
The HABAC Model for Smart Home IoT
and Comparison to EGRBAC

Safwa Ameer and Ravi Sandhu
Institute for Cyber Security and NSF Center for Security and Privacy Enhanced Cloud Computing

Department of Computer Science, University of Texas at San Antonio
San Antonio, Texas, USA

Safwa.Ameer@gmail.com,ravi.sandhu@utsa.edu

Abstract
In the near future IoT will be part of every home turning our

houses into smart houses, in which we have multiple users with
complex social relationships between them using the same smart
devices. This requires sophisticated access control specification and
enforcement models. Recently, several access control models have
been developed or adapted for IoT in general, with a few specifically
designed for the smart home IoT domain. The majority of these
models are built on role-based access control (RBAC) or attribute-
based access control (ABAC) models which have had considerable
traction in traditional non-IoT domains. In this paper, we introduce
the smart home IoT attribute-based access control model (HABAC).
HABAC is a dynamic and fine-grained model that is developed
specifically to meet smart home IoT challenges. Currently it is not
precisely clear what are the pros and cons of ABAC over RBAC
in general, and in smart home IoT in particular. To this end we
provide an analysis of HABAC relative to the previously published
EGRBAC (extended generalized role based access control) model
for smart home IoT. We compare the theoretical expressive power
of these models by providing algorithms for converting an HABAC
specification to EGRBAC and vice versa, and discuss the insights
for practical deployment of these models resulting from these con-
structions. We conclude that a hybrid model combining ABAC and
RBAC features may be the most suitable for smart home IoT, and
likely more generally.

ACM Reference Format:
Safwa Ameer and Ravi Sandhu. 2021. The HABAC Model for Smart Home
IoT and Comparison to EGRBAC. In Proceedings of the 2021 ACM Workshop
on Secure and Trustworthy Cyber-physical Systems (SAT-CPS ’21), April 28,
2021, Virtual Event, USA. ACM, New York, NY, USA, 10 pages. https://doi.
org/10.1145/SaT011f

1 Introduction and Motivation
The Internet of things (IoT) describes the network of physical

objects (things) that are embedded with sensors, software, and other
technologies for the purpose of connecting and exchanging data
with other devices and systems over the Internet [1]. The concept

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAT-CPS ’21, April 28, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8319-6/21/04. . . $15.00
https://doi.org/10.1145/3445969.3450428

of IoT has attracted many applications including consumer, organi-
zational, industrial, infrastructure, and military applications. One
of the most popular domains for deploying smart connected devices
is the smart home. Surprisingly little attention has been paid to
access control policy specification and authentication in home IoT.
Home IoT is significantly different from traditional access control
domains [21]. In home IoT, we have many users with complex social
relationship who use the same devices. Moreover, the majority of
smart home devices do not have screens and keyboards making
them hands free for convenience while making access control more
challenging. Real world examples of the shortcomings of current
access control policy specification and authentication for home
IoT devices have begun to appear [21, 22, 39]. The characteristics
that make IoT distinct from prior computing domains necessitate a
rethinking of access control and authentication [21].

In the literature, several access control models have been pro-
posed for IoT in general. The majority of them are built on ABAC
or RBAC. Some researchers argue that RBAC is more suitable for
IoT since it is simpler in management and review, while ABAC is
complex [3, 26, 27]. On the other hand, others argue that ABAC
models are more scalable and dynamic, since they can capture dif-
ferent devices and environment contextual information [8, 9, 43].
However, RBAC models can be extended, such as the recent EGR-
BAC model [4] for smart home IoT which can express environment
and device characteristics. RBAC enforcement may also be more
lightweight for constrained home environment.

Hence, when it comes to smart homes, at this point it is not fully
clear what is the benefit of ABAC over RBAC, and vice versa. Our
intuitive insight is that a hybrid model will better capture smart
home IoT AC requirements as this was already the case for tradi-
tional access control models. In order to further investigate this
intuition our approach is to develop pure RBAC and pure ABAC
based models explicitly defined to meet smart home challenges,
and compare their benefits and drawbacks. This comparison will
provide insights to guide us in designing “optimal” hybrid mod-
els in future work. Hence, in this paper, we propose smart home
IoT ABAC (HABAC) model. Furthermore, we provide an analysis
of HABAC relative to the previously published EGRBAC model
[4]. We compare the theoretical expressive power of these mod-
els by providing algorithms to convert an HABAC specification
to EGRBAC and vice versa. We discuss the insights for practical
deployment of these models resulting from these constructions.
The reasons for choosing EGRBAC in specific to compare it against
HABAC are as follows. First EGRBAC is a contextual aware, fine
grained model designed specifically to meet smart home challenges.
Second, it satisfies the criteria for home IoT access control models

https://doi.org/10.1145/SaT011f
https://doi.org/10.1145/SaT011f
https://doi.org/10.1145/SaT011f

proposed by [4]. Moreover, it meets the new perspective of smart
home IoT access control requirements recently identified by [21].

The rest of the paper is organized as follows. Section 2 provides
an analysis and review of related work, including an overview of
EGRBAC [4]. Section 3 introduces the HABAC model along with a
use case scenario. Section 4 shows how to translate EGRBAC poli-
cies into HABAC. An approach for constructing EGRBAC compo-
nents and relations from a given HABAC specifications is described
in Section 5. Section 6 discusses the insights of this work,including
a comparison between HABAC and EGRBAC. Section 7 concludes
the paper.
2 Related Work

Security researchers have carefully investigated smart IoT. While
some have analyzed IoT security and privacy vulnerabilities [5, 12,
17, 41], others have studied IoT frameworks to identify security chal-
lenges, and design issues [14, 15, 20, 23]. It is generally accepted by
most researchers that access control is a critical service in IoT. Ouad-
dah et al [33] provide an extensive survey on access control in IoT
environments. Many access control solutions (user to device and/or
device to device) have been proposed in the literature for different
IoT applications. Some solutions are based on RBAC [16, 38] (as in
[4, 6, 7, 9, 11, 26, 44]). While other solutions are based on ABAC
[24, 25] (as in [8, 10, 19, 30, 42]. Some researchers argue that unlike
ABAC, RBAC based model are incapable of capturing changing
characteristics such as, environment attributes, device characteris-
tics. However, the process of authorization is more simple in RBAC.
As a result, some authors [27] proposed a combined access control
model. Moreover, some of the proposed models in the literature
are built on blockchain technology [2, 13, 31, 32]. However, as [31]
described, the blockchain technology has some technical character-
istics that could limit its applicability. For instance, cryptocurrency
fees, and processing time. Few solutions have been proposed in the
literature that are based on UCON [34, 35], for example [18, 28].
Several other access control models for IoT have been proposed,
the authors in [3, 33, 36, 37] provided surveys on different access
control models in the literature. However, none of them meet the
criteria proposed by [4] for smart home AC models, and the new
perspective for smart home IoT AC identified by [21]. Recently,
Ameer et al [4] have proposed a criteria for home IoT access control
models based on He et al analysis [21] and Ouddah et al survey [33].
Moreover, they introduced the EGRBAC model for smart home
IoT access control, which is an RBAC based model that meets the
characteristics proposed in both [4, 21]. Unlike traditional RBAC,
EGRBAC captures the environment contextual changes, and dif-
ferent device characteristics. Hence, they confute the claim that
RBAC based models are inadequate and inflexible in addressing
the environment changes, and device or permission characteristics.
That being so, it is not fully clear what is the benefit of ABAC over
RBAC, and vice versa in the home IoT context. In this paper, we
carefully investigated the expressiveness of HABAC compared to
EGRBAC, and vice versa. We briefly review EGRBAC model below
since it is relevant to Sections 4 and 5.
2.1 Background: EGRBAC For Smart Home IoT

Ameer et al introduced the extended generalized role based ac-
cess control model [4]. In addition to the usual concept of User

Figure 1: EGRBAC Model Components

Roles, EGRBAC incorporates the notion of Device Roles and Envi-
ronment Roles. It is illustrated in Figure 1. Roles (R) are analogous to
the traditional RBAC users roles. However, in the context of smart
homes, a role specifically represents the relationship between the
user and the family. Device roles (DR) are defined as means of cate-
gorizing permissions of different devices. Environment roles (ER)
represent environmental contexts, such as daytime/nighttime, and
winter/summer. A role pair 𝑟𝑝 has a role part 𝑟𝑝.𝑟 that is the single
role associated with 𝑟𝑝 , and an environment role part 𝑟𝑝.𝐸𝑅 that
is the subset of environment roles associated with 𝑟𝑝 . The main
idea in EGRBAC as a whole is that a user is assigned a subset of
roles and according to the current active roles in a session and the
active environment roles, some role pairs will be active, whereby
the user will get access to the permissions assigned to the device
roles which are assigned to the current active role pairs.
3 HABAC Model for Smart Home IoT

ABAC models utilize attributes of users, sessions (subjects), ob-
jects, operations and environment to specify flexible, dynamic, and
fine grained authorization policies. These characteristics arguably
make ABAC suitable for deployment in complex domains such as
smart home IoT. In this section, we define our HABAC (Home-IoT
Attribute Based Access Control) model developed for user to device
interaction in smart home IoT, where devices are the objects. The
HABAC model is inspired by the ABAC model of Xin et al [25], ex-
tended to include environment attributes. Figure 2 depicts HABAC
components. Users (U), Operations (OP), Devices (D), and Environ-
ment States (ES) are sets and shown in ovals. User Attributes (UA),
Session Attributes (SA), Operation Attributes (OPA), Environment
State Attributes (ESA), and Device Attributes (DA) are attribute
functions and shown as squares. We have two types of constraints
shown in rectangles: constraints on user attributes, and constraints
on subject attributes. Table 1 formally defines these components.
Users (U): are humans interacting directly with the smart things.
Sessions (S): are similar to the concept of subjects in [25], users
create sessions during which they may perform some actions in
the system, the creating user is the only one who can terminate
a session. Devices (D): are smart home devices such as a smart
light. Operations (OP): represent actions on devices as specified
by device manufacturers. Environment States (ES): represent a
picture of the environment at a given time instant that we want
to describe, it may have values such as: current, yesterday, and so
on. For simplicity, in this paper, the environment state is always
equal to current. Users, devices, operations, and environment states

Table 1: HABAC Model Formalization
Basic Sets and Functions
−𝑈 , 𝑆,𝑂𝑃, 𝐷, and 𝐸𝑆 are finite sets of users, sessions, operations, devices, and environment states respectively.
−𝑈𝐴, 𝑆𝐴,𝑂𝑃𝐴, 𝐸𝑆𝐴, and 𝐷𝐴 are finite sets of users, sessions, operations, environment states, and devices attribute functions respectively.
− For each attribute 𝑎𝑡𝑡 in𝑈𝐴 ∪ 𝑆𝐴 ∪𝑂𝑃𝐴 ∪ 𝐸𝑆𝐴 ∪𝐷𝐴, 𝑅𝑎𝑛𝑔𝑒 (𝑎𝑡𝑡) is the attribute range, a finite set of atomic values.
−𝑎𝑡𝑡𝑇 𝑦𝑝𝑒 : 𝑈𝐴 ∪ 𝑆𝐴 ∪𝑂𝑃𝐴 ∪ 𝐸𝑆𝐴 ∪𝐷𝐴 −→ {𝑠𝑒𝑡, 𝑎𝑡𝑜𝑚𝑖𝑐 }.
− Each attribute function𝑢𝑎, 𝑠𝑎, 𝑜𝑝𝑎, 𝑒𝑠𝑎, and𝑑𝑎 in𝑈𝐴, 𝑆𝐴,𝑂𝑃𝐴, 𝐸𝑆𝐴, and𝐷𝐴 respectively maps users in𝑈 , sessions in 𝑆 , operation in𝑂𝑃 , environment
state in 𝐸𝑆 , and devices in 𝐷 respectively to atomic or set attribute values. Formally:

𝑢𝑎 : 𝑈 −→
{
𝑅𝑎𝑛𝑔𝑒 (𝑢𝑎), if 𝑎𝑡𝑡𝑇 𝑦𝑝𝑒 (𝑢𝑎) = 𝑎𝑡𝑜𝑚𝑖𝑐
2𝑅𝑎𝑛𝑔𝑒 (𝑢𝑎) , if 𝑎𝑡𝑡𝑇 𝑦𝑝𝑒 (𝑢𝑎) = 𝑠𝑒𝑡

𝑠𝑎 : 𝑆 −→
{
𝑅𝑎𝑛𝑔𝑒 (𝑠𝑎), if 𝑎𝑡𝑡𝑇 𝑦𝑝𝑒 (𝑠𝑎) = 𝑎𝑡𝑜𝑚𝑖𝑐
2𝑅𝑎𝑛𝑔𝑒 (𝑠𝑎) , if 𝑎𝑡𝑡𝑇 𝑦𝑝𝑒 (𝑠𝑎) = 𝑠𝑒𝑡

𝑜𝑝𝑎 : 𝑂𝑃 −→
{
𝑅𝑎𝑛𝑔𝑒 (𝑜𝑝𝑎), if 𝑎𝑡𝑡𝑇 𝑦𝑝𝑒 (𝑜𝑝𝑎) = 𝑎𝑡𝑜𝑚𝑖𝑐
2𝑅𝑎𝑛𝑔𝑒 (𝑜𝑝𝑎) , if 𝑎𝑡𝑡𝑇 𝑦𝑝𝑒 (𝑜𝑝𝑎) = 𝑠𝑒𝑡

𝑒𝑠𝑎 : 𝐸𝑆 −→
{
𝑅𝑎𝑛𝑔𝑒 (𝑒𝑠𝑎), if 𝑎𝑡𝑡𝑇 𝑦𝑝𝑒 (𝑒𝑠𝑎) = 𝑎𝑡𝑜𝑚𝑖𝑐
2𝑅𝑎𝑛𝑔𝑒 (𝑒𝑠𝑎) , if 𝑎𝑡𝑡𝑇 𝑦𝑝𝑒 (𝑒𝑠𝑎) = 𝑠𝑒𝑡

𝑑𝑎 : 𝐷 −→
{
𝑅𝑎𝑛𝑔𝑒 (𝑑𝑎), if 𝑎𝑡𝑡𝑇 𝑦𝑝𝑒 (𝑑𝑎) = 𝑎𝑡𝑜𝑚𝑖𝑐
2𝑅𝑎𝑛𝑔𝑒 (𝑑𝑎) , if 𝑎𝑡𝑡𝑇 𝑦𝑝𝑒 (𝑑𝑎) = 𝑠𝑒𝑡

−𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑈𝑠𝑒𝑟 : 𝑆 −→ 𝑈 , maps each session to its creator user.
−𝑠𝑎 (𝑠) ⊆ 𝑢𝑎 (𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑈𝑠𝑒𝑟 (𝑠)) , for each 𝑠 ∈ 𝑆
User Attributes Constraints
− User attribute constraint𝑈𝐴𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ⊆ 𝑈𝐴𝑃 × 2𝑈𝐴𝑃 , where user attribute pair𝑈𝐴𝑃 is a pair of user attribute, and its value (𝑢𝑎𝑛𝑎𝑚𝑒 ,𝑢𝑎𝑣𝑎𝑙𝑢𝑒) .
− Each 𝑢𝑎𝑐 = ((𝑢𝑎𝑥 , 𝑦),𝑈𝐴𝑃 𝑗) ∈ 𝑈𝐴𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 specifies the following invariant:{
(∀𝑢𝑙 ∈ 𝑈) (∀(𝑢𝑎𝑚, 𝑛) ∈ 𝑈𝐴𝑃 𝑗) [𝑢𝑎𝑥 (𝑢𝑙) = 𝑦 ⇒ 𝑢𝑎𝑚 (𝑢𝑙) ≠ 𝑛], if 𝑎𝑡𝑡𝑇 𝑦𝑝𝑒 (𝑢𝑎𝑥) = 𝑎𝑡𝑡𝑇 𝑦𝑝𝑒 (𝑢𝑎𝑚) = 𝑎𝑡𝑜𝑚𝑖𝑐
(∀𝑢𝑙 ∈ 𝑈) (∀(𝑢𝑎𝑚, 𝑛) ∈ 𝑈𝐴𝑃 𝑗) [𝑦 ∈ 𝑢𝑎𝑥 (𝑢𝑙) ⇒ 𝑛 ∉ 𝑢𝑎𝑚 (𝑢𝑙)], if 𝑎𝑡𝑡𝑇 𝑦𝑝𝑒 (𝑢𝑎𝑥) = 𝑎𝑡𝑡𝑇 𝑦𝑝𝑒 (𝑢𝑎𝑚) = 𝑠𝑒𝑡

Subject Attributes Constraints
− Subject attribute constraint 𝑆𝐴𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ⊆ 𝑆𝐴𝑃×2𝑆𝐴𝑃 , where subject attribute pair 𝑆𝐴𝑃 is a pair of subject attribute, and its value (𝑠𝑎𝑛𝑎𝑚𝑒 , 𝑠𝑎𝑣𝑎𝑙𝑢𝑒) .
− Each 𝑠𝑎𝑐 = ((𝑠𝑎𝑥 , 𝑦), 𝑆𝐴𝑃 𝑗) ∈ 𝑆𝐴𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 specifies the following invariant:{
(∀𝑠𝑙 ∈ 𝑆) (∀(𝑠𝑎𝑚, 𝑛) ∈ 𝑆𝐴𝑃 𝑗) [𝑠𝑎𝑥 (𝑠𝑙) = 𝑦 ⇒ 𝑠𝑎𝑚 (𝑠𝑙) ≠ 𝑛], if 𝑎𝑡𝑡𝑇 𝑦𝑝𝑒 (𝑠𝑎𝑥) = 𝑎𝑡𝑡𝑇 𝑦𝑝𝑒 (𝑠𝑎𝑚) = 𝑎𝑡𝑜𝑚𝑖𝑐
(∀𝑠𝑙 ∈ 𝑆) (∀(𝑠𝑎𝑚, 𝑛) ∈ 𝑆𝐴𝑃 𝑗) [𝑦 ∈ 𝑠𝑎𝑥 (𝑠𝑙) ⇒ 𝑛 ∉ 𝑠𝑎𝑚 (𝑠𝑙)], if 𝑎𝑡𝑡𝑇 𝑦𝑝𝑒 (𝑠𝑎𝑥) = 𝑎𝑡𝑡𝑇 𝑦𝑝𝑒 (𝑠𝑎𝑚) = 𝑠𝑒𝑡

Authorization Functions (Policies)
− Operation authorization function: For each 𝑜𝑝 ∈ 𝑂𝑃 ,𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑜𝑝 (𝑠 : 𝑆, 𝑒𝑠 : 𝐸𝑆,𝑑 : 𝐷) is a propositional logic formula returning true or false, and
it is defined using the following policy language:

• 𝛼 ::= 𝛼 ∧ 𝛼 | 𝛼 ∨ 𝛼 | (𝛼) | ¬𝛼 | ∃𝑥 ∈ 𝑠𝑒𝑡 .𝛼 | ∀𝑥 ∈ 𝑠𝑒𝑡 .𝛼 | 𝑠𝑒𝑡 𝑠𝑒𝑡𝑐𝑜𝑚𝑝𝑎𝑟𝑒 𝑠𝑒𝑡 | 𝑎𝑡𝑜𝑚𝑖𝑐 ∈ 𝑠𝑒𝑡 | 𝑎𝑡𝑜𝑚𝑖𝑐 ∉ 𝑠𝑒𝑡 |
𝑎𝑡𝑜𝑚𝑖𝑐 𝑎𝑡𝑜𝑚𝑖𝑐𝑐𝑜𝑚𝑝𝑎𝑟𝑒 𝑎𝑡𝑜𝑚𝑖𝑐

• 𝑠𝑒𝑡𝑐𝑜𝑚𝑝𝑎𝑟𝑒 ::=⊂ |⊆ |⊈ | ∪ | ∩
• 𝑎𝑡𝑜𝑚𝑖𝑐𝑐𝑜𝑚𝑝𝑎𝑟𝑒 ::=< |= | ≤
• 𝑠𝑒𝑡 ::= 𝑠𝑎 (𝑠) | 𝑜𝑝𝑎 (𝑜𝑝) | 𝑒𝑠𝑎 (𝑒𝑠) | 𝑑𝑎 (𝑑) ,Where 𝑎𝑡𝑡𝑇 𝑦𝑝𝑒 (𝑠𝑎) = 𝑎𝑡𝑡𝑇 𝑦𝑝𝑒 (𝑜𝑝𝑎) = 𝑎𝑡𝑡𝑇 𝑦𝑝𝑒 (𝑒𝑠𝑎) = 𝑎𝑡𝑡𝑇 𝑦𝑝𝑒 (𝑑𝑎) = 𝑠𝑒𝑡
• 𝑎𝑡𝑜𝑚𝑖𝑐 ::= 𝑠𝑎 (𝑠) | 𝑜𝑝𝑎 (𝑜𝑝) | 𝑒𝑠𝑎 (𝑒𝑠) | 𝑑𝑎 (𝑑) | 𝑣𝑎𝑙𝑢𝑒 ,Where 𝑎𝑡𝑡𝑇 𝑦𝑝𝑒 (𝑠𝑎) = 𝑎𝑡𝑡𝑇 𝑦𝑝𝑒 (𝑜𝑝𝑎) = 𝑎𝑡𝑡𝑇 𝑦𝑝𝑒 (𝑒𝑠𝑎) = 𝑎𝑡𝑡𝑇 𝑦𝑝𝑒 (𝑑𝑎) = 𝑎𝑡𝑜𝑚𝑖𝑐

Authorization Decision
– A subject 𝑠 ∈ 𝑆 is allowed to perform an operation 𝑜𝑝 ∈ 𝑂𝑃 in a device 𝑑 ∈ 𝐷 during an environment state 𝑒𝑠 ∈ 𝐸𝑆 , if the attributes of subject 𝑠 ,
operation 𝑜𝑝 , device 𝑑 , and environment state 𝑒𝑠 satisfy 𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑜𝑝 (𝑠 : 𝑆, 𝑒𝑠 : 𝐸𝑆,𝑑 : 𝐷) policies.

have characteristics which are used in access control decision and
expressed as their attributes. An attribute is a function which takes
an entity such as a user and returns a specific value from its range.
An attribute range is given by a finite set of atomic values. An
atomic valued attribute will return one value from the range, while
a set valued attribute will return a subset of the range. In general,
we have two types of attributes: (a) Dynamic Attributes, this type
is rapidly changing due to different conditions. For instance, user
location, weather, and device temperature. (b) Static Attributes,
this type is relatively static and need administrator action to be
changed. For example, user relationship, device level of danger,
and so on. User Attributes (UA): is the set of attributes associ-
ated with users. Session Attributes (SA): is the set of attributes
associated with sessions. Session attributes are set by the creating
user, and are constrained by policies established by security archi-
tects (discussed later). Session attributes require an initial value

at creation time which will be inherited from the corresponding
creator user’s attributes. Operation Attributes (OPA): is the set
of attributes assigned to different operations, for example you may
want to characterize dangerous operations by creating an opera-
tion attribute called "Dangerous Operations" and associate it with
those operations. Device Attributes (DA): is the set of attributes
associated with smart things, for instance, "Kitchen devices", and
"Alex devices". Environment state Attributes (ESA): is the set
of attributes describe the environment condition of a specific time.
For example, "days of the week", and "weather condition". How
different environment state attributes get triggered is outside the
scope of our model. Operation, and device attributes are partial
function s; we may have some devices, or some operations that are
not assigned to some attributes. On the other hand, users, sessions,
and environment roles attributes are total functions. A constraint
is an invariant that must be maintained at all times. In HABAC

Figure 2: Smart Home IoT ABAC Model

we define two types of constraints, as follows. Constraints on
User attributes: these constraints enforce restrictions on user
attributes. For instance, if we have the following user attribute
constraint ((𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝, 𝑘𝑖𝑑), {(𝐴𝑑𝑢𝑙𝑡𝑠,𝑇𝑟𝑢𝑒)}), this constraint
implies that if a user 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 attribute is equal to 𝑘𝑖𝑑 , then he
cannot have𝑇𝑟𝑢𝑒 as the value of the attribute function𝐴𝑑𝑢𝑙𝑡𝑠 .Con-
straints on Subject attributes: these constraints enforce restric-
tions on subject attributes. For instance, if we have the following
subject attribute constraint: ((𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 , 𝑠𝑡𝑎𝑦𝑖𝑛𝑔 𝐻𝑜𝑚𝑒 𝐾𝑖𝑑),
{(𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝, 𝑡𝑟𝑎𝑣𝑒𝑙 𝐴𝑏𝑟𝑜𝑎𝑑 𝐾𝑖𝑑)}), this constraint implies that
for any session 𝑠𝑙 if 𝑠𝑡𝑎𝑦𝑖𝑛𝑔 𝐻𝑜𝑚𝑒 𝐾𝑖𝑑 ∈ 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠𝑙), then
𝑡𝑟𝑎𝑣𝑒𝑙 𝐴𝑏𝑟𝑜𝑎𝑑 𝐾𝑖𝑑 ∉ 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠𝑙).Authorization Functions
(Policies): are two-valued boolean function which are evaluated for
each access decision. An authorization policy for a specific opera-
tion takes a subject, an environment state, a device and returns true
or false based on attribute values. In Table 1 we define a common
policy language for authorization functions using propositional
logic formula.
3.1 HABAC Use Case

We present a use case to demonstrate the components and con-
figurations of HABAC. The objective is as follow: (a) Allow kids
to use kids friendly operations in entertainment devices (𝐺 , 𝑃𝐺
contents in TV, and 𝑃𝑆𝐴3 (games for group age below 3 years old),
𝑃𝑆𝐴7 (games for group age below 7 years old) contents in Play
Station) during specific time (weekends afternoons and evenings,
and weekdays evenings). (b) Allow teenagers to use entertainment
devices unconditionally. (c) Authorize teenagers to use danger-
ous kitchen devices (Oven) only when one of the parents is in
the kitchen. (d) Authorize teenagers to use non dangerous kitchen
devices (Fridge) unconditionally. (e) Allow parents to use any op-
eration in any device unconditionally. To achieve these objectives,
HABAC can be configured as shown in Table 2. Here, we have three
users, 𝑎𝑙𝑒𝑥, 𝑏𝑜𝑏, and 𝑎𝑛𝑛𝑒 with user attribute 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 set to
the values 𝑘𝑖𝑑 , 𝑡𝑒𝑒𝑛𝑎𝑔𝑒𝑟 , and 𝑝𝑎𝑟𝑒𝑛𝑡 respectively. When a user 𝑢𝑥
creates a session, it will automatically inherit subset of𝑢𝑥 attributes.
We have five devices𝑇𝑉 , 𝑃𝑙𝑎𝑦𝑆𝑡𝑎𝑡𝑖𝑜𝑛,𝑂𝑣𝑒𝑛, 𝐹𝑟𝑖𝑑𝑔𝑒 and 𝐹𝑟𝑜𝑛𝑡𝐷𝑜𝑜𝑟 .
𝑂𝑣𝑒𝑛, and 𝐹𝑟𝑖𝑑𝑔𝑒 are assigned the following device attributes by
the house owner 𝐹𝑟𝑖𝑑𝑔𝑒 ← (𝐷𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠𝑒𝐾𝑖𝑡𝑐ℎ𝑒𝑛𝐷𝑒𝑣𝑖𝑐𝑒𝑠 : 𝐹𝑎𝑙𝑠𝑒),
and𝑂𝑣𝑒𝑛 ← (𝐷𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠𝑒𝐾𝑖𝑡𝑐ℎ𝑒𝑛𝐷𝑒𝑣𝑖𝑐𝑒𝑠 : 𝑇𝑟𝑢𝑒). We have twelve
operations 𝐺 , 𝑃𝐺 , 𝐴3, 𝐴7, 𝐴12, 𝐵𝑢𝑦𝐺𝑎𝑚𝑒𝑠 , 𝑂𝑁 , 𝑂𝐹𝐹 , 𝑂𝑝𝑒𝑛, 𝐶𝑙𝑜𝑠𝑒 ,
𝐿𝑜𝑐𝑘 , and 𝑈𝑛𝑙𝑜𝑐𝑘 . These operations are assigned to operation at-
tributes as following, (𝐺 , 𝐴3, and 𝐴7) ← (𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 : 𝑇𝑟𝑢𝑒),
while (𝑃𝐺 , 𝐴12, 𝐵𝑢𝑦𝐺𝑎𝑚𝑒𝑠) ← (𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 : 𝐹𝑎𝑙𝑠𝑒). We have

one environment state 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 which has three attribute functions
(𝑑𝑎𝑦, 𝑡𝑖𝑚𝑒, and 𝑃𝑎𝑟𝑒𝑛𝑡𝐼𝑛𝐾𝑖𝑡𝑐ℎ𝑒𝑛). The authorization function is
a disjunction of five propositional statements. The first statement
gives kids access to kids friendly operations during weekdays
evenings, or weekends afternoon and evenings. The second state-
ment gives teenagers access to dangerous kitchen devices only
when one of the parents is in the kitchen. The third statement
authorizes teenagers to use non dangerous kitchen devices uncon-
ditionally. The fourth statement allows teenagers to access kids
friendly operations, and non kids friendly operations uncondition-
ally. Finally, the fifth statement gives parents access to anything
unconditionally.

Table 2: HABAC Use Case
𝑈 = {𝑎𝑙𝑒𝑥,𝑏𝑜𝑏, 𝑎𝑛𝑛𝑒 },
𝑈𝐴 = {𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝, 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛}
𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 : 𝑢 : 𝑈 → {𝑝𝑎𝑟𝑒𝑛𝑡, 𝑘𝑖𝑑, 𝑡𝑒𝑒𝑛𝑎𝑔𝑒𝑟 }
𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 : 𝑢 : 𝑈 → {𝐾𝑖𝑡𝑐ℎ𝑒𝑛,𝑀𝑎𝑠𝑡𝑒𝑟𝐵𝑒𝑑𝑅𝑜𝑜𝑚, 𝐵𝑒𝑑𝑅𝑜𝑜𝑚1,

𝐵𝑒𝑑𝑅𝑜𝑜𝑚2, 𝐿𝑖𝑣𝑖𝑛𝑔𝑅𝑜𝑜𝑚}
𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑎𝑙𝑒𝑥) = 𝑘𝑖𝑑
𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑎𝑛𝑛𝑒) = 𝑡𝑒𝑒𝑛𝑎𝑔𝑒𝑟
𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑏𝑜𝑏) = 𝑝𝑎𝑟𝑒𝑛𝑡

𝑆 = {. . .}
𝑆𝐴 = {𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝, 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛}
𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 : 𝑠 : 𝑆 → {𝑝𝑎𝑟𝑒𝑛𝑡, 𝑘𝑖𝑑, 𝑡𝑒𝑒𝑛𝑎𝑔𝑒𝑟 }
𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 : 𝑠 : 𝑆 → {𝐾𝑖𝑡𝑐ℎ𝑒𝑛,𝑀𝑎𝑠𝑡𝑒𝑟𝐵𝑒𝑑𝑅𝑜𝑜𝑚, 𝐵𝑒𝑑𝑅𝑜𝑜𝑚1,

𝐵𝑒𝑑𝑅𝑜𝑜𝑚2, 𝐿𝑖𝑣𝑖𝑛𝑔𝑅𝑜𝑜𝑚}

𝐷 = {𝑇𝑉 , 𝑃𝑙𝑎𝑦𝑆𝑡𝑎𝑡𝑖𝑜𝑛,𝑂𝑣𝑒𝑛, 𝐹𝑟𝑖𝑑𝑔𝑒, 𝐹𝑟𝑜𝑛𝑡𝐷𝑜𝑜𝑟 }
𝐷𝐴 = {𝐷𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠𝑒𝐾𝑖𝑡𝑐ℎ𝑒𝑛𝐷𝑒𝑣𝑖𝑐𝑒𝑠 }
𝐷𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠𝑒𝐾𝑖𝑡𝑐ℎ𝑒𝑛𝐷𝑒𝑣𝑖𝑐𝑒𝑠 : 𝑑 : 𝐷 → {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒 }
𝐷𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠𝑒𝐾𝑖𝑡𝑐ℎ𝑒𝑛𝐷𝑒𝑣𝑖𝑐𝑒𝑠 (𝑂𝑣𝑒𝑛) = 𝑇𝑟𝑢𝑒
𝐷𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠𝑒𝐾𝑖𝑡𝑐ℎ𝑒𝑛𝐷𝑒𝑣𝑖𝑐𝑒𝑠 (𝐹𝑟𝑖𝑑𝑔𝑒) = 𝐹𝑎𝑙𝑠𝑒

𝐸𝑆 = {𝐶𝑢𝑟𝑟𝑒𝑛𝑡 }
𝐸𝑆𝐴 = {𝑑𝑎𝑦, 𝑡𝑖𝑚𝑒, 𝑃𝑎𝑟𝑒𝑛𝑡𝐼𝑛𝐾𝑖𝑡𝑐ℎ𝑒𝑛}
𝑑𝑎𝑦 : 𝑒𝑠 : 𝐸𝑆 → {𝑆,𝑀,𝑇 ,𝑊 ,𝑇ℎ, 𝐹, 𝑆𝑎}
𝑡𝑖𝑚𝑒 : 𝑒𝑠 : 𝐸𝑆 → {𝑥 |𝑥 is an hour of a day }
𝑃𝑎𝑟𝑒𝑛𝑡𝐼𝑛𝐾𝑖𝑡𝑐ℎ𝑒𝑛 : 𝑒𝑠 : 𝐸𝑆 → {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒 }

𝑂𝑃𝑇𝑉 = {𝐺, 𝑃𝐺, . . .}
𝑂𝑃𝑃𝑙𝑎𝑦𝑆𝑡𝑎𝑡𝑖𝑜𝑛 = {𝐴3, 𝐴7, 𝐴12, 𝐵𝑢𝑦𝐺𝑎𝑚𝑒𝑠, . . .}
𝑂𝑃𝑂𝑣𝑒𝑛 = {𝑂𝑁,𝑂𝐹𝐹 }
𝑂𝑃𝐹𝑟𝑖𝑑𝑔𝑒 = {𝑂𝑝𝑒𝑛,𝐶𝑙𝑜𝑠𝑒 }
𝑂𝑃𝐹𝑟𝑜𝑛𝑡𝐷𝑜𝑜𝑟 = {𝐿𝑜𝑐𝑘,𝑈𝑛𝑙𝑜𝑐𝑘 }
𝑂𝑃 = 𝑂𝑃𝑇𝑉 ∪𝑂𝑃𝑃𝑙𝑎𝑦𝑆𝑡𝑎𝑡𝑖𝑜𝑛 ∪𝑂𝑃𝑂𝑣𝑒𝑛 ∪𝑂𝑃𝐹𝑟𝑖𝑑𝑔𝑒 ∪𝑂𝑃𝐹𝑟𝑜𝑛𝑡𝐷𝑜𝑜𝑟

𝑂𝑃𝐴 = {𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 }
𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 : 𝑜𝑝 : 𝑂𝑃 → {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒 }
𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 (𝐺) = 𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 (𝐴3) =

𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 (𝐴7) = 𝑇𝑟𝑢𝑒
𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 (𝑃𝐺) = 𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 (𝐴12) =

𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 (𝐵𝑢𝑦𝐺𝑎𝑚𝑒𝑠) = 𝐹𝑎𝑙𝑠𝑒

𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑜𝑝 (𝑠 : 𝑆, 𝑒𝑠 : 𝐸𝑆,𝑑 : 𝐷) ≡
(𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑘𝑖𝑑∧ ((𝑑𝑎𝑦 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ∈ {𝑆𝑎, 𝑆 } ∧ 12 : 00 ≤
𝑡𝑖𝑚𝑒 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ≤ 19 : 00) ∨ (𝑑𝑎𝑦 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ∈ {𝑀,𝑇,𝑊 ,𝑇ℎ, 𝐹 }∧17 :
00 ≤ 𝑡𝑖𝑚𝑒 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ≤ 19 : 00)) ∧𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 (𝑜𝑝) = 𝑇𝑟𝑢𝑒∨
(𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑡𝑒𝑒𝑛𝑎𝑔𝑒𝑟 ∧ 𝑃𝑎𝑟𝑒𝑛𝑡𝐼𝑛𝐾𝑖𝑡𝑐ℎ𝑒𝑛 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) =

𝑇𝑟𝑢𝑒∧ 𝐷𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠𝑒𝐾𝑖𝑡𝑐ℎ𝑒𝑛𝐷𝑒𝑣𝑖𝑐𝑒𝑠 (𝑑) = 𝑇𝑟𝑢𝑒)∨
(𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑡𝑒𝑒𝑛𝑎𝑔𝑒𝑟∧ 𝐷𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠𝑒𝐾𝑖𝑡𝑐ℎ𝑒𝑛𝐷𝑒𝑣𝑖𝑐𝑒𝑠 (𝑑) =
𝐹𝑎𝑙𝑠𝑒)∨
(𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑡𝑒𝑒𝑛𝑎𝑔𝑒𝑟∧ (𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 (𝑜𝑝) = 𝑇𝑟𝑢𝑒 ∨
𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 (𝑜𝑝) = 𝐹𝑎𝑙𝑠𝑒))∨
(𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑝𝑎𝑟𝑒𝑛𝑡)

Table 3: EGRBAC Configuration in HABAC
-𝑈𝐻𝐴𝐵𝐴𝐶 = 𝑈𝐸𝐺𝑅𝐵𝐴𝐶

-𝑈𝐴 = 𝑆𝐴 = {𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 }
- 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 : 𝑢 ∈ 𝑈𝐻𝐴𝐵𝐴𝐶 → 2𝑅
- 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 : 𝑠 ∈ 𝑆 → 2𝑅
- (∀𝑢𝑖 ∈ 𝑈𝐻𝐴𝐵𝐴𝐶) [𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑢𝑖) = {𝑟𝑥 | (𝑢𝑖 , 𝑟𝑥) ∈ 𝑈𝐴}]

-𝑈𝐴𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 = {𝑢𝑎𝑐𝑖 }
- For all 𝑠𝑠𝑑𝑐𝑖 = (𝑟𝑖 , 𝑅 𝑗) ∈ 𝑆𝑆𝐷𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 :
𝑢𝑎𝑐𝑖 = ((𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝, 𝑟𝑖),𝑈𝐴𝑃 𝑗) , where 𝑈𝐴𝑃 𝑗 =

{(𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝, 𝑟𝑛) |𝑟𝑛 ∈ 𝑅 𝑗 }

- 𝑆𝐴𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 = {𝑠𝑎𝑐𝑖 }
- For all 𝑑𝑠𝑑𝑐𝑖 = (𝑟𝑖 , 𝑅 𝑗) ∈ 𝐷𝑆𝐷𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 :
𝑠𝑎𝑐𝑖 = ((𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝, 𝑟𝑖), 𝑆𝐴𝑃 𝑗) , where 𝑆𝐴𝑃 𝑗 =

{(𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝, 𝑟𝑛) |𝑟𝑛 ∈ 𝑅 𝑗 }

- 𝐸𝑆 = {𝐶𝑢𝑟𝑟𝑒𝑛𝑡 }
- 𝐸𝑆𝐴 = 𝐸𝑅

(∀𝑒𝑠𝑎𝑖 ∈ 𝐸𝑆𝐴) [𝑒𝑠𝑎𝑖 : 𝑒𝑠 ∈ 𝐸𝑆 → {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒 }]

- 𝐷𝐻𝐴𝐵𝐴𝐶 = 𝐷𝐸𝐺𝑅𝐵𝐴𝐶 ,𝑂𝑃𝐻𝐴𝐵𝐴𝐶 = 𝑂𝑃𝐸𝐺𝑅𝐵𝐴𝐶

- 𝐷𝐴 = 𝑂𝑃𝐴 = 𝐷𝑅

- (∀𝑑𝑎𝑖 ∈ 𝐷𝐴) [𝑑𝑎 : 𝑑 ∈ 𝐷𝐻𝐴𝐵𝐴𝐶 → {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒 }]
- (∀𝑜𝑝𝑎𝑖 ∈ 𝑂𝑃𝐴) [𝑜𝑝𝑎 : 𝑜𝑝 ∈ 𝑂𝑃𝐻𝐴𝐵𝐴𝐶 → {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒 }]
- (∀(𝑑𝑟𝑦 ∈ 𝐷𝑅, 𝑝𝑥 ∈ {𝑝𝑖 | (𝑝𝑖 , 𝑑𝑟𝑦) ∈ 𝑃𝐷𝑅𝐴})) [𝑑𝑟𝑦 (𝑝𝑥 .𝑜𝑝) =

𝑇𝑟𝑢𝑒,𝑑𝑟𝑦 (𝑝𝑥 .𝑑) = 𝑇𝑟𝑢𝑒]
- (∀(𝑑𝑟𝑦 ∈ 𝐷𝑅, 𝑝𝑦 ∈ {𝑝 𝑗 | (𝑝 𝑗 , 𝑑𝑟𝑦) ∉ 𝑃𝐷𝑅𝐴})) [𝑑𝑟𝑦 (𝑝𝑥 .𝑜𝑝) =

𝐹𝑎𝑙𝑠𝑒,𝑑𝑟𝑦 (𝑝𝑥 .𝑑) = 𝐹𝑎𝑙𝑠𝑒]

- For each 𝑟𝑝𝑑𝑟𝑎𝑖 = ((𝑟𝑖 , 𝐸𝑅𝑖), 𝑑𝑟𝑖) ∈ 𝑅𝑃𝐷𝑅𝐴, we construct an autho-
rization policy as following:
[𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑜𝑝 (𝑠 : 𝑆, 𝑒𝑠 : 𝐸𝑆,𝑑 : 𝐷) ≡ 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑟𝑖 ∧
𝑑𝑟𝑖 (𝑜𝑝) = 𝑇𝑟𝑢𝑒∧(

⋂
𝑒𝑠𝑎∈𝐸𝑅𝑖 𝑒𝑠𝑎 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) = 𝑇𝑟𝑢𝑒)∧𝑑𝑟𝑖 (𝑑) = 𝑇𝑟𝑢𝑒]

- The final authorization policy is the disjunction of every created au-
thorization policy.

4 Constructing HABAC From EGRBAC
In this section, we take a further step toward comparing HABAC,

and EGRBAC. We introduce HABAC configuration that translates
EGRBAC policies in a manner that they can be implemented by
HABAC. The purpose is to see whether we can fully express any
EGRBAC configuration in HABACmodel, and if not which model is
more expressive, and in what terms. The configuration of HABAC
for a given EGRBAC configuration is shown in Table 3. The goal is to
construct HABAC elements (𝑈 ,𝑈𝐴, 𝑆𝐴, 𝐸𝑆, 𝐸𝑆𝐴, 𝐷, 𝐷𝐴, 𝑂𝑃, 𝑂𝑃𝐴)
and the authorization policy function from EGRBAC policy in such
a way that the authorizations are the same as those under EGRBAC.
The inputs are EGRBAC component sets 𝑅, 𝑈𝐸𝐺𝑅𝐵𝐴𝐶 , 𝑈𝐴, 𝐸𝐶, 𝐸𝑅,
𝐸𝐴, 𝐷𝑅, 𝑃𝐷𝑅𝐴, 𝑃𝐸𝐺𝑅𝐵𝐴𝐶 , 𝐷𝐸𝐺𝑅𝐵𝐴𝐶 ,𝑂𝑃𝐸𝐺𝑅𝐵𝐴𝐶 . The outputs are
𝑈𝐻𝐴𝐵𝐴𝐶 , 𝑈𝐴, 𝐸𝑆, 𝐸𝑆𝐴, 𝑂𝑃𝐻𝐴𝐵𝐴𝐶 , 𝑂𝑃𝐴, 𝐷𝐻𝐴𝐵𝐴𝐶 , 𝐷𝐴, and the au-
thorization policy function 𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑜𝑝 (𝑠 : 𝑆, 𝑒𝑠 : 𝐸𝑆,𝑑 : 𝐷).
The set of users, devices, and operations are the same in both sys-
tems. Roles are expressed through the user attribute 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝
in HABAC. 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 is a user and a subject attribute that takes
a user or a subject as an input and returns the set of roles assigned
to that user or that subject. Static separation of duty constraints
𝑆𝑆𝐷𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 are translated into user attributes constraints in
HABAC. Dynamic separation of duty constraints 𝐷𝑆𝐷𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

are translated into subject attributes constraints in HABAC. En-
vironment roles are translated into atomic environment state at-
tributes. How to trigger different environment states attributes in re-
sponse to environment’s changes is outside the scope of this model.
In EGRBAC device roles are ways of categorizing permissions. Since
we do not have permission attributes in HABAC, and since a per-
mission is mapping between a device and an operation, we translate
device roles in EGRBAC into atomic operation attributes and atomic
device attributes with a range of values equal to {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}. The
final step is to translate the authorization policies. In EGRBAC it is
the 𝑅𝑃𝐷𝑅𝐴 that gives specific role pairs and hence users access to
specific device roles and hence permissions. Therefore, we translate
each 𝑟𝑝𝑑𝑟𝑎𝑖 = ((𝑟𝑖 , 𝐸𝑅𝑖), 𝑑𝑟𝑖) ∈ 𝑅𝑃𝐷𝑅𝐴 into an authorization pol-
icy. The final authorization policy is the disjunction of every created
authorization policy. As a result, we have only one user attribute
which is 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 . The number of user attributes constraints
is equal to the number of 𝑆𝑆𝐷𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 . The number of subject
attributes constraints is equal to the number of 𝐷𝑆𝐷𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 .
The number of operation attributes, and the number of device at-
tributes are equal to the number of device roles. The number of
environment state attributes is equal to the number of environ-
ment roles. In HABAC we can not create something equivalent
to EGRBAC 𝑃𝑅𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 . As shown in Section 2.1, in EGRBAC,
the way a user get access to specific set of permissions happens
through a series of assignments, the most critical assignment is the
𝑅𝑃𝐷𝑅𝐴 which assigns role pairs to device roles. Hence, by control-
ling 𝑅𝑃𝐷𝑅𝐴 we can control which role pairs and hence roles get
access to which device roles and hence permissions. In HABAC on
the other hand, we don’t have similar "attack point" that can be
controlled to prevent specific access permission. The only way to
make sure that certain users can not get access to specific permis-
sions is by checking each request to access these permissions and
look for those prohibited users. This is a significant advantage of
EGRBAC in which we can enforce such constraints at assignment
time whereas HABAC-like models would need to enforce these
at enforcement time. To summarize, the construction of HABAC
shown in Table 3 is equivalent to the given EGRBAC configuration
including static and dynamic separation of duty constraints. The
claim of equivalence is intuitively obvious since the construction
is effectively one for one and straightforward. A formal argument
can be presented along the lines of [40] but is tedious and does not
provide meaningful insight.
5 Constructing EGRBAC from HABAC

In this section, we introduce our methodology to construct EGR-
BAC components and configurations from HABAC policy config-
uration. Our EGRBAC constructing approach works perfectly for
HABAC policies that contain environment attributes, and static
sessions, operations, and devices attributes. It can also handles poli-
cies that do not involve comparing two different types of attributes.
Furthermore, we found that due to some limitations in EGRBAC, it
is either not possible to capture policies involving dynamic sessions,
operations, and devices attributes, or costly (leads to role explosion).
We followed a bottom-up role engineering approach. Traditional
algorithms for translating ABAC systems into RBAC using bottom-
up approach, first represents the ABAC system in UPA matrix, and
then do some sort of role mining. The rows and columns of the

matrix correspond to users and permissions, respectively. If a user
is assigned a particular permission, the corresponding entry of the
matrix contains a 1; otherwise, it contains a 0. From this perspec-
tive, role engineering is a process of matrix decomposition, wherein
the Boolean matrix UPA is decomposed into two Boolean matrices
(UA and PA), which together give the original access control policy
[29]. EGRBAC is a more sophisticated model than RBAC; since in
addition to user roles, it captures environment, and device charac-
teristics through environment roles, and device roles respectively.
In EGRBAC we do not give access to permissions directly, instead
we give access to device roles. Hence, instead of UPA matrix, we
first need to construct a user-device role assignment matrix, we
call it user device role assignment array𝑈𝐷𝑅𝐴𝐴. Moreover, users
do not get access to authorized device roles unconditionally, some
times specific set of environment roles need to be active. 𝑈𝐷𝑅𝐴𝐴
need to capture these information; each cell (𝑢𝑖 , 𝑑𝑟 𝑗) in 𝑈𝐷𝑅𝐴𝐴
contains zero if 𝑢𝑖 cannot access 𝑑𝑟 𝑗 , contains one if 𝑢𝑖 can access
𝑑𝑟 𝑗 unconditionally, or contains𝐶 if 𝑢𝑖 can access 𝑑𝑟 𝑗 when the set
of conditions𝐶 is satisfied, were𝐶 is a set of session conditions (for
example role), and environment conditions.
5.1 From Authorization policy to

Authorization Array
An authorization policy is expressed in a logical clause. First

we convert it into a disjunctive normal form (DNF). All logical
formulas can be converted into an equivalent DNF form. Here is
the authorization policy of our HABAC use case which introduced
in Table 2 after following the standard approach to convert it into
a DNF format.
𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑜𝑝 (𝑠 : 𝑆, 𝑒𝑠 : 𝐸𝑆,𝑑 : 𝐷) ≡

(𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑘𝑖𝑑∧ 𝑑𝑎𝑦 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ∈ {𝑆𝑎, 𝑆} ∧ 12 : 00 ≤
𝑡𝑖𝑚𝑒 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ≤ 19 : 00 ∧ 𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 (𝑜𝑝) = 𝑇𝑟𝑢𝑒) ∨
(𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑘𝑖𝑑∧ 𝑑𝑎𝑦 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ∈ {𝑀,𝑇,𝑊 ,𝑇ℎ, 𝐹 } ∧ 17 :
00 ≤ 𝑡𝑖𝑚𝑒 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ≤ 19 : 00 ∧ 𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 (𝑜𝑝) = 𝑇𝑟𝑢𝑒) ∨
(𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑡𝑒𝑒𝑛𝑎𝑔𝑒𝑟∧ 𝑃𝑎𝑟𝑒𝑛𝑡𝐼𝑛𝐾𝑖𝑡𝑐ℎ𝑒𝑛(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) = 𝑇𝑟𝑢𝑒∧
𝐷𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠𝑒𝐾𝑖𝑡𝑐ℎ𝑒𝑛𝐷𝑒𝑣𝑖𝑐𝑒𝑠 (𝑑) = 𝑇𝑟𝑢𝑒) ∨
(𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑡𝑒𝑒𝑛𝑎𝑔𝑒𝑟∧ 𝐷𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠𝑒𝐾𝑖𝑡𝑐ℎ𝑒𝑛𝐷𝑒𝑣𝑖𝑐𝑒𝑠 (𝑑) =

𝐹𝑎𝑙𝑠𝑒) ∨
(𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑡𝑒𝑒𝑛𝑎𝑔𝑒𝑟∧ 𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 (𝑜𝑝) = 𝐹𝑎𝑙𝑠𝑒) ∨
(𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑡𝑒𝑒𝑛𝑎𝑔𝑒𝑟∧ 𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 (𝑜𝑝) = 𝑇𝑟𝑢𝑒) ∨
(𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑝𝑎𝑟𝑒𝑛𝑡).

We call each conjuncted term a condition. We have session,
environment, device, operation, and mix conditions which are con-
ditions that involve session, environment, device, operation, and
any two types of attributes respectively. In the DNF authorization
policy of our HABAC use case mentioned above we have seven
conjunctive clauses, each conjunctive clause represents one access
authorization rule. To construct the authorization array we eval-
uate every 𝑢𝑖 ∈ 𝑈 , 𝑑 𝑗 ∈ 𝐷 , and 𝑜𝑝𝑘 ∈ 𝑂𝑃 combination against
each conjunctive clause, whenever a combination satisfies every
term (condition) in a conjunctive clause except those conditions
which involve environment state attributes, we create a raw (𝑢𝑖 ,
𝑑 𝑗 , 𝑜𝑝𝑘 , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ,𝐶) for that combination in the authorization array.
Where, 𝐶 is the set of session and environment related conditions
in the examined conjunctive clause. Authorizations array (AA):
an authorization raw (𝑢𝑖 , 𝑑 𝑗 , 𝑜𝑝𝑘 , 𝑒𝑠𝑙 , 𝐶) denotes that the user 𝑢𝑖
is allowed to perform an operation 𝑜𝑝𝑘 on a device 𝑑 𝑗 during the

Table 4: AA for HABAC Use Case
User u Device d Operation op Environment state es Conditions C

alex TV 𝐺 current X
alex PS 𝐴3 current X
alex PS 𝐴7 current X
alex TV 𝐺 current Z
alex PS 𝐴3 current Z
alex PS 𝐴7 current Z
bob TV 𝐺 current {𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑝𝑎𝑟𝑒𝑛𝑡}
bob TV 𝑃𝐺 current {𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑝𝑎𝑟𝑒𝑛𝑡}
bob PS 𝐴3 current {𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑝𝑎𝑟𝑒𝑛𝑡}
bob PS 𝐴7 current {𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑝𝑎𝑟𝑒𝑛𝑡}
bob PS 𝐴12 current {𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑝𝑎𝑟𝑒𝑛𝑡}
bob PS 𝐵𝑢𝑦𝐺𝑎𝑚𝑒𝑠 current {𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑝𝑎𝑟𝑒𝑛𝑡}
bob Oven 𝑂𝑁 current {𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑝𝑎𝑟𝑒𝑛𝑡}
bob Oven 𝑂𝐹𝐹 current {𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑝𝑎𝑟𝑒𝑛𝑡}
bob Fridge 𝑂𝑝𝑒𝑛 current {𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑝𝑎𝑟𝑒𝑛𝑡}
bob Fridge 𝐶𝑙𝑜𝑠𝑒 current {𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑝𝑎𝑟𝑒𝑛𝑡}
bob FrontDoor 𝐿𝑜𝑐𝑘 current {𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑝𝑎𝑟𝑒𝑛𝑡}
bob FrontDoor 𝑈𝑛𝑙𝑜𝑐𝑘 current {𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑝𝑎𝑟𝑒𝑛𝑡}
anne TV 𝐺 current {𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑡𝑒𝑒𝑛𝑎𝑔𝑒𝑟 }
anne TV 𝑃𝐺 current {𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑡𝑒𝑒𝑛𝑎𝑔𝑒𝑟 }
anne PS 𝐴3 current {𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑡𝑒𝑒𝑛𝑎𝑔𝑒𝑟 }
anne PS 𝐴7 current {𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑡𝑒𝑒𝑛𝑎𝑔𝑒𝑟 }
anne PS 𝐴12 current {𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑡𝑒𝑒𝑛𝑎𝑔𝑒𝑟 }
anne PS 𝐵𝑢𝑦𝐺𝑎𝑚𝑒𝑠 current {𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑡𝑒𝑒𝑛𝑎𝑔𝑒𝑟 }
anne Oven 𝑂𝑁 current Y
anne Oven 𝑂𝐹𝐹 current Y
anne Fridge 𝑂𝑃𝐸𝑁 current {𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑡𝑒𝑒𝑛𝑎𝑔𝑒𝑟 }
anne Fridge 𝐶𝐿𝑂𝑆𝐸 current {𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑡𝑒𝑒𝑛𝑎𝑔𝑒𝑟 }

X = {𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑘𝑖𝑑 ,
𝑑𝑎𝑦 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ∈ {𝑆𝑎, 𝑆 }, 12 : 00 ≤ 𝑡𝑖𝑚𝑒 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ≤ 19 : 00}.

Y = {𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑡𝑒𝑒𝑛𝑎𝑔𝑒𝑟 , 𝑃𝑎𝑟𝑒𝑛𝑡𝐼𝑛𝐾𝑖𝑡𝑐ℎ𝑒𝑛 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) = 𝑇𝑟𝑢𝑒 } .
Z= {𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑘𝑖𝑑 ,

𝑑𝑎𝑦 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ∈ {𝑀,𝑇,𝑊 ,𝑇ℎ, 𝐹 }, 17 : 00 ≤ 𝑡𝑖𝑚𝑒 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ≤ 19 : 00} .

Table 5: PDRA array for HABAC Use Case
DangerouseKitchenDevices

= True
DangerouseKitchenDevices

= False
KidsFriendly =

True
KidsFriendly =

False RemPerm

(𝑇𝑉 ,𝐺) 0 0 1 0 0

(𝑇𝑉 , 𝑃𝐺) 0 0 0 1 0

(𝑃𝑙𝑎𝑦𝑆𝑡𝑎𝑡𝑖𝑜𝑛,𝐴3) 0 0 1 0 0

(𝑃𝑙𝑎𝑦𝑆𝑡𝑎𝑡𝑖𝑜𝑛,𝐴7) 0 0 1 0 0

(𝑃𝑙𝑎𝑦𝑆𝑡𝑎𝑡𝑖𝑜𝑛,𝐴12) 0 0 0 1 0

(𝑃𝑙𝑎𝑦𝑆𝑡𝑎𝑡𝑖𝑜𝑛, 𝐵𝑢𝑦𝐺𝑎𝑚𝑒𝑠) 0 0 0 1 0

(𝑂𝑣𝑒𝑛,𝑂𝑁) 1 0 0 0 0

(𝑂𝑣𝑒𝑛,𝑂𝐹𝐹) 1 0 0 0 0

(𝐹𝑟𝑖𝑑𝑔𝑒,𝑂𝑝𝑒𝑛) 0 1 0 0 0

(𝐹𝑟𝑖𝑑𝑔𝑒,𝐶𝑙𝑜𝑠𝑒) 0 1 0 0 0

(𝐹𝑟𝑜𝑛𝑡𝐷𝑜𝑜𝑟, 𝐿𝑜𝑐𝑘) 0 0 0 0 1

(𝐹𝑟𝑜𝑛𝑡𝐷𝑜𝑜𝑟,𝑈𝑛𝑙𝑜𝑐𝑘) 0 0 0 0 1

Table 6: UDRAA for HABAC Use Case
DangerouseKitchenDevices

= True
DangerouseKitchenDevices

= False KidsFriendly = True KidsFriendly = False RemPerm

alex 0 0 {𝑋,𝑍 } 0 0

bob {{𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) =
𝑝𝑎𝑟𝑒𝑛𝑡}}

{{𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) =
𝑝𝑎𝑟𝑒𝑛𝑡}}

{{𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) =
𝑝𝑎𝑟𝑒𝑛𝑡}}

{{𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) =
𝑝𝑎𝑟𝑒𝑛𝑡}}

{{𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) =
𝑝𝑎𝑟𝑒𝑛𝑡}}

anne {𝑌 } {{𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) =
𝑡𝑒𝑒𝑛𝑎𝑔𝑒𝑟 }}

{{𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) =
𝑡𝑒𝑒𝑛𝑎𝑔𝑒𝑟 }}

{{𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) =
𝑡𝑒𝑒𝑛𝑎𝑔𝑒𝑟 }} 0

X = {𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑘𝑖𝑑 ,
𝑑𝑎𝑦 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ∈ {𝑆𝑎, 𝑆 }, 12 : 00 ≤ 𝑡𝑖𝑚𝑒 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ≤ 19 : 00}.

Y = {𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑡𝑒𝑒𝑛𝑎𝑔𝑒𝑟 , 𝑃𝑎𝑟𝑒𝑛𝑡𝐼𝑛𝐾𝑖𝑡𝑐ℎ𝑒𝑛 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) = 𝑇𝑟𝑢𝑒 } .
Z= {𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑘𝑖𝑑 ,

𝑑𝑎𝑦 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ∈ {𝑀,𝑇,𝑊 ,𝑇ℎ, 𝐹 }, 17 : 00 ≤ 𝑡𝑖𝑚𝑒 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ≤ 19 : 00} .

environment state 𝑒𝑠𝑙 whenever the set of environment and session
conditions in 𝐶 are satisfied. The AA of the use case in Table 2
is shown in Table 4. For illustration purposes each different color
presents the authorization fields for different user.
5.2 Approach
The goal is to construct EGRBAC elements (𝑈 , 𝑅, 𝐸𝐶, 𝐸𝑅, 𝑅𝑃,
𝐷, 𝑂𝑃, 𝑃, 𝐷𝑅), assignments (𝑈𝐴, 𝐸𝐴, 𝑃𝐷𝑅𝐴, 𝑅𝑃𝐷𝑅𝐴), and associa-
tions (𝑅𝑃𝑅𝐴, 𝑅𝑃𝐸𝐴) from HABAC policies in such a way that the
authorizations are the same as those under HABAC. The inputs
are HABAC set of users𝑈𝐻𝐴𝐵𝐴𝐶 , set of devices 𝐷𝐻𝐴𝐵𝐴𝐶 , set of op-
erations 𝑂𝑃𝐻𝐴𝐵𝐴𝐶 ,𝑈𝐴, 𝑆𝐴, 𝐸𝑆𝐴, 𝑂𝑃𝐴, 𝐷𝐴, and the authorization

array 𝐴𝐴. The outputs are EGRBAC components𝑈 , 𝑅, 𝑈𝐴, 𝐸𝐶, 𝐸𝑅,
𝐸𝐴, 𝑅𝑃, 𝑅𝑃𝑅𝐴, 𝑅𝑃𝐸𝐴, 𝐷, 𝑂𝑃, 𝑃, 𝐷𝑅, 𝑃𝐷𝑅𝐴, and 𝑅𝑃𝐷𝑅𝐴. The steps
are following:
Step 1: Initialization. The set of users, devices, and operations are
the same in both systems, hence𝑈 = 𝑈𝐻𝐴𝐵𝐴𝐶 , 𝐷 = 𝐷𝐻𝐴𝐵𝐴𝐶 , and
𝑂𝑃 = 𝑂𝑃𝐻𝐴𝐵𝐴𝐶 . For every operation 𝑜𝑝𝑖 , and device 𝑑 𝑗 pair, where
𝑜𝑝𝑖 is assigned to 𝑑 𝑗 by the device manufacturers, create a permis-
sion.
Step 2: Create the set of device roles 𝐷𝑅. (a) Create a device role 𝑑𝑟
for each operation attribute instance, or device attribute instance.
𝐷𝑅 here are represented as a condition of the form 𝑜𝑝𝑎 = 𝑥 , or
𝑑𝑎 = 𝑥 . Where 𝑥 is an instance of the attribute value. (b) Create
one device role call it remaining permissions 𝑅𝑒𝑚𝑃𝑒𝑟𝑚 for all the
permissions 𝑝𝑙 = (𝑑𝑖 , 𝑜𝑝 𝑗), where 𝑑𝑖 is not assigned to any device
attributes, and 𝑜𝑝 𝑗 is not assigned to any operation attribute. This
device role captures the cases where some users have access to spe-
cific permissions directly without involving device’s or operation’s
attributes.
Step 3: Construct the permission device role assignment array
𝑃𝐷𝑅𝐴. It is a many-to-many mapping of 𝑃 set and 𝐷𝑅 set (con-
structed in Step 2). To construct 𝑃𝐷𝑅𝐴 we first make a column for
each 𝐷𝑅, and make a row for each permission 𝑝𝑥 . Then, we fill
the array 𝑃𝐷𝑅𝐴, where 𝑃𝐷𝑅𝐴[𝑖, 𝑗] = 1 in two cases, first if for the
permission 𝑝𝑖 (corresponding to the row i) 𝑝𝑖 .𝑜𝑝 or 𝑝𝑖 .𝑑 satisfies
the condition corresponding to the device role of the column j 𝑑𝑟 𝑗 .
Second, if 𝑝𝑖 .𝑜𝑝 is not assigned to any operation attribute, and 𝑝𝑖 .𝑑
is not assigned to any device attribute, and the device role corre-
sponding to this column is 𝑅𝑒𝑚𝑃𝑒𝑟𝑚. 𝑃𝐷𝑅𝐴[𝑖, 𝑗] = 0 otherwise.
For every 𝑃𝐷𝑅𝐴[𝑖, 𝑗] = 1, add the pair (𝑝𝑖 , 𝑑𝑟 𝑗) to the set 𝑃𝐷𝑅𝐴 of
EGRBAC. See Table 5 for the 𝑃𝐷𝑅𝐴 array of our HABAC use case.
Step 4: Construct the user device role authorization array𝑈𝐷𝑅𝐴𝐴
from the authorization array 𝐴𝐴, and 𝑃𝐷𝑅𝐴.𝑈𝐷𝑅𝐴𝐴 ⊆ 𝑈 × 𝐷𝑅, a
many to many mapping between 𝑈 and 𝐷𝑅. To construct𝑈𝐷𝑅𝐴𝐴,
we first make a raw for each user, and a column for each device
role. Then, for every 𝑈𝐷𝑅𝐴𝐴[𝑖, 𝑗] ∈ 𝑈𝐷𝑅𝐴𝐴 we check the 𝐴𝐴 for
every 𝑢𝑖 , and 𝑝𝑥 combination, where (𝑝𝑥 , 𝑑𝑟 𝑗) ∈ 𝑃𝐷𝑅𝐴. Here, we
have three cases: (a)𝑈𝐷𝑅𝐴𝐴[𝑖, 𝑗] = 1 if user 𝑢𝑖 can access all the
permissions assigned to the device role 𝑑𝑟 𝑗 without any condition.
(b)𝑈𝐷𝑅𝐴𝐴[𝑖, 𝑗] = 2𝐶 , where𝐶 is a set of session, and environment
conditions that need to be satisfied together for a 𝑢𝑖 to access all
the permissions assigned to 𝑑𝑟 𝑗 . Note that these sets of conditions
have to be the same for each permission assigned to 𝑑𝑟 𝑗 . (c) Fi-
nally, 𝑈𝐷𝑅𝐴𝐴[𝑖, 𝑗] = 0 if user 𝑢𝑖 is not allowed to access all the
permissions assigned to the device role 𝑑𝑟 𝑗 , or is allowed to access
different permissions in 𝑑𝑟 𝑗 but under different set of conditions.
Table 6 shows 𝑈𝐷𝑅𝐴𝐴 for our use case.
Step 5: Construct the rest of EGRBAC elements (𝑅, 𝐸𝐶, 𝐸𝑅, 𝑅𝑃),
assignments (𝑈𝐴, 𝐸𝐴, 𝑅𝑃𝐷𝑅𝐴), and associations (𝑅𝑃𝑅𝐴, 𝑅𝑃𝐸𝐴) by
following our proposed EGRBAC users and environment roles con-
structing algorithm introduced in Section 5.3. The set of users roles
𝑅 constructed here is the set of candidate users roles.
Step 6:Merge similar users roles. To do so, we run our developed
role merging algorithm illustrated in Section 5.4.

Algorithm 1 EGRBAC Users and Environment Roles Construction
Require: 𝑈𝐷𝑅𝐴𝐴
Require: 𝐶𝑜𝑙𝑢𝑚𝑛𝐷𝑅 (𝑗) : return the device role corresponding to the col-

umn j in𝑈𝐷𝑅𝐴𝐴.
Require: 𝑅𝑎𝑤𝑈𝑠𝑒𝑟 (𝑖) : return the user corresponding to the raw i in

𝑈𝐷𝑅𝐴𝐴.
Require: 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠𝑆𝐶 (𝑋) : Return True if the set of conditions X contains

at least one session condition.
Require: 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠𝐸𝑆𝐶 (𝑋) : Return True if the set of conditions X con-

tains at least one environment state condition.
Require: 𝐼𝑠𝐸𝑆𝐶 (𝑐) : Return True if c is an environment state condition.
Require: 𝑇𝑜𝑆𝑡𝑟𝑖𝑛𝑔 (𝑥) : Return the value of x in a string format.
1: Initilize 𝑛 = Number of users,𝑚 = Number of device roles, 𝑅 = {},
𝑈𝐴 = {}, 𝐸𝐶 = {}, 𝐸𝑅 = {}, 𝐸𝐴 = {}, 𝑅𝑃 = {}, and 𝑅𝑃𝐷𝑅𝐴 = {},

2: for 𝑗 ← 1 to𝑚 do
3: for 𝑖 ← 1 to 𝑛 do
4: if 𝑈𝐷𝑅𝐴𝐴 [𝑖, 𝑗] = 1 then
5: 𝑒𝑟𝑥 = 𝐴𝑛𝑦_𝑇𝑖𝑚𝑒 , 𝑒𝑐𝑥 = 𝑇𝑟𝑢𝑒

6: 𝐸𝐶 = 𝐸𝐶 ∪ {𝑒𝑐𝑥 }, 𝐸𝑅 = 𝐸𝑅 ∪ {𝑒𝑟𝑥 }
7: 𝐸𝐴 = 𝐸𝐴 ∪ {({𝑒𝑐𝑥 }, 𝑒𝑟𝑥) }
8: 𝑆𝐸𝑅 = {𝑒𝑟𝑥 }
9: 𝑟𝑚 = 𝑇𝑜𝑆𝑡𝑟𝑖𝑛𝑔 (𝐶𝑜𝑙𝑢𝑚𝑛𝐷𝑅 (𝑗))
10: 𝑅 = 𝑅 ∪ {𝑟𝑚 }
11: 𝑅𝑃 = 𝑅𝑃 ∪ {𝑟𝑝𝑧 }, where 𝑟𝑝𝑧 .𝑟 = 𝑟𝑚, 𝑟𝑝𝑧 .𝐸𝑅 = 𝑆𝐸𝑅

12: 𝑅𝑃𝐷𝑅𝐴 = 𝑅𝑃𝐷𝑅𝐴 ∪ {(𝑟𝑝𝑧 ,𝐶𝑜𝑙𝑢𝑚𝑛𝐷𝑅 (𝑗)) }
13: 𝑈𝐴 = 𝑈𝐴 ∪ {(𝑅𝑎𝑤𝑈𝑠𝑒𝑟 (𝑖), 𝑟𝑚) }
14: else if 𝑈𝐷𝑅𝐴𝐴 [𝑖, 𝑗] ≠ 1 ∧𝑈𝐷𝑅𝐴𝐴 [𝑖, 𝑗] ≠ 0 then
15: for each 𝑋 ∈ 𝑈𝐷𝑅𝐴𝐴 [𝑖, 𝑗] do
16: if (¬𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠𝑆𝐶 (𝑋) ∧𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠𝐸𝑆𝐶 (𝑋) then
17: 𝑆𝐸𝑅 = {}
18: for each 𝑦 ∈ 𝑋 do
19: Create 𝑒𝑐𝑦 , and 𝑒𝑟𝑦
20: 𝐸𝐶 = 𝐸𝐶 ∪ {𝑒𝑐𝑦 }, 𝐸𝑅 = 𝐸𝑅 ∪ {𝑒𝑟𝑦 }
21: 𝐸𝐴 = 𝐸𝐴 ∪ {({𝑒𝑐𝑦 }, 𝑒𝑟𝑦) }
22: 𝑆𝐸𝑅 = 𝑆𝐸𝑅 ∪ {𝑒𝑟𝑦 }
23: end for
24: 𝑟𝑚 = 𝑇𝑜𝑆𝑡𝑟𝑖𝑛𝑔 (𝐶𝑜𝑙𝑢𝑚𝑛𝐷𝑅 (𝑗)) +” ∧ ”+

𝑇𝑜𝑆𝑡𝑟𝑖𝑛𝑔 (𝑋)
25: 𝑅 = 𝑅 ∪ {𝑟𝑚 }
26: 𝑅𝑃 = 𝑅𝑃∪{𝑟𝑝𝑧 }, where 𝑟𝑝𝑧 .𝑟 = 𝑟𝑚, 𝑟𝑝𝑧 .𝐸𝑅 = 𝑆𝐸𝑅

27: 𝑅𝑃𝐷𝑅𝐴 = 𝑅𝑃𝐷𝑅𝐴 ∪ (𝑟𝑝𝑧 ,𝐶𝑜𝑙𝑢𝑚𝑛𝐷𝑅 (𝑗))
28: 𝑈𝐴 = 𝑈𝐴 ∪ {(𝑅𝑎𝑤𝑈𝑠𝑒𝑟 (𝑖), 𝑟𝑚) }
29: else if (𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠𝑆𝐶 (𝑋) ∧ ¬𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠𝐸𝑆𝐶 (𝑋) then
30: 𝑒𝑟𝑥 = 𝐴𝑛𝑦_𝑇𝑖𝑚𝑒 , 𝑒𝑐𝑥 = 𝑇𝑟𝑢𝑒

31: 𝐸𝐶 = 𝐸𝐶 ∪ {𝑒𝑐𝑥 }, 𝐸𝑅 = 𝐸𝑅 ∪ {𝑒𝑟𝑥 }
32: 𝐸𝐴 = 𝐸𝐴 ∪ {({𝑒𝑐𝑥 }, 𝑒𝑟𝑥) }
33: 𝑆𝐸𝑅 = {𝑒𝑟𝑥 }
34: 𝑟𝑚 = 𝑇𝑜𝑆𝑡𝑟𝑖𝑛𝑔 (𝐶𝑜𝑙𝑢𝑚𝑛𝐷𝑅 (𝑗)) +” ∧ ”+

𝑇𝑜𝑆𝑡𝑟𝑖𝑛𝑔 (𝑋)
35: 𝑅 = 𝑅 ∪ {𝑟𝑚 }
36: 𝑅𝑃 = 𝑅𝑃∪{𝑟𝑝𝑧 }, where 𝑟𝑝𝑧 .𝑟 = 𝑟𝑚, 𝑟𝑝𝑧 .𝐸𝑅 = 𝑆𝐸𝑅

37: 𝑅𝑃𝐷𝑅𝐴 = 𝑅𝑃𝐷𝑅𝐴 ∪ (𝑟𝑝𝑧 ,𝐶𝑜𝑙𝑢𝑚𝑛𝐷𝑅 (𝑗))
38: 𝑈𝐴 = 𝑈𝐴 ∪ {(𝑅𝑎𝑤𝑈𝑠𝑒𝑟 (𝑖), 𝑟𝑚) }
39: else if (𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠𝑆𝐶 (𝑋) ∧𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠𝐸𝑆𝐶 (𝑋)) then
40: 𝑆𝐸𝑅 = {}
41: for each 𝑦 ∈ {𝑦 | (𝑦 ∈ 𝑋) ∧ 𝐼𝑠𝐸𝑆𝐶 (𝑦) } do
42: Create 𝑒𝑐𝑦, and 𝑒𝑟𝑦
43: 𝐸𝐶 = 𝐸𝐶 ∪ {𝑒𝑐𝑦 }, 𝐸𝑅 = 𝐸𝑅 ∪ {𝑒𝑟𝑦 }
44: 𝐸𝐴 = 𝐸𝐴 ∪ {({𝑒𝑐𝑦 }, 𝑒𝑟𝑦) }
45: 𝑆𝐸𝑅 = 𝑆𝐸𝑅 ∪ {𝑒𝑟𝑦 }
46: end for

47: 𝑟𝑚 = 𝑇𝑜𝑆𝑡𝑟𝑖𝑛𝑔(𝐶𝑜𝑙𝑢𝑚𝑛𝐷𝑅(𝑗)) + ” ∧ ” +
𝑇𝑜𝑆𝑡𝑟𝑖𝑛𝑔(𝑋)

48: 𝑅 = 𝑅 ∪ {𝑟𝑚}
49: 𝑅𝑃 = 𝑅𝑃 ∪ {𝑟𝑝𝑧 }, where 𝑟𝑝𝑧 .𝑟 = 𝑟𝑚, 𝑟𝑝𝑧 .𝐸𝑅 =

𝑆𝐸𝑅

50: 𝑅𝑃𝐷𝑅𝐴 = 𝑅𝑃𝐷𝑅𝐴 ∪ (𝑟𝑝𝑧 ,𝐶𝑜𝑙𝑢𝑚𝑛𝐷𝑅(𝑗))
51: 𝑈𝐴 = 𝑈𝐴 ∪ {(𝑅𝑎𝑤𝑈𝑠𝑒𝑟 (𝑖), 𝑟𝑚)}
52: end if
53: end for
54: end if
55: end for
56: end for

5.3 EGRBAC Users and Environment Roles
Constructing Algorithm:

The goal is to Construct EGRBAC elements (𝑅, 𝐸𝐶, 𝐸𝑅, 𝑅𝑃), as-
signments (𝑈𝐴, 𝐸𝐴, 𝑅𝑃𝐷𝑅𝐴), and associations (𝑅𝑃𝑅𝐴, 𝑅𝑃𝐸𝐴) from
𝑈𝐷𝑅𝐴𝐴. See Algorithm 1 for the full algorithm. The input is𝑈𝐷𝑅𝐴𝐴.
The outputs are 𝑅,𝑈𝐴, 𝐸𝐶, 𝐸𝑅, 𝐸𝐴, 𝑅𝑃, and 𝑅𝑃𝐷𝑅𝐴. The steps are
shown as following:
Step 1: Initialize the following EGRBAC sets 𝑅 = {},𝑈𝐴 = {}, 𝐸𝐶 =

{}, 𝐸𝑅 = {}, 𝐸𝐴 = {}, 𝑅𝑃 = {}, 𝑅𝑃𝐷𝑅𝐴 = {}, and the following con-
stants𝑚 = Number of device roles, 𝑛 = Number of users.
Step 2: Loop through the columns of 𝑈𝐷𝑅𝐴𝐴, Table 6 for our
HABAC use case. Each column is corresponding to users access
rights to a specific device role. Inside each column loop through
the fields of different rows. Here we have two cases:
A.𝑈𝐷𝑅𝐴𝐴[𝑖, 𝑗] = 1, according to the way𝑈𝐷𝑅𝐴𝐴was constructed
this means the user corresponding to this raw 𝑢𝑖 can access the
device role of this column 𝑑𝑟 𝑗 unconditionally. In this case, the
algorithm does the following:

a Creates an environment role 𝑒𝑟𝑥 = 𝐴𝑛𝑦_𝑇𝑖𝑚𝑒 and add it to
the set 𝐸𝑅, an environment condition 𝑒𝑐𝑥 = 𝑇𝑟𝑢𝑒 and add
it to the set 𝐸𝐶 . Add ({𝑒𝑐𝑥 }, 𝑒𝑟𝑥) to the set 𝐸𝐴, this implies
that the environment role 𝐴𝑛𝑦_𝑇𝑖𝑚𝑒 will always be active.
Create a set of environment roles 𝑆𝐸𝑅 and add 𝑒𝑟𝑥 to it
𝑆𝐸𝑅 = {𝑒𝑟𝑥 }.

b Creates a role 𝑟𝑚 = 𝑇𝑜𝑆𝑡𝑟𝑖𝑛𝑔(𝐶𝑜𝑙𝑢𝑚𝑛𝐷𝑅(𝑗)) which corre-
sponds to accessing this column device role anytime, and
unconditionally. Add this role to the set 𝑅.

c Defines a role pair 𝑟𝑝𝑧 , where 𝑟𝑝𝑧 .𝑟 = 𝑟𝑚 and 𝑟𝑝𝑧 .𝐸𝑅 = 𝑆𝐸𝑅.
Add 𝑟𝑝𝑧 to the set 𝑅𝑃 .

d Assigns the role pair 𝑟𝑝𝑧 to the device role corresponding to
this column by adding the pair (𝑟𝑝𝑧 ,𝐶𝑜𝑙𝑢𝑚𝑛𝐷𝑅(𝑗)) to the
set 𝑅𝑃𝐷𝑅𝐴.

e Assigns the role 𝑟𝑚 to the user corresponding to this raw by
adding the pair(𝑅𝑎𝑤𝑈𝑠𝑒𝑟 (𝑖), 𝑟𝑚) to the set 𝑈𝐴.

B.𝑈𝐷𝑅𝐴𝐴[𝑖, 𝑗] ≠ 1∧𝑈𝐷𝑅𝐴𝐴[𝑖, 𝑗] ≠ 0,which means that the user
𝑢𝑖 can access the device role 𝑑𝑟 𝑗 under specific set of user and en-
vironment conditions defined by 𝑈𝐷𝑅𝐴𝐴[𝑖, 𝑗]. Here, 𝑈𝐷𝑅𝐴𝐴[𝑖, 𝑗]
is a set of sets of conditions, each set of conditions define a group
of session, and environment conditions that need to be satisfied
together in order for the user 𝑢𝑖 to be able to access the device
role 𝑑𝑟 𝑗 . Loop through each set of conditions 𝑋 ∈ 𝑈𝐷𝑅𝐴𝐴[𝑖, 𝑗], 𝑋
satisfies only one of the three following options:

(1) 𝑋 contains environment conditions only. In this case the
algorithm first loops through each environment condition
to create a corresponding environment condition 𝑒𝑐𝑦 , envi-
ronment role 𝑒𝑟𝑦 , and add these environment roles to the
set 𝑆𝐸𝑅. Second, the algorithm creates a corresponding role
which represents accessing this column device role when
the set of environment attributes conditions that form 𝑋 is
satisfied. Finally, it follows the same three steps c, d, and e
explained in the previous case (when 𝑈𝐷𝑅𝐴𝐴[𝑖, 𝑗] = 1).

(2) 𝑋 contains session conditions only. Here the algorithms fol-
lows the same steps explained in case A (when𝑈𝐷𝑅𝐴𝐴[𝑖, 𝑗] =
1). The only difference here is that the created role corre-
sponds to access this column device role anytime, under the
set of user conditions expressed by 𝑋 instead of uncondi-
tionally as in case A.

(3) 𝑋 contains session and environment conditions. In this case
the algorithm creates corresponding environmnet roles, en-
vironment conditions, and user role. It then follows the same
three step c, d, and e explained in case A.

5.4 Users Roles Merging Algorithm
The main purpose of this algorithm is to merge roles that have

similar users assignments. For each two roles 𝑟𝑖 , 𝑟 𝑗 which are as-
signed to the same set of users, the algorithm does the following:
(a) For every role pair 𝑟𝑝𝑘 , in which the role part of it 𝑟𝑝𝑘 .𝑟 is equal
to 𝑟𝑖 , change the role part of it to 𝑟 𝑗 (𝑟𝑝𝑘 .𝑟 = 𝑟 𝑗). (b) Remove 𝑟𝑖
from the set of roles 𝑅. (c)For every (𝑢𝑙 , 𝑟𝑖) ∈ 𝑈𝐴, remove the pair
(𝑢𝑙 , 𝑟𝑖) from the set𝑈𝐴. See Algorithm 2 for the complete algorithm.
After applying the first five steps of the approach of constructing
EGRBAC from HABAC introduced in Section 5.2 on our HABAC
use case, we will end up having eleven roles as following: 𝑅 = {
𝑟1 ≡𝐷𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠𝑒𝐾𝑖𝑡𝑐ℎ𝑒𝑛𝐷𝑒𝑣𝑖𝑐𝑒𝑠 = 𝑇𝑟𝑢𝑒 ∧𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑝𝑎𝑟𝑒𝑛𝑡 ,
𝑟2 ≡ 𝐷𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠𝑒𝐾𝑖𝑡𝑐ℎ𝑒𝑛𝐷𝑒𝑣𝑖𝑐𝑒𝑠 = 𝑇𝑟𝑢𝑒 ∧ {𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) =

𝑡𝑒𝑒𝑛𝑎𝑔𝑒𝑟 , 𝑃𝑎𝑟𝑒𝑛𝑡𝐼𝑛𝐾𝑖𝑡𝑐ℎ𝑒𝑛(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) = 𝑇𝑟𝑢𝑒},
𝑟3 ≡ 𝐷𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠𝑒𝐾𝑖𝑡𝑐ℎ𝑒𝑛𝐷𝑒𝑣𝑖𝑐𝑒𝑠 = 𝐹𝑎𝑙𝑠𝑒 ∧ 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) =

𝑝𝑎𝑟𝑒𝑛𝑡 ,
𝑟4 ≡ 𝐷𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠𝑒𝐾𝑖𝑡𝑐ℎ𝑒𝑛𝐷𝑒𝑣𝑖𝑐𝑒𝑠 = 𝐹𝑎𝑙𝑠𝑒 ∧ 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) =

𝑡𝑒𝑒𝑛𝑎𝑔𝑒𝑟 ,
𝑟5 ≡ 𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 = 𝑇𝑟𝑢𝑒 ∧ {𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑘𝑖𝑑,
𝑑𝑎𝑦 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ∈ {𝑆𝑎, 𝑆}, 12 : 00 ≤ 𝑡𝑖𝑚𝑒 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ≤ 19 : 00},
𝑟6 ≡ 𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 = 𝑇𝑟𝑢𝑒 ∧ {𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑘𝑖𝑑,
𝑑𝑎𝑦 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ∈ {𝑀,𝑇,𝑊 ,𝑇ℎ, 𝐹 }, 17 : 00 ≤ 𝑡𝑖𝑚𝑒 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ≤ 19 :
00},
𝑟7 ≡ 𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 = 𝑇𝑟𝑢𝑒 ∧ 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑝𝑎𝑟𝑒𝑛𝑡 ,
𝑟8 ≡ 𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 = 𝑇𝑟𝑢𝑒 ∧ 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑡𝑒𝑒𝑛𝑎𝑔𝑒𝑟 ,
𝑟9 ≡ 𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 = 𝐹𝑎𝑙𝑠𝑒 ∧ 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑝𝑎𝑟𝑒𝑛𝑡 ,
𝑟10 ≡ 𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 = 𝐹𝑎𝑙𝑠𝑒 ∧ 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑡𝑒𝑒𝑛𝑎𝑔𝑒𝑟 ,
𝑟11 ≡ 𝑅𝑒𝑚𝑃𝑒𝑟𝑚 ∧ 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 (𝑠) = 𝑝𝑎𝑟𝑒𝑛𝑡}.
These roles will be assigned to different users as following: 𝑈𝐴 =

{(𝑎𝑙𝑒𝑥, 𝑟5), (𝑎𝑙𝑒𝑥, 𝑟6), (𝑏𝑜𝑏, 𝑟1), (𝑏𝑜𝑏, 𝑟3), (𝑏𝑜𝑏, 𝑟7), (𝑏𝑜𝑏, 𝑟9), (𝑏𝑜𝑏, 𝑟11),
(𝑎𝑛𝑛𝑒, 𝑟2), (𝑎𝑛𝑛𝑒, 𝑟4), (𝑎𝑛𝑛𝑒, 𝑟8), (𝑎𝑛𝑛𝑒, 𝑟10)}.
After running the users roles merging algorithm, the constructed
eleven roles will be merged into three roles only, and the user role
assignment set will end up having three pairs as shown in the fol-
lowing: 𝑅 = { 𝑟𝑎 ≡ 𝑟1, 𝑟3, 𝑟7, 𝑟9, 𝑟11, 𝑟𝑏 ≡ 𝑟2, 𝑟4, 𝑟8, 𝑟10, 𝑟𝑐 ≡ 𝑟5, 𝑟6}.
𝑈𝐴 = {(𝑎𝑙𝑒𝑥, 𝑟𝑐), (𝑏𝑜𝑏, 𝑟𝑎), (𝑎𝑛𝑛𝑒, 𝑟𝑏)}.

Algorithm 2 Users Roles Merging Algorithm
Require: 𝑅: The set of roles
Require: 𝑈 (𝑟) : Returns the set of users assigned to

the role r.
Require: 𝑅𝑃 (𝑟) : Returns the set of role pairs asso-

ciated with the role r. .
1: for each 𝑟𝑖 , 𝑟 𝑗 ∈ 𝑅 do
2: if 𝑈 (𝑟𝑖) = 𝑈 (𝑟 𝑗) ∧ 𝑟𝑖 ≠ 𝑟 𝑗 then
3: for each 𝑟𝑝𝑘 ∈ 𝑅𝑃 (𝑟𝑖) do
4: 𝑟𝑝𝑘 .𝑟 = 𝑟 𝑗

5: end for
6: 𝑅 = 𝑅 \ 𝑟𝑖
7: ⊲ Delete all𝑈𝐴 pairs related to 𝑟𝑖
8: for each (𝑎,𝑏) ∈ 𝑈𝐴 do
9: if 𝑏 = 𝑟𝑖 then
10: 𝑈𝐴 = 𝑈𝐴 \ (𝑎,𝑏)
11: end if
12: end for
13: end if
14: end for

5.5 The output of EGRBAC Constructing
Approach on HABAC Use Case

The output of EGRBAC role constructing algorithm for the Use
case in Table 2 is shown in Table 7. Maximum number of cre-
ated device roles is 𝑂 (|𝑂𝑃𝐴| + |𝐷𝐴|). Since we create an environ-
ment role and an environment condition for each logical envi-
ronment condition, maximum number of environment roles and
conditions is Ω(|𝐸𝑆𝐴|). Finally, maximum number of user roles is
𝑂 (2 |𝑆𝐴 |+ |𝐸𝑆𝐴 |).
6 Discussion and Future Directions

Our proposed HABAC model is a user to device access control
model. It captures different users, environment, operations, and
devices characteristics. Therefore, it is a dynamic model. It is a fine
grained model; since it is capable of giving users access to some
operations within a single device without the need to give them
access to the entire device. Our approach of constructing HABAC
from EGRBAC is a simple, straightforward approach that is capable
of translating EGRBAC configuration into an HABAC policy config-
uration. However, as we discussed in Section 4, in HABAC we can
not create something equivalent to EGRBAC 𝑃𝑅𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 . This
makes it troublesome to prevent future authorization of specific
users to access specific operations on specific devices, since the only
way to do so is dynamically at enforcement time when the user is
trying to access the prohibited operation, unlike EGRBAC in which
we can enforce this prevention at assignment time. In EGRBAC,
determining the role structure could take a lot of efforts, but when
completed it is easy to define who has what permissions, and who is
not allowed to have a future access to specific permissions. On the
other hand, in HABAC this is not achievable. In addition to users,
sessions, devices, and operations static attributes, our EGRBAC
constructing approach is capable of handling HABAC policies that
contain environment attributes. Due to some limitations in EGR-
BAC, our approach can’t handle HABAC policies that involve users,
devices and operations dynamic attributes. As explained in Section
3, dynamic attributes are those attributes that are rapidly chang-
ing without involving administration actions. For instance device

Table 7: The output of EGRBAC Constructing Approach on
HABAC Use Case

(a) 𝑈𝐸𝐺𝑅𝐵𝐴𝐶 = 𝑈𝐻−𝐴𝐵𝐴𝐶 , 𝐷𝐸𝐺𝑅𝐵𝐴𝐶 = 𝐷𝐻−𝐴𝐵𝐴𝐶 ,𝑂𝑃𝐸𝐺𝑅𝐵𝐴𝐶 =

𝑂𝑃𝐻−𝐴𝐵𝐴𝐶 , 𝑃𝐸𝐺𝑅𝐵𝐴𝐶 = {(𝑇𝑉 ,𝐺) , (𝑇𝑉 , 𝑃𝐺) , (𝑃𝑙𝑎𝑦𝑆𝑡𝑎𝑡𝑖𝑜𝑛,
𝐴3) , (𝑃𝑙𝑎𝑦𝑆𝑡𝑎𝑡𝑖𝑜𝑛,𝐴7) , (𝑃𝑙𝑎𝑦𝑆𝑡𝑎𝑡𝑖𝑜𝑛,𝐴12) , (𝑃𝑙𝑎𝑦𝑆𝑡𝑎𝑡𝑖𝑜𝑛,
𝐵𝑢𝑦𝐺𝑎𝑚𝑒𝑠) , (𝑂𝑣𝑒𝑛,𝑂𝑁) , (𝑂𝑣𝑒𝑛,𝑂𝐹𝐹) , (𝐹𝑟𝑖𝑑𝑔𝑒,𝑂𝑝𝑒𝑛) , (𝐹𝑟𝑖𝑑𝑔𝑒,
𝐶𝑙𝑜𝑠𝑒) , (𝐹𝑟𝑜𝑛𝑡𝐷𝑜𝑜𝑟, 𝐿𝑜𝑐𝑘) , (𝐹𝑟𝑜𝑛𝑡𝐷𝑜𝑜𝑟,𝑈𝑛𝑙𝑜𝑐𝑘) }
(b) 𝐷𝑅 = {𝐷𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠𝑒𝐾𝑖𝑡𝑐ℎ𝑒𝑛𝐷𝑒𝑣𝑖𝑐𝑒𝑠 = 𝑇𝑟𝑢𝑒,
𝐷𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠𝑒𝐾𝑖𝑡𝑐ℎ𝑒𝑛𝐷𝑒𝑣𝑖𝑐𝑒𝑠 = 𝐹𝑎𝑙𝑠𝑒,

𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 = 𝑇𝑟𝑢𝑒 , 𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 = 𝐹𝑎𝑙𝑠𝑒 ,
𝑅𝑒𝑚𝑃𝑒𝑟𝑚}.
(c) 𝑃𝐷𝑅𝐴 = {((𝑇𝑉 ,𝐺), 𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 = 𝑇𝑟𝑢𝑒) ,
(𝑃𝑙𝑎𝑦𝑆𝑡𝑎𝑡𝑖𝑜𝑛, 𝐴3), 𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 = 𝑇𝑟𝑢𝑒),
((𝑃𝑙𝑎𝑦𝑆𝑡𝑎𝑡𝑖𝑜𝑛,𝐴7), 𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 = 𝑇𝑟𝑢𝑒),
((𝑇𝑉 , 𝑃𝐺), 𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 = 𝐹𝑎𝑙𝑠𝑒),
((𝑃𝑙𝑎𝑦𝑆𝑡𝑎𝑡𝑖𝑜𝑛,𝐴12), 𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 = 𝐹𝑎𝑙𝑠𝑒),
((𝑃𝑙𝑎𝑦𝑆𝑡𝑎𝑡𝑖𝑜𝑛, 𝐵𝑢𝑦𝐺𝑎𝑚𝑒𝑠), 𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 = 𝐹𝑎𝑙𝑠𝑒),
((𝑂𝑣𝑒𝑛,𝑂𝑁), 𝐷𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠𝑒𝐾𝑖𝑡𝑐ℎ𝑒𝑛𝐷𝑒𝑣𝑖𝑐𝑒𝑠 = 𝑇𝑟𝑢𝑒),
((𝑂𝑣𝑒𝑛,𝑂𝐹𝐹), 𝐷𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠𝑒𝐾𝑖𝑡𝑐ℎ𝑒𝑛𝐷𝑒𝑣𝑖𝑐𝑒𝑠 = 𝑇𝑟𝑢𝑒),
((𝐹𝑟𝑖𝑑𝑔𝑒,𝑂𝑝𝑒𝑛), 𝐷𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠𝑒𝐾𝑖𝑡𝑐ℎ𝑒𝑛𝐷𝑒𝑣𝑖𝑐𝑒𝑠 = 𝐹𝑎𝑙𝑠𝑒),
((𝐹𝑟𝑖𝑑𝑔𝑒,𝐶𝑙𝑜𝑠𝑒), 𝐷𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠𝑒𝐾𝑖𝑡𝑐ℎ𝑒𝑛𝐷𝑒𝑣𝑖𝑐𝑒𝑠 = 𝐹𝑎𝑙𝑠𝑒),
((𝐹𝑟𝑜𝑛𝑡𝐷𝑜𝑜𝑟, 𝐿𝑜𝑐𝑘), 𝑅𝑒𝑚𝑃𝑒𝑟𝑚),
((𝐹𝑟𝑜𝑛𝑡𝐷𝑜𝑜𝑟,𝑈𝑛𝑙𝑜𝑐𝑘), 𝑅𝑒𝑚𝑃𝑒𝑟𝑚) }.
(d) 𝐸𝐶 = {𝑇𝑟𝑢𝑒,
𝑒𝑐1 ≡ 𝑃𝑎𝑟𝑒𝑛𝑡𝐼𝑛𝐾𝑖𝑡𝑐ℎ𝑒𝑛 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) = 𝑇𝑟𝑢𝑒 ,
𝑒𝑐2 ≡ 𝑑𝑎𝑦 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ∈ {𝑆𝑎, 𝑆 },
𝑒𝑐3 ≡ 12 : 00 ≤ 𝑡𝑖𝑚𝑒 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ≤ 19 : 00 ,
𝑒𝑐4 ≡ 𝑑𝑎𝑦 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ∈ {𝑀,𝑇,𝑊 ,𝑇ℎ, 𝐹 } ,
𝑒𝑐5 ≡ 17 : 00 ≤ 𝑡𝑖𝑚𝑒 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ≤ 19 : 00}.
(e) 𝐸𝑅 = {𝐴𝑛𝑦_𝑇𝑖𝑚𝑒,
𝑒𝑟1 ≡ 𝑃𝑎𝑟𝑒𝑛𝑡𝐼𝑛𝐾𝑖𝑡𝑐ℎ𝑒𝑛 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) = 𝑇𝑟𝑢𝑒 ,
𝑒𝑟2 ≡ 𝑑𝑎𝑦 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ∈ {𝑆𝑎, 𝑆 } ≡𝑊𝑒𝑒𝑘𝑒𝑛𝑑 ,
𝑒𝑟3 ≡ 12 : 00 ≤ 𝑡𝑖𝑚𝑒 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ≤ 19 : 00 ≡ 𝐴𝑓 𝑡𝑒𝑟𝑛𝑜𝑜𝑛 𝑎𝑛𝑑 𝐸𝑣𝑒𝑛𝑖𝑛𝑔,
𝑒𝑟4 ≡ 𝑑𝑎𝑦 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ∈ {𝑀,𝑇,𝑊 ,𝑇ℎ, 𝐹 } ≡𝑊𝑒𝑒𝑘𝑑𝑎𝑦𝑠 ,
𝑒𝑟5 ≡ 17 : 00 ≤ 𝑡𝑖𝑚𝑒 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ≤ 19 : 00 ≡ 𝐸𝑣𝑒𝑛𝑖𝑛𝑔}.
(f) 𝐸𝐴 = {({𝑇𝑟𝑢𝑒 }, 𝐴𝑛𝑦_𝑇𝑖𝑚𝑒) , ({𝑒𝑐1 }, 𝑒𝑟1) ,
({𝑒𝑐2 }, 𝑒𝑟2) , ({𝑒𝑐3 }, 𝑒𝑟3) , ({𝑒𝑐4 }, 𝑒𝑟4) , ({𝑒𝑐5 }, 𝑒𝑟5) }.
(g) 𝑅 = {𝑟𝑎, 𝑟𝑏 , 𝑟𝑐 }.
(h)𝑈𝐴 = {(𝑏𝑜𝑏, 𝑟𝑎), (𝑎𝑛𝑛𝑒, 𝑟𝑏), (𝑎𝑙𝑒𝑥, 𝑟𝑐) }.
(i) 𝑅𝑃 = {(𝑟𝑎, 𝐴𝑛𝑦_𝑇𝑖𝑚𝑒),
(𝑟𝑏 , 𝐴𝑛𝑦_𝑇𝑖𝑚𝑒),
(𝑟𝑏 , {𝑒𝑟1 }),
(𝑟𝑐 , {𝑒𝑟2, 𝑒𝑟3 }),
(𝑟𝑐 , {𝑒𝑟4, 𝑒𝑟5 }) }.
(j) 𝑅𝑃𝐷𝑅𝐴 = {((𝑟𝑎, 𝐴𝑛𝑦𝑇 𝑖𝑚𝑒) , 𝐷𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠𝑒𝐾𝑖𝑡𝑐ℎ𝑒𝑛𝐷𝑒𝑣𝑖𝑐𝑒𝑠 =

𝑇𝑟𝑢𝑒),
((𝑟𝑎, 𝐴𝑛𝑦_𝑇𝑖𝑚𝑒) , 𝐷𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠𝑒𝐾𝑖𝑡𝑐ℎ𝑒𝑛𝐷𝑒𝑣𝑖𝑐𝑒𝑠 = 𝐹𝑎𝑙𝑠𝑒),
((𝑟𝑎, 𝐴𝑛𝑦_𝑇𝑖𝑚𝑒) , 𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 = 𝑇𝑟𝑢𝑒),
((𝑟𝑎, 𝐴𝑛𝑦_𝑇𝑖𝑚𝑒) , 𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 = 𝐹𝑎𝑙𝑠𝑒),
((𝑟𝑎, 𝐴𝑛𝑦_𝑇𝑖𝑚𝑒) , 𝑅𝑒𝑚𝑃𝑒𝑟𝑚),
((𝑟𝑏 , {𝑒𝑟1 }) , 𝐷𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠𝑒𝐾𝑖𝑡𝑐ℎ𝑒𝑛𝐷𝑒𝑣𝑖𝑐𝑒𝑠 = 𝑇𝑟𝑢𝑒),
((𝑟𝑏 , 𝐴𝑛𝑦_𝑇𝑖𝑚𝑒) , 𝐷𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠𝑒𝐾𝑖𝑡𝑐ℎ𝑒𝑛𝐷𝑒𝑣𝑖𝑐𝑒𝑠 = 𝐹𝑎𝑙𝑠𝑒),
((𝑟𝑏 , 𝐴𝑛𝑦_𝑇𝑖𝑚𝑒) , 𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 = 𝑇𝑟𝑢𝑒),
((𝑟𝑏 , 𝐴𝑛𝑦_𝑇𝑖𝑚𝑒) , 𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 = 𝐹𝑎𝑙𝑠𝑒),
((𝑟𝑐 , {𝑒𝑟2, 𝑒𝑟3 }) , 𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 = 𝑇𝑟𝑢𝑒),
((𝑟𝑐 , {𝑒𝑟4, 𝑒𝑟5 }) , 𝐾𝑖𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 = 𝑇𝑟𝑢𝑒) }.

temperature. In our approach, we translate device, and permission
attributes instances into device roles. In EGRBAC, device roles are
means of categorizing permissions of different devices according
to relatively static characteristics. when a permission is assigned to
a specific device role, then it is part of that device role until some
administration change happens, there is no way to dynamically acti-
vates and deactivates neither device roles, nor assignment of permis-
sions to different device roles. For example, in HABACwemay have
a device attribute 𝑑𝑒𝑣𝑖𝑐𝑒_𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 : 𝑑 : 𝐷 ←− {𝐿𝑜𝑤,𝐻𝑖𝑔ℎ}.
We can easily configure an access policy that authorizes some users
to access a device 𝑑𝑥 only if 𝑑𝑒𝑣𝑖𝑐𝑒_𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (𝑑𝑥) = 𝐿𝑜𝑤 . To
do so in EGRBAC we have two options, the first one is by creating
two device roles one for high temperature, and another for low

temperature for each device. This will result in a role explosion.
Furthermore, there is no mechanism in EGRBAC that can dynami-
cally activates 𝑑𝑥 ’s high temperature device role while deactivating
the low temperature device role when the temperature of 𝑑𝑟𝑥 is
high and vice versa. The second option is for those devices which
have similar access conditions we create a device role for low tem-
perature, and a device role for high temperature. However, there
is no way to dynamically activates or deactivates devices mem-
bership in different device roles according to their temperatures.
The similar argument holds when we deal with dynamic user at-
tributes. Our EGRBAC constructing approach didn’t consider the
following: (1)Policies that compare two different types of attributes.
(2)HABAC configurations that involve user attributes constraints
and session attributes constraints. Unfortunately, we don’t have
enough space to analyze and include such use cases. However, this
may be a possible future direction.

From the above, a hybrid model combining HABAC and EGR-
BAC features may be the most suitable for smart home IoT, and
likely more generally. A possible future direction is developing a
combined model which prevents a “role explosion” to cover differ-
ent authorizations for every possible user, environment, operation,
and device conditions while retains advantages of EGRBAC, such
as ease of user provisioning and the ability to specify the maximum
permissions available to each user.
7 Conclusion

In this paper, we introduce HABAC access control model for
smart home IoT. It is a dynamic, fine grained ABAC based model
that captures different attributes of users, environment, operations,
and devices. We provide a use case scenario demonstration. More-
over, we compare the theoretical expressive power of our model
to EGRBAC [4] which is a dynamic contextual aware RBAC based
access control model. We do that by providing approaches for con-
verting an HABAC specification to EGRBAC and vice versa. We
found that while EGRBAC is capable of handling environment
attributes, and relatively static users, and device attributes, it is in-
capable of handling relatively dynamic users, and devices attributes.
On the other hand, unlike EGRBAC, in HABAC it is hard to prevent
future authorization of specific users to access specific operations
on specific devices. In conclusion, we believe that a hybrid model
retaining HABAC and EGRBAC features may be the most suitable
for smart home IoT, and likely more generally.
Acknowledgement
This work is partially supported by NSF CREST Grant 1736209.
References
[1] [n.d.]. Internet of things. https://en.wikipedia.org/wiki/Internet_of_things.
[2] G. Ali, et al. 2019. Blockchain based permission delegation and access control in

Internet of Things (BACI). Computers & Security (2019).
[3] M. Alramadhan and K. Sha. 2017. An overview of access control mechanisms for

internet of things. In ICCCN. IEEE.
[4] S. Ameer, et al. 2020. The EGRBAC Model for Smart Home IoT. In 2020 IEEE 21st

International Conference on Information Reuse and Integration for Data Science
(IRI). IEEE.

[5] O. Arias, et al. 2015. Privacy and security in internet of things and wearable
devices. TMSCS (2015).

[6] S. Bandara, et al. 2016. Access control framework for api-enabled devices in
smart buildings. In APCC. IEEE.

[7] E. Barka, et al. 2015. Securing the web of things with role-based access control.
In C2SI. Springer.

[8] B. Bezawada, et al. 2018. Securing Home IoT Environments with Attribute-Based
Access Control. In ABAC’18. ACM.

[9] S. Bhatt, et al. 2017. Access control model for AWS internet of things. In Interna-
tional Conference on Network and System Security.

[10] S. Bhatt and R. Sandhu. 2020. ABAC-CC: Attribute-Based Access Control and
Communication Control for Internet of Things. In Proceedings of the 25th ACM
Symposium on Access Control Models and Technologies.

[11] M. J. Covington, et al. 2000. Generalized role-based access control for securing
future applications. Technical Report. Georgia Tech.

[12] T. Denning, et al. 2013. Computer security and the modern home. Commun.
ACM (2013).

[13] S. Ding, et al. 2019. A novel attribute-based access control scheme using
blockchain for IoT. IEEE Access (2019).

[14] E. Fernandes, et al. 2016. Security analysis of emerging smart home applications.
In SP. IEEE.

[15] E. Fernandes, et al. [n.d.]. Flowfence: Practical data protection for emerging iot
application frameworks. In USENIX Security 16.

[16] D. F. Ferraiolo, et al. 2001. Proposed NIST standard for role-based access control.
TISSEC (2001).

[17] J. Granjal, et al. 2015. Security for the internet of things: a survey of existing
protocols and open research issues. IEEE Comm. Surv. & Tutorials (2015).

[18] Z. Guoping and G. Wentao. 2011. The research of access control based on UCON
in the internet of things. Journal of Software (2011).

[19] M. Gupta, et al. 2019. Dynamic groups and attribute-based access control for
next-generation smart cars. In Ninth ACM Conference on Data and Application
Security and Privacy.

[20] M. Gupta and R. Sandhu. 2018. Authorization framework for secure cloud assisted
connected cars and vehicular internet of things. In Proceedings of the 23nd ACM
on Symposium on Access Control Models and Technologies.

[21] W. He, et al. 2018. Rethinking access control and authentication for the home
internet of things (IoT). In USENIX Security 18.

[22] K. Hill. 2013. Baby Monitor Hack Could Happen To 40,000 Other Foscam
Users. https://www.forbes.com/sites/kashmirhill/2013/08/27/baby-monitor-
hack-could-happen-to-40000-other-foscam-users/613ec55458b5.

[23] G. Ho, et al. 2016. Smart locks: Lessons for securing commodity internet of things
devices. In ASIA CCS ’16. ACM.

[24] V. C. Hu, et al. 2015. Attribute-based access control. Comp. (2015).
[25] X. Jin, et al. 2012. A unified attribute-based access control model covering DAC,

MAC and RBAC. In IFIP Annual Conf. on Data and App. Sec.
[26] J. Jindou, et al. 2012. Access control method for web of things based on role and

sns. In CIT 2012. IEEE.
[27] S. Kaiwen and Y. Lihua. 2014. Attribute-role-based hybrid access control in the

internet of things. In APWeb. Springer.
[28] F. Martinelli, et al. 2018. Too long, did not enforce: a qualitative hierarchical risk-

aware data usage control model for complex policies in distributed environments.
In CPSS ’18. ACM.

[29] B. Mitra, et al. 2016. A survey of role mining. Comput. Surveys (2016).
[30] A. Mutsvangwa, et al. 2016. Secured access control architecture consideration

for smart grids. In IEEE PES PowerAfrica.
[31] O. Novo. 2018. Blockchain meets IoT: An architecture for scalable access man-

agement in IoT. IEEE IoT Journal (2018).
[32] A. Ouaddah, et al. 2017. Towards a novel privacy-preserving access control model

based on blockchain technology in IoT. In Europe and MENA Coop. Adv. in Inf.
and Comm. Tech. Springer.

[33] A. Ouaddah, et al. 2017. Access control in the Internet of Things: Big challenges
and new opportunities. Comp. NW 112 (2017).

[34] J. Park. 2003. Usage control: A unified framework for next generation access control.
Ph.D. Dissertation. George Mason University.

[35] J. Park and R. Sandhu. 2002. Towards usage control models: beyond traditional
access control. In SACMAT ’02. ACM.

[36] J. Qiu, et al. 2020. A survey on access control in the age of internet of things.
IEEE Internet of Things Journal (2020).

[37] S. Ravidas, et al. 2019. Access control in Internet-of-Things: A survey. Journal of
Network and Computer Applications (2019).

[38] R. Sandhu. 1998. Role-based access control. In Advances in computers. Vol. 46.
[39] A. Tilley. 2016. How A Few Words to Apple’s Siri Unlocked a Man’s Front

Door. http://www.forbes.com/sites/aarontilley/2016/09/21/apple-homekit-siri-
security.

[40] M. Tripunitara and N. Li. 2007. A theory for comparing the expressive power of
access control models. Journal of Computer Security 15 (02 2007), 231–272.

[41] B. Ur, et al. 2013. The current state of access control for smart devices in homes.
In HUPS.

[42] Y. Xie, et al. 2015. Three-layers secure access control for cloud-based smart grids.
In IEEE 82nd VTC2015-Fall. IEEE.

[43] N. Ye, et al. 2014. An efficient authentication and access control scheme for
perception layer of internet of things. Applied Math. & Inf. Sciences (2014).

[44] G. Zhang and J. Tian. 2010. An extended role based access control model for the
Internet of Things. In 2010 ICINA. IEEE.

https://en.wikipedia.org/wiki/Internet_of_things
https://www.forbes.com/sites/kashmirhill/2013/08/27/baby-monitor-hack-could-happen-to-40000-other-foscam-users/613ec55458b5
https://www.forbes.com/sites/kashmirhill/2013/08/27/baby-monitor-hack-could-happen-to-40000-other-foscam-users/613ec55458b5
http://www. forbes. com/sites/aarontilley/2016/09/21/apple-homekit-siri-security
http://www. forbes. com/sites/aarontilley/2016/09/21/apple-homekit-siri-security

	Abstract
	1 Introduction and Motivation
	2 Related Work
	2.1 Background: EGRBAC For Smart Home IoT

	3 HABAC Model for Smart Home IoT
	3.1 HABAC Use Case

	4 Constructing HABAC From EGRBAC
	5 Constructing EGRBAC from HABAC
	5.1 From Authorization policy to Authorization Array
	5.2 Approach
	5.3 EGRBAC Users and Environment Roles Constructing Algorithm:
	5.4 Users Roles Merging Algorithm
	5.5 The output of EGRBAC Constructing Approach on HABAC Use Case

	6 Discussion and Future Directions
	7 Conclusion
	References

