based liquefaction model
performance. Using over 15,000 case-histories from 24 earthquakes parsed into 2 datasets, 18 different
liquefaction models are studied, resulting in 36 performance trials. In 1 of these trials, the CPT inversion
procedure increases model efficiency to a statistically significant degree, but in 23 others it significantly
decreases efficiency. This decline in performance tends to grow as profiles become more stratified. To
explore remedies, a liquefaction triggering curve is rederived from inverted CPT data, such that its training
and forward implementation are made consistent. Nonetheless, this exacerbates the decline in prediction
efficiency. Ultimately, the results of this study are not a direct assessment of the pioneering Boulanger
and DelJong (2018) procedure. However, the results do provide evidence that this procedure — when

applied to existing CPT-based liquefaction models — may provide no demonstrable performance benefit.

Keywords: cone penetration test; thin layer corrections; liquefaction model

1. Introduction

Cone Penetration Test (CPT) measurements, which principally include cone-tip resistance (¢.) and
sleeve friction (f;), may be used to infer various soil properties and behaviors. The CPT, for example, has
significant benefits over other tests on which liquefaction models have been based (NRC 2016). In this
regard, engineering geologists routinely carry out liquefaction hazard studies, both locally and regionally,
using CPT data (e.g., among many, Juang et al. 2009; Heidari and Andrus, 2010; Khoshnevisan et al.,
2015; Zhang et al. 2016, 2018; Chen et al., 2016; Gheibi et al., 2016; Hasek and Gassman, 2019; Bastin
et al., 2020; Norini et al. 2021). However, because the CPT is an intermediate-to-large-strain penetration
test, its measurements are still potentially obfuscated by the volume of mobilized soil. That is, g. and f;

are influenced by soil conditions both relatively proximal to, and distal from, the CPT sensors. While CPT
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measurements are recorded at discrete depths — typically 1-2 cm intervals — they sample a mobilized zone
of influence that may extend ~10-30 cone diameters from the g. sensor (Boulanger and DeJong 2018),
with the zone growing and shrinking as a function of soil properties. For the industry standard 10 cm?
cone, this equates to a zone 0.35-1.05 m thick. This mobilized zone effectively acts as a “low-pass filter”
on the true soil stratigraphy, filtering information from the low spatial wavelengths, such as the data
defining a thin layer of soil or the interface between two dissimilar soils. These spatial smoothing effects,
which are often called “thin layer” and “transition” effects, have been investigated by many authors (e.g.,
van der Linden 2018; Ching et al. 2015; Robertson 2011; Ahmadi and Robertson 2005; Lunne et al. 1997;
Treadwell 1976). Although chart-based methods have been proposed to manually correct CPT data for
these effects, Boulanger and DeJong (2018) proposed what may be the first fully automated approach.
This “inverse filtering and interface detection” procedure attempts to correct CPT measurements to their
“true” values. Since the direct measurements reflect conditions averaged over a volume, rather than at
discrete points, their correction would invariably improve CPT site characterization. As an example, CPT

data is shown in Fig. 1, with and without correction by the Boulanger and DeJong (2018) procedure.

"True" CPT Data

Measured CPT Data

Depth (m)
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Fig. 1. CPT data with (i.e. “true”) and without (i.e. measured) inverse-filtering and interface correction per
Boulanger and DeJong (2018), as implemented in the software Horizon (Geyin and Maurer 2020a).
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The efficacy of the Boulanger and DeJong (2018) procedure has yet to be rigorously studied in the
literature, but its adopted can change the computed liquefaction hazard at a site, with the magnitude and
direction of change dependent on many factors. Moreover, this procedure was recently incorporated into
software programs that predict liquefaction and its consequences (e.g., CLig by Geologismiki 2020;
Horizon by Geyin and Maurer 2020a). Accordingly, the objective of this paper is to assess the Boulanger
and DeJong (2018) procedure in the context of CPT-based liquefaction model performance. That is, to
determine whether use of the procedure improves prediction-model efficiency. Using field case histories
from 24 earthquakes parsed into 2 datasets, 18 different liquefaction models will be studied, resulting in
36 performance trials. Uncertainty due to finite sampling will be accounted for and used to establish
statistical significance. Ultimately, the results of these trials spur further inquiries that expand on the initial
objective, and which are introduced later in the paper.

In the following, the Boulanger and DeJong (2018) procedure is first succinctly summarized. The 18
liquefaction models in which this procedure will be evaluated, and the field case-history data to which it
will be applied, are then identified. Lastly, the methodologies for evaluating predictive performance are

described and trial results are presented and discussed.

2. Summary of the Boulanger and DeJong (2018) Procedure

The correction of CPT data can be idealized as the conversion of measured g. and f; values, or ¢ and
f™, to the “true” values ¢’ and /", which would be obtained if measurements reflected conditions at discrete
points. This can be viewed as an inverse problem, with the goal of determining the “true” values via
inversion of what was measured. As illustrated in Fig. 2 (in this case for tip resistance), ¢” may deviate
from ¢’ near layer interfaces because the measurements are influenced by materials both above and below
the interface, even though the measurement is recorded at a discrete depth. In the case shown in Fig. 2,
q" is artificially increased in the upper soft clay as the cone approaches, and is influenced by, the
underlying dense sand. The opposite occurs in the dense sand as the cone approaches the underlying soft
clay. That is, ¢" is artificially decreased when the cone begins to sense the softer material. These errors
are commonly referred to as “transistion” or “interface” effects. It can also be seen in Figure 2 that should
the dense sand be insufficiently thick for the cone to receive no influence, at least momentarily, from the
soft clay either above or below it, then ¢” in the dense sand will never reach its true value. Of course, the
opposite would occur in a soft, loose stratum sandwhiched by denser strata. While these latter errors have
the same root cause as transition effects (i.e., measurement over a volume) they are often separetely

referred to as “thin layer” effects.
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Fig. 2. Conceptual schematic showing cone penetration in layered soil. The measured cone-tip resistance
(¢"™) deviates from the “true” resistance (¢) that would be measured in each material if measurements
reflected conditions at discrete points (modified from Mo et al. 2017).

Nomenclature aside, the Boulanger and DeJong (2018) procedure aims to correct these collective
effects by viewing ¢” as the convolution of ¢’ with a physical low-pass filter (w.) over a zone of influence
(a depth window 60 times that of the cone diameter (d.), centered at the cone tip). With this approach, ¢”

is computed as:
q"(2) = q*(2) * w.(2) (D

where ¢", ¢, and w, are a function of depth, z, and the asterisk indicates convolution, which is the integral
of the point-wise multiplication of ¢(z) and w(z), as a function of the amount that one of the functions is
shifted relative to the other. While complete details will not be given here, w.(z) is a function of two
other terms: w;, which decreases the relative influence of any soil as its distance from the cone tip
increases; and w,, which weights the influence of soil above or below the cone tip based on whether those
soils are stronger or weaker than that immediately at the tip. Specifically, it is assumed that g™ receives
more influence from the soil immediately near the tip when that soil is relatively weaker than the
surrounding soil. Conversely, it is assumed that ¢” receives less influence from the soil immediately near
the tip when that soil is relatively stronger than the surrounding soil. In essence, the Boulanger and DeJong
(2018) technique identifies the ¢’ that, when convolved with w, best predicts ¢”. As part of this procedure,
additional filters are used to smooth high frequency noise considering the CPT sampling interval, thereby
increasing the speed and likelihood of convergence to an optimal solution.

Following estimation of ¢’ via inversion of ¢”, Boulanger and DeJong (2018) propose, at least for the

time being, that /' be estimated from ¢'. Specifically, the proposed “inversion” of /™ follows the
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assumption that both inverted and measured pairs of normalized tip resistance (Q) and normalized sleeve
friction ratio (F) lie along the same radial line originating from the origin of the Soil Behavior Type Index,
1., proposed by Robertson and Wride (1998), which maps in Q-F space. In effect, this approach changes
I near interfaces, and in-turn the inferred soil type (e.g., the inferred susceptibility to liquefaction) but
results in relatively minimal changes to /. otherwise (i.e., away from interfaces). Following the initial
development of ¢' and f” profiles, a separate procedure detects and corrects interfaces based on the rate of
change of ¢' with respect to depth. In total, the Boulanger and DeJong (2018) procedure has five
parameters, for which recommended “baseline” values were provided: z 5o, rer = 4.2; m=s50 = 0.5; m- = 3; my
=2; and m;= 0.1. While complete details are provided in Boulanger and DeJong (2018), these baseline
parameters were herein adopted to compute “true” CPT data. It is plausible that these values could be
calibrated at the site-specific level (e.g., using high resolution borings adjacent to a CPT). This would
change the magnitude of correction and the sensing and development distances, thereby potentially
improve identification of thin layers. However, the information compiled for this study was generally
insufficient to attempt calibration and, when available, provided insufficient statistical support to justify
it. As part of the CPT processing methodology, statistical cross-correlation (Buck et al. 2002) was used
to align tip- and sleeve-measurements, both for the measured and “true” CPT data. All CPT processing,
including implementation of the Boulanger and DeJong (2018) procedure, was completed using the open-

source software Horizon (Geyin and Maurer 2020a).

3. Liquefaction Models

The Boulanger and DeJong (2018) procedure will be evaluated in the context of CPT-based
liquefaction model performance. That is, whether use of the procedure improves or worsens their
prediction efficiency. Towards that end, six triggering models based on the so-called “simplified stress-
based” framework, first envisioned by Whitman (1971) and Seed and Idriss (1971), are herein adopted:
Green et al. (2019), Boulanger and Idriss (2014), Idriss and Boulanger (2008), Moss et al. (2006),
Architectural Institute of Japan (2001), and Robertson and Wride (1998). However, because these models
predict triggering at specific depths below ground, a true evaluation of their performance requires
subsurface exploration or instrumentation (i.e., to assess whether predicted and actual responses agree).
This could potentially be achieved in advance of an earthquake using buried sensors (e.g., Holzer et al.
2007) or after an earthquake using vision penetrometers (Raschke and Hryciw 1997) or geoslicers (Nakata
and Shimazaki 1997). Yet, case histories with such data are exceedingly rare and still may not result in

definitive interpretations of what did, and did not, liquefy (e.g., Takada and Atwater 2004). As a result,
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nearly all existing case-histories document only whether liquefaction manifestations were observed at the
ground surface. Accordingly, to compare subsurface predictions of liquefaction against surface
observations, the predictions from each triggering model will be input to three different models that
predict surficial manifestations of liquefaction: Maurer et al. (2015a), van Ballegooy et al. (2014), and
Iwasaki et al. (1978), who developed models termed LPI, LSN, and LPIsH, respectively. In this study,
“liquefaction model” therefore refers to the use of two models in series: one triggering model and one
manifestation model. The independent performance of these models can simply not be assessed via any
practical, objective means. A summary of the 18 models to be used (6 triggering models x 3 manifestation

models), and the symbols that will be used to identify them, is provided in Table 1.

Table 1. Summary of Liquefaction Triggering and Manifestation Models used in this Study.

Model Type Symbol
Robertson & Wride (1998)  Triggering RW98
Arch. Institute Japan (2001)  Triggering ALJO1
Moss et al. (2006) Triggering Mea06
Idriss & Boulanger (2008) Triggering 1B08
Boulanger & Idriss (2014) Triggering BI14

Green et al. (2019) Triggering Geal9
Iwasaki et al. (1978) Manifestation LPI
van Ballegooy et al. (2014)  Manifestation LSN
Maurer et al. (2015) Manifestation  LPlisu

4. Liquefaction Case-History Data

A total of 15,223 liquefaction case histories from 24 earthquakes will be analyzed, as listed in Table
2. However, because most of these cases are from three earthquakes in New Zealand’s Canterbury
province, analyses will be carried out separately for these and the remaining 21 events, henceforth referred
to as the “Canterbury dataset” and “global dataset,” respectively. Each case history includes estimates of
groundwater depth and peak ground acceleration (PGA), CPT data, and observations of the presence or

absence of surficial liquefaction manifestations.
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Table 2. Summary of Liquefaction Case-Histories Analyzed (after Geyin et al. 2020b)

Date Event Country Magnitude Number of

(Mw) Case Histories
16/6/1964 Niigata Japan 7.60 3
9/2/1971 San Fernando USA 6.60 2
4/2/1975 Haicheng China 7.00 2
27/7/1976 Tangshan China 7.60 10
15/10/1979 Imperial Valley USA 6.53 7
9/6/1980 Victora (Mexicali) Mexico 6.33 5
26/4/1981 Westmorland USA 5.90 9
26/5/1983 Nihonkai-Chubu Japan 7.70 2
28/10/1983 Borah Peak USA 6.88 3
2/3/1987 Edgecumbe New Zealand 6.60 23
24/11/1987 Elmore Ranch USA 6.22 2
24/11/1987 Superstition Hills USA 6.54 8
18/10/1989 Loma Prieta USA 6.93 67
17/1/1994 Northridge USA 6.69 3
16/1/1995 Hyogoken-Nambu Japan 6.90 21
17/8/1999 Kocaeli Turkey 7.51 16
20/9/1999 Chi-Chi Taiwan 7.62 34
8/6/2008 Achaia-Ilia Greece 6.40 2
4/4/2010 Baja Mexico 7.20 3
11/3/2011 Tohoku Japan 9.00 7
20/5/2012 Emilia Ttaly 6.10 46
4/10/2010 Darfield New Zealand 7.10 5371
22/2/2011 Christchurch New Zealand 6.20 4806
14/2/2016 Christchurch New Zealand 5.70 4771

The Canterbury data was sourced from Geyin et al. (2020a, 2021), who compiled liquefaction case-
histories from the: (i) My7.1, 4 Sept. 2010 Darfield earthquake; (ii) Mw6.2, 22 Feb. 2011 Christchurch
earthquake; and (iii)) My5.7, 14 Feb. 2016 Christchurch earthquake. The Geyin et al. (2020a, 2021)
database built upon earlier compilations from Canterbury (Maurer et al. 2014, 2015b), resulting in 15,890
case histories. Of those, 14,948 were ultimately selected for analysis in the present study. Cases were
excluded when: (i) the predominant manifestation of liquefaction was lateral spreading, since the
manifestation models adopted herein are not intended to predict it; (ii) the depth of CPT pre-drill
significantly exceeded that of the groundwater, since CPT data in the pre-drill zone must be estimated
rather than measured (e.g., by extrapolating upward from just below the pre-drill); or (ii1) the estimated
median PGA was less than 0.075 g, since such cases may not provide meaningful tests of prediction
efficiency, given that the absence of liquefaction is easily predicted by judgement. With respect to

99 ¢

manifestations, Geyin et al. (2020a, 2021) classified each case history as “none,” “marginal,” “moderate,”
“severe,” “lateral spreading,” or “severe lateral spreading” using criteria from Green et al. (2014), wherein
classifications were based on a circular sample centered on each CPT, with approximate radius of 10 m.

In this study, liquefaction-model performance will be judged on the ability to predict surficial
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manifestations of liquefaction on free-field level ground. Cases with other expressions of liquefaction,
such as lateral spreading, foundation movements, or evidence from ground-motions are removed because
the adopted liquefaction models are not designed to predict these expressions. To facilitate model
assessment, the Geyin et al. (2020a, 2021) case histories are binomially classified as “No Manifestation”
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and “Manifestation,” where the latter are cases with either “minor,” “moderate,” or “severe”
manifestations. Of the resulting cases assembled from Canterbury, 65% are “No Manifestation” and 35%
are “Manifestation.” The reader is referred to Geyin et al. (2020a, 2021) for further details relevant to data
collection and processing, and where the complete Canterbury dataset may be obtained.

To compare results from Canterbury with regions elsewhere, 275 case histories from 21 global
earthquakes will be analyzed in parallel. These cases were sourced from Geyin and Maurer (2021), who
compiled case-history data from the literature. Whereas documentation of liquefaction in Canterbury was
aided by remote sensing, case histories elsewhere are often preserved in less detail, occasionally with few
details about the nature of manifestation. Thus, while manifestations were again classified binomially
using the Green et al. (2014) criteria, uncertainty is unavoidably present. Among these 275 case histories,
42% are “No Manifestation and 58% are “Manifestation.” The reader is referred to Geyin et al. (2021) for
further details, and where the complete global dataset may be obtained. The Canterbury and Global
datasets were previously studied by Geyin et al. (2020b), who compared the efficacies of various
geospatial and geotechnical liquefaction models, and by Geyin and Maurer (2020b), who developed
fragility functions for predicting the probability of liquefaction-induced ground failure. In the current
study, these datasets are used to rigorously evaluate whether the Boulanger and DeJong (2018) procedure

improves CPT-based liquefaction model performance.

5. Liquefaction Model Methodology

All calculations described in this section were performed with the software Horizon (Geyin and Maurer
2020a), which has been used in previous research (e.g., Geyin et al. 2020b). The six triggering models
listed in Table 1 were each used to compute the factor-of-safety against liquefaction (FSi,) vs. depth. As
part of this process, liquefaction susceptibility was first inferred using the CPT soil-behavior-type index
(Zc) (Robertson and Wride 1998). Using a criterion developed from lab and field data in Canterbury
(Maurer et al. 2019), soils with 7. > 2.5 were assumed not susceptible. However, because this value is
within the range of common, generic thresholds (e.g., 2.4-2.6) (Youd et al. 2001), it was also applied to
the global dataset. Ultimately, the most salient findings of this study are found to be independent of this

criterion, as will be further discussed. For soils deemed susceptible, the IBOS, BI14, and Geal9 models
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(see Table 1) consider the influence of fines-content (FC) on liquefaction resistance. Accordingly, an /. —
FC model specific to Canterbury (Maurer et al. 2019) was used for the Canterbury dataset while a generic
1. — FC correlation (Boulanger and Idriss 2014) was used for the global dataset. The six triggering models
were otherwise implemented as proposed by the respective publications in Table 1.

The predictions of FSi,; vs. depth made by each triggering model were then input to LPI, LPI;sy, and
LSN, which all have the same objective - to characterize the cumulative response of a soil profile in the
free field, thereby predicting manifestations of liquefaction at the ground surface. For brevity, the
formulae describing LPI, LSN, and LPIsy are not given here but are provided in Geyin et al. (2020c).

Their implementation is exactly as described in Geyin et al. (2020c) and mirrors that in popular practice.

6. Performance Evaluation

Receiver-operating-characteristic (ROC) analyses are a popular diagnostic tool to evaluate models
(e.g., Fawcett 2006; Zou 2007) and are widely used in geoscience and geoengineering (e.g., among many,
Lin et al. 2021; Upadhyaya et al. 2021; Ju et al. 2020; Sarma et al. 2020). In this study, ROC analyses
will be used to: (i) quantify the efficiency of liquefaction models; and (ii) assess whether “true” CPT data
improves that efficiency to a statistically significant degree. In all classification problems (e.g., predicting
whether sites have observations of liquefaction), “positive” and “negative” observations overlap when
plotted as a function of a diagnostic model index (e.g., LPI, LSN, etc.). As an example, two distributions
are plotted in Figure 3a. ROC curves plot the true-positive prediction rate (Rzp) (i.e., the rate at which
positives, or liquefaction manifestations, are correctly predicted) versus the false-positive prediction rate
(Rrp) (i.e., the rate at which negatives, or a lack of liquefaction manifestations, are correctly predicted)
for a range of classification “thresholds,” which are used to predict outcomes. Values above a threshold
predict positives and those below a threshold predict negatives. Figure 3b depicts the relationship between
the observations, thresholds, and ROC curve.

As a model segregates the distributions of positive and negative outcomes more efficiently (i.e., the
distributions have less overlap), a corresponding ROC curve trends toward a point at the coordinates (0,1)
in ROC space, indicating the existence of a threshold value that perfectly separates the distributions (i.e.,
the model is perfectly efficient). Conversely, random guessing appears as a 1:1 line in ROC space, in
which case the model has no utility and the positive and negative distributions perfectly overlap. For this
reason, the area under a ROC curve (AUC) is widely adopted to characterize model efficiency (e.g.,
Fawcett 2006). AUC also has statistical significance. In this case, it is the likelihood that sites with

manifestations have larger model values than sites without manifestations. In this regard, it is equivalent
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to the nonparametric Wilcoxon statistic (Hanley and Mc Neil 1982). In the case of a perfectly efficient
model, AUC = 1.0 (or 100%), whereas with random guessing AUC = 0.5 (or 50%). Better prediction
models thus have higher AUC. With this approach, false-positive predictions (liquefaction is predicted
but is not observed) and false-negative predictions (liquefaction is not predicted but is observed) are given
equal importance. In other words, AUC reflects the overall misprediction rate, rather than treating either
false positives or false negatives as being more important. Another desirable feature of AUC is its relative
insensitivity to class imbalance. Suppose a hypothetical dataset includes 1 positive case and 99 negative
cases. For this dataset, a hypothetical model that predicts negative outcomes 100% of the time would be
99% accurate, even though the model is objectively useless. For this reason, model accuracy — while
commonly reported — is a poor metric unless the positive and negative classes are equal in size. Other oft-
reported performance metrics that similarly focus on only positive or negative predictions, such as
sensitivity and specificity (e.g., Powers 2011), would be similarly inappropriate for the aims of this study.
AUC, however, would appropriately characterize this model’s lack of utility by finding a value near 0.5.

Accordingly, AUC will be used to quantify model performance in each of the 36 performance trials.
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Fig. 3. ROC analyses: (a) positive and negative observations vs. computed LPI; (b) derivative ROC curve,
and depiction of how the efficiency of a diagnostic test is assessed via AUC (after Geyin et al. 2020b).

To account for the finite availability of case histories within each dataset (i.e., the Canterbury and
global datasets), bootstrap simulations (e.g., Diaconis and Efron 1983) will be used to quantify the finite-

sample uncertainty of 4UC for each model. This will characterize the sensitivity of results to the data
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chosen for study and be used to assess whether differences in AUC could arise from chance (i.e., due to
finite samples) and not because one model is truly better. Tests of significance will be carried out via the
ROC-specific DeLong et al. (1988) methodology. This approach computes the P-values, or probabilities,
that two AUC samples could have come from the same distribution. In each of the 36 trials, model
performance using measured CPT data will be compared to that using “true” CPT data to determine which,
if any, is statistically better. Since this method is predicated on 4UC normality, both Anderson-Darling
and Lilliefors tests (Anderson and Darling 1952; Lilliefors 1967) were used to confirm, with 95%

confidence, that all AUC samples came from a normally distributed family.

7. Results and Discussion

Using the data and methodology above, liquefaction manifestations were predicted for CPT-based case
histories by 18 models, both with and without correction by the Boulanger and DeJong (2018) procedure.
To illustrate how model performance will be evaluated using ROC analysis, results will first be shown
for one model, following which summary statistics from all models are presented. In Figures 4a and 4b,
results using the Geal9 — LPI model (i.e., the Geal9 triggering model and LP/ manifestation model) are
shown for the global dataset using measured and “true” CPT data, respectively. In each figure, 95%-
confidence intervals (CIs) were computed from a total of 10,000 bootstrapped samples. The median ROC
curve is the same as that resulting from an analysis of all data without resampling. It can be seen, for this
model and dataset, that use of the Boulanger and DeJong (2018) correction procedure decreases the

median AUC by 1.62% (i.e., predictions are less efficient), counter to what ideally should occur.
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Fig. 4. ROC analysis of Geal9-LPI model performance in predicting surficial manifestations of
liquefaction for the global dataset: (a) measured CPT data; and (b) “true” CPT data.
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From identical ROC analyses of all 18 models, summary statistics are compiled in Figures 5a and 5b
for the global and Canterbury datasets, respectively, wherein the resulting shift in AUC from using the
Boulanger and DeJong (2018) procedure is plotted. Shown for each of 36 trials is the median shift in AUC
and the 95% CI on that shift, sorted by the year each model was proposed.
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Fig. 5. Summary of change in liquefaction-model performance — quantified by 4UC — for 18 models to
which the Boulanger and DeJong (2018) procedure was applied, ordered by year proposed: (a) global
dataset; and (b) Canterbury dataset. Markers denote median shift in AUC; bars are 95% confidence
intervals on that shift; all model acronyms are identified in Table 1.

As shown in Figure 5, the behavior exhibited by Geal9-LPI in Figure 4 (i.e., the decline in median
AUC using “true” CPT data) is also true of all 18 models when tested on the global dataset, and true of
14 models when tested on the Canterbury dataset. Considering all models, the average changes in AUC
owed to using “true” CPT data are respectively -2.8% and -0.47% for the global and Canterbury datasets;
the average 95% Cls on these changes are respectively -11.50% to 5.29% and -1.51% to 0.53%. The larger
finite-sample uncertainty of the global dataset is expected given its much smaller size, all else being equal.
Its larger uncertainty may also be further augmented by the relative geomorphic and seismologic diversity
of the global dataset and/or because the data collection methods (e.g., ground-motion estimates, CPTs)
varied somewhat with time and place.

When assessing the apparent, general decline in performance using “true” CPT data, it should be noted

that some of the global cases used to test performance in Figure 5a were also previously used to train
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triggering models when they were originally developed. That is, the models were previously trained using
the same measured CPT data that is now being using to test them, which might reasonably result in bias
that favors the measured data and disfavors the “true” data obtained from Boulanger and DeJong (2018).
In this regard, the percentage of test data previously used in training varies from 0% (e.g., RW98) to ~75%
(e.g., Geal9). However, the matter of bias is more complicated. First, the developers of triggering models,
to the degree then possible, manually corrected for interface and thin-layer effects using chart-based
solutions or judgement, mitigating the possibility of the aforementioned bias. Second, while a case history
may have been used to train a triggering model, this training was performed using a judgement-based
manifestation model (i.e., an analyst selected the so-called “critical layer” using their judgement to
analyze an observation at the ground surface; they did not use LPI, LSN, or LPI;sy in-reverse to select it).
Similarly, LPI, LSN, and LPI;sy were not formulated or optimized using case-history data, but rather, were
developed heuristically and then retrospectively shown to provide useful predictions on field data. In this
respect, the training and test datasets used herein might be considered wholly different. Complications
aside, it can be seen in Figure Sa that the 18 models perform relatively similarly on the global dataset,
despite the large variability in possible bias. Regarding the Canterbury data, the BI14 and Geal9
triggering models, when originally proposed, were trained on a dataset of which 20% was from
Canterbury, whereas all other models were trained independent of Canterbury data. It can be seen in
Figure 5b that while the BI14 and Geal9 models do exhibit worse performance with CPT inversion,
relative to others, these models perform very similar to the unbiased IB08 model, to which they owe their
analytical provenance. Thus, there is no readily apparent difference between models with and without
conceivable bias. Nonetheless, the possibility that models may perform better if retrained on “true” CPT
data will be explored later.

It was found that in 32 of the 36 trials performed, AUC decreased because of CPT inversion. To
determine whether these changes in 4 UC are statistically significant, P-values were computed per DeLong
et al. (1988) to compare the performance of each model with and without CPT inversion. These values
are given in Table 3 and are the probabilities that two AUC samples (i.e., one model with and without
CPT inversion) come from the same parent distribution. Thus, when P-values are small, an observed
difference in AUC is more likely the result of CPT inversion and less likely a consequence of finite-sample
uncertainty. Small P-values occur when (i) two AUC values are dissimilar; and/or (ii) the uncertainties of
those AUC values are small. The common significance level of 0.05 is adopted for these analyses, meaning
that two models are classified as “significantly” different if the difference is at least 95% probable. Using
this approach, Table 3 summarizes, for each of 36 trials, whether CPT inversion made the efficiency of a

liquefaction model better or worse and whether that change was significant.
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Notable observations from Table 3 are: (i) of the 32 out of 36 trials in which performance decreased
using “true” data, those decreases were significant in 23 trials and insignificant in the remaining 9; (i1) of
the 4 out of 36 trials in which performance increased, those increases were significant in 1 trial and
insignificant in the remaining 3. While these findings would invariably change if the adopted significance
threshold were changed (say, from 0.05 to 0.10), the findings would nonetheless suggest a lack of
demonstrable improvement using the Boulanger and DeJong (2018) procedure, as implemented herein.

Additional inquiries will be investigated in the following.

Table 3. P-Value Matrix to Compare Model Performance With and Without CPT Inversion.

AUC Better or Worse with CPT Inversion?
Triggering | Manifestation (p-value)!
Model Model
Global Dataset Canterbury Dataset

LPI Worse (0.0765) Worse (0.0424)

RW98 LPIisu Worse (0.0333) Worse (0.0001)

LSN Worse (0.0804) Worse (0.0003)

LPI Worse (0.0004) Better (0.0511)

AlJO1 LPIisy Worse (0.0005) Better (0.0972)

LSN Worse (0.0002) Worse 0.0121)

LPI Worse (0.0044) Better (0.0007)

MEAO06 LPIisy Worse (0.0087) Better (0.1823)

LSN Worse (0.0077) Worse (0.0772)

LPI Worse (0.077) Worse (0.0001)

1B08 LPIisn Worse (0.025) Worse (0.0001)

LSN Worse (0.1534) Worse (0.0001)

LPI Worse (0.2565) Worse (0.0001)

BI14 LPIisH Worse (0.0123) Worse (0.0001)

LSN Worse (0.2111) Worse (0.0001)

GEA19 LPI Worse (0.1386) Worse (0.0001)
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Worse (0.0165)

Worse (0.0001)

LSN

Worse (0.109)

Worse (0.0001)

'Probability that 4UC using measured CPT data and AUC using “true” CPT data could be from the same distribution. Values less
than 0.05 are classified as statistically “significant”, in which case significance is indicated with shading.

7.1 General Shifts in Perceived Hazard

Towards identifying conditions under which “true” CPT data changes the efficiency of liquefaction

models, the general causes of shifting predictions are next investigated. Plotted in Figure 6 are Geal9-

LPI values computed using measured CPT data versus “true” data, for both the global and Canterbury

datasets. The Boulanger and DeJong (2018) procedure, on average, minimally alters the computed Geal9-

LPI value, with average changes of +0.04 and -0.76 for the global and Canterbury datasets, respectively.

For a minority of cases, however, the computed value changes by as much as £5 or £10. Of course, profiles

inferred to be relatively homogenous from CPT data plot near the 1:1 line in Figure 6, since the Boulanger

and DeJong (2018) procedure will minimally alter such data. By corollary, profiles plotting well above or

below the 1:1 line tend to be interbedded. From an investigation of all such outliers, two representative

cases are next highlighted.
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Fig. 6. Computed Geal9-LPI values using measured CPT data versus “true” CPT data corrected by the
Boulanger and DeJong (2018) procedure: (a) global dataset; and (b) Canterbury dataset.
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Plotted in Figure 7 is a case history from Canterbury in which the computed Geal9-LPI value increased
from 5.7 to 16.8 following CPT inversion. The Boulanger and DeJong (2018) procedure both decreased
and increased the measured g. in thin layers, albeit by relatively small margins. However, the perceived
hazard increased substantially because of a downward /. shift in some layers. Specifically, where the
procedure perceives that a thin layer of susceptible sand is sandwiched between softer unsusceptible soils,
which may artificially decrease measured ¢. and increase measured /., the procedure attempts to correct
these effects. Thus, while the corrective increase in ¢. increases liquefaction resistance, the decrease in /.
changes the inferred soil type to one that is susceptible to liquefaction. It stands to reason, then, that CPT
inversion may increase the perceived hazard for one level of seismic loading (e.g., that in Figure 7) but

decrease the perceived hazard for a different, lesser level of seismic loading.

Measured CPT Data —— "True" CPT Data
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Gernes Index, 1, Safety, FS;;, Index, LPI

Fig. 7. Computed Geal9-LPI values using measured CPT data versus “true” CPT data corrected by the
Boulanger and DeJong (2018) procedure [Canterbury case history #5510 from Geyin et al. (2020a, 2021)].
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Plotted in Figure 8 is a case history from the global dataset in which the computed Geal9-LPI value
decreased from 34.5 to 22.51 following CPT inversion. In this case the predominant effect of the
Boulanger and DeJong (2018) procedure was to increase measured ¢. in some thin layers by a significant
margin (much more than in Figure 7). This may be due to the inferred interbedded layers in Figure 8 being
relatively thinner and surrounded by relatively softer material. While these corrections are conceptually
reasonable, their accuracy cannot be directly assessed without “true” CPT data from calibration chamber
tests or numerical simulations. Nonetheless, the preceding examples demonstrate that large upward or
downward shifts in the perceived hazard can occur in highly interbedded profiles, particularly when the

involved soils are transitional in nature with /. values near the threshold for discriminating susceptibility.
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Fig. 8. Computed Geal9-LPI values using measured CPT data versus “true” CPT data corrected by the
Boulanger and DeJong (2018) procedure [global case history #95 from Geyin and Maurer 2021)].

7.2 Dependence of Results on the 7. Cutoff Used to Infer Liquefaction Susceptibility
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Given that large shifts in the perceived hazard are often associated with /. values moving above or
below the I.= 2.5 threshold for discriminating susceptibility, the sensitivity of previous results to this
threshold should be assessed. In Figure 7, for example, Geal9-LPI increased significantly because /.
values initially just above 2.5 (and thus inferred to be unsusceptible) were adjusted by the Boulanger and
DelJong (2018) procedure to just below 2.5. Had the /.= 2.5 threshold been increased in this case and
others (e.g., to account for uncertainty in whether sleeve friction is inverted correctly), then CPT inversion
could result in less drastic changes to the perceived hazard. To investigate whether the results summarized
in Figure 5 and Table 3 would change if a different /. cutoff were used, all previous analyses were repeated
using cutoffs ranging from 2.5 to 3.5 in increments of 0.1. The results of these analyses, which are
summarized in Figure 9, indicate that prior findings were insensitive to the /. cutoff. That is, CPT
inversion tends to slightly decrease model efficiency independent of the cutoff. While CPT inversion
does, for some of the 18 models, slightly improve efficiency when very high cutoffs (e.g., I. > 3.2) are
used, those efficiencies are initially much less than optimal. Thus, while CPT inversion may technically
increase model performance in this range of the /.-cutoff domain, there is no compelling reason to employ

these high cutoffs, or to use CPT inversion with the liquefaction models assessed herein.
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Fig. 9. Liquefaction-model performance — quantified by 4UC — with and without CPT inversion, plotted
as a function of the /. cutoff used to infer liquefaction susceptibility: (a) global dataset; and (b) Canterbury
dataset. Solid lines denote the average 4UC across all six triggering models using measured CPT data;
dotted lines denote the same average using “true” CPT data.
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7.3 Correlations Between Geomorphology and Shifts in Model Efficiency

While large shifts in the perceived hazard may occur in profiles inferred to be highly interbedded, it is
not yet clear whether the observed, general decline in liquefaction-model efficiency is directly connected
to such profiles. For this investigation we focus on the Canterbury dataset, which provides case histories
from different geologic units, with differing degrees of “interbeddedness,” having experienced similar
ground motions. Figure 10a shows the expected, surficial geologic units in the vicinity of Christhurch as
mapped by Brown (1975) and Brown and Weeber (1992), and the locations of CPT soundings in the
Canterbury dataset. The units in Figure 10a are: (A) Alluvial sand and silt of overbank deposits; (B) Peat
swamps now drained; (C) Fixed dune sand and beach sand deposits; (D) Saline sand, silt and peat of

drained lagoons and estuaries; and (E) Fluviatile gravel, sand, and silt of historic flood channels.
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Fig. 10. (a) Mapped geologic units of the Canterbury database, as described in Table 4, and CPT
locations; (b) Intra-unit AUCs computed from Geal9-LPI predictions using measured CPT data; (c) the
change to intra-unit AUC values due to CPT inversion by the Boulanger and DeJong (2018) procedure.

Intra-unit ROC analyses were performed on the five geologic units in Table 4, resulting in 4UC values
for each model within each unit. These values convey the efficiency with which a model separates cases
with and without manifestations of liquefaction, independent of cases in all other units. Results for the
Geal9-LPI model using measured CPT data are mapped in Figure 10b and are representative of all other
models. A spatial dependence may be observed, such that AUC values are highest in the east (e.g., dune
and beach deposits) and 6-7% lower in the west (e.g., alluvial sand and silt overbank deposits). The less
efficient performance of liquefaction models in western Christchurch was previously noted by other

investigators (e.g., Beyzaei et al. 2017; McLaughlin 2017; Boulanger et al. 2019). Mapped in Figure 10c
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are the shifts in AUC, within each unit, resulting from CPT inversion. While a statistically significant
overall decrease in AUC was previously computed for the study area, performance actually locally
increased in some units (where performance initially tended to be better) and locally decreased in others
(where performance initially tended to be worse).

In the search for traits by which study sites in Canterbury may be further segregated, a quantitative
“interbeddedness index,” or the number of inferred soil type changes per meter, is proposed. Here, we
adopt the following /. boundaries proposed by Robertson and Wride (1998), which segregate soils into
different behavior types: I. = 1.31, 2.05, 2.6, 2.95, and 3.6. As an example, Robertson and Wride (1998)
proposed that 7. = 2.05 separates silty sand from sandy silt. We limit this index to the upper 10 m of each
CPT, given that LPI, LSN, and LPI;sy assume that surface expression is largely a result of response in the
upper 10 m of a profile. Adopting this index, the Canterbury dataset was binned based on inferred soil
type changes per meter, wherein a moving bin width of 0.5 changes per meter, and a moving bin increment
of 0.25 changes per meter, were adopted. As was done previously, 10,000 bootstrap simulations were
performed in each bin to quantify finite-sample uncertainty.

Using the Geal9-LPI model as a representative example, AUC values are shown in Figure 11a as a
function of interbeddedness. It can be seen that as the number of inferred soil type changes per meter
increases from zero to seven, the median AUC decreases by ~10%. Thus, prior to CPT inversion,
liquefaction models tend to perform worse as profiles become more interbedded. In this respect, it is well
documented in lab, numerical, and field research that interbedded low-permeability soils can influence
the triggering and surface expression of liquefaction (e.g., Fiegel and Kutter 1994; Ozutsumi et al. 2002;
Brennan and Madabhushi 2005; Juang et al. 2005; Ozener, et al. 2008; Maurer et al. 2015¢; Cubrinovski
et al. 2019). Despite this, none of the triggering or manifestation models evaluated herein explicitly
consider this influence. As such, the performance exhibited in Figure 1la could be considered
unsurprising but could also be partly ameliorated via correction of thin layer effects. With respect to this
possibility, Figure 11b shows the resulting change in AUC due to CPT inversion. As could be expected,
there is little to no change in model efficiency for profiles without inferred soil type changes. However,
in highly interbedded profiles, inversion tends to exacerbate the discrepancy seen in Figure 11a. That is,
when many soil type changes are inferred, CPT inversion decreases liquefaction model efficiency, counter
to what ideally would occur. As could be expected, and as shown in Figure 12, there exists in the
Canterbury dataset a strong correlation between mapped surficial geology and the inferred
interbeddedness of soil profiles. Where interbeddedness is greatest, liquefaction models tend to perform

worse initially and tend to be made worse by CPT inversion.
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Fig. 11. Geal9-LPI model performance as a function of profile interbeddedness (i.e., inferred soil type
changes per meter): (a) AUC prior to CPT inversion; (b) Change in AUC due to CPT inversion.
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Fig. 12. Profile interbeddedness (i.e., inferred soil type changes per meter, as described in the text) across
the Canterbury database study area.
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7.4 Development and Assessment of a Liquefaction Model Trained on “True” CPT Data

As discussed, the results in Figure 5 (i.e., changes in AUC due to CPT inversion, considering all 18
models) do not suggest testing bias against “true” CPT data. Nonetheless the possibility persists that
liquefaction models could perform better if they were both trained and tested on such data. To explore
this possibility, the BI14 triggering model is herein retrained on case history data to which CPT inversion

has been applied. Boulanger and Idriss (2014) define their limit-state triggering curve as:

2 3 4
— qdciNcs 9ciNes\  __ [9ciNces 9ciNes\
CRRy=75,04=1atm = eXp( 113 + ( 1000 ) ( 140 ) + ( 137 ) Co + gln(R)> ®)

Where C, is a fitting parameter that serves to scale the relationship and which has a recommended value
of 2.60, and where enw) is normally distributed with a mean of 0.0 and recommended standard deviation
of oin®) = 0.20. Due to historical precedent, Boulanger and Idriss (2014) proposed that their deterministic
triggering model (which was herein evaluated as BI14) correspond to a triggering probability (Pr) of
~16%. As such, their deterministic model is defined by the equation above when oi,r) = -0.20 and is
plotted in Figure 13 as a black line (note that by removing the &p,(g) term in Eq. (5), the deterministic
curve is defined using C, = 2.8). Adopting the optimization/training routine of BI14 exactly as prescribed
therein, the BI14 triggering model was first retrained with measured CPT data using 81% of the BI14
dataset (the authors were unable to obtain the raw CPT data for the remaining 19%). Owing to this
difference, an optimal C, of 2.87 was found (as compared to the value of 2.80 proposed by BI14), creating

a new baseline for comparison. This triggering curve in shown in Figure 13 as a dashed orange line.
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Fig. 13. Retraining of the Boulanger and Idriss (2014) triggering curve using “true” CPT data from, as
described in the text. Vectors indicate the change to case-history datapoints resulting from CPT inversion.

Next, the Boulanger and DeJong (2018) inversion procedure was applied to the partial BI14 database,
and “critical layers” proposed by BI14 for those cases were resampled. The resulting shift of each case-
history point in triggering space is shown in Figure 13, wherein red vectors indicate shifts for cases with
manifestations of liquefaction and green vectors indicate shifts for cases without manifestations of
liquefaction. While CPT inversion both decreased and increased g.ines (cone tip resistance, normalized
for overburden pressure and adjusted for fines content), the average changes were +16.24 and +14.67 for

cases with and without manifestations, respectively. The corresponding changes in CSRy_; 5 /-4 (Cyclic

stress ratio, normalized for overburden pressure and adjusted for earthquake magnitude) were respectively
-0.007 and -0.005. This lesser change in CSR is unsurprising, given the lesser dependence of CSR on soil
properties, relative to g.ives. Repeating the BI14 optimization procedure, but training on “true” CPT data,
the optimal C, was 3.18 (compared to 2.87 using measured data). Given the shift of this curve, which is
shown in Figure 13 as a solid purple line, it appears that “true” data is not optimally compatible with a
model trained on measured data. Accordingly, using the version of BI14 newly trained on “true” data, the
preceding ROC analyses of case-histories were repeated on the global and Canterbury “true” datasets.

However, relative to the AUCs obtained by applying the original BI14 model to measured data, those
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obtained by applying the new BI14 model to “true” data were less. Using BI14-LPI as an example, AUC
was 1.2% less in both the global and Canterbury datasets.

The final question, then, is whether any triggering curve can be found to improve predictions of
liquefaction manifestations when inverted CPT data is used? To investigate, the Cyp parameter in Eq. (5)
was varied from 1.5 to 5.0 in increments of 0.1, which is analogous to changing the probability
associated with liquefaction triggering from 16% to various other values. For each Cy, BI14-LPI
predictions were recomputed for each case history using “true” data, after which AUC values were
computed for the global and Canterbury datasets. The results of these analyses, which are summarized in
Figure 14, show that while AUCs computed from “true” data may be slightly improved using Cy values
different from the BI14 default of 2.8, these 4UCs are still less than those computed from measured data.
Thus, there exists no triggering curve obtainable via Cp recalibration for which CPT inversion

demonstrably improves the efficiency of liquefaction predictions.
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Fig. 14. BI14-LPI AUC values with and without inversion, as a function of the BI14 parameter Cp.

8. Caveats and Limitations

The presented findings are inherently tied to the datasets studied herein. The applicability of these
findings to other datasets (e.g., soils of unusual age, minerology, composition, etc.) — or to other
methodologies, is unknown. The phrases “true CPT data” and “CPT inversion” refer specifically to the
Boulanger and DeJong (2018) inversion procedure using “baseline” parameters, as implemented in the

software Horizon. As previously discussed, it is plausible these parameters could be calibrated at the site-
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specific level to potentially improve identification and correction of thin layers. As an example, it is
inherently a challenge to distinguish graded strata (i.e., fining upwards or downwards) from relatively
distinct material interfaces, since both appear as a rate of change in CPT data, and since both naturally
occur. While the procedure includes a baseline parameter for flagging material interfaces, its selection
invariably includes subjectivity that ideally could be confirmed by borehole sampling or knowledge of
local geology. In the present study, all globally available liquefaction case histories are studied. As a
result, site-specific calibration was not undertaken, but could conceivably improve performance. In
addition, it should be emphasized that the Boulanger and DeJong (2018) procedure was not directly
evaluated, and as such, nothing can be directly concluded about its efficacy. That is, its ability to
accurately correct CPT data for multiple thin-layer effects was not assessed. This would require CPT
calibration chamber data or numerical simulations of such data, both in uniform and layered deposits.
When analyzing field case histories, as done in this study, only the combined performance of a CPT
inversion procedure and a liquefaction model can be quantified. In this regard, the Boulanger and DeJong
(2018) procedure might improve liquefaction predictions using some triggering and/or manifestation
models other than those utilized in this study. Similarly, the procedure might provide utility in other
geotechnical applications. That is, the lack of utility observed herein could be due to fundamental
limitations in the liquefaction models, rather than to limitations of the procedure itself. However, given
that model performance at-best increased insignificantly (but most often, decreased significantly), it is
unlikely that minor adjustments to liquefaction models would alter this outcome. Ultimately, additional

data will confirm or update the findings presented herein and summarized below.

9. Conclusions

The Boulanger and DeJong (2018) CPT inversion procedure was evaluated in the context of CPT-
based liquefaction model performance. Using field case-histories parsed into 2 datasets, 18 different
liquefaction models were studied, resulting in 36 performance trials. In only 1 trial did the CPT inversion
procedure increase model efficiency to a statistically significant degree, while in 23 others it significantly
decreased efficiency. This decline in performance, which was independent of the /. cutoff used to infer
liquefaction susceptibility, tended to grow as profiles became more stratified, opposite of what ideally
should occur. To explore possible remedies, a liquefaction triggering curve was rederived from inverted
CPT data, such that its training and forward implementation were made consistent. Nonetheless, this
exacerbated the decline in prediction efficiency when applied to field case histories. Moreover, no readily

conceivable triggering curve could be found to improve predictions of liquefaction when inverted CPT
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data was used. Ultimately, the results of this study are not a direct assessment of the pioneering Boulanger
and DeJong (2018) procedure. However, the results do provide strong evidence that this procedure may
provide no demonstrable performance benefit when applied to existing CPT-based liquefaction models.

This conclusion should be weighed against caveats and limitations discussed in the preceding section.
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