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1. Introduction

Many computational models in science and engineering are developed to predict the behavior of multiphysics systems,
where complex interactions between these components can result in dynamics over a wide range of time and spatial
scales. Typical examples are models in meteorology e.g., [1-3], visual computing and molecular dynamics e.g., [4-6],
ocean modeling [7], geophysics [8,9], power systems [10], just to name a few. Using the first principles of physics to model
different physical phenomenon of these systems often leads to systems of nonlinear differential equations, e.g., evolution
or partial differential equations (PDEs). In time domain simulation of these systems, the major challenge is due to the
presence of vastly different time scales in their dynamics (e.g., some components evolve at significantly faster rates than
others).

In this work, we are concerned with developing a new approach for computational modeling of systems of nonlinear
coupled oscillators (particle systems), which are often used in visual computing (specially in computer animation). Their
dynamics can be described by using Newton’s second law of motion, leading to a large system of second-order differential
equations of the form
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where N is the number of particles, x; € R?, my, kyj, ¢; denote the position of particle i from the initial position, its
mass, the spring stiffness, the equilibrium length of the spring between particles i and j, respectively, and A/(i) denotes
the set of indices of particles that are connected to particle i with a spring (the neighborhood of particle i). Finally, g;
represents the external force acting on particle i which can result from an external potential, collisions, etc., and can be
dependent of all particle positions, velocities, or external forces set by user interaction. For example, the model (1.1) is
usually used to describe dynamics of coupled oscillators such as fibers, fluids, or flexible solids, and their interaction with
each other. This has many applications in animation, movie industry, and medical imaging. Real-time simulation of these
systems is challenging since the dynamics of the fabric occurs over a wide range of temporal scales, e.g. from appearance
of small wrinkles to overall folding of the fabric. This is usually referred to the so-called stiffness. A common approach for
integrating (1.1) is to reduce it to the first order initial value problem, which can be cast in the general form

u'(t) = F(u(t)), u(to) = uo, (1.2)

where u € R" is the state vector and F : R" —> R" represents the forcing field. In fact, this resulting system is usually very
stiff in the sense that the eigenvalues of the Jacobian matrix of F can differ by several orders of magnitude. In the early days
of developing numerical methods for solving (1.2), classical methods such as the explicit Runge-Kutta integrators were
proposed. For stiff systems, however, these classical methods often show the lack of stability due to the CFL condition,
leading to the use of unreasonable time steps particularly for large-scale applications. In this regard, the development of
implicit methods such as semi-implicit, IMEX e.g. [11], and BDF methods e.g. [12,13] has changed the situation. These
standard methods, however, require the solution of nonlinear systems of equations in each step. As the stiffness of the
problem increases, considerable computational effort is required. This can be considered as a shortcoming of the implicit
schemes.

Our approach for integrating (1.1) is first to introduce a novel reformulation of it in the form of (1.2), in which the
forcing term has a special structure involving an infinitesimal symplectic and skew-symmetric matrix for the linear
part and a large nonlinearity. The reformulated system is also very stiff since the linear spring forces possess very high
frequencies. Due to the large nonlinearity, we then suggest the use of exponential Rosenbrock-based approach and derive
a general family of fourth-order efficient schemes for handling this system (It is worth mentioning that exponential
Rosenbrock methods have shown to be efficient for integrating the fully nonlinear stiff system (1.2) since they can handle
the stiffness of the system in an explicit and very accurate way. This class of exponential integrators was originally
proposed in [14] and further developed in [15-18]. The lower-order schemes were recently successfully applied to a
number of different applications [5,8-10,19] and very recently high-order schemes were shown to be very promising
for some meteorological models [3]). Moreover, we find regularity conditions posed on (1.1) and prove the fourth-order
convergence of the new family of efficient exponential Rosenbrock schemes for the system of coupled oscillators (1.1).
Additionally, we propose to use the improved algorithm in a recent work [3] for the evaluation of a linear combination
of ¢-functions acting on certain vectors vy, .. ., vp, i.e. ZLO ok(A)vg, which is crucial for implementing these exponential
schemes. Altogether, our numerical results on a number of complex models in visual computing indicate that this approach
significantly reduces computational time over the current state-of-the-art techniques while maintaining sufficient levels
of accuracy.

The paper is organized as follows. In Section 2, we present a novel reformulation of the system of coupled oscillators
(1.1) in the form of (1.2) (see Lemma 2.1) and briefly review previous approaches used for simulating these systems in
visual computing. In Section 3, we describe the exponential Rosenbrock methods as an alternative approach for solving
large stiff systems (1.2) and derive a general family of efficient fourth-order schemes called pexprb43(c,, c3). The
convergence analysis of these schemes and the selected (superconvergent) scheme exprb42 for the system of coupled
oscillators (1.1) is presented in Theorem 3.1. The implementation of these methods is discussed in Section 4, where we
also introduce a new procedure to further improve one of the state-of-the-art algorithms. The main result of this section is
Algorithm 4.1. In Section 5, we demonstrate the accuracy and efficiency of our proposed technique on a nonlinear Fermi-
Pasta-Ulam-Tsingou (FPUT) model and a number of complex models in visual computing. In particular, we address the
simulation of deformable bodies, fibers including elastic collisions, and crash scenarios including nonelastic deformations.
These examples focus on relevant aspects in the realm of visual computing, like stability and energy conservation, large
stiffness values, and high fidelity and visual accuracy. We include an evaluation against classical and state-of-the-art
methods used in this field. Finally, some concluding remarks are given in Section 6.

2. A novel reformulation of the system of coupled oscillators

For the system of coupled oscillators (1.1), let us denote x(t) € R3N, M € R33N K e R3V3N and g(x) € R3N be the
vector of positions, the mass matrix (often diagonal and thus nonsingular), the spring matrix (stiff), and the total external
forces acting on the system, respectively. Using these matrix notations and additionally setting A = M~'K, (1.1) can be
rewritten in a more compact form as

X'(£) + Ax(t) = g(x(t)), x(to) = X0, X'(to) = vo (2.1)

with some given initial positions included in xo and velocities included in vy. (Note that, for simplicity, here we have
neglected the damping).
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Simulating models described by (2.1) in visual computing is challenging due to the presence of extremely large number
of particles N and the linear spring forces usually possess very high frequencies, i.e., | K|| > 1 and so is ||A|| > 1, meaning
that (2.1) is a very large stiff system. To handle this situation, we first introduce a novel (and equivalent) transformation
of (2.1) into a first-order system which has a special structure.

Lemma 2.1. Suppose that A is a symmetric and positive definite matrix, the system (2.1) can be reformulated as (1.2) with
the forcing term F(u(t)) and the initial value uq are given as

u/(t) = F(u(t)) = /u(t) + Gu(t)),  u(to) = ttp = [v/A X0, vol', (2.2)

where /A is the matrix square root of A and < is a skew-symmetric and an infinitesimal symplectic (or Hamiltonian) matrix
given by

0 VA 0
'Q/_|:—\/Z 0 :|, and G(u)_[g(x)] (2.3)

Moreover, if g(x) is a differentiable conservative vector field in R3 and that g’(x) and /A commute, (2.2) is a Hamiltonian
system.

Proof. Since Ais a syzmmetric and positive definite matrix, it is well known that +/A exists and is a unique positive definite
—1
matrix such that +/A”~ = A. Thus, v/A is also symmetric and clearly /A  exists. With this, we introduce

uo = [ {5‘();()” }

as a new change of variable. Note that a similar idea was used for elastic systems, see, e.g., [20]. By differentiating (2.4)
with respect to t and using (2.1), one can easily verify (2.2)-(2.3). Clearly, <7 given in (2.3) is a skew-symmetric matrix.

(2.4)

Next, let us consider the antisymmetric matrix W = [ Lol We have
VA 0
Wo = = W),
0o VA

which is a symmetric matrix. This implies that W/ 4+ #TW = &#T(WT + W) = 0. Therefore, & is an infinitesimal
symplectic matrix (by definition).
Finally, we note that (2.2) is a Hamiltonian system if the Jacobian matrix

0 lﬂ}
~VA+gXVA 0

is infinitesimal symplectic. As done for 7, one needs to show that WJ(u) is a symmetric matrix. In fact, under the
assumptions on g(x) stated in Lemma 2.1, there exists some differentiable function f(x) such that g(x) = Vf(x) and

g'(x) = V2f(x) becomes a Hessian matrix, which is symmetric. Since g’(x) and ~/A commute, g/(x)«/ﬁ_1 is a symmetric
matrix. Therefore, it is clear that

—VA+g(VA 0
0 —VA

is also a symmetric matrix. O

ﬂm=wm=w+mw=[ (2.5)

Wj(u) = [

Remark 2.1. The condition that A is a symmetric and positive definite matrix is a reasonable assumption in many
models, see [21]. The new formulation (2.2)-(2.3) for systems of coupled oscillators modeled by (2.1) significantly differs
from the common way of changing of variable u(t) = [x(t), x'(t)]", leading to a coefficient matrix of the linear part that is
non-symmetric. Here .7 (given by (2.3)) is a skew-symmetric matrix, so all of its nonzero eigenvalues are pure imaginary
and are in pairs of the form 4., and thus [le!®| = 1. Also, this formulation allows a Hamiltonian-like structure, which
helps to improve the preservation of the total energy of the system.

Clearly, either using the common way (mentioned in Remark 2.1) or the new way (2.4) for reformulating (2.1), one
has to solve a stiff system of the form (2.2). In visual computing it is usually integrated by explicit methods such as
the fourth-order Runge-Kutta scheme (RK4), semi-implicit methods such as the Stérmer-Verlet schemes, the backward
differentiation formulas (BDF-1 and BDF-2) methods, or IMEX methods. In this regard, we refer to some contributions
in the context of interacting deformable bodies, cloth, solids, and elastic rods, see [22-27]. For large-scale applications
associated with stiff systems, however, both types of these time integration techniques have their own limitations as

3
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mentioned in the introduction. In recent years, exponential integrators have shown to be competitive for large-scale
problems in physics and for nonlinear parabolic PDEs, as well as for highly oscillatory problems (see [28]). They have
attracted much attention by the broad computational mathematics community since mid-1990s. At the time while
solving linear systems (I — ahJ)x = v with some Jacobian matrix J (required when using implicit methods) is generally
only of linear convergence, it was realized that Krylov subspace methods for approximating the action of a matrix
exponential on a vector, e”v, offer superlinear convergence (see [29]). Unless a good preconditioner is available, this
is clearly a computational advantage of exponential integrators over implicit methods. This has been addressed in
the visual computing community very recently through a number of interesting works on exponential integrators, see
e.g. [4,21,30,31]. Inspired by this interest, in the following sections we will show how exponential Rosenbrock methods
can be applied for simulating the reformulated system of coupled oscillators.

3. Exponential Rosenbrock methods

In this section, we present a compact theory of exponential Rosenbrock methods based on [14-17,32]. We then derive
a family of efficient schemes for our experiments with application models in visual computing.

3.1. Ideas and observations

Motivated by [33, Chap. IV.7], the first idea is replace the integration of the fully nonlinear system (1.2) by integrating
a sequence of semilinear problems

u'(t) = F(u(t)) = Jau(t) + ga(u(t)), (3.1)

resulted from a dynamic linearization of the forcing term F(u) in each time step at the numerical solution u, (due to [34])
with

Jn = F'(un), gn(u) = F(u) — Jau (3.2)

are the Jacobian and the nonlinear remainder, respectively. An advantage of this approach is that g, (u,) = F/(up)—J, =0
which shows that the new nonlinearity g,(u) has a much smaller Lipschitz constant than that of the original one F(u). The
next idea is now to handle the stiffness by solving the linear part J,u exactly and integrating the new nonlinearity g,(u)
explicitly. For that, the representation of the exact solution at time ¢, = t, + h of (3.1) using the variation-of-constants
formula

h
ultyer) = € ulty) + [ e g utty + 1o (33)
0
plays a crucial role in constructing this type of integrators. As seen from (3.3), while the linear part can be integrated
exactly by the action of the matrix exponential e on the vector u(t,), the integral involving g,(u) can be approximated
by some quadrature. This procedure results in the so-called exponential Rosenbrock methods, see [14,15]. We note that
these exponential methods can be easily applied to non-autonomous problems u'(t) = F(t, u) by adding the equation
t' = 1, see [15,16] (in this case, the nonlinear remainder, upon the dynamic linearization, would be g,(t, u) instead of

gn(u)).

Remark 3.1. For the system of coupled oscillators (1.1), the forcing term F(u) has the semilinear form (2.2), which can
be considered as a fixed linearization, i.e., J; = /. Therefore, one can directly apply explicit exponential Runge-Kutta
methods (see [35]) to (2.2). The advantage of these methods is that the time-step h is not restricted by the CFL condition
when integrating the linear part <7u. In our applications, however, the nonlinearity G(u) is usually large in which its CFL
condition usually serves as a reference for setting the time-step. In particular, hL; should be sufficiently small (L; is the
Lipschitz constant of G(u)) to ensure the stability. With respect to this regard, the dynamic linearization approach (3.1)
applied to (2.2)

u'(t) = F(u) = «u + G(u) = Jyu + Gp(u) (3.4)
with
Jn=o + G (up), (3.5)

offers a great advantage in improving the stability (in each step) when integrating G(u). This is, because, instead of
integrating the original semilinear problem with large nonlinearity G(u), we only have to deal with a much smaller
nonlinearity G,(u) (as mentioned above). Note that the new linear part J,u with the Jacobian J, as in (3.5) now incorporates
both . and the Jacobian of the nonlinearity G(u), which can be again solved exactly. It is thus anticipated that this idea
of exponential Rosenbrock methods opens up the possibility to take even larger time steps compared to the classical and
exponential Runge-Kutta methods.
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3.2, Formulation of a second-order scheme and general schemes

We now illustrate this approach by presenting a simple derivation of a second-order scheme and formulating general
schemes.

3.2.1. A second-order scheme
First, expanding u(t, 4+ 7) in a Taylor series gives u(t, 4+ 1) = u(t,)+ tu/(t,)+O(t?). Then inserting this into g,(u(t, + 7))
and again expanding it as a Taylor series around u(t,) (using g, (u(t,)) = 0) leads to

En(u(ty + 7)) = gn(u(ty)) + O(TZ)- (3.6)
Inserting (3.6) into (3.3) and denoting ¢;(hj,) = %foh e(h-thndr gives

U(tni1) = e"u(ty) + heoy(Wn)ga(u(ts)) + O(H?). (3.7)
Neglecting the local error term O(h3) results in a second-order scheme which will be called exprb2:

Upp1 = eh]"un + ho1(Wn)gn(un) = up + ho1(Wn)F(uy). (3.8)

Here the second equality in (3.8) is due to replacing g,(u(t,)) by (3.2) and using the fact that ¢;(z) = (¢! — 1)/z. Note
that this scheme was already derived before and named as exponential Rosenbrock-Euler method, see [14,15] (since when
considering the formal limit J, — 0, (3.8) is the underlying Euler method). Our derivation here, however, shows directly
that it has an order of consistency three and thus is a second-order stiffly accurate method.

3.2.2. General schemes
For the derivation of higher-order schemes, one can approximate the integral in (3.3) by using some higher-order
quadrature rule with nodes ¢; in [0, 1] and weights b;(hJ,) (matrix functions of hJ,), yielding

N
Ultnsr) ~ e™ruty) +h Y bilha)gn(u(ty + cih). (3.9)
i=1
The unknown intermediate values u(t,+c;h) can be again approximated by using (3.3) (with c;h in place of h) with another
quadrature rule using the same nodes ¢;, 1 <j <i— 1, (to avoid generating new unknowns) and new weights a;(h/y,),
leading to
i-1
u(ty + cih) ~ e™ru(ty) + h Y ay(ha)gn(u(ty + Gih)). (3.10)
j=1
Let us now denote u, ~ u(t,;) and Uy = u(t, + c;h). As done for (3.8), using (3.6) (with c;h, h in place of 7, respectively)
one can reformulate (3.9) and (3.10) in a similar manner, which yields the general format of s-stage explicit exponential
Rosenbrock methods
i-1

Uni = un + cihoq(cih)n)F(u,) + h Z aij(hjn)Dnj, (3.11a)
j=2
Uni1 = Up + hoy(Wn)F(un) + h Y bi(hjn)Dn (3.11b)
i=2
with
Dni = gn(Uni) — &n(un), (3.11¢)

As in (3.6), we have D,; = O(h?). Thus, the general methods (3.11) are small perturbations of exprb2 above. Note that
the unknown weights a;(h/,) and b;(hJ,) can be determined by solving the order conditions. They are usually chosen as
linear combinations of the well-known ¢,(z) functions (see a justification as follows).

The family of ¢-functions. Note that, in (3.6) if we further expand g,(u(t, + 7)) in a Taylor series at u(t;), one gets

gn(u(ty + 1)) = ga(u(tn) +Z ()XY, ..., V) + 0P

1)v
k times
with V = Hu(ty + 7) — u(ta)) = Y1, ’J], Lu0)(,) + O(79). Inserting this into (3.3) gives
U(tny1) = ehjnu(tn) + h(ﬂl(h]n) n(u(tn))
k—1
k e (h=7Un T (k=1 v v pt1 (3.12)

k times
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This motivates the introduction of the family of ¢,-functions

1 h (h—1)2 Tk_l
— pZ - —17)%
wo(z) =¢€*, @(z) = hkfo e hi(k_ 1)!dr, k>1 (3.13)
They satisfy the recursion relation
1
Z) =
Prs1(z) = Wf" k> 1. (3.14)

Using (3.13), it is clear that the exact solution u(t,.) in (3.12) can be represented as a linear combination of the product
of ¢-functions with vectors

U(tny1) = @o(hnu(ty) + he1(Wn)gn(u(ts))

p
+ Z W oi(Rf)gd DtV . .., V) + o(hP*1).
——

k=3 k times

This observation suggests that, for the numerical solution in (3.11), it is reasonable to choose (by construction) the
coefficients a;(hJ,) and b;(hJ,) as linear combinations of ¢i(c;hJ,) and ¢i(hJ,), respectively. It is well-known that these
ox(hJy) functions (and thus the coefficients a;(h/,) and b;(hJ,)) are (uniformly) bounded independently of ||J,]|, i.e., the
stiffness, see, e.g., [28].

Clearly, using (3.11) offers several advantages. First, they are fully explicit and do not require the solution of linear or
nonlinear systems of equations. Second, as mentioned above, they offer a better stability when solving stiff problems with
large nonlinearities and thus allow to use larger time-steps. Third, since the Jacobian of the new nonlinearity vanishes
at every step (g,(u,) = 0), the derivation of the order conditions and thus methods can be simplified considerably. In
particular, higher-order stiffly accurate schemes can be derived by using only a few stages (see the next section).

3.3. Local error and stiff order conditions

A standard approach to derive order conditions for exponential Rosenbrock methods is to compare the expansion of
the exact solution u(t, + h) with that of the numerical solution u,,, (obtained after one step starting from u(t,) with the
local assumption that u(t,) = u,) to obtain the local error LE, = u,; — u(t, + h). For this, a common way is to expand
the coefficients a;(hJ,) and bi(hJ,) of the general scheme (3.11) as a(h/n) = D0 afjk)(h]n)", bi(hJa) = > 10 ﬂfk)(h],,)k
(e.g., using classical Taylor series expansions) to determine order conditions. This approach, however, involves powers of
the Jacobian J,, resulting in nonstiff or classical order conditions since they are only valid for problems where h||J,|| is small,
i.e., either the problem is nonstiff (||J,|| is small) or the time step size h must be very small. As a result, methods derived
based on this approach (called non-stiffly accurate or classical exponential methods, see, e.g., [36,37]) may suffer from
order reduction when applied to stiff problems. Therefore, for stiff systems (||J,,|| is usually large or is even unbounded),
one has to be cautious when analyzing the local error to ensure that error terms do not involve powers of J,. Recently,
Luan and Ostermann [16] derived a new expansion of the local error

d3
LE, = h>r3(hJn)gy) (un (U, ) + h41//4(hjn)@gn(u(t))

t=ty

+ B> " bilhin)cigy (un) (. V3 i W )gy (un )1ty u,)) (3.15)
i=2 d4
+ hSl/fs(th)@gn(u(t)) + O(h®)

t=ty

with

s C{_l »
¥i(Z) = ;b,—mm —¢(Z), j=3.4,5

O o (3.16)
¥si2) =Y au2)5; — cPys(a).
k=2

which fulfills this desirable property (all the terms multiplying with the powers of h in (3.15) are now bounded
independently of ||J, ||, i.e., the stiffness). This novel local error expansion thus provides a pathway to derive a new stiff
order conditions theory for exponential Rosenbrock/Runge-Kutta methods of arbitrary order [18]. For example, by zeroing
the terms in (3.15), one can obtain the stiff order conditions for exponential Rosenbrock methods of orders up to 5, which
require only 4 conditions (see Table 1). As expected, the number of order conditions for exponential Rosenbrock methods
is significantly less than those for exponential Runge-Kutta methods of the same order (which require 16 order conditions
for order 5, see [38,39]).
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Table 1
Stiff order conditions for exponential Rosenbrock methods up to order 5.
Here Z and K denote arbitrary square matrices.

No. Order condition Order
1 Yo bilZ)e? = 2¢3(2) 3
2 Y ioa bi(Z)c} = 6¢4(2) 4
3 Yot bi@)e! = 2495(2) 5
4 Y b2k (X4, alk(Z)z, Ges(az)) =0 5

3.4. Derivation of new schemes for numerical simulations

By solving the stiff order conditions in Table 1, we note that one can easily construct various methods of orders up to
5. Taking the compromise between efficiency and accuracy into consideration, however, we propose the two ideas below
for building a new family of fourth-order efficient schemes with parallel stages and presenting a superconvergent scheme
for our applications.

Our first idea, motivated by [17], is to derive a general family of fourth-order exponential Rosenbrock schemes with
parallel stages whose implementation can be done simultaneously or in parallel. This requires solving conditions 1 and
2 of Table 1 in a special manner. Due to the fact that the matrix functions {¢3(Z), ¢4(Z)} are linearly independent, it is
clear that one needs at least 3 stages to satisfy these stiff order conditions in their strong forms (i.e. holding for arbitrary
square matrix Z). A scheme with s = 3 reads as

Unz = Uy + C2hoi(cahfn)F(uy), (3.17a)
Un3 = Up + C3h§0](C3th)F(Un) + ha32(h.]n)DHZa (317]3)
Upt1 = Up + h(pl(h]n)F(un) + th(h]n)DnZ + th(hjn)Dn3~ (3.17C)
and the required conditions 1 and 2 now become:
ba(hn)c3 + bs(h)c3 = 2¢3(hy), (3.18a)
ba(hn)c3 + b3(Wn)c3 = 6a(h]y). (3.18b)
For positive nodes c; # c3, (3.18) has a unique solution
2 hJn) — 6p4(h 2 h 6¢4(h
by(hl,) = C3¢’3(2]n) @a( Jn)7 ba(h),) = C293(n) — 604( ]n)
(3 — ) c3(c2 — c3)

Since (3.18) does not depend on the coefficient as,(hJ,;) in (3.17b), one can consider it as a free parameter and choose it
to be the zero matrix to make U,3 independent of U,,. Putting altogether and rearranging terms in (3.17c) leads to the
following two-parameter fourth-order parallel stage scheme which will be called pexprb43(cs, c3):

Unz = un + c2he(calfn)F (un), (3.19a)
Uns = up + cshoq(cshfn)F(uy), (3.19b)
Un1 = Un + ho1(Wn)F(un) + h%(Wn)(ﬁ 2+ o Tepc )Dn3)

+ h%(hj”)(cz ;G Dpy — C%(C57C3)Dn3)’ (3.19¢)

2(c3—c2)

where the vectors Dy;(i = 2, 3) are given by (3.11c).

Although pexprb43(c,, c3) is a 3-stage scheme, it has the pair of parallel stages {Uy, U3} which can be implemented
in parallel (since they are independent of one another) or simultaneously (since they have the same format U, =
u, + cihoi(cihfn)F(u,) (i = 2, 3), making it behaves like a 2-stage method. For its implementation, this requires only
two sequential evaluations in each step (see Section 4.2.3).

Our second idea is to search for a superconvergent exponential Rosenbrock method which uses a minimal number
of stages while achieving high-order accuracy. Thanks to a recent work [32], such a method (2-stage 4th-order) was
constructed by weakening condition 2 of Table 1. There, it was denoted by exprb42:

Un2 = Un + %h¢1( hn)F(un), (3.20a)
Un1 = Uy + ho1(h)n)F (un) + h3 9 ¢3(h]n)(gn(un2) — &a(un)). (3.20b)

In the current work, we will now show convergence of this scheme for the system of coupled oscillators (1.1), present an
efficient implementation of it in Section 4, and compare its performance in Section 5.

7
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3.5. Convergence of the proposed schemes

The stability and convergence analysis of exponential Rosenbrock methods for nonlinear time-dependent PDEs are
usually carried out in the framework of strongly continuous semigroup in some Banach space, see [15,16]. Here, we find
regularity conditions posed on (2.1) to apply these analyses and prove the fourth-order convergence of pexprb43(c,, c3)
and exprb42 for the system of coupled oscillators (1.1).

Theorem 3.1. Consider the system of coupled oscillators (1.1) that can be rewritten as the initial value problem (2.1). Under the
assumptions that the solutz;on x: [0, T] — R3N is sufficiently smooth, A € R3N*3N is a symmetric, positive definite matrix with
(uniformly) bounded ~/A ', and that the nonlinearity g : R3N — R3V is sufficiently differentiable (with bounded derivatives)
in a strip along the exact solution x(t), the scheme pexprb43(c,, cs3) converges with order 4 when applied to the reformulated
system (2.2). Furthermore, if

d3
ﬁﬁg(x(t)) _, and VA g/ (x(tn)XP(ts) (3.21)
are uniformly bounded in R3N, then the scheme exprb42 also converges with order 4. In particular, the numerical solution x,
of (2.1) obtained by either pexprb43(ca, c3) or exprb42 satisfies the error bounds

lIxn = x(t)ll < Ch%, lIx;, = X(t)ll < C'h* (3.22)

uniformly on ty < t, < T. Here, || - || denotes the maximum norm, and the constants C and C’ are independent of n and h. This
means that the global errors in (3.22) satisfy the bounds uniformly on [to, T] with the constants C and C’ that depend on the
interval width (T — to) but that are independent of ||A||, i.e., the stiffness of the system.

Proof. First, we show, under the assumptions of Theorem 3.1, that the analytical framework (see the Appendix) for the
convergence of exponential Rosenbrock methods (3.19) applied to (2.2) is fulfilled. As stated in Lemma 2.1, +/A and its
inverse exist (and are unique). Thus, 7 (a 6N x 6N matrix given in (2.3)) is well-defined, and that (2.1) is equivalent to its
reformulated system (2.2). Using the assumption on g(x) and the boundedness of \/K_l, it is easy to see that G(u) (given
in (2.3)) is also sufficiently differentiable in a strip along u(t) given in (2.4), and that

0 ()}
G(u)= [ i } (3.23)
gxWVA 0

is bounded. Therefore, we have that the matrix exponentials e /™ (¢t > 0, J(u) given in (2.5)) and e are also well-defined.

Next, we are ready to prove the error bounds (3.22) for pexprb43(c,, c3). Since pexprb43(c,, c3) satisfies the stiff
order conditions for methods of order 4 (consistency), i.e., LE, = O(h®), its convergence follows directly from applying
[16, Thm. 4.1] with the help of the stability bound

n—v

[T]e"
=0

where the constant Cs is uniform in v and n, see [15, Sect. 3.3]. In particular, the global error for (2.2) can be expressed
as

<G, to<t, <t =T (3.24)

._.

n—1n—v—1

en = Up — =h ]_[ =i (Pv + o(h“)), (3.25)

v

Il
<)

where P, is given by [16, Egs. (4.5)] and satisfies the bound ||P,|| < Clle,|| + Clle,||> + Ch®, where C only depends
on values that are uniformly bounded by the assumptions of Theorem 3.1 (excluding the additional assumption (3.21)),
see [16, Lemma 4.5]. Using (3.24) and an application of a discrete Gronwall lemma (see [40]) to (3.25), one can show that

n n h4
U, — u(ty) = { ﬁ(x ) } =oh*) = { o) } (3.26)

X, — X (ty) o(h*)

in which the remainder terms hidden behind the Landau notation O(-) are bounded by Ch*, C’h* with constants C and

C’ that are independent of n and h. Using (3.26) and the boundedness of «/Ef], it is straightforward to verify the error
bounds in (3.22).

Finally, we verify (3.22) for exprb42. As mentioned in Section 3.4, exprb42 given in (3.20) also fulﬁlls the stiff order
conditions for fourth-order methods in Table 1 but with condition 2 held in its weakened form Zl 5 O)C = 6¢4(0) =
1/4. Using [32, Thm. 4.1], we deduce that it still guarantees fourth-order convergence for stiff system (2 2) if

o (GO (u(t)) (W (), 0 (£), ' (£0)) + 3G (utn))(W (£), 1 (£n) (3.27)

8
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is uniformly bounded. We now show that this condition is satisfied under the assumptions of Theorem 3.1. Indeed, after
performing some calculations, one realizes that (3.27) is equal to

3
(g0, - )
L VA o ]| )| - g ee) (3:28)
| VAGEER)|_ — g e))

0

which is clearly uniformly bounded due to (3.21). The error bounds (3.22) can be now verified following the same
techniques as done for pexprb43(cs, c3) (see (3.24)—(3.26)). O

We note that the boundedness of «/271 can be considered as a reasonable assumption since ||\//T]|| is usually
(uniformly) bounded independently of the discretization in many models of the form (2.2). Moreover, if g/(x) and vA
commute (as assumed in Lemma 2.1), one can show that the additional assumption (3.21) is automatically satisfied
under the assumptions of Theorem 3.1. For instance, from (2.1), one derives, for all integers k > 1, that vA x®¥(t) =

N/ (;—:,(g(x(t)) — x®+2)(1)), which are bounded.
4. Implementation

In this section, we present an efficient implementation of our proposed approach for the simulation of the system of
coupled oscillators. First, we discuss on the computation of the matrix square root ~/A needed for the new formulation
(2.2). Then, we briefly review some state-of-the-art algorithms for implementing exponential Rosenbrock methods
and introduce a new routine (proposed very recently in [3]) for achieving more efficiency for the proposed schemes
pexprb43(ca, c3) and exprb42. Finally, we summarize the whole procedure by an algorithm.

4.1. Computation of the matrix square root ~/A

Let us denote £2 = +/A. For the computation of v/A used in (2.2), we use the Schur decomposition for moderate systems.
For large systems, the Newton square root iteration (see [41]) can be employed to avoid an explicit precomputation of £2.
Namely, one can use the following simplified iteration method for approximating the solution of the equation £2? = A:

(i) choose 2o = A (k = 0),
(ii) update 2441 = (2 + 2 'A).

This method offers unconditional quadratic convergence with much less cost compared to the Schur decomposition. We
note that £2~! can be computed efficiently using a Cholesky decomposition since £2 is symmetric and positive definite
and it is given by £2~! = §7'S™T, where S is an upper triangular matrix with real and positive diagonal entries. For more
details, we refer to [4,41].

With £ in hand, we compute the Jacobian J, as in (3.5) and F(u), G,(u) as in (3.4). As the next step, we discuss the
implementation of the exponential Rosenbrock schemes.

4.2, Implementation of exponential rosenbrock schemes

In view of the schemes in Section 3, one can see that each stage requires computing a linear combination of ¢-functions
acting on certain vectors v, ..., vp

wo(M)vo + @1(M)vy + @2(M)vy + - - - + @p(M)vp, (4.1)

where the matrix M here could be hj, or c;hJ,. Starting from an early contribution by Hochbruck and Lubich [29], where
the action of a matrix exponential on some vector is efficiently computed by using Krylov subspace methods, many
more efficient techniques have been proposed. A large portion of these developments is concerned with computing the
expression (4.1). For example, we mention some of the state-of-the-art algorithms: expmv proposed by Al-Mohy and
Higham in [42] (using a truncated standard Taylor series expansion), phipm proposed by Niessen and Wright in [43]
(using adaptive Krylov subspace methods), and expleja proposed by Caliari et al. in [44,45] (using Leja interpolation).
With respect to computational time, it turns out that phipm offers an advantage. This algorithm utilizes an adaptive time-
stepping method to evaluate (4.1) using only one matrix function (see Section 4.2.1). This task is carried out in a lower
dimensional Krylov subspace using standard Krylov subspace projection methods, i.e., the Arnoldi iteration. Moreover, the
dimension of Krylov subspaces and the number of substeps are also chosen adaptively for improving efficiency.

9
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Recently, the phipm routine was modified by Gaudreault and Pudykiewicz in [2] (Algorithm 2) by using the incomplete
orthogonalization method (IOM) within the Arnoldi iteration and by adjusting the two crucial initial parameters for
starting the Krylov adaptivity. This results in the new routine called phipm/I0OM2. It is shown in [2] that this algorithm
reduces computational time significantly compared to phipm when integrating the shallow water equations on the sphere.

Very recently, the first author [3] further improved phipm/I0M2 which resulted in a more efficient routine named as
phipm_simul_iom2. For the reader’s convenience, we present the idea of the adaptive time-stepping method (originally
proposed in [43]) for evaluating (4.1) and introduce some new features of the new routine phipm_simul_iom?2.

4.2.1. Time-stepping method for computing linear combinations of ¢-functions
By using the variation-of-constants formula (3.3) and the ¢- functions’ formula (3.13), it was observed that (see, e.g,
[43, Lemma 2.1]) the expression (4.1) is the exact solution of the following linear ODE

tP~1
u'(t)=Mu(t) + vy +tv, +--- + TR u(0) = o, (4.2)
att = 1, i.e. u(1). The time-stepping technique approximates u(1) by discretizing [0, 1] into subintervals 0 = ¢, < t; <
c<ty < tgr1 =+ T < -+ < tg = 1 with a substepsize sequence 7, (k =0, 1,...,K — 1) and using the following

relation between u(t,1) and its previous solution u(ty):

P L
Ultisr) = po(mMu(t) + Y tigi(uM) Y i v (43)
i=1 j=0
Using the recursion relation (3.14), (4.3) can be simplified as
p—i
U(tir) = Tfop(uMwy + Yy, (4.4)
— ]
j=0

where the vectors wj satisfy the recurrence relation

p—ij o

K .
wo = u(t), wy=Muwj1+ ) Kvjee, j=1,...,p. (4.5)

=0
Eq. (4.4) implies that evaluating u(tx) = u(1), i.e., the expression (4.1) requires only one matrix function ¢,(7A)w, in each
substep instead of (p + 1) matrix-vector multiplications. As 0 < 7, < 1, this task can be carried out in a Krylov subspace
of lower dimension my, and in each substep only one Krylov projection is needed. With a reasonable number of substeps
K, it is thus expected that the total computational cost of O(m%) 4+ 4 O(m,z() for approximating ¢,(7«M)w, is less than
that of ©(m?) for approximating ¢,(M)v in a Krylov subspace of dimension m. If K is too large (e.g., when the spectrum
of M is very large), this might be not true. This case, however, is handed by using the adaptive Krylov algorithm in [43]
allowing to adjust both the dimension m and the step sizes t; adaptivity. This explains the computational advance of this
approach compared to standard Krylov algorithms.

4.2.2. New routine phipm_simul_iom2
The resulting routine phipm_simul_iom2 optimizes computational aspects of phipm/IOM2 corresponding to the
following changes:

(i) Unlike (4.1), where each of the ¢ functions is evaluated at the same argument M, the internal stages of exponential
Rosenbrock schemes require evaluating the ¢ functions at fractions of the matrix M:

p
W = Z@(Ck M, k=2,....s, (4.6)
=1

where now the node values cs, ..., ¢ are scaling factors used for each v, output. To optimize this evaluation,
phipm_simul_iom2 computes all wy outputs in (4.6) simultaneously, instead of computing only one at a time. This
is accomplished by first requiring that the entire array c5, ..., ¢s as an input to the function. Within the substepping
process (4.3), each value ¢; is aligned with a substep-size ;. The solution vector is stored at each of these moments
and on output the full set {wy};_, is returned.

(ii) In view of the higher-order exponential Rosenbrock schemes (see also from Section 3.4), it is realized that they usu-
ally use a subset of the ¢, functions. Therefore, multiple vectors in (4.6) will be zero. In this case, phipm_simul_iom2
will check whether w;_; # 0 (within the recursion (4.5)) before computing the matrix-vector product M wj_;. While
matrix-vector products require ©(n®) work, checking u # 0 requires only O(n). This can result in significant savings
for large n.

10



V.T. Luan and D.L. Michels Journal of Computational and Applied Mathematics 391 (2021) 113429

4.2.3. Implementation of pexprb43(csy, c3) and exprb42

Taking a closer look at the structures of schemes pexprb43(c,,cs) and exprb42, we now make use of
phipm_simul_iom2 for their implementations. For simplicity, let us denote M = hJ,, and v = hF(uy,).

As discussed in Section 3.4, pexprb43(c,, c3) can be implemented like a 2-stage method by evaluating the following
2 evaluations, corresponding to 2 calls to phipm_simul_iom2:

(i) Compute both terms y; = ¢1(c;M)v and z; = ¢1(csM)v in parallel or simultaneously to obtain Uy, = u, + cy; and
Ung = U, + C321.
(ii) Compute w = @1(M)v + @3(M)v3 + @4(M)vy (i.e. v9 = v, = 0, v1 = v) with v3 = h(

h(

In view of (3.20), one needs two calls to phipm_simul_iom2 for the implementation of exprb42:

2c3
2
c5(c3—c2)

2c;
D 2
h2 + C%(Cz

Dy3), v4 =

—c3)

Dyy — %D,ﬁ) to obtain U411 = u, + w.

-6
2
c5(c3—¢2) c3(c2—c3)

(i) Compute y; = @1(3M)w; with wy = 2v (s0 wy = 0) to obtain Uy, = uy + y1.

(ii) Compute w = @1(M)v1 + @3(M)vs (i.e. vg = v, = 0) with vy = v, v3 = %Zthz to obtain u, 1 = u, + w.

For our numerical experiments below, we choose ¢; = % and ¢c3 = %. It turns out that pexprb43(%, %) and exprb42
are the most efficient schemes for our application models in visual computing presented in Section 5.

4.3. The overall algorithm

We now summarize our implementation by Algorithm 4.1.
Algorithm 4.1 Advanced time integration algorithm for simulating (1.1)

o Input: A € R33N g(x), x9, vg € R?N; [to, T]; and step size h.
o Initialization:

1. Compute +/A as in described in Section 4.1.
2. As in (2.2), set ug = [v/A Xo, vo]T and compute F(ug) = «7ug + G(ug), where «# and G(u) are given by (2.3).

o Time integration: Set n = 0; u, := u.
While t; < tena =T

1. Compute the solution at the next time step u,,; using pexprb43(%, %) or exprb42 as described in
Section 4.2.3 (with the help of phipm_simul_iom?2).

2. Update u, := tpy;.
tr =ty + h.
n:=n+1.

e Output Approximate values at time t = ¢, for

o positions x, by solving the linear system +/A x, = uy(1: 3N).
o velocities x, = v, = uy(3N 4+ 1: 6N).

5. Numerical examples

In this section, we present a broad spectrum of numerical examples to demonstrate the accuracy and efficiency
of the new approach (i.e. the new formulation (2.2)-(2.3) combined with the new proposed parallel stages scheme
pexprb43(%, %) and the selected superconvergent scheme exprb42) for simulating large stiff systems of nonlinear
coupled oscillators.

In the first part, we consider a nonlinear Fermi-Pasta-Ulam-Tsingou (FPUT) model including stiff springs (which is
a simple model for mechanics simulations similarly to Hairer et al. [46]) in order to verify numerically the convergence
rate as well as to show the efficiency of the proposed schemes even for this small system.

In the second part, we test our proposed approach on various application models focusing on relevant aspects in the
realm of visual computing, like stability and energy conservation, large stiffness, and high fidelity and visual accuracy. A
tabular summary of the models that are used for our test can be found in Table 2. Furthermore, our simulation includes
important aspects like elastic collisions and nonelastic deformations. The presented exponential Rosenbrock methods
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Table 2

Overview of the test cases used for application models in visual computing. Their complexity N (i.e. the number of the resulting equations of
motion), the simulated time, and respective running times for the exponential Rosenbrock methods exprb42 and pexprb43(%, %), the implicit-
explicit variational integrator (V-IMEX), the standard RK4 method, and the BDF-1 integrator are shown. We note that different integrators use
different values of h.

Model N Simul. Time exprb42 pexprb43(%, %) V-IMEX RK4 BDF1
Coil spring 24k 60s 55s 47 s 12 min 46 min 62 min
Dragon 450k 10s 272s 243s 72 min 4h 5h
Brushing 90k 15s 52s 51s 11 min 53 min 72 min
Crash (moderate) 360k 2s 44s 44s 9min 47 min 58 min
Crash (fast) 360k 2s 47 s 46 9min 47 min 59 min

are evaluated against classical and state-of-the-art methods used in visual computing, in particular against the implicit-
explicit variational (IMEX) integrator (cf. [47,48]), the standard fourth-order Runge-Kutta method (see [49,50]), and the
implicit BDF-1 integrator (see [51]). All simulation results visualized here have been computed using a machine with an
Intel(R) Xeon E5 3.5 GHz and 32 GB DDR-RAM. For each simulation scenario the largest possible time step size is used
which still leads to a desired visually plausible result.

5.1. A nonlinear FPUT model

Consider a nonlinear FPUT model with m stiff springs, in which the motion is described by a Hamiltonian system with
the total energy

1 1
HO 0 = SIXIP + S IVAXI? + U(x), (5.1)
where
I 0
- [ " , } (5.2)
0 w Im 2mx2m
and
_l m
Ux) = Z[(XO,I —x11)* + Z(XOJJA — X141 — Xo.i — X1.0)* + (Xom + X1.m)*] (5.3)

i=1
with xg ; represents for positions of the ith stiff spring.

Clearly, the Hamiltonian (5.1) can be formulated as a second-order system of DEs as (2.1) with g(x) = —VU(x). One
can also check that this system has A with

I 0
VA = [ " }
0 wlm 2mx2m

and g(x) fulfill the assumptions of Lemma 2.1 and Theorem 3.1. For our experiments below we choose the same initial
positions and velocities as in Hairer et al. [46] (m = 3,Xx01 = X3, = X;; = 1,x11 = o~ ! and zero for the remaining
initial values) with the exception that the value of frequency w is taken even two times larger, namely, @ = 100. This
yields a stiff system (with [|A]ls = 10%).

We then integrate the resulting system on the time interval [0, 100] by using methods exprb2, pexprb43(%, %),
exprb42, and the classical method RK4. The reference solution is computed by using the standard stiff solver ode15s
with TOL = 10~ '4. The errors at the final time T = 100 are measured in the maximum norm.

Verification of the order of convergence: In Fig. 1, we plot orders for all the considered schemes. The diagrams
clearly show that the all considered schemes fully achieve their orders. This is a perfect agreement with Theorem 3.1
regarding the convergence of pexprb43(%, 2) and exprb42. We note, however, while the set of different step sizes
h = 0.02,0.01, 0.005, 0.0025, 0.00125 is used for exponential schemes (exprb2, pexprb43(:, 2), and exprb42), RK4
requires a much smaller set of step sizes (40 times smaller—see the right diagram) in order to obtain about the same
level of accuracy (when using the “large" set of time steps above, RK4 either failed to converge or did not show the
right order of convergence due to the stability issue caused by the stiffness). This confirms the benefit of using the
exponential Rosenbrock-based schemes which allow to take much larger time steps. From the left diagram one can see
that pexprb43(%, %) and exprb42 give about the same accuracies for this model.

Demonstration of the efficiency: In Fig. 2, we display the efficiency plot of the fourth-order schemes pexprb43(%, %),
exprb42, and RK4. Given about the same level of accuracy, the precision diagram clearly shows that both pexprb43(%, 7)
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Fig. 1. Order plots of exprb2, pexprb43(§, %), exprb42, and RK4 when applied to the nonlinear FPUT model (m = 3). For confirmation, straight
lines with slopes 2 and 4 are added.
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Fig. 2. Total CPU times (in second) of the fourth-order schemes pexprb43(§, %), exprb42, and RK4 when applied to the nonlinear FPUT model
(m=3).

and exprb42 are much faster than RK4 even for this stiff system of small size (In fact, these two schemes achieve speedup
factors of around 3 and 4, respectively). It is thus anticipated that, for larger stiff systems of higher frequency, these
exponential schemes can significantly increase more the speedup factor compared to RK4 and other standard methods
(see the results for other application models in Table 2).

Performance on conservation of the total energy: With the given initial data, one can see from (5.1) that the exact total

1
energy is H = H(x'(0), x(0)) = =.2 4+ —=.2 4+ 0.500300005 = 2.500300005. In Figs. 3 and 4, we perform evaluations on

the conservation of the total energy for the considered schemes. In the left diagram of Fig. 3, the second-order (exprb2)
and the high-order exponential Rosenbrock schemes (4th-order, pexprb43(%, %), exprb42) are compared. In the right
diagram of Fig. 3, the classical and standard fourth-order scheme RK4 is compared with the two 4th-order exponential
schemes.

As seen, over the considered time interval [0, 100], both pexprb43(%, %) and exprb42 preserve the total energy
quite well and outperform exprb2 (which uses the same time stepsize h = 0.01) and RK4. It should be mentioned
that RK4 totally fails to conserve the total energy H at this “large" stepsize. However, it does improve the conservation of
H when much smaller time stepsizes are employed. This can be also confirmed by viewing the right diagram of Fig. 4. In
particular, one can see that RK4 has to use h = 0.00025 (which is 40 times smaller than the time stepsize h = 0.01 used
for pexprb43(%, 2) and exprb42) in order to get about the same quality of conservation of H. Similarly, from the left
diagram of Fig. 4, we see that exprb2 also requires a much smaller stepsize to maintain a good level of preserving H.

5.2. Some application models in visual computing

5.2.1. Simulation of deformable bodies

In order to illustrate the accurate energy preservation of the presented exponential Rosenbrock schemes, we set up
an undamped scene of an oscillating coil spring, which is modeled as a deformable body composed of tetrahedra, in
particular of 8 000 vertices corresponding to N = 24 000 equations of motion, which are derived from a system of coupled
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Fig. 3. Conservation of the total energy for the considered schemes when applied to the nonlinear FPUT model (m = 3).
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Fig. 4. Conservation of the total energy for exprb2 (left) and RK4 (right) using different time step sizes when applied to the nonlinear FPUT model
(m=3).

oscillators with uniform spring stiffness of k = 10°. Since the coil spring is exposed to an external forces field, it starts
to oscillate as illustrated in Fig. 5. It can be seen that the top of the coil spring returns to its initial height periodically
during the simulation which can be seen as an indicator for energy conservation. In fact when using the exponential
Rosenbrock schemes exprb42 and pexprb43(%, %) we observe that the discrete energy is only slightly oscillating around
the real energy without increasing oscillations over time. In contrast, the standard RK4 method and respectively the BDF-1
integrator generate significant numerical viscosity leading to a loss of energy around 22% respectively 40% after 60s of
simulated time. To demonstrate that such a speedup is also scalable, we additionally simulate the elastic deformation of
a dragon which is composed of tetrahedra, in particular of 150000 vertices corresponding to N = 450000 equations of
motion. A uniform spring stiffness of k = 108 is applied. The deformation of the dragon is shown Fig. 6.

The exponential Rosenbrock schemes exprb42 and pexprb43(%, %) show their advantageous behavior since these
methods can be applied with orders of magnitude larger time steps compared to the other integrators. Even with a step
size of h = 0.05 the relative error is still below 2% for exprb42 and about a single percent for pexprb43(%, %).1 From a
point of view of computation time, we achieve a speed up of a factor of around thirteen using exprb42 and of over fifteen
using pexprb43(%, %) compared to the second best method, the variational IMEX integrator as illustrated in Table 2.
Compared to the other methods, the exponential Rosenbrock methods allow for accurate simulations in real-time.

5.2.2. Simulation of fibers including elastic collisions

Fibers are canonical examples for complex interacting systems. According to the work of Michels et al. (see [30]), we
set up a toothbrush composed of individual bristles. Each bristle consists of coupled oscillators that are connected in such
a way that the fiber axis is enveloped by a chain of cuboid elements. For preventing a volumetric collapse during the
simulation, additional diagonal springs are used. The toothbrush consists of 1500 bristles, each of 20 particles leading
to 90 000 equations of motion. We make use of additional repulsive springs in order to prevent from interpenetrations.?
Since the approach allows for the direct use of realistic parameters in order to set up the stiffness values in the system

1 We estimated the error after 60s of simulated time based on the accumulated Euclidean distances of the individual particles in the position
space compared to ground truth values which are computed with a sufficiently small step size.

2 In order to detect collisions efficiently, we make use of a standard bounding volume hierarchy.
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Fig. 5. Simulation of an oscillating coil spring.

Fig. 6. Elastic deformation of a dragon model.

Fig. 7. Simulation of a brush cleaning a bronze-colored paperweight.

2 2

of coupled oscillators, we employ a Young’s modulus of 3.2 - 108 Nem™2, a torsional modulus of 10> Ncm ™2, and segment
thicknesses of 0.12 mm.
We simulate 15 s of a toothbrush cleaning a paperweight illustrated in Fig. 7. This simulation can be carried out almost

in real-time which is not possible with the use of classical methods as illustrated in Table 2.

5.2.3. Crash test simulation including nonelastic deformations

As a very complex example with relevance in the context of special effects, we simulate a frontal crash of a car into
a wall as illustrated in Fig. 8. The mesh of the car and its interior is composed of 120000 vertices leading to 360 000
equations of motion. The global motion (i.e. the rebound of the car) is computed by treating the car as a rigid body.
Using an appropriate bounding box, this can be easily carried out in real-time. The deformation is then computed using
a system of coupled oscillators with structural stiffness values of k = 10* and bending stiffness values of k/100. If the
deformation reaches a defined threshold, the rest lengths of the corresponding springs are corrected in a way, that they
do not elastically return to their initial shape. Using the exponential Rosenbrock methods, the whole simulation can be
carried out at interactive frame rates. Such an efficient computation cannot be achieved with established methods as
illustrated in Table 2.
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Fig. 8. Simulations of two frontal nonelastic crash scenarios: a car with moderate velocity (top) and high velocity (bottom).

6. Conclusion

We have derived a novel time integration technique for the simulation of large systems of nonlinear coupled oscillators
used in visual computing. In particular, a new formulation of these systems is introduced and a general family of efficient
fourth-order exponential Rosenbrock schemes pexprb43(c,, c3) (new scheme) and exprb42 (superconvergent scheme)
are proposed to apply to the resulting system. Furthermore, an efficient implementation of this approach is addressed. In
order to study the efficiency and accuracy of this new approach, a broad spectrum of numerical examples was computed.
In this regard, the simulation of deformable bodies, fibers including elastic collisions, and crash scenarios including
nonelastic deformations was addressed focusing on relevant aspects in the realm of visual computing, like stability and
energy conservation, large stiffness values, and high fidelity and visual accuracy. An evaluation against classical and
state-of-the-art methods was presented demonstrating their superior performance with respect to the simulation of large
systems of stiff differential equations.
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Appendix. Analytical framework and convergence results for exponential Rosenbrock methods [16]

Consider stiff problems of the general form (1.2) written as abstract time-dependent PDEs (or resulted upon their
spatial discretizations) in some Banach space X (we note that in the current work X = R3N). Many of these systems
naturally exhibit a semilinear form

u'(t) = F(u(t)) = Au(t) + g(u(t)), u(to) = uo. (A1)

For the error analysis of exponential Rosenbrock methods for (A.1), an abstract framework of strongly continuous
semigroups in X with norm || - || is usually employed. Let

J=Jw)=Fw=A+g'u)
be the Fréchet derivative of F. We suppose that F (and hence g) is differentiable in a neighborhood of the exact solution
of (A.1). The following assumptions are made.

Assumption 1. The linear operator A is the generator of a strongly continuous semigroup e in X.

Assumption 2. Suppose that (A.1) possesses a sufficiently smooth solution u : [0, T] — X, with derivatives in X and that
the nonlinearity g : X — X is sufficiently often Fréchet differentiable in a strip along the exact solution. All occurring
derivatives are assumed to be bounded.

Using a standard perturbation result (see [52, Chap. 3.1]), Assumption 1 implies that the Jacobian (A.2) generates a
strongly continuous semigroup e?, and that there exist constants C and  such that

lellxex < Ce®, t>0
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holds uniformly in a neighborhood of the exact solution. This further implies that ¢,(hJ) and thus the coefficients a;(hJ)
and b;(hJ) of the exponential Rosenbrock methods are bounded operators. Moreover, under Assumption 2, one can verify
that g,(u) = F(u) — Jyu is also sufficiently often Fréchet differentiable as well as satisfies the Lipschitz condition in a strip
along the exact solution.

These are crucial for the convergence proof of exponential Rosenbrock methods for stiff problems. Below we recall
such a result from [16, Thm. 4.1].

Theorem A.1 (Convergence Results for Constant Step Sizes). Let the initial value problem (A.1) satisfy Assumptions 1 and 2.
Consider for its numerical solution an explicit exponential Rosenbrock method (3.11) that fulfills the order conditions of Table 1
up to order p for some 3 < p < 5. Then, under the stability bound (3.24), the method converges with order p. In particular,
the numerical solution satisfies the error bound

llun — u(ta)ll < ChP (A2)
uniformly on ty < t, < T. Here, the constant C is independent of n and h.

We further note that the global error constant C in (A.2) depends on the interval width (T — tp) and values that are
uniformly bounded by Assumptions 1 and 2, but that is independently of ||J, |, i.e., the stiffness of the problem.
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