

Journal of Research on Educational Effectiveness

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uree20

Pair Programming in Perspective: Effects on
Persistence, Achievement, and Equity in Computer
Science

Nicholas A. Bowman , Lindsay Jarratt , K. C. Culver & Alberto M. Segre

To cite this article: Nicholas A. Bowman , Lindsay Jarratt , K. C. Culver & Alberto M. Segre (2020):
Pair Programming in Perspective: Effects on Persistence, Achievement, and Equity in Computer
Science, Journal of Research on Educational Effectiveness

To link to this article: https://doi.org/10.1080/19345747.2020.1799464

Published online: 17 Aug 2020.

Submit your article to this journal

View related articles

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uree20

https://www.tandfonline.com/loi/uree20
https://doi.org/10.1080/19345747.2020.1799464
https://www.tandfonline.com/action/journalInformation?journalCode=uree20

JOURNAL OF RESEARCH ON EDUCATIONAL EFFECTIVENESS
https://doi.org/10.1080/19345747.2020.1799464

INTERVENTION, EVALUATION, AND POLICY STUDIES

Pair Programming in Perspective: Effects on Persistence,
Achievement, and Equity in Computer Science

Nicholas A. Bowman
a
 ,Lindsay Jarratt

a
 , K. C. Culver

b
and

Alberto M. Segre
c

a

Department of Educational Policy and Leadership Studies, University of Iowa, Iowa City, Iowa, USA;
b

Pullias Center for Higher Education, University of Southern California, Los Angeles, California, USA;
c

Department of Computer Science, University of Iowa, Iowa City, Iowa, USA

ABSTRACT
Pair programming is a form of collaborative learning in computer sci-
ence that involves two students working together on a coding pro-
ject. Previous research has identified mostly positive outcomes from
this practice, such as course grades and the quality of the resulting
code. Pair programming may also facilitate interactions that improve
the climate for women and Students of Color, thereby reducing
equity gaps in achievement and persistence. However, the existing
research findings are inconsistent, which may reflect limitations in
research design and/or challenges with implementing pair program-
ming in an ideal manner. The present study sought to provide rigor-
ous evidence through a cluster-randomized trial with 1,530
undergraduates in 96 lab sections across three different introductory
computer science courses. Within the full sample, pair programming
was unrelated to virtually all outcomes. However, pair programming
actually led to poorer outcomes among White students, including
grades within the introductory course, attempting or completing
subsequent computer science courses, and majoring or minoring in
computer science. These negative effects were generally driven by
White students whose partners had either low or high levels of prior
programming experience.

ARTICLE HISTORY
Received 21 August 2019
Revised 1 July 2020
Accepted 13 July 2020

KEYWORDS
Pair programming;
computer science; college
students; undergraduate
major; collabora-
tive learning

Rapid advances in computer science and technology have had a broad and lasting
impact across society. In an era of smartphones, 3 D printers, and global connectivity,
the common good depends on continued advances in computer science and, more
importantly, an educated workforce well-versed in computing’s capabilities and limita-
tions. Scholars from various disciplines increasingly assert that exposure to computa-
tional thinking and literacy should be a component of every well-rounded college
graduate’s education (e.g., Vee, 2013; Wing, 2008; Yadav et al., 2011). Students appear
to agree about the importance of computer science, as these programs have seen rapid
increases in enrollments in recent years (Desjardins, 2015; Singer, 2019).

CONTACT Nicholas A. Bowman nick-bowman@uiowa.edu Department of Educational Policy and Leadership
Studies, University of Iowa, N491 Lindquist Center, Iowa City, IA 52242, USA.

Supplemental material for this article can be accessed at https://doi.org/10.1080/19345747.2020.1799464.

© 2020 Taylor & Francis Group, LLC

https://doi.org/10.1080/19345747.2020.1799464
mailto:nick-bowman@uiowa.edu

2 N. A. BOWMAN ET AL.

Unfortunately, larger enrollments only exacerbate the challenges inherent in introductory
computer science courses, especially for helping students acquire the programming skills
needed to pursue further coursework and eventual careers in the field. Traditionally, once
the programming language has been introduced, skills are developed through a succession of
increasingly challenging assignments. Because students enter these courses with a broad
range of experiences, students with little or no prior exposure often struggle, leading to high
attrition and loss of student interest (Biggers et al., 2008; Desjardins, 2015). These challenges
are more present among underrepresented groups; similar to other STEM fields in the
United States, computer science has struggled to increase and maintain the participation of
women and Students of Color (Cheryan et al., 2017; Estrada et al., 2016).

Active learning strategies offer the potential to address some of these issues (Bowman
& Culver, 2018; Freeman et al., 2014). In particular, pair programming (in which two
students work collaboratively) has been offered as a means to increase student learning,
grades, confidence, persistence, and satisfaction, but the causal impact of this peda-
gogical approach is unclear. This study brings rigorous evidence to bear on the effects
of pair programming in the computer science classroom and its promise to improve stu-
dent achievement and retention in computer science. It also explores the conditions and
subgroups for which pair programming may be most (or least) effective at fostering
desired outcomes.

Literature on Pair Programming

Pair programming was popularized in the early 2000s by proponents of agile program-
ming methods, a set of practices intended to build collaboration, creativity, and self-suf-
ficiency in software development teams (Beck et al., 2001). Although pair programming
is only one of the included agile methods, it is arguably the most studied and perhaps
the most controversial. In its ideal form, pair programming is a practice in which two
programmers work side-by-side at the same computer; they periodically switch roles
between “driving” (producing code) and “navigating” (reviewing and making sugges-
tions) (Williams & Upchurch, 2001). This practice has been increasingly adopted in
both industry and classroom settings to improve efficiency, quality, and satisfaction (for
reviews, see Dyba et al., 2007; Faja, 2011; Hanks et al., 2011; Salleh et al., 2011;
Umapathy & Ritzhaupt, 2017).

Proponents of the method cite myriad benefits for participants and instructors. For
example, several scholars have observed an increase in productivity, efficiency, and cod-
ing output (Hannay et al., 2009; Kuppuswami & Vivekanandan, 2004; Zacharis, 2011) as
well as cleaner code quality with fewer bugs (Begel & Nagappan, 2008; Bipp et al., 2008;
Cliburn, 2003; Kuppuswami & Vivekanandan, 2004; Zacharis, 2011) and increased
understanding of programming concepts (Begel & Nagappan, 2008; Faja, 2011; Howard,
2006). Others have found that pair programming is positively related to persistence in
coursework (McDowell et al., 2006) as well as grades on tests, assignments, and the
overall course (Chigona & Pollock, 2008; Kuppuswami & Vivekanandan, 2004;
McDowell et al., 2006; Mendes et al., 2006; Wiebe et al., 2003). One group of research-
ers observed that students who were paired turned in their homework at significantly
higher rates (Hanks et al., 2004), and several scholars have found that students in pair

JOURNAL OF RESEARCH ON EDUCATIONAL EFFECTIVENESS 3

programming courses may be more likely to declare or stay in a computer science major
(Hanks et al., 2011; McDowell et al., 2006; Nagappan et al., 2003; Umapathy &
Ritzhaupt, 2017).

In addition to these academic outcomes, many positive social and affective outcomes
have been attributed to pair programming. This practice can enhance communication
and team-building skills (Faja, 2011) as well as student confidence (Faja, 2011; Hanks
et al., 2004; Lai & Xin, 2011; McDowell et al., 2006; Nosek, 1998; VanDeGrift, 2004).
Numerous studies suggest that individuals enjoy programming collaboratively more
than working alone (Balijepally et al., 2009; Bipp et al., 2008; Cao & Xu, 2005; Cliburn,
2003; Faja, 2011; Hanks et al., 2004; Howard, 2006; McDowell et al., 2006; Nagappan
et al., 2003; Nosek, 1998; Thomas et al., 2003; VanDeGrift, 2004; Wiebe et al., 2003).
Instructors and scholars have commented that students in courses utilizing a pair pro-
gramming approach are more engaged and self-sufficient (Howard, 2006; Kuppuswami
& Vivekanandan, 2004; Nagappan et al., 2003; Wiebe et al., 2003), freeing up time for
instructors to help struggling students (Cliburn, 2003; Nagappan et al., 2003).

However, the findings on outcomes of pair programming are not always consistent.
For instance, Ally et al. (2005) reported that programming professionals perceived pair
programming to be less efficient than solo work in most instances, and several scholars
have observed a loss in effort or efficiency, although this relationship was sometimes
small (Bipp et al., 2008; Dyba et al., 2007). Similarly, mixed results have been reported
on code quality measures (Hanks et al., 2004), and another study found that pair per-
formance on measures such as quality is only improved for the weaker member in a
pair (Balijepally et al., 2009). Others found that pair programming does not affect learn-
ing and understanding of concepts (Chigona & Pollock, 2008; Hanks et al., 2004), exam
scores after controlling for prior achievement (Nagappan et al., 2003), or interest in
computer science and plans to take subsequent computer science coursework (Bowman
et al., 2019b).

Additionally, several scholars have commented on the challenges with implementing
pair programming effectively. From a practical perspective, several instructors note the
difficulty of scheduling if pairs need to meet outside class (Bevan et al., 2002; Howard,
2006; VanDeGrift, 2004). Moreover, not all studies have found that pair programming
is enjoyable. For instance, Mendes et al. (2006) observed that only about half of partici-
pants wanted to experience pair programming in a future course; another study found
that pair programming was unpopular in industry settings and lowered morale among
experienced professionals (Ally et al., 2005). Some of these differences in the enjoyment
of pair programming may be predictable. For instance, more experienced and confident
coders seem to be less enthusiastic about pair programming (Layman, 2006; Thomas
et al., 2003), and students who are introverted or reflective also may enjoy the experi-
ence less than others (Layman, 2006). At times, the workload is not equitably shared
(Nagappan et al., 2003), and differences in work ethic among paired students creates
conflict (Williams et al., 2006). Indeed, pair incompatibility appears to pose the biggest
threat to the effectiveness of pair programming (Ally et al., 2005; Begel & Nagappan,
2008; Bevan et al., 2002; Cao & Xu, 2005; Chaparro et al., 2005; Cliburn, 2003;
Nagappan et al., 2003; VanDeGrift, 2004; Wiebe et al., 2003); this incompatibility has
been operationalized in terms of mismatch of personality and/or prior experience.

4 N. A. BOWMAN ET AL.

However, not every study finds that mismatch is problematic, as scholars have occasion-
ally found that heterogeneous personality pairs outperformed pairs with similar person-
ality types (Choi et al., 2008; Sfetsos et al., 2009).

There are several possible explanations for the wide range of findings. First, some
significant methodological problems have been present in this research. Many previ-
ous studies suffered from small sample sizes that often did not have the statistical
power to identify significant differences; these study designs also frequently failed to
account for selection effects, including a lack of important control variables. At
times, inferential statistical analyses were not used at all. Taken as a whole, these
issues cast doubt on the validity of many previous findings. Second, one meta-ana-
lysis of the pair programming literature found signs of publication bias (Hannay
et al., 2009), indicating that nonsignificant or negative findings have likely been
underreported. Third, disparate outcomes may also be due to differences in partici-
pants, tasks, and environments (Bryant, 2004): Many of these studies utilized differ-
ent methods of pairing students, were employed in different types of classrooms and
institutional contexts, were conducted for different lengths of time, were applied to
different types of coding tasks, and included different types of participants. Finally,
pair programming may be implemented in various ways that can notably affect the
results (Coman et al., 2014).

Theoretical and Conceptual Framework for Equity in Computer Science

In U.S. higher education, women and Students of Color are consistently underrepre-
sented in computer science (Estrada et al., 2016; Sax et al., 2017). Substantial research
has attempted to explain and intervene in these dynamics, particularly the low enroll-
ment of women. Potential precollege explanations for this disparity include women’s
stronger interpersonal orientation (Beyer, 2014; Ho et al., 2004; Sax et al., 2017), lower
STEM confidence (Beyer et al., 2003; Sax et al., 2017) and lack of previous exposure to
computing (Beyer, 2014; Cheryan et al., 2017; Sinclair & Kalvala, 2015). Explanations
for the low representation of Students of Color in these majors are often similar, focus-
ing on lack of prior content exposure or even the effects of affirmative action (see
Harper, 2010, for a summary and critique of these narratives).

The present study focuses on outcomes that occur after students have opted into tak-
ing a computer science course. To do so, we draw from a view of college experiences
and outcomes shaped by the Multicontextual Model for Diverse Learning Environments
(Hurtado et al., 2012), which delineates the role of curricular and co-curricular contexts
in shaping college student learning, achievement, and retention for diverse students.
Experiences with coursework are situated within a context shaped by the composition of
students in those environments, historical legacy of inclusion/exclusion, and psycho-
logical and behavioral dimensions of the climate. Within this broader context, the cur-
riculum is experienced as a function of pedagogy and teaching methods, course content,
instructor identities, and student identities.

For women and racially marginalized students, stigmatizing experiences and discrim-
ination—both overt and subtle—are a common experience on U.S. college campuses
(Chang et al., 2011). The relationship between institutional climate and students’ racial

JOURNAL OF RESEARCH ON EDUCATIONAL EFFECTIVENESS 5

and gender identities may become more salient in STEM fields like computer science
(Malcom & Feder, 2016), as issues of underrepresentation are more pronounced here
than in other disciplines (Cheryan et al., 2017; Estrada et al., 2016). Additionally, schol-
ars point to the ways in which STEM fields often reflect the language and norms of
White, middle-class, and masculine discourse (Cheryan et al., 2009; Simon et al., 2017).
Given this climate, it is perhaps unsurprising that women and Students of Color are less
likely to identify with these fields (Hazari et al., 2013; Wong, 2015).

While women remain underrepresented in nearly all STEM fields, their participation is
lowest in computer science (Cheryan et al., 2017). This underrepresentation has substantially
intensified over time, and women now comprise only about 15% of majors (Sax et al., 2017).
A wealth of scholarship has examined and attempted to address this pervasive issue, but the
problem has stubbornly persisted, especially in Western cultures (Vitores & Gil-Ju�arez,
2016). While many of the explanations focus on gendered differences in prior experience,
behavior, and interest (e.g., Beyer, 2014; Cheryan et al., 2017; Sinclair & Kalvala, 2015), other
explanations highlight the pervasive masculine culture and hostile learning environments in
many computer science programs (Cheryan et al., 2017). Beyer (2014) found that classroom
environment and instruction are strongly related to students’ decisions to continue in a
computer science major. Complementing this finding, a review of research on computer-
supported collaborative learning found that gender differences were reduced or even
non-existent when participation and inclusion were promoted explicitly, suggesting that
pedagogy matters a great deal in achieving equitable outcomes (Prinsen et al., 2007).

Likewise, Students of Color—specifically Black, Latinx, and Indigenous students—
remain underrepresented in computer science programs (Malcom & Feder, 2016; also
see Museus et al., 2011). Racial underrepresentation is likely due in part to microaggres-
sions and bias encountered in the learning environment, which Students of Color are
more likely to experience (Barker et al., 2009). Some research has also linked a field’s
pervasive beliefs about innate brilliance and ability with levels of underrepresentation
(Leslie et al., 2015), perhaps because this belief leads to classroom practices that are
competitive and do not promote active participation. In such settings, underrepresenta-
tion may lead to tokenization and heightened pressure (Malcom & Feder, 2016) or
stereotype threat (Steele, 1997).

Asian American and international students are often well-represented numerically in
STEM courses and majors (and therefore underrepresented in STEM equity literature),
but they may face a distinct yet related set of challenges. For instance, Asian and Asian
American students may experience pressure via expectations to serve as model students
(e.g., McGee et al., 2017). Additionally, an aggregate picture that highlights their relative
success in the STEM classroom can obscure notable variation within this group
(Museus et al., 2011). International students must also navigate considerable differences
in culture (Pedersen et al., 2016), feelings of loneliness (Cho & Yu, 2015), challenges
communicating in a second language (Luo et al., 2019), and making connections with
U.S. peers (Pedersen et al., 2016). Furthermore, international students who are racial
minorities may face discrimination and xenophobia due to their perceived race and
nationality (e.g., Yao et al., 2019).

Active and collaborative learning strategies have been proposed as a promising way
to foster a more inclusive environment for marginalized students in STEM classrooms

6 N. A. BOWMAN ET AL.

(Varma, 2006). These strategies can potentially benefit all students; a meta-analysis of
225 studies on student performance in undergraduate STEM coursework shows that
active learning increases student performance in STEM classes, with particularly large
effects in smaller class sizes (Freeman et al., 2014). The best available evidence suggests
that active learning strategies may be most effective at bolstering learning and content
mastery among students who have traditionally been underrepresented (for a review, see
Bowman & Culver, 2018). For instance, the incorporation of an interactive workshop
within an introductory biology course benefited all students in terms of exam perform-
ance and grades, but women and Students of Color had larger increases than men and
White students, respectively (Preszler, 2009). Another intervention compared team-
based learning with PowerPoint lectures within a veterinary course; similarly, female
students benefited more from the team-based approach than did male students (Malone
& Spieth, 2012). A study of pair programming found that international students bene-
fited from being paired with U.S. domestic students in terms of completing a larger por-
tion of the paired assignment and feeling more confident about the quality of their
code, whereas domestic students did not exhibit benefits from cross-national pairing
(Bowman et al., 2020).

A fair portion of the research over the last two decades indicates that collaborative paired
work as an active learning strategy is particularly effective in computer science classrooms
(Braught et al., 2011). In the case of pair programming, this collaborative approach to learn-
ing may counter isolation and competition in the classroom, especially for students who are
marginalized in the learning space. Engaging in meaningful interactions across difference is
a highly effective approach for improving intergroup attitudes within and outside of the
classroom (Bowman, 2011; Pettigrew & Tropp, 2006), so pair programming may help to
improve the climate by breaking down intergroup barriers and challenging stereotypes.

That said, the research on pair programming has yielded some inconsistent results,
suggesting that there is more to understand in employing this as a pedagogical tool in
the classroom. One possible explanation for the mixed findings is that pair program-
ming often diverges from the ideal structure in practice, which can then adversely affect
student outcomes (Coman et al., 2014; Wiebe et al., 2003; Williams & Kessler, 2002).
For instance, one study observed less clear role differentiation than that proposed by
proponents of pair programming (Bryant et al., 2008). Other research indicates that
dominating behavior is more likely when there is a mismatch in gender (Williams et al.,
2002) or in achievement and skill (Chaparro et al., 2005; Hanks et al., 2011; Stephens &
Rosenberg, 2003; Williams et al., 2002), which results in disengagement for the other
partner. Another study found that interruptions, tasks that are too simple, social pres-
sure to avoid looking ignorant, and time constraints can all lead to disengagement in
pairs (Plonka et al., 2012).

Present Study

This study sought to address the challenges of previous research through a rigorous
examination of the impact of pair programming. We conducted a cluster-randomized
trial that assigned lab sections to either pair programming or traditional programming;
this experimental design leads to much stronger causal inferences than in previous

JOURNAL OF RESEARCH ON EDUCATIONAL EFFECTIVENESS 7

work. We also implemented pair programming over four semesters in three different
computer science courses that had several lead instructors and dozens of teaching assis-
tants, which helps promote the generalizability of the findings across contexts. The sam-
ple consisted of over 1,500 undergraduates and nearly 100 lab sections, so the analyses
had sufficient statistical power to detect main effects among all students and separately
by course. This sample contained approximately 600 Students of Color and 600 female
students, which provided a unique opportunity to conduct large-scale subgroup analyses.
Finally, we collected data well after the initial course enrollment to explore longer-term
outcomes of subsequent computer science course taking, academic success in those
courses, and having a subsequent major or minor in computer science. In doing so, we
also explored whether grades in the initial computer science course or partners’ prior
experience with computer programming may help explain any subsequent effects.

Method

Study Context, Procedure, and Participants

This study included undergraduates who took an introductory computer science
course at a large, Midwestern research university from Fall 2016 to Spring 2018. The
institution offers three introductory courses: a class designed for computer science
majors (i.e., CS 1), a class designed for humanities majors (i.e., CS 0), and a class
designed for social and information science majors (i.e., CS

1/2). These courses varied
considerably in the amount of technical knowledge and skills required for assign-
ments and exams. The format of all three courses consisted of large lecture classes
that met either twice per week (CS 0 and CS 1/2) or three times per week (CS 1) as
well as one lab section per week (50 minutes for all courses). A full-time instructor
led the lectures, and graduate teaching assistants (TAs) led the lab sections. Each TA
facilitated either two lab sections (for CS 1) or three sections (for CS 0 and CS 1/2)
per semester.

Lab sections were randomly assigned to engage in pair programming or in individual
programming practices. Aside from this pedagogical practice, the rest of the lab section
was identical, including the assignments that students were required to complete. To
minimize any potential effects of TA skill, the random assignment occurred within TA,
such that each TA led at least one paired section and at least one individual section.
The researchers and primary course instructors trained the TAs on how to facilitate pair
programming. Students in the experimental condition switched partners about every
five weeks so that they participated in three different pairings throughout the semester;
this frequency was intended to give students enough time to become comfortable with
their partner and to allow students to engage with different partners.

With the exception of one course in the first semester of the study that allowed some
work outside of class, all pair programming was conducted during lab sections (schedul-
ing difficulties for meeting outside of class prevented this approach from being viable).
Students in paired sections were randomly assigned to partners, which were reassigned
twice during the semester (giving each student a total of three pairings over the course
of the semester). As discussed later, our choice to assign randomly may have affected
the overall effectiveness of the intervention, but random assignment also facilitated

8 N. A. BOWMAN ET AL.

stronger causal claims from the results. Guidelines for effective pair programming have
recommended periodic reassignment of pairs (Williams et al., 2008), and this practice
also minimizes the chance of being assigned an intractable or incompatible partner for
the entirety of the semester.

Students in paired sections were instructed to use pair programming in a method
consistent with formal definitions of this practice: Both students would sit at the same
computer and share the same keyboard. One student would start as the driver, taking
lead on using the keyboard and writing code. The other student would act as the navi-
gator, reviewing code, looking for errors, and making suggestions while keeping the big-
ger goals of the assignment in focus. After a period of time, students were supposed to
switch roles, continuing in this fashion until the assignment was complete. TAs were
trained to monitor and encourage effective pair work, and students were also given a
handout with tips and strategies for working in this manner.

Participants were included in the present analytic sample if they (a) were enrolled in
one of the introductory computer science courses after the fourth week of the semester,
(b) were in their first semester of one of these courses (some students enrolled multiple
times within the same course and/or enrolled in more than one of the courses), (c)
were an undergraduate student (rather than a graduate or non-degree-seeking student),
(d) gave permission for their course data to be linked with their registrar data, and (e)
had available data on coursework after the experimental semester (a few students took
this class in their last semester at the university). This sample included 1,530 undergrad-
uates; 39% were female, 26% were first-generation students (neither parent attended
postsecondary education), 60% were White/Caucasian, 20% were international students
(the vast majority were from Asian countries), 7% were Latinx/Hispanic, 5% were Asian
American, 4% were Black/African American, and 4% were multiracial or from another
racial group. Moreover, 30% of participants were in their first year, 26% were in their
second year, 25% were in their third year, and 18% were in their fourth year or beyond.
Twenty-seven percent of students were computer science majors when they were
enrolled in the course.

Within this sample, 796 students were enrolled in one of the 49 lab sections that
used pair programming, whereas 734 students were enrolled in one of the 47 lab sec-
tions that used individual programming. Randomization appears to have yielded equiva-
lent treatment and control groups, since no significant differences were observed across
experimental condition in terms of course, semester enrolled, year in college, race, sex,
first-generation status, age, veteran status, U.S. citizenship, in-state residency, composite
ACT score, and high school GPA, ps > .10 (see the supplemental material in Table S1).

Measures

Two of the primary outcome variables indicated whether students had a major or a
minor in computer science in the most recent semester available. Registrar data was
obtained from every semester in the academic year from Fall 2016 to Spring 2019; this
use of repeated data pulls was necessary to obtain the best possible indication of stu-
dents’ major and minor, since some students graduated, transferred, or dropped out
before the Spring 2019 semester. We used Spring 2019 data whenever possible; for

JOURNAL OF RESEARCH ON EDUCATIONAL EFFECTIVENESS 9

students who were not enrolled in that semester, we used the most recent term in which
they attended the university.

Other outcomes examined students' subsequent computer science coursework. We
obtained data on all computer science courses that students completed (with a passing
grade) or attempted (with any grade, including F or W). This information was used to
compute variables for individual courses as well as the total number of computer science
courses attempted and completed. Several binary variables indicated students' enroll-
ment in several key courses: Discrete Structures and Data Structures (both required for
computer science majors and are prerequisites for taking various other courses in the
major); Programming for Informatics (required for informatics majors, but not com-
puter science majors); and CS 1 (this outcome was only examined among students
enrolled in CS 0 or CS 1/2 during their treatment semester). Three variables were created
for each course: attempting the course (0 = no, 1 = yes), successful course completion
(0 = no, 1 = yes), and the grade that students earned (F = 0 to A+ = 4.33). The grade
within the treatment introductory course was examined with the same GPA scale.

The primary independent variable was whether students participated in a lab section
that used pair programming (0 = no, 1 = yes). Dummy variables indicated the course in
which they were enrolled during the study (CS

1/2 and CS 1, with CS 0 as the referent
group) and semester in which they participated (Spring 2017, Fall 2017, and Spring
2018, with Fall 2016 as the referent group). The primary moderators were students'
race/ethnicity (0 =Student of Color, 1 = White/Caucasian) and sex (0 = male,
1 = female). Supplemental analyses used dummy variables for subgroups of Students of
Color: underrepresented racial minority students (i.e., American Indian/Alaska Native,
Black/African American, Latinx/Hispanic, and Pacific Islander/Native Hawaiian stu-
dents), international students, and students of primarily Asian descent (Asian American
and international students, the vast majority of whom were from Asian countries).

For additional analyses, the treatment condition was divided into three separate
groups based on partners' prior experience with computer programming before the
course. In the first two weeks of the semester, students completed a survey that con-
tained nine items about prior experience with website design; programming mobile
apps; and using BASIC, C/C++, Java, Javascript, Perl, Python, and Ruby. All items used
a four-point scale (1 = none, to 4 = a lot), and the Cronbach's alpha for this index was
.76. Given the right skew of the resulting distribution, the natural log of the original
measure was used; the average of participants' three partners was computed. Descriptive
statistics for all variables appear as supplemental material (Table S2).

Analyses

Hierarchical linear modeling (HLM) analyses were conducted to account for the nesting
of students (level 1) within lab sections (level 2) within teaching assistants (level 3; see
Raudenbush & Bryk, 2002; Snijders & Bosker, 2012). Students were also nested within
courses; however, there were only three introductory courses, so course was modeled via
dummy variables. Semester was also included in all analyses to account for any differen-
ces over time. Preliminary analyses showed that the results reported here were substan-
tively identical when making alternative choices to account for the multilevel structure

10 N. A. BOWMAN ET AL.

of the data (e.g., ignoring the clustering within TAs, conducting regression analyses with
robust standard errors).

Many of the outcomes were binary in nature (i.e., computer science major and minor,
enrollment in individual subsequent courses, successful completion of each of those
courses), so these outcomes were treated as binary using hierarchical generalized linear
modeling analyses. Not surprisingly, the total number of subsequent computer science
courses completed and attempted were both highly skewed, as they contained a large
number of students who completed no courses after the treatment semester. Therefore,
zero-inflated negative binomial regression analyses were conducted; these analyses con-
ducted separate tests to predict whether participants engaged in zero courses (versus at
least one course) and to predict the number of courses in which they enrolled (among
students who completed at least one course; see Hoffmann, 2016; Long, 1997). Grades
within the introductory course and subsequent courses were treated as continuous via
traditional hierarchical linear modeling analyses.

Preliminary analyses examined interactions between pair programming and each of
the key demographic characteristics (race or sex). Significant interactions in the same
direction were frequently identified for race, so subgroup analyses by race were con-
ducted (interactions by sex were rarely significant). Additional subgroup analyses
were also conducted to explore the impact of pair programming within each course.
Two sets of follow-up analyses were conducted within the subgroup that exhibited
various significant effects of pair programming (i.e., White students) to better under-
stand the processes and conditions that may have contributed to these findings.
(Note that the patterns of results for all students are somewhat similar, except that
significant effects are less prevalent within this full participant sample.) First, analyses
considered the potential role of grades in the introductory course as a mediator of
significant relationships between pair programming and subsequent outcomes. Bias-
corrected bootstrap analyses with 5,000 resamples examined the indirect effects of
pair programming on longer-term outcomes via introductory course grades (see
Hayes, 2018). Second, additional multilevel analyses of White students separated the
treatment condition into three groups: students whose partners had low prior experi-
ence with computer programming (on average), those with medium experience, and
those with high experience. The cutoff points were chosen so that these three treat-
ment groups had roughly equal sample sizes. Preliminary analyses found that the
results for partners’ prior experience generally did not interact with participants’
own experience (i.e., the correspondence or matching of students’ and their partners’
experience did not provide additional information). The moderation, subgroup, and
mediation analyses all controlled for semester and course.

Limitations

The most notable limitation of this study is that it examined pair programming at a sin-
gle institution. We sought to bolster generalizability as much as possible within this con-
straint by examining three different courses (with modestly different implementations of
pair programming) over four semesters and by exploring potential moderation effects
across student and partner characteristics, but the results may not apply to other

JOURNAL OF RESEARCH ON EDUCATIONAL EFFECTIVENESS 11

Table 1. Unstandardized coefficients for multilevel analyses predicting grades in the introductory
computer science course.
Predictor All Students CS 1 CS

1/2 CS 0

Pair programming —.133* (.057) —.091 (.086) —.257
+ (.139) —.114 (.073)

Spring 2017 semester .035 (.080) .090 (.118) .069 (.196) —.076 (.104)
Fall 2017 semester .002 (.078) —.064 (.121) —.220 (.194) .180 (.096)
Spring 2018 semester .001 (.078) —.057 (.118) .059 (.185) .030 (.102)
CS

1/2 course —.833*** (.077)
CS 1 course —.478*** (.065)
Number of students 1,308 537 278 493
Number of discussion sections 96 41 26 29

Note. Standard errors are in parentheses. Students who withdrew from the course did not receive an A–F letter grade
(for which grade points are assigned) and therefore were not included in these analyses.
+p < .10; *p < .05; **p < .01; ***p < .001.

institutions or to other implementations of pair programming. Later in the paper, we
discuss various aspects of pair programming implementation, including features of this
university’s approach to pair programming that we believe are most likely to have
affected the findings. Furthermore, although we were able to examine various post-
course outcomes, a longer time period would have allowed us to consider graduation
data for all students.

Results

What Are the Main Effects of Pair Programming Overall and by
Introductory Course?

Table 1 contains results for multilevel analyses that examined the impact of pair pro-
gramming on grades within the introductory course. In the full sample, students who
participated in lab sections with pair programming had significantly lower grades than
did students in lab sections with individual programming. When examining grades sep-
arately by introductory course, pair programming had a marginally significant negative
effect on course grades in CS 1/2 (p < .10), but the results for CS 0 and CS 1 were not
significant.

The results for pair programming predicting participation and success in computer
science coursework after the treatment semester are shown in Table 2. These analyses
were conducted among all students and separately for subsequent courses that follow
logically within the curriculum (e.g., informatics majors are required to take both CS 1/2
and Programming for Informatics, so subgroup analyses were conducted predicting this
outcome for those who took CS

1/2). Only two of the 39 analyses were significant at a
threshold of p < .05, which is consistent with what one might expect to find via ran-
dom chance. Both coefficients indicated adverse effects of the treatment: Pair program-
ming was negatively associated with completing the Discrete Structures course among
all students, and it predicted a greater likelihood of not attempting any subsequent com-
puter science coursework among students who initially took CS 1. Some additional pat-
terns emerged when using a more lenient threshold for statistical significance (p < .10):
pair programming predicted a lower likelihood of completing or attempting Discrete
Structures among all students and those who started in CS 1, whereas pair programming
was positively related to completing and attempting the Programming for Informatics

12 N. A. BOWMAN ET AL.

Table 2. Unstandardized coefficients for multilevel analyses examining the effect of pair program-
ming on outcomes in subsequent computer science courses.

Sample and outcome

Individual computer science courses Total subsequent CS courses

Discrete
structures

Data
structures

Informatics
programming CS 1

0 versus 1
or more # of courses

All students
Course(s) completed -.274* (.134) -.203 (.139) .390 (.240) -.201 (.249) .115 (.138) .047 (.057)
Course(s) attempted -.246

+ (.133) -.230 (.147) .402
+ (.238) -.311 (.231) .197 (.149) .047 (.056)

Course grade(s) .102 (.102) .113 (.100) .269 (.235) -.226 (.184) .033 (.082)
Only CS 1 students
Course(s) completed -.284

+ (.156) -.183 (.158) - - .327
+ (.175) .060 (.069)

Course(s) attempted -.290
+ (.156) -.245 (.171) - - .399* (.196) .053 (.069)

Course grade(s) .073 (.112) .039 (.107) - - .028 (.097)
Only CS

1/2 students
Course(s) completed - - .489

+ (.289) -.330 (.273) -.178 (.287) .047 (.094)
Course(s) attempted - - .523

+ (.288) -.474
+ (.263) -.338 (.324) -.016 (.087)

Course grade(s) - - .278 (.258) -.206 (.203) .063 (.165)

Note. Standard errors are in parentheses. The completed and attempted outcomes for individual courses were treated
as binary, grades for individual courses were treated as continuous, and total number of courses completed and
attempted were modeled via zero-inflated negative binomial regression analyses (which separately examine whether
students took any coursework and then predict the number of courses among those who have taken at least one
course). For the portion of the zero-inflated analyses examining any subsequent coursework, positive values mean that
pair programming is associated with not taking future computer science courses. The analyses for the CS 1 course were
limited to students who took either CS 0 or CS

1/2 as their introductory course, so CS 1 constituted a subsequent course
for these participants. The Discrete Structures and Data Structures courses are required for the computer science major,
whereas the Programming for Informatics course is required for the informatics major. All analyses controlled for semes-
ter; the analyses among all students also controlled for the introductory computer science course.
+p < .10; *p < .05; **p < .01; ***p < .001.

course among students who originally took CS 1/2 as well as attempting programming
for Informatics among all students. At this same threshold of significance, pair program-
ming was also associated with not completing any additional computer science courses
among CS 1 students, and it was negatively related to attempting CS 1 among CS
1/2 students.

Table 3 provides the findings for the effects of pair programming on having a com-
puter science major or minor. In the full sample, students in pair programming were
significantly less likely to be computer science majors than those who participated in
individual programming; this difference across experimental conditions was 5.2% points.
When examining each course separately, this same significant pattern was observed for
students who originally enrolled in CS 1: students in pair programming were 7.6%
points less likely to be computer science majors than were those in individual program-
ming. No other effects were significant.

In summary, pair programming resulted in lower grades within the introductory
course and a reduced likelihood of majoring in computer science. Pair programming
was unrelated to minoring in computer science, and it had sparse relationships with
completing and taking future computer science coursework, especially when using a
statistical significance criterion of p < .05. Patterns of marginally significant results sug-
gest that pair programming reduced the likelihood of attempting or completing the
Discrete Structures class, whereas it improved the chances of taking the programming
for Informatics class, especially among students in CS 1/2.

JOURNAL OF RESEARCH ON EDUCATIONAL EFFECTIVENESS 13

Table 3. Unstandardized coefficients for multilevel analyses that predict majoring or minoring in
computer science.

Predictor

Computer science major Computer science minor

All
students CS 1 CS

1/2 CS 0
All

students CS 1 CS
1/2 CS 0

Pair programming -.337* -.309** -.580 .334 (.654) -.122 .060 (.379) -.633 -.012
(.143) (.154) (.361) (.307) (.641) (.825)

Spring 2017 semester -.197 -.138 -.212 -1.010 .315 -.418 .971 1.184
(.199) (.212) (.500) (1.126) (.444) (.610) (.881) (1.163)

Fall 2017 semester -.025 .012 -.274 .125 .423 .199 .602 .488
(.197) (.213) (.501) (.718) (.431) (.579) (.929) (1.231)

Spring 2018 semester -.296 -.227 -.357 -1.071 .139 -.086 .105 –
(.196) (.210) (.487) (1.126) (.456) (.601) (1.012)

CS
1/2 course 2.769*** 1.055

(.352) (.546)
CS 1 course 3.747*** 1.602***

(.336) (.471)
Number of students 1,530 689 337 504 1,530 689 337 504
Number of

discussion sections
96 41 26 29 96 41 26 29

Note. Standard errors are in parentheses. Outcomes were treated as binary in the analyses, and these were measured in
Spring 2019 (or the last semester in which students were enrolled at the university). Semester 4 was omitted from the
equation for predicting computer science minor among CS 0 students, since so few students who took that introductory
course actually enrolled in the minor.
+p < .10; *p < .05; **p < .01; ***p < .001.

Table 4. Unstandardized coefficients for multilevel analyses examining the effect of pair program-
ming on outcomes among White students and Students of Color.
Outcome White students Students of Color

Grade in introductory CS course -.146* (.067) -.119 (.085)
Completed discrete structures course -.533** (.198) -.009 (.209)
Completed data structures course -.643** (.230) .185 (.200)
Completed informatics programming course .296 (.296) .322 (.459)
Completed CS 1 (for CS 0 and CS

1/2 students) -.486
+ (.288) .501 (.442)

Attempted discrete structures course -.396* (.188) -.064 (.231)
Attempted data structures course -.575** (.216) .100 (.220)
Attempted informatics programming course .356 (.281) .298 (.441)
Attempted CS 1 (for CS 0 and CS

1/2 students) -.565* (.273) .309 (.458)
Computer science major -.505** (.188) -.113 (.205)
Computer science minor -.917* (.459) .627 (.399)

Note. Standard errors are in parentheses. All analyses controlled for semester and the introductory course. No significant
main effects were observed for grades within subsequent courses.
+p < .10; *p < .05; **p < .01; ***p < .001.

Who Does Pair Programming Harm or Help?

The impact of pair programming clearly differs as a function of students’ race. As
shown in Table 4, pair programming contributed to various negative outcomes among
White students, including (a) a lower grade within the introductory computer science
course; (b) a lower likelihood of completing or attempting Discrete Structures, Data
Structures, and CS 1 (the analyses for CS 1 only used students who initially took CS 0
or 1/2); and (c) a lower likelihood of majoring or minoring in computer science.
Conversely, pair programming was not significantly related to any outcome among
Students of Color, and no significant effects were observed for grades in subsequent
courses within either racial subgroup. Additional analyses (not shown here) also found
virtually no significant effects of pair programming among underrepresented racial

14 N. A. BOWMAN ET AL.

Table 5. Mean differences in binary outcomes by pair programming experimental condition among
White students.

All White students White students in CS 1

Outcome Individual Paired PP diff 96 diff Individual Paired PP diff 96 diff

Computer science major .275 .203 .072 3596 .523 .448 .075 1796
Computer science minor .040 .017 .023 13596 .072 .029 .043 14896
Completed discrete structures course .251 .185 .066 3696 .542 .430 .112 2696
Attempted discrete structures course .258 .205 .053 2696 .549 .459 .090 2096
Completed data structures course .230 .160 .070 4496 .490 .378 .112 3096
Attempted data structures course .232 .166 .066 4096 .497 .384 .113 2996

All White students White students in CS
1/2

Completed informatics course .057 .071 -.014 -2096 .176 .226 -.050 -2296
Attempted informatics course .064 .083 -.019 -2396 .204 .266 -.052 -2396
Completed CS 1 .138 .090 .048 5396 .315 .194 .121 6296
Attempted CS 1 .160 .100 .060 6096 .352 .202 .150 7496

Note. Unadjusted means are provided. PP Diff refers to percentage-point difference; 96 Diff refers to the percentage
increase in the individual condition relative to the paired condition. The analyses for completing and attempting CS 1
among “all White students” were restricted to students whose treatment course was CS 0 or CS

1/2, so that this out-
come reflects subsequent coursework. The within-course analyses on the right-hand side of the table were conducted
for the experimental course that had the highest mean value on that respective outcome.

minority students, international students, and students of primarily Asian descent; the
lone exception was a marginally significant positive result (p < .10) for completing
Programming for Informatics among international students. These divergent results
were not simply the function of disparate sample sizes, as Students of Color as a whole
comprised 40% of all participants.

Because the vast majority of the outcomes presented in Table 4 were binary, it can be
difficult to interpret the magnitude of these effects using traditional log-odds coeffi-
cients. Therefore, Table 5 provides the means separately by experimental condition
among White students, along with two effect size metrics of these disparities. When
examining White students in all courses, many of these differences fell near effect size
guidelines for college impact studies that indicate small relationships (5% points) or
were approaching a medium effect size (9% points; see Mayhew et al., 2016). For
example, White students in the individual programming condition were 7.2% points
more likely to major in computer science than those in the pair programming condi-
tion. These percentage-point effect sizes were generally larger when limiting the sample
to students in the most relevant course (i.e., the one that was most likely to lead to the
corresponding outcome). For instance, the effect of individual programming (versus
paired) on completing Discrete Structures increased from 6.6% points among all White
students to 11.2% points among White students who took CS 1 during the treatment
semester. The largest effect size occurred for attempting CS 1 among students who ori-
ginally took CS 1/2; this 15%-point increase is equal to Mayhew et al.’s guideline for a
large effect. The lone exception to these patterns is that pair programming led to mod-
estly higher rates of completing and attempting the Programming for
Informatics course.

The effect size for group differences can also be indicated via the percentage differ-
ence in the probability of achieving a binary outcome; this metric may sometimes be at
least as useful as the percentage-point difference. For instance, individual programming
resulted in a 2.3%-point increase in White students’ having a minor in computer sci-
ence, which might seem like a trivial amount. However, given the small percentage of

JOURNAL OF RESEARCH ON EDUCATIONAL EFFECTIVENESS 15

Table 6. Unstandardized coefficients for bootstrap mediation analyses examining the indirect effect
of pair programming on student outcomes via introductory course grades among White students.

Outcome

Indirect effect of pair programming Direct effects

8 (SE) 9596 confidence interval Pair programming Course grades

Completed discrete structures course -.102 (.048) [-.211, -.021] -.579** (.218) .705*** (.130)
Completed data structures course -.091 (.045) [-.191, -.012] -.699** (.224) .627*** (.131)
Completed CS 1 (for CS 0 and CS

1/2 students) -.159 (.086) [-.346, -.010] -.274 (.316) .978*** (.207)
Attempted discrete structures course -.095 (.047) [-.200, -.017] -.497* (.212) .656*** (.126)
Attempted data structures course -.085 (.041) [-.182, -.017] -.641** (.220) .583*** (.128)
Attempted CS 1 (for CS 0 and CS

1/2 students) -.152 (.082) [-.335, -.012] -.392 (.297) .930*** (.195)
Computer science major -.071 (.037) [-.160, -.014] -.575** (.201) .486*** (.115)
Computer science minor -.125 (.069) [-.302, -.025] -.829

+
 (.448) .844** (.292)

Note. Significant indirect effects for bootstrap analyses were determined through 9596 confidence intervals that do not
include zero; therefore, all indirect effects displayed in this table were significant. The analyses controlled for semester
and the introductory course when predicting both the mediator and the post-course outcome. Because these analyses
sought to explain the adverse effects of pair programming, only outcomes that exhibited significant effects of pair pro-
gramming among White students were examined.
+p < .10; *p < .05; **p < .01; ***p < .001.

students who enrolled in that minor, White students in the individual condition were
more than twice as likely as those in the paired condition to do so (135% increase
among all students and 148% increase among students in CS 1). The percentage
increases were more modest for the other outcomes (also shown in Table 5).
For instance, individual programming led to a 35% increase in computer science majors
among all White students, along with a 17% increase among those who enrolled in CS
1 during the treatment semester. Aside from minoring in computer science, the largest
percentage increase occurred for attempting CS 1 among White students who started in
CS 0 or CS

1/2 (60%) and solely those who started in CS
1/2 (74%).

In summary, the impact of pair programming varied systematically by race, such that
it reduced grades in the introductory course, completing and attempting subsequent
computer science courses, and majoring and minoring in computer science among
White students. These relationships were all non-significant among Students of Color.
The negative effects among White students were sometimes substantial in size when
examining logical course sequences.

What Explains the Negative Effects of Pair Programming among White Students?

Two sets of supplemental analyses were conducted in an attempt to shed light on the
prevalent significant results among White students. First, grades within the introductory
computer science course were used as a mediator to explain the lower outcomes in sub-
sequent courses. As shown in Table 6, these bootstrap mediation analyses identified sig-
nificant indirect effects of pair programming via grades on all eight distal outcomes for
which direct effects were initially observed. However, a mediator is primarily inform-
ative if it explains a substantial portion of the direct effect (Kenny, 2018), but that was
generally not the case for introductory course grades. The direct effect of pair program-
ming remained significant in six out of the eight outcomes in the mediation analyses,
and these coefficients for pair programming were similar in size to those that did not
include the mediator. Two direct effects of pair programming became nonsignificant
when adding grades to the model for completing and attempting CS 1 among White

16 N. A. BOWMAN ET AL.

Table 7. Unstandardized coefficients for multilevel analyses of the effects of pair programming by
level of partners’ average prior programming experience among White students.

Comparisons of pair programming versus individual programming

Outcome
Low partner
experience

Medium partner
experience

High partner
experience

Grade in introductory CS course -.210* (.087) .021 (.087) -.193* (.098)
Completed discrete structures course -.896** (.323) -.170 (.266) -.615* (.277)
Completed data structures course -.844* (.356) -.123 (.298) -.950** (.324)
Completed informatics programming course -.287 (.463) .473 (.380) .705

+ (.410)
Completed CS 1 (for CS 0 and CS -.751

+ (.431) -.411 (.375) -.379 (.402)
1/2 students)

Attempted discrete structures course -.788* (.310) -.025 (.258) -.439
+ (.263)

Attempted data structures course -.848* (.344) -.021 (.283) -.858** (.308)
Attempted informatics programming course -.279 (.440) .667

+ (.354) .668
+ (.398)

Attempted CS 1 (for CS 0 and CS -.988* (.427) -.546 (.361) -.617 (.393)
1/2 students)

Grade in discrete structures course .297 (.254) .334
+ (.189) -.070 (.199)

Grade in data structures course .114 (.225) .061 (.168) .148 (.191)
Grade in informatics programming course .559 (.472) .150 (.351) -.058 (.385)
Grade in CS 1 (for CS 0 and CS .559 (.387) .217 (.332) -.264 (.358)

1/2 students)
Computer science major -1.007** (.316) -.069 (.255) -.626* (.272)
Computer science minor -.971 (.776) -.751 (.655) -.852 (.666)

Note. Standard errors are in parentheses. The three treatment variables for pair programming with partners who had
low, medium, or high prior experience with computer programming were entered simultaneously in multilevel analyses;
the control condition (individual programming) served as the referent group. All models controlled for semester and the
introductory course.
+p < .10; *p < .05; **p < .01; ***p < .001.

students who initially took CS
1/2 or CS 0. However, these coefficients for the treatment

were reduced by less than 50% with the inclusion of grades, which suggests that intro-
ductory course grades may not completely explain the effect of pair programming.

A second set of analyses divided the treatment condition into three groups based on
partners’ prior programming experience, since partners were also randomly assigned
among students within pair programming. As shown in Table 7, White students whose
partners had either low or high prior experience (on average) exhibited various negative
outcomes relative to engaging in individual programming. Specifically, students with
these extremes of partner experience had lower grades in the introductory course, were
less likely to have completed or attempted the Data Structures course, were less likely to
have completed the Discrete Structures course, and were less likely to major in com-
puter science (ps < .05). Moreover, students with lower-experience partners were also
less likely to attempt Discrete Structures or CS 1. Relaxing the statistical significance cri-
terion to p < .10 led to additional findings. Some patterns were consistent with those
results: programming with high-experience partners reduced the likelihood of attempt-
ing Discrete Structures, and having low-experience partners predicted less completion of
CS 1 (among students who started in CS 0 and CS 1/2). However, other marginally sig-
nificant findings were favorable for pair programming (i.e., high-experience partners
and completing programming for Informatics, medium- and high-experience partners
for attempting that same course, and medium-experience partners and grades in
Discrete Structures). Supplemental analyses among Students of Color found no signifi-
cant results of pair programming by partners’ prior experience level at p < .05, and
only one result was significant at p < .10.

JOURNAL OF RESEARCH ON EDUCATIONAL EFFECTIVENESS 17

In summary, pair programming has an indirect effect via introductory course grades
on various post-course outcomes among White students, but this short-term mediator
does not explain the majority of the main effects on those longer-term outcomes. When
dividing the treatment into three groups based on partners’ prior experience with com-
puter programming, students who engaged with partners who had either low or high
levels (on average) of prior experience had numerous negative outcomes relative to stu-
dents who programed individually, whereas students with partners who had a medium
level of experience did not exhibit any adverse outcomes relative to individual
programming.

Discussion

This cluster-randomized trial found that pair programming has virtually no short-term
or long-term benefits for students’ grades or their subsequent engagement with com-
puter science coursework and degree programs. If anything, pair programming led to a
modest reduction in grades for the introductory course and the likelihood of majoring
in computer science among all students. Moreover, the findings were frequently negative
among White students, as pair programming resulted in non-trivial reductions in course
grades as well as future participation in computer science courses, minor, and major.
These adverse results were driven by partners who had either low or high average levels
of prior experience with computer programming.

Divergence in Findings and Methodology Compared to Previous Research

This study expands and improves upon earlier studies in several ways. First, the random
assignment of lab sections to experimental conditions led to much stronger conclusions
about the efficacy of pair programming. Second, in a related issue, students in the
paired lab sections were randomly assigned to partners, which allowed us to explore the
impact of partners’ prior programming experience. Third, this paper identified notable
differences in the impact of pair programming by race, whereas this demographic attri-
bute has received surprisingly little attention in pair programming research. Fourth, this
study collected data over an extended timeframe, so various outcomes were observed up
to 2 1=2 years after the introductory course, whereas previous studies have often focused
on within-course outcomes. Finally, the examination of a large number of students and
lab sections provided sufficient statistical power to detect even small effects (if they were
present) and to conduct meaningful subgroup analyses.

The present results contrast with research that generally obtains positive results for
pair programming within both educational and workplace settings (although substantial
heterogeneity does exist; see Dyba et al., 2007; Faja, 2011; Hanks et al., 2011; Salleh
et al., 2011; Umapathy & Ritzhaupt, 2017). Specifically, these findings diverge from the
generally positive results for studies on pair programming and students’ grades
(Chigona & Pollock, 2008; Kuppuswami & Vivekanandan, 2004; McDowell et al., 2006;
Mendes et al., 2006; Umapathy & Ritzhaupt, 2017; Wiebe et al., 2003); persistence in
computer science coursework (McDowell et al., 2006); or decision to major in computer

18 N. A. BOWMAN ET AL.

science (Hanks et al., 2011; McDowell et al., 2006; Nagappan et al., 2003; Umapathy &
Ritzhaupt, 2017).

Why do the present findings differ from prior research? Several factors may have
contributed individually or in combination. Hannay et al. (2009) meta-analysis found
that publication bias was a notable concern, so additional papers with nonsignificant or
negative findings for pair programming likely exist, but these may not be publicly avail-
able. Additionally, methodological issues with prior research undermine the credibility
of many positive findings. A surprising number of previous studies do not test for statis-
tical significance at all, and those that conduct formal tests tend to omit key independ-
ent variables that may explain a spurious relationship between pair programming and
the outcome(s) of interest. Thus, the previous published research may overstate the
strength of the association. In a sense, selection bias may have been a notable problem
not only for the assignment of students to treatment within studies, but also for the
public presentation of research findings through peer-reviewed publications.

That said, we are aware of few studies that utilized a similar research design to our
own; the most closely aligned research was presented in Wiebe et al. (2003) and
Williams et al. (2003). Similar to our current work, their family of experiments utilized
a cluster-randomized trial over four semesters, had students work in a total of three
pairings, obtained large sample sizes, and utilized appropriate control measures; these
features make that research some of the strongest to date. Nonetheless, many of our
results are inconsistent with their generally positive findings. This divergence may be at
least partially attributable to differences in the definition of outcome measures (e.g.,
examining “passing” grades as a binary outcome, as opposed to grades as a continuous
outcome) or to differences in the implementation of pairing (e.g., allowing student input
and attempting to match compatible programmers versus random assignment).

In a potentially favorable pattern for pair programming in the present study, several anal-
yses did yield positive results for the link between this treatment and completing or attempt-
ing the Programming for Informatics course. These relationships were marginally significant
(.05 < ps < .10), so we urge caution in this interpretation. As noted earlier, this course is a
requirement for informatics and other data science majors, but not for the computer science
major. The vast majority of students who enroll in this subsequent course took CS

1/2 in the
treatment semester, since that is a prerequisite for programming for Informatics. The posi-
tive results may be especially surprising, then, since pair programming had a negative effect
on grades for CS

1/2, but not for the other two introductory courses. It is possible that many
students in CS

1/2 are debating whether to enter computer science majors (a decent number
of these students enroll in CS 1 afterwards), so the positive effects for the informatics course
may actually reflect the fact that pair programming diverted some students away from
majoring in computer science. Consistent with this possibility, pair programming had a mar-
ginally significant negative effect on attempting CS 1 among students who originally took CS
1/2; this inverse relationship was fairly large among White students.

Explaining the Negative Results for Pair Programming

When considering the reasons for the negative effects observed here, it is possible that
the implementation of pair programming in the present study was less than ideal. The

JOURNAL OF RESEARCH ON EDUCATIONAL EFFECTIVENESS 19

lab sections for all three courses were only 50 minutes long, and virtually all of the pair
programming only took place within the lab section (with the exception of the one
semester and one course mentioned earlier). This reasonably short amount of class time
may not have been enough for students to engage with this collaborative learning prac-
tice in sufficient depth, perhaps undermining the necessary coordination that collabora-
tive learning should require (Barron, 2000). In a potentially related issue, students in the
treatment condition participated in three different pairings throughout the semester.
Switching partners was intended to provide students with new opportunities to engage
with other class members (and a built-in timeline for leaving a partner who they might
not like), and this approach is recommended as a best practice for pair programming
(Williams et al., 2008). However, these changes may have made it more difficult for stu-
dents to adjust to working with their partner effectively. That said, surveys at the end of
the semester found that the subjective experiences of students and TAs within these pair
programming sections were mostly positive (consistent with most previous research),
suggesting that pair programming may have been implemented in a reasonable manner.

Beyond the specifics of this study, pair programming may provide more opportunities
for problems that can undermine its effectiveness relative to other forms of collaborative
learning. Many collaborative learning activities are short-term in nature, involve several
students, and do not require every student to contribute meaningfully. Thus, it may not
be a substantial problem in many circumstances if one group member (out of 4–5 total)
does not show up for class, has not prepared or completed work in advance, and/or
does not engage substantially or productively in group conversations. In contrast, these
problems within pair programming would make this practice equivalent to independent
programming at best and would hinder the learning and interest of both students at
worst. Indeed, in their meta-analysis of collaborative learning activities, Tomcho and
Foels (2012) found that long-term duration of group work and completing group (rather
than individual) graded assignments, which are generally characteristic of pair program-
ming, were associated with reduced learning and achievement. Group-level accountabil-
ity can lead to one student doing much of the work, which may have adverse effects for
that student (who could become frustrated or overwhelmed) as well as the other stu-
dent(s) (who may not learn or develop an interest in or mastery of the material).

The fact that pair programming exhibited various negative outcomes among White
students, but not among Students of Color, is quite notable. Numerous negative
results were obtained for grades within the introductory course, for participation in
future coursework, and for enrolling in computer science degree programs. However,
in another paper that employed this same dataset, we actually found no moderation
by race on students’ computer science interest, perceptions, intentions, and comple-
tion of these introductory courses. The present paper also observed no effects on
student grades in subsequent courses. Taken together, these patterns suggest that
pair programming primarily affects White students’ longer-term participation in com-
puter science coursework rather than their outcomes within the courses that they
do take.

The reasons for this racialized pattern are not entirely clear. Some prior research has
found that active and collaborative learning provides benefits for all students that are
even more positive among Students of Color and students from other minoritized

20 N. A. BOWMAN ET AL.

backgrounds (e.g., Malone & Spieth, 2012; Preszler, 2009); the present results exhibited
this same relative difference across groups, but without the presence of positive effects
for any group. The negative findings for White students may stem, at least in part, from
the fact that computer science classrooms were more racially diverse than the under-
graduate population of the university and the surrounding community, especially in
terms of the number of Asian international and Asian American students. Previous
research has shown that situational cues regarding demographic representation (or lack
thereof) can affect college students’ sense of belonging and interest in engaging within
STEM contexts (Murphy et al., 2007). The effects of situational cues and social identity
threats generally occur among groups that are negatively stereotyped, but computer sci-
ence is a domain in which Asians and Asian Americans may be viewed as model stu-
dents (e.g., McGee et al., 2017). If White students perceive this stereotype, then
interacting with Students of Color via pair programming may have heightened the
threat that White students could experience within this coursework. Preliminary analy-
ses showed that White students and Students of Color in this sample did not differ in
their prior programming experience; observing this equality via engagement in pair pro-
gramming would challenge the presumption of superiority that White students may
hold in academic contexts (see Walton & Cohen, 2003).

Although significant indirect effects via introductory course grades were observed, this
mediator did not substantially reduce the effects for pair programming when predicting
most outcomes. Grades in the introductory course seemed to constitute a plausible mediator
for multiple reasons. Many students perceive grades as providing meaningful feedback about
their competence and abilities; students then use this information to decide whether to per-
sist in their major or in college at all (Stinebrickner & Stinebrickner, 2012). As a result, the
lower course grades may lead students to change their mind about pursuing a computer sci-
ence major. Furthermore, even if students want to continue within computer science, those
who receive low grades may be prevented from taking future coursework as a result of aca-
demic probation and/or dismissal from the major or the university.

Regarding other potential mediators, we have attempted to identify psychological
effects of pair programming in prior analyses of these data using a student survey
administered at the end of the introductory course (Bowman et al., 2019b). We found
that pair programming had no impact on students’ interest in computer science, com-
puter programming, or course content; their comfort with, confidence about, or anxiety
toward computer science; or their plans to take subsequent computer science courses.
Moreover, none of these relationships was significantly moderated by race/ethnicity.
Additional analyses among White students showed that pair programming was not sig-
nificantly related to any of those survey-based short-term outcomes, so these constructs
cannot mediate the negative effects that were observed here.

Perhaps the most promising insights for explaining the negative effects come from
analyses that separated the pair programming treatment into three levels based on part-
ners who had low, medium, and high average levels of prior experience with computer
programming. Interestingly, negative results corresponded to having partners with either
low or high levels of experience, whereas no negative results occurred for having part-
ners with a medium amount of experience. This set of findings may be consistent with
the meta-analysis conducted by Dyba et al. (2007), which concluded that the interaction

JOURNAL OF RESEARCH ON EDUCATIONAL EFFECTIVENESS 21

of programmer expertise and task complexity may dictate whether pair programming is
an appropriate method. Indeed, experienced partners may take too much of a lead role,
thereby depriving the other student of the opportunity to engage with and learn relevant
programming skills and course content (Bowman et al., 2019a; Stephens & Rosenberg,
2003). Programmers with greater skill are also more likely to become frustrated with
challenges that arise in pair programming (Chaparro et al., 2005), which may lead to
poorer collaboration among pairs. On the other hand, novice programmers talk much
more frequently in pairs than do experienced programmers (Bryant, 2004), which may
be especially problematic when the assignments must be completed during a 50-minute
lab section. Some of these novice programmers may not have sufficient knowledge to
engage meaningfully in pair programming. In these situations, the partner may spend
considerable time teaching (if they have sufficient expertise), or they may be unable to
provide meaningful assistance (if they also have little experience), both of which would
lead to far less enjoyable and productive engagement.

Conclusion

This rigorous study provides intriguing results about how pair programming may
not bolster desired outcomes and may actually reduce future participation in com-
puter science. This pattern is surprising, since a substantial and robust literature sup-
ports the positive effects of active and collaborative learning more broadly on
various academic outcomes (e.g., Freeman et al., 2014; Kyndt et al., 2013). However,
this pedagogical approach may frequently not result in its intended effective imple-
mentation of collaborative practices. Pair programming provides the possibility for
fruitful engagement within pairs, but its structure (with only one person at the com-
puter at a time) may also lead to one partner doing the vast majority of the work,
while the other partner may not contribute much to the assignment or learn much
as a result (Chaparro et al., 2005; Hanks et al., 2011; Howard, 2006; Nagappan
et al., 2003; Stephens & Rosenberg, 2003; Williams et al., 2002). The current findings
about partners’ prior experience provide further evidence about these interpersonal
dynamics based on randomly assigned pairings.

The extent to which the present study may generalize to other contexts is an import-
ant issue. Although pair programming has some key features that are central to its
design, Williams et al. (2008) offer 11 guidelines for effective implementation of pair
programming, which implies that there are numerous decisions that could potentially
alter the effectiveness of this practice. These guidelines do not even constitute a com-
plete list of possible choices. For instance, one approach could be to have students
engage in pair programming earlier in the semester or earlier within a portion of the
course and then move to individual programming in lab sections as their skills and
knowledge develop (many courses that utilize pair programming also have additional
assignments that are completed individually outside of class). This type of scaffolding-
related strategy is supported by substantial theory on student learning and development
(e.g., Vygotsky, 1978), but we do not believe it has been explored in prior research, and
existing research on pair programming does not provide direct insights about its effi-
cacy. Other lingering questions include the extent to which duration of the pairing

22 N. A. BOWMAN ET AL.

affects student outcomes, whether other groupings (such as triads) might mitigate any
negative effects, or whether certain types of programming tasks or levels of complexity
lend themselves better to the practice of pair programming. In short, although pair pro-
gramming consists of some key features, no single study can claim to represent the out-
comes of all possible implementations of pair programming. The present study adhered
to most of the advice in the Williams et al. (2008) guidelines, but we did not follow
every aspect of every guideline. As just one example, we chose to assign pairs instead of
letting students choose partners (consistent with their sixth guideline), but we did so
randomly rather than trying to create pairs that “maximize the chances students will
work well together” (p. 449). Unfortunately, previous research has provided conflicting
results on the best approach for creating pairs as well as other relevant considerations.

Given the various possible ways to implement pair programming, additional research
that facilitates strong causal inferences is needed. By employing more rigorous research
designs, future inquiry will be able to focus on uncovering the conditions in which pair
programming may be effective or ineffective. Different approaches for implementing
pair programming should be studied systematically, ideally within a large-scale study
that explores numerous courses at multiple institutions. Moreover, since publication
bias in prior research may be a notable problem (Hannay et al., 2009), understanding
whether and when pair programming does not promote desired outcomes—rather than
only publishing work that yields favorable results—is critical for advancing knowledge.
This work should also explore the processes through which pair programming may
affect student outcomes, as this study was only able to shed partial insights for explain-
ing the negative results among White students.

When considering implications for practice, one could argue for the use of pair pro-
gramming even if it had no effect on student outcomes. This collaborative approach
encourages students to ask each other questions and solve problems as a team rather
than frequently taking instructors’ time to ask for help (Cliburn, 2003; Howard, 2006;
Kuppuswami & Vivekanandan, 2004; Nagappan et al., 2003). Collaborative learning may
also foster interpersonal interactions across difference that are associated with a wide
variety of educational benefits (see Mayhew et al., 2016). As a practical consideration,
postsecondary computer labs would only need half the number of workstations that
have relevant software to accommodate students in pair programming environments.
The outcomes may be even further improved by carefully considering how to create
pairs and to design paired assignments with appropriate levels of difficulty and com-
plexity. However, if pair programming often has negative effects on subsequent com-
puter science outcomes, then this practice certainly needs to be reconsidered and
potentially eliminated. Future research is crucial for making this determination.

Funding

This material is based upon work supported by the National Science Foundation under grant
(No. 1611908). Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the National
Science Foundation.

JOURNAL OF RESEARCH ON EDUCATIONAL EFFECTIVENESS 23

ORCID

Nicholas A. Bowman http://orcid.org/0000-0001-8899-7383
Lindsay Jarratt http://orcid.org/0000-0002-3031-2916
K. C. Culver http://orcid.org/0000-0001-7929-2680
Alberto M. Segre http://orcid.org/0000-0002-8886-6559

References

Ally, M., Darroch, F., & Toleman, M. (2005). A framework for understanding the factors influencing
pair programming success. In H. Baumeister, M. Marchesi, & M. Holcombe (Eds.), Extreme pro-
gramming and agile processes in software engineering (Vol. 3556, pp. 82-91). Springer.

Balijepally, V. G., Mahapatra, R. K., Nerur, S., & Price, K. H. (2009). Are two heads better than
one for software development? The productivity paradox of pair programming. MIS Quarterly,
33(1), 91-118. https://doi.org/10.2307/20650280

Barker, L. J., McDowell, C., & Kalahar, K. (2009). Exploring factors that influence computer sci-
ence introductory course students to persist in the major. ACM SIGCSE Bulletin, 41(1),
153-157. https://doi.org/10.1145/1539024.1508923

Barron, B. (2000). Achieving coordination in collaborative problem-solving groups. Journal of the
Learning Sciences, 9(4), 403-436. https://doi.org/10.1207/S15327809JLS0904_2

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., & Thomas,
D. (2001). Manifesto for agile software development. http://www.agilemanifesto.org

Begel, A., & Nagappan, N. (2008). Pair programming: What's in it for me? In Proceedings of the
second ACM-IEEE international symposium on empirical software engineering and measurement
– ESEM ’08 (pp. 120-128). ACM Press.

Bevan, J., Werner, L., & McDowell, C. (2002). Guidelines for the use of pair programming in a
freshman programming class (pp. 100-107). IEEE Computer Society.

Beyer, S., Rynes, K., Perrault, J., Hay, K., & Haller, S. (2003). Gender differences in computer sci-
ence students. In SIGCSE ’03: Proceedings of the 34th SIGCSE technical symposium on computer
science education, Reno, NV (pp. 49-53).

Beyer, S. (2014). Why are women underrepresented in computer science? Gender differences in
stereotypes, self-efficacy, values, and interests and predictors of future CS course-taking and
grades. Computer Science Education, 24(2-3), 153-192. https://doi.org/10.1080/08993408.2014.
963363

Biggers, M., Brauer, A., & Yilmaz, T. (2008). Student perceptions of computer science: A reten-
tion study comparing graduating seniors vs. CS leavers. ACM SIGCSE Bulletin, 40(1), 402-406.
https://doi.org/10.1145/1352322.1352274

Bipp, T., Lepper, A., & Schmedding, D. (2008). Pair programming in software development teams
- An empirical study of its benefits. Information and Software Technology, 50(3), 231-240.
https://doi.org/10.1016/j.infsof.2007.05.006

Bowman, N. A. (2011). Promoting participation in a diverse democracy: A meta-analysis of col-
lege diversity experiences and civic engagement. Review of Educational Research, 81(1), 29-68.
https://doi.org/10.3102/0034654310383047

Bowman, N. A., & Culver, K. (2018). Promoting equity and student learning: Rigor in under-
graduate academic experiences. In C. M. Campbell (Ed.), Reframing notions of rigor: Building
scaffolding for equity and student success (New Directions for Higher Education,. no. 181, pp.
47-57). Jossey-Bass. https://doi.org/10.1002/he.20270

Bowman, N. A., Jarratt, L., Culver, K., & Segre, A. M. (2019a). How prior pair programming
experience affects students’ pair programming experiences and outcomes [Paper presentation].
Proceedings of the Annual Conference on Innovation and Technology in Computer Science
Education, Aberdeen, Scotland, 170-175.

Bowman, N. A., Jarratt, L., Culver, K., & Segre, A. M. (2019b). The impact of pair programming
on interest, perceptions, and achievement in computer science [Paper presentation]. Paper

http://orcid.org/0000-0001-8899-7383
http://orcid.org/0000-0002-3031-2916
http://orcid.org/0000-0001-7929-2680
http://orcid.org/0000-0002-8886-6559
https://doi.org/10.1145/1352322.1352274
https://doi.org/10.1016/j.infsof.2007.05.006
https://doi.org/10.3102/0034654310383047

24 N. A. BOWMAN ET AL.

Presented at the Annual Meeting of the American Educational Research Association, Toronto,
ON, Canada.

Bowman, N. A., Jarratt, L., Culver, K., & Segre, A. M. (2020). (Mis)match of students' country of
origin and the impact of collaborative learning in computer science. In Proceedings of the
Annual Conference of the American Society for Engineering Education, Montreal, Quebec,
Canada (Paper #30150).

Braught, G., Wahls, T., & Eby, L. M. (2011). The case for pair programming in the computer sci-
ence classroom. ACM Transactions on Computing Education, 11(1), 1-21. https://doi.org/10.
1145/1921607.1921609

Bryant, S. (2004). Double trouble: Mixing qualitative and quantitative methods in the study of
eXtreme programmers. In 2004 IEEE symposium on visual languages – Human centric comput-
ing (pp. 55-61). IEEE.

Bryant, S., Romero, P., & Du Boulay, B. (2008). Pair programming and the mysterious role of the
navigator. International Journal of Human-Computer Studies, 66(7), 519-529. https://doi.org/10.
1016/j.ijhcs.2007.03.005

Cao, L., & Xu, P. (2005). Activity patterns of pair programming. In Proceedings of the 38th
Hawaii international conference on system sciences. IEEE.

Chang, M. J., Milem, J. F., & Antonio, A. L. (2011). Campus climate and diversity. In J. H.
Schuh, S. R. Jones, S. R. Harper, & S. R. Komives (Eds.), Student services: A handbook for the
profession (5th ed., pp. 43-58). Jossey-Bass.

Chaparro, E. A., Yuksel, A., Romero, P., & Bryant, S. (2005). Factors affecting the perceived effect-
iveness of pair programming in higher education. 17th Workshop of the Psychology of
Programming Interest Group, Sussex University, June 2005.

Cheryan, S., Plaut, V. C., Davies, P. G., & Steele, C. M. (2009). Ambient belonging: How stereo-
typical cues impact gender participation in computer science. Journal of Personality and Social
Psychology, 97(6), 1045-1060. https://doi.org/10.1037/a0016239

Cheryan, S., Ziegler, S. A., Montoya, A. K., & Jiang, L. (2017). Why are some STEM fields more
gender balanced than others? Psychological Bulletin, 143(1), 1-35. https://doi.org/10.1037/
bul0000052

Chigona, W., & Pollock, M. (2008). Pair programming for information systems students new to
programming: Students' experiences and teachers' challenges. In PICMET ’08 – 2008 Portland
international conference on management of engineering & technology (pp. 1587-1594). IEEE.

Cho, J., & Yu, H. (2015). Roles of university support for international students in the United
States: Analysis of a systematic model of university identification, university support, and psy-
chological well-being. Journal of Studies in International Education, 19(1), 11-27. https://doi.
org/10.1177/1028315314533606

Choi, K. S., Deek, F. P., & Im, I. (2008). Exploring the underlying aspects of pair programming:
The impact of personality. Information and Software Technology, 50(11), 1114-1126. https://
doi.org/10.1016/j.infsof.2007.11.002

Cliburn, D. C. (2003). Experiences with pair programming at a small college. Journal of
Computing Sciences in Colleges, 19(1), 20-29.

Coman, I. D., Robillard, P. N., Sillitti, A., & Succi, G. (2014). Cooperation, collaboration and
pair-programming: Field studies on backup behavior. Journal of Systems and Software, 91,
124-134. https://doi.org/10.1016/j.jss.2013.12.037

Desjardins, M. (2015, October 22). The real reason U.S. students lag behind in computer science.
Fortune. http://fortune.com/2015/10/22/u-s-students-computer-science/

Dyba, T., Arisholm, E., Sjoberg, D. I. K., Hannay, J. E., & Shull, F. (2007). Are two heads better
than one? On the effectiveness of pair programming. IEEE Software, 24(6), 12-15. https://doi.
org/10.1109/MS.2007.158

Estrada, M., Burnett, M., Campbell, A. G., Campbell, P. B., Denetclaw, W. F., Guti�errez, C. G.,
Hurtado, S., John, G. H., Matsui, J., McGee, R., Okpodu, C. M., Robinson, T. J., Summers,
M. F., Werner-Washburne, M., & Zavala, M. (2016). Improving underrepresented minority stu-
dent persistence in STEM. CBE—Life Sciences Education, 15(3), es5. https://doi.org/10.1187/
cbe.16-01-0038

https://doi.org/10.1177/1028315314533606
https://doi.org/10.1016/j.infsof.2007.11.002
https://doi.org/10.1109/MS.2007.158

JOURNAL OF RESEARCH ON EDUCATIONAL EFFECTIVENESS 25

Faja, S. (2011). Pair programming as a team based learning activity: A review of research. Issues
in Information Systems, XII, (2), 207-216.

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth,
M. P. (2014). Active learning increases student performance in science, engineering, and math-
ematics. Proceedings of the National Academy of Sciences, 111(23), 8410-8415. https://doi.org/
10.1073/pnas.1319030111

Hanks, B., Fitzgerald, S., McCauley, R., Murphy, L., & Zander, C. (2011). Pair programming in
education: A literature review. Computer Science Education, 21(2), 135-173. https://doi.org/10.
1080/08993408.2011.579808

Hanks, B., McDowell, C., Draper, D., & Krnjajic, M. (2004). Program quality with pair program-
ming in CS. Proceedings of the 9th annual SIGCSE conference on innovation and technology
computer science education, Leeds, UK (pp. 176-180).

Hannay, J. E., Dybå, T., Arisholm, E., & Sjøberg, D. I. K. (2009). The effectiveness of pair pro-
gramming: A meta-analysis. Information and Software Technology, 51(7), 1110-1122. https://
doi.org/10.1016/j.infsof.2009.02.001

Harper, S. R. (2010). An anti-deficit achievement framework for research on Students of Color in
STEM. In S. R. Harper & C. B. Newman (Eds.), Students of Color in STEM (New Directions
for Institutional Research, no. 148, pp. 63-74). Jossey-Bass. https://doi.org/10.1002/ir.362

Hayes, A. F. (2018). Introduction to mediation, moderation, and conditional process analysis: A
regression-based approach (2nd ed.). Guilford.

Hazari, Z., Sadler, P. M., & Sonnert, G. (2013). The science identity of college students: Exploring
the intersection of gender, race, and ethnicity. Journal of College Science Teaching, 42(5),
82-91.

Ho, C. W., Slaten, K. M., Williams, L. A., & Berenson, S. B. (2004). Examining the impact of pair
programming on female students [NCSU CSC Technical Report 2004-20]. Department of
Computer Science, North Carolina State University.

Hoffmann, J. P. (2016). Regression models for categorical, count, and related variables: An applied
approach. University of California Press.

Howard, E. V. (2006). Attitudes on using pair-programming. Journal of Educational Technology
Systems, 35(1), 89-103. https://doi.org/10.2190/5K87-58W8-G07M-2811

Hurtado, S., Alvarez, C. L., Guillermo-Wann, C., Cuellar, M., & Arellano, L. (2012). A model for
diverse learning environments. In J. C. Smart & M. B. Paulsen (Eds.), Higher education:
Handbook of theory and research (Vol. 27, pp. 41-122). Springer.

Kenny, D. A. (2018). Mediation. http://davidakenny.net/cm/mediate.htm.
Kuppuswami, S., & Vivekanandan, K. (2004). The effects of pair programming on learning effi-

ciency in short programming assignments. Informatics in Education, 2, 251-266.
Kyndt, E., Raes, E., Lismont, B., Timmers, F., Cascallar, E., & Dochy, F. (2013). A meta-analysis

of the effects of face-to-face cooperative learning: Do recent studies falsify or verify earlier find-
ings? Educational Research Review, 10, 133-149. https://doi.org/10.1016/j.edurev.2013.02.002

Lai, H., & Xin, W. (2011). An experimental research of the pair programming in java program-
ming course. In Proceeding of the international conference on e-education, entertainment and
e-management (pp. 257-260). IEEE.

Layman, L. (2006). Changing students perceptions: An analysis of the supplementary benefits of col-
laborative software development. 19th Conference on Software Engineering Education &
Training, Turtle Bay, HI.

Leslie, S.-J., Cimpian, A., Meyer, M., & Freeland, E. (2015). Expectations of brilliance underlie
gender distributions across academic disciplines. Science (New York, N.Y.), 347(6219), 262-265.
https://doi.org/10.1126/science.1261375

Long, J. S. (1997). Regression models for categorical and limited dependent variables. Sage.
Luo, Z., Wu, S., Fang, X., & Brunsting, N. (2019). International students' perceived language

competence, domestic student support, and psychological well-being at a US university. Journal
of International Students, 9(4), 954-971. https://doi.org/10.32674/jis.v0i0.605

Malcom, S., & Feder, M. (Eds.). (2016). Barriers and opportunities for 2-year and 4-year STEM
degrees: Systemic change to support students’ diverse pathways. National Academies Press.

https://doi.org/10.1016/j.infsof.2009.02.001
https://doi.org/10.1126/science.1261375

26 N. A. BOWMAN ET AL.

Malone, E., & Spieth, A. (2012). Team-based learning in a subsection of a veterinary course as com-
pared to standard lectures. Journal of the Scholarship of Teaching and Learning, 12(3), 88-107.

Mayhew, M. J., Rockenbach, A. N., Bowman, N. A., Seifert, T. A., Wolniak, G. C., With
Pascarella, E. T., & Terenzini, P. T. (2016). How college affects students. (Vol. 3): 21st century
evidence that higher education works. Jossey-Bass.

McDowell, C., Werner, L., Bullock, H. E., & Fernald, J. (2006). Pair programming improves stu-
dent retention, confidence, and program quality. Communications of the ACM, 49(8), 90-95.
https://doi.org/10.1145/1145287.1145293

McGee, E. O., Thakore, B. K., & LaBlance, S. S. (2017). The burden of being "model": Racialized
experiences of Asian STEM college students. Journal of Diversity in Higher Education, 10(3),
253-270. https://doi.org/10.1037/dhe0000022

Mendes, E., Al-Fakhri, L. B., & Luxton-Reilly, A. (2006). A replicated experiment of pair-pro-
gramming in a 2nd-year software development and design computer science course [Paper
presentation]. Proceedings of the 11th annual SIGCSE conference on innovation and technol-
ogy in computer science education, Bologna, Italy (pp. 108-112). https://doi.org/10.1145/
1140124.1140155

Murphy, M. C., Steele, C. M., & Gross, J. J. (2007). Signaling threat: How situational cues affect
women in math, science, and engineering settings. Psychological Science, 18(10), 879-885.
https://doi.org/10.1111/j.1467-9280.2007.01995.x

Museus, S. D., Palmer, R. T., Davis, R. J., & Maramba, D. C. (2011). Racial and ethnic minority
students’ success in STEM education. Jossey-Bass Inc.

Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang, K., Miller, C., & Balik, S. (2003).
Improving the CS1 experience with pair programming. ACM SIGCSE Bulletin, 35(1), 359-362.
https://doi.org/10.1145/792548.612006

Nosek, J. T. (1998). The case for collaborative programming. Communications of the ACM, 41(3),
105-108. https://doi.org/10.1145/272287.272333

Pedersen, P., Lonner, W. J., Draguns, J. G., Trimble, J. E., & Scharr�on-del R�ıo, M. R. (Eds.).
(2016). Counseling across cultures (7th ed.). SAGE.

Pettigrew, T. F., & Tropp, L. R. (2006). A meta-analytic test of intergroup contact theory. Journal
of Personality and Social Psychology, 90(5), 751-783. https://doi.org/10.1037/0022-3514.90.5.751

Plonka, L., Sharp, H., & van der Linden, J. (2012). Disengagement in pair programming: Does it
matter?. In 2012 34th international conference on software engineering (ICSE) (pp. 496-506).
IEEE.

Preszler, R. W. (2009). Replacing lecture with peer-led workshops improves student learning.
CBE Life Sciences Education, 8(3), 182-192. https://doi.org/10.1187/cbe.09-01-0002

Prinsen, F. R., Volman, M. L. L., & Terwel, J. (2007). Gender-related differences in computer-
mediated communication and computer-supported collaborative learning: Gender-related dif-
ferences in CMC and CSCL. Journal of Computer Assisted Learning, 23(5), 393-409. https://doi.
org/10.1111/j.1365-2729.2007.00224.x

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data ana-
lysis methods (2nd ed.). Sage.

Salleh, N., Mendes, E., & Grundy, J. (2011). Empirical studies of pair programming for CS/SE
teaching in higher education: A systematic literature review. IEEE Transactions on Software
Engineering, 37(4), 509-525. https://doi.org/10.1109/TSE.2010.59

Sax, L. J., Lehman, K. J., Jacobs, J. A., Kanny, M. A., Lim, G., Monje-Paulson, L., & Zimmerman,
H. B. (2017). Anatomy of an enduring gender gap: The evolution of women's participation in
computer science. The Journal of Higher Education, 88(2), 258-293. https://doi.org/10.1080/
00221546.2016.1257306

Sfetsos, P., Stamelos, I., Angelis, L., & Deligiannis, I. (2009). An experimental investigation of per-
sonality types impact on pair effectiveness in pair programming. Empirical Software
Engineering, 14(2), 187-226. https://doi.org/10.1007/s10664-008-9093-5

Simon, R. M., Wagner, A., & Killion, B. (2017). Gender and choosing a STEM major in college:
Feminity, masculinity, chilly climate, and occupational values. Journal of Research in Science
Teaching, 54(3), 299-323. https://doi.org/10.1002/tea.21345

https://doi.org/10.1145/1145287.1145293
https://doi.org/10.1111/j.1467-9280.2007.01995.x
https://doi.org/10.1145/792548.612006
https://doi.org/10.1111/j.1365-2729.2007.00224.x

JOURNAL OF RESEARCH ON EDUCATIONAL EFFECTIVENESS 27

Sinclair, J., & Kalvala, S. (2015). Exploring societal factors affecting the experience and engage-
ment of first year female computer science undergraduates [Paper presentation]. Proceedings
of the 15th Koli calling conference on computing education research - Koli Calling '15, Koli,
Finland (pp. 107-116). https://doi.org/10.1145/2828959.2828979

Singer, N. (2019, January 24). The hard part of computer science? Getting into class. The New
York Times. https://www.nytimes.com/2019/01/24/technology/computer-science-courses-college.
html

Snijders, T. A. B., & Bosker, R. (2012). Multilevel analysis: An introduction to basic and advanced
multilevel modeling. (2nd ed.). Sage.

Steele, C. M. (1997). A threat in the air: How stereotypes shape intellectual identity and perform-
ance. The American Psychologist, 52(6), 613-629. https://doi.org/10.1037/0003-066X.52.6.613

Stephens, M., & Rosenberg, D. (2003). Extreme programming refactored: The case against XP.
Apress.

Stinebrickner, R., & Stinebrickner, T. R. (2012). Learning about academic ability and the college
dropout decision. Journal of Labor Economics, 30(4), 707-748. https://doi.org/10.1086/666525

Thomas, L., Ratcliffe, M., & Robertson, A. (2003). Code warriors and code-a-phobes: A study in
attitude and pair programming [Paper presentation]. Proceedings of the 34th SIGCSE technical
symposium on computer science education (pp. 363-367).

Tomcho, T. J., & Foels, R. (2012). Meta-analysis of group learning activities: Empirically based
teaching recommendations. Teaching of Psychology, 39(3), 159-169. https://doi.org/10.1177/
0098628312450414

Umapathy, K., & Ritzhaupt, A. D. (2017). A meta-analysis of pair-programming in computer pro-
gramming courses: Implications for educational practice. ACM Transactions on Computing
Education, 17(4), 11-16. 13. https://doi.org/10.1145/2996201

VanDeGrift, T. (2004). Coupling pair programming and writing: Learning about students' percep-
tions and processes. ACM SIGCSE Bulletin, 36(1), 2-6. https://doi.org/10.1145/1028174.971306

Varma, R. (2006). Making computer science minority-friendly. Communications of the ACM,
49(2), 129-134. https://doi.org/10.1145/1113034.1113041

Vee, A. (2013). Understanding computer programming as a literacy. Literacy in Composition
Studies, 1(2), 42-64. https://doi.org/10.21623/1.1.2.4

Vitores, A., & Gil-Ju�arez, A. (2016). The trouble with `women in computing': A critical examin-
ation of the deployment of research on the gender gap in computer science. Journal of Gender
Studies, 25(6), 666-680. https://doi.org/10.1080/09589236.2015.1087309

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Harvard
University Press.

Walton, G. M., & Cohen, G. L. (2003). Stereotype lift. Journal of Experimental Social Psychology,
39(5), 456-467. https://doi.org/10.1016/S0022-1031(03)00019-2

Wiebe, E. N., Williams, L., Petlick, J., Nagappan, N., Balik, S., Miller, C., Ferzli, M. (2003). Pair
programming in introductory programming labs. In Proceedings of the 2003 American Society
for Engineering Education annual conference & exposition. American Society for Engineering
Education.

Williams, L., & Kessler, R. (2002). Pair programming illuminated. Addison-Wesley.
Williams, L., Layman, L., Osborne, J., & Katira, N. (2006). Examining the compatibility of student

pair programmers. In AGILE 2006 (AGILE’06) (pp. 411-420). IEEE.
Williams, L., McCrickard, D. S., Layman, L., & Hussein, K. (2008). Eleven guidelines for imple-

menting pair programming in the classroom. In AGILE 2008 (AGILE’08) (pp. 445-452). IEEE
Computer Society Press.

Williams, L., McDowell, C., Nagappan, N., Fernald, J., Werner, L. (2003, September). Building
pair programming knowledge through a family of experiments. In 2003 International sympo-
sium on empirical software engineering, 2003. ISESE 2003. Proceedings (pp. 143-152). IEEE.

Williams, L., & Upchurch, R. L. (2001). In support of student pair-programming. ACM SIGCSE
Bulletin, 33(1), 327-331. https://doi.org/10.1145/366413.364614

28 N. A. BOWMAN ET AL.

Williams, L., Wiebe, E., Yang, K., Ferzli, M., & Miller, C. (2002). In support of pair programming
in the introductory computer science course. Computer Science Education, 12(3), 197-212.
https://doi.org/10.1076/csed.12.3.197.8618

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical
Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 366(1881), 3717-3725.
https://doi.org/10.1098/rsta.2008.0118

Wong, B. (2015). Careers "from" science but not "in" science: Why are aspirations to be a scien-
tist challenging for minority ethnic students? Journal of Research in Science Teaching, 52(7),
979-1002. https://doi.org/10.1002/tea.21231

Yadav, A., Zhou, N., Mayfield, C., Hambrusch, S., & Korb, J. T. (2011). Introducing computa-
tional thinking in education courses [Paper presentation]. Proceedings of the 42nd ACM tech-
nical symposium on computer science education - SIGCSE '11, Dallas, TX (p. 465). https://
doi.org/10.1145/1953163.1953297

Yao, C. W., George Mwangi, C. A., & Malaney Brown, V. K. (2019). Exploring the intersection
of transnationalism and critical race theory: A critical race analysis of international student
experiences in the United States. Race Ethnicity and Education, 22(1), 38-58. https://doi.org/10.
1080/13613324.2018.1497968

Zacharis, N. Z. (2011). Measuring the effects of virtual pair programming in an introductory pro-
gramming java course. IEEE Transactions on Education, 54(1), 168-170. https://doi.org/10.
1109/TE.2010.2048328

https://doi.org/10.1076/csed.12.3.197.8618
https://doi.org/10.1098/rsta.2008.0118
https://doi.org/10.1145/1953163.1953297

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29

