The HABAC Model for Smart Home loT
and Comparison to EGRBAC

Safwa Ameer and Ravi Sandhu
Institute for Cyber Security and NSF Center for Security and Privacy Enhanced Cloud Computing
Department of Computer Science, University of Texas at San Antonio
San Antonio, Texas, USA
Safwa.Ameer@gmail.com,ravi.sandhu@utsa.edu

Abstract

In the near future IoT will be part of every home turning our
houses into smart houses, in which we have multiple users with
complex social relationships between them using the same smart
devices. This requires sophisticated access control specification and
enforcement models. Recently, several access control models have
been developed or adapted for IoT in general, with a few specifically
designed for the smart home IoT domain. The majority of these
models are built on role-based access control (RBAC) or attribute-
based access control (ABAC) models which have had considerable
traction in traditional non-IoT domains. In this paper, we introduce
the smart home IoT attribute-based access control model (HABAC).
HABAC is a dynamic and fine-grained model that is developed
specifically to meet smart home IoT challenges. Currently it is not
precisely clear what are the pros and cons of ABAC over RBAC
in general, and in smart home IoT in particular. To this end we
provide an analysis of HABAC relative to the previously published
EGRBAC (extended generalized role based access control) model
for smart home IoT. We compare the theoretical expressive power
of these models by providing algorithms for converting an HABAC
specification to EGRBAC and vice versa, and discuss the insights
for practical deployment of these models resulting from these con-
structions. We conclude that a hybrid model combining ABAC and
RBAC features may be the most suitable for smart home IoT, and
likely more generally.

ACM Reference Format:

Safwa Ameer and Ravi Sandhu. 2021. The HABAC Model for Smart Home
IoT and Comparison to EGRBAC. In Proceedings of the 2021 ACM Workshop
on Secure and Trustworthy Cyber-physical Systems (SAT-CPS °21), April 28,
2021, Virtual Event, USA. ACM, New York, NY, USA, 10 pages. https://doi.
org/10.1145/SaT011f

1 Introduction and Motivation

The Internet of things (IoT) describes the network of physical
objects (things) that are embedded with sensors, software, and other
technologies for the purpose of connecting and exchanging data
with other devices and systems over the Internet [1]. The concept

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SAT-CPS 21, April 28, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8319-6/21/04...$15.00
https://doi.org/10.1145/3445969.3450428

of IoT has attracted many applications including consumer, organi-
zational, industrial, infrastructure, and military applications. One
of the most popular domains for deploying smart connected devices
is the smart home. Surprisingly little attention has been paid to
access control policy specification and authentication in home IoT.
Home IoT is significantly different from traditional access control
domains [21]. In home IoT, we have many users with complex social
relationship who use the same devices. Moreover, the majority of
smart home devices do not have screens and keyboards making
them hands free for convenience while making access control more
challenging. Real world examples of the shortcomings of current
access control policy specification and authentication for home
IoT devices have begun to appear [21, 22, 39]. The characteristics
that make IoT distinct from prior computing domains necessitate a
rethinking of access control and authentication [21].

In the literature, several access control models have been pro-
posed for IoT in general. The majority of them are built on ABAC
or RBAC. Some researchers argue that RBAC is more suitable for
IoT since it is simpler in management and review, while ABAC is
complex [3, 26, 27]. On the other hand, others argue that ABAC
models are more scalable and dynamic, since they can capture dif-
ferent devices and environment contextual information [8, 9, 43].
However, RBAC models can be extended, such as the recent EGR-
BAC model [4] for smart home IoT which can express environment
and device characteristics. RBAC enforcement may also be more
lightweight for constrained home environment.

Hence, when it comes to smart homes, at this point it is not fully
clear what is the benefit of ABAC over RBAC, and vice versa. Our
intuitive insight is that a hybrid model will better capture smart
home IoT AC requirements as this was already the case for tradi-
tional access control models. In order to further investigate this
intuition our approach is to develop pure RBAC and pure ABAC
based models explicitly defined to meet smart home challenges,
and compare their benefits and drawbacks. This comparison will
provide insights to guide us in designing “optimal” hybrid mod-
els in future work. Hence, in this paper, we propose smart home
IoT ABAC (HABAC) model. Furthermore, we provide an analysis
of HABAC relative to the previously published EGRBAC model
[4]. We compare the theoretical expressive power of these mod-
els by providing algorithms to convert an HABAC specification
to EGRBAC and vice versa. We discuss the insights for practical
deployment of these models resulting from these constructions.
The reasons for choosing EGRBAC in specific to compare it against
HABAC are as follows. First EGRBAC is a contextual aware, fine
grained model designed specifically to meet smart home challenges.
Second, it satisfies the criteria for home IoT access control models

https://doi.org/10.1145/SaT011f
https://doi.org/10.1145/SaT011f
https://doi.org/10.1145/SaT011f

proposed by [4]. Moreover, it meets the new perspective of smart
home IoT access control requirements recently identified by [21].

The rest of the paper is organized as follows. Section 2 provides
an analysis and review of related work, including an overview of
EGRBAC [4]. Section 3 introduces the HABAC model along with a
use case scenario. Section 4 shows how to translate EGRBAC poli-
cies into HABAC. An approach for constructing EGRBAC compo-
nents and relations from a given HABAC specifications is described
in Section 5. Section 6 discusses the insights of this work,including
a comparison between HABAC and EGRBAC. Section 7 concludes
the paper.
2 Related Work

Security researchers have carefully investigated smart IoT. While
some have analyzed IoT security and privacy vulnerabilities [5, 12,
17, 41], others have studied IoT frameworks to identify security chal-
lenges, and design issues [14, 15, 20, 23]. It is generally accepted by
most researchers that access control is a critical service in IoT. Ouad-
dah et al [33] provide an extensive survey on access control in IoT
environments. Many access control solutions (user to device and/or
device to device) have been proposed in the literature for different
IoT applications. Some solutions are based on RBAC [16, 38] (as in
[4,6,7,9, 11, 26, 44]). While other solutions are based on ABAC
[24, 25] (as in [8, 10, 19, 30, 42]. Some researchers argue that unlike
ABAC, RBAC based model are incapable of capturing changing
characteristics such as, environment attributes, device characteris-
tics. However, the process of authorization is more simple in RBAC.
As a result, some authors [27] proposed a combined access control
model. Moreover, some of the proposed models in the literature
are built on blockchain technology [2, 13, 31, 32]. However, as [31]
described, the blockchain technology has some technical character-
istics that could limit its applicability. For instance, cryptocurrency
fees, and processing time. Few solutions have been proposed in the
literature that are based on UCON [34, 35], for example [18, 28].
Several other access control models for IoT have been proposed,
the authors in [3, 33, 36, 37] provided surveys on different access
control models in the literature. However, none of them meet the
criteria proposed by [4] for smart home AC models, and the new
perspective for smart home IoT AC identified by [21]. Recently,
Ameer et al [4] have proposed a criteria for home IoT access control
models based on He et al analysis [21] and Ouddah et al survey [33].
Moreover, they introduced the EGRBAC model for smart home
IoT access control, which is an RBAC based model that meets the
characteristics proposed in both [4, 21]. Unlike traditional RBAC,
EGRBAC captures the environment contextual changes, and dif-
ferent device characteristics. Hence, they confute the claim that
RBAC based models are inadequate and inflexible in addressing
the environment changes, and device or permission characteristics.
That being so, it is not fully clear what is the benefit of ABAC over
RBAC, and vice versa in the home IoT context. In this paper, we
carefully investigated the expressiveness of HABAC compared to
EGRBAC, and vice versa. We briefly review EGRBAC model below
since it is relevant to Sections 4 and 5.

2.1 Background: EGRBAC For Smart Home IoT

Ameer et al introduced the extended generalized role based ac-
cess control model [4]. In addition to the usual concept of User

RPRA

ROLE RPORA DEVICE EDRA
o PAIRS. i ROLES
(RP) (DR)

OPERATIONS
(0P)

PERMISSIONS
P

» Assignment
__________ > Association
o Constraints

ENVIRONMENT
CONDITIONS (EC)

Figure 1: EGRBAC Model Components

Roles, EGRBAC incorporates the notion of Device Roles and Envi-
ronment Roles. It is illustrated in Figure 1. Roles (R) are analogous to
the traditional RBAC users roles. However, in the context of smart
homes, a role specifically represents the relationship between the
user and the family. Device roles (DR) are defined as means of cate-
gorizing permissions of different devices. Environment roles (ER)
represent environmental contexts, such as daytime/nighttime, and
winter/summer. A role pair rp has a role part rp.r that is the single
role associated with rp, and an environment role part rp.ER that
is the subset of environment roles associated with rp. The main
idea in EGRBAC as a whole is that a user is assigned a subset of
roles and according to the current active roles in a session and the
active environment roles, some role pairs will be active, whereby
the user will get access to the permissions assigned to the device
roles which are assigned to the current active role pairs.

3 HABAC Model for Smart Home IoT

ABAC models utilize attributes of users, sessions (subjects), ob-
jects, operations and environment to specify flexible, dynamic, and
fine grained authorization policies. These characteristics arguably
make ABAC suitable for deployment in complex domains such as
smart home IoT. In this section, we define our HABAC (Home-IoT
Attribute Based Access Control) model developed for user to device
interaction in smart home IoT, where devices are the objects. The
HABAC model is inspired by the ABAC model of Xin et al [25], ex-
tended to include environment attributes. Figure 2 depicts HABAC
components. Users (U), Operations (OP), Devices (D), and Environ-
ment States (ES) are sets and shown in ovals. User Attributes (UA),
Session Attributes (SA), Operation Attributes (OPA), Environment
State Attributes (ESA), and Device Attributes (DA) are attribute
functions and shown as squares. We have two types of constraints
shown in rectangles: constraints on user attributes, and constraints
on subject attributes. Table 1 formally defines these components.
Users (U): are humans interacting directly with the smart things.
Sessions (S): are similar to the concept of subjects in [25], users
create sessions during which they may perform some actions in
the system, the creating user is the only one who can terminate
a session. Devices (D): are smart home devices such as a smart
light. Operations (OP): represent actions on devices as specified
by device manufacturers. Environment States (ES): represent a
picture of the environment at a given time instant that we want
to describe, it may have values such as: current, yesterday, and so
on. For simplicity, in this paper, the environment state is always
equal to current. Users, devices, operations, and environment states

Table 1: HABAC Model Formalization

Basic Sets and Functions

—U,S,OP, D, and ES are finite sets of users, sessions, operations, devices, and environment states respectively.
—UA,SA,OPA, ESA, and DA are finite sets of users, sessions, operations, environment states, and devices attribute functions respectively.
— For each attribute at¢ in UAU SAU OPA U ESA U DA, Range(att) is the attribute range, a finite set of atomic values.

—attType : UAUSAUOPAU ESAUDA — {set,atomic}.

— Each attribute function ua, sa, opa, esa, and da in UA, SA, OPA, ESA, and DA respectively maps users in U, sessions in S, operation in OP, environment

state in ES, and devices in D respectively to atomic or set attribute values. Formally:

Range(ua), if attType(ua) = atomic

ua:U —
{ZR“"ge(““), if attType(ua) = set

s Range(sa), if attType(sa) = atomic
sa:
2Range(sa) - if at1Type(sa) = set

Range(opa), if attType(opa) = atomic

opa: OP —
P {ZR“"W("P“), if attType(opa) = set

Range(esa), if attType(esa) = atomic

esa:ES —
2Range(esa) i 411 Type(esa) = set

Range(da), if attType(da) = atomic
da:D — d X
2Range(da) - if q11Type(da) = set
—sessionUser : S — U, maps each session to its creator user.

—sa(s) C ua(sessionUser(s)), foreachs € S
User Attributes Constraints

— User attribute constraint UAConstraint C UAP x 2UAP where user attribute pair UAP is a pair of user attribute, and its value (£@name> Uaoalue)-
— Each uac = ((uax, y), UAP;) € UAConstraint specifies the following invariant:

(Yu; € U) (V(uam,n) € UAPj) [uax (u;) = y = uam(u;) # nl, if attType(uay) = attType(uam,) = atomic
(Yu; € U) (V(uam,n) € UAPj) [y € uax (u;) = n ¢ uam(uy)], if attType(uay) = attType(uam) = set

Subject Attributes Constraints

— Subject attribute constraint SAConstraint C SAPx2%4F where subject attribute pair SAP is a pair of subject attribute, and its value (sa@name, SAvalue)-
- Each sac = ((sax, y), SAP;) € SAConstraint specifies the following invariant:

(Vs; € S)(V(sam,n) € SAPj)[sax(s;) = y = sam(sy) # nl, if attType(sax) = attType(sam) = atomic
(Vs; € S)(V(sam,n) € SAP;j)[y € sax(s;) = n ¢ sam(sy)], if attType(say) = attType(sam) = set

Authorization Functions (Policies)

— Operation authorization function: For each op € OP, Authorizationep (s : S, es : ES,d : D) is a propositional logic formula returning true or false, and

it is defined using the following policy language:

ea :==aAha | aVa | (o) | ~a | Ix € set.a | Vx € set.a | setsetcompareset | atomic € set | atomic ¢ set |

atomic atomiccompare atomic
setcompare :=C|C|Z|U | N
atomiccompare :=<|=|<

set == sa(s) | opa(op) | esa(es) | da(d) Where attType(sa) = attType(opa) = attType(esa) = attType(da) = set
atomic := sa(s) | opa(op) | esa(es) | da(d) | value Where attType(sa) = attType(opa) = attType(esa) = attType(da) = atomic

Authorization Decision

- A subject s € S is allowed to perform an operation op € OP in a device d € D during an environment state es € ES, if the attributes of subject s,
operation op, device d, and environment state es satisfy Aulhorizalionop (s:S,es: ES,d : D) policies.

have characteristics which are used in access control decision and
expressed as their attributes. An attribute is a function which takes
an entity such as a user and returns a specific value from its range.
An attribute range is given by a finite set of atomic values. An
atomic valued attribute will return one value from the range, while
a set valued attribute will return a subset of the range. In general,
we have two types of attributes: (a) Dynamic Attributes, this type
is rapidly changing due to different conditions. For instance, user
location, weather, and device temperature. (b) Static Attributes,
this type is relatively static and need administrator action to be
changed. For example, user relationship, device level of danger,
and so on. User Attributes (UA): is the set of attributes associ-
ated with users. Session Attributes (SA): is the set of attributes
associated with sessions. Session attributes are set by the creating
user, and are constrained by policies established by security archi-
tects (discussed later). Session attributes require an initial value

at creation time which will be inherited from the corresponding
creator user’s attributes. Operation Attributes (OPA): is the set
of attributes assigned to different operations, for example you may
want to characterize dangerous operations by creating an opera-
tion attribute called "Dangerous Operations" and associate it with
those operations. Device Attributes (DA): is the set of attributes
associated with smart things, for instance, "Kitchen devices", and
"Alex devices". Environment state Attributes (ESA): is the set
of attributes describe the environment condition of a specific time.
For example, "days of the week", and "weather condition". How
different environment state attributes get triggered is outside the
scope of our model. Operation, and device attributes are partial
function s; we may have some devices, or some operations that are
not assigned to some attributes. On the other hand, users, sessions,
and environment roles attributes are total functions. A constraint
is an invariant that must be maintained at all times. In HABAC

Constraints on
Subject attributes
)
Constraints on User | !
attributes H

USERS SESSIONS
u S

Assaciation
————— Craater

——— Inheritance

* Consiaints ESA

Figure 2: Smart Home IoT ABAC Model

we define two types of constraints, as follows. Constraints on
User attributes: these constraints enforce restrictions on user
attributes. For instance, if we have the following user attribute
constraint ((Relationship, kid), { (Adults, True)}), this constraint
implies that if a user Relationship attribute is equal to kid, then he
cannot have True as the value of the attribute function Adults. Con-
straints on Subject attributes: these constraints enforce restric-
tions on subject attributes. For instance, if we have the following
subject attribute constraint: ((Relationship, staying Home Kid),
{(Relationship, travel Abroad Kid)}), this constraint implies that
for any session s; if staying Home Kid € Relationship(s;), then
travel Abroad Kid ¢ Relationship(s;). Authorization Functions
(Policies): are two-valued boolean function which are evaluated for
each access decision. An authorization policy for a specific opera-
tion takes a subject, an environment state, a device and returns true
or false based on attribute values. In Table 1 we define a common
policy language for authorization functions using propositional
logic formula.

3.1 HABAC Use Case

We present a use case to demonstrate the components and con-
figurations of HABAC. The objective is as follow: (a) Allow kids
to use kids friendly operations in entertainment devices (G, PG
contents in TV, and PS 43 (games for group age below 3 years old),
PS47 (games for group age below 7 years old) contents in Play
Station) during specific time (weekends afternoons and evenings,
and weekdays evenings). (b) Allow teenagers to use entertainment
devices unconditionally. (c) Authorize teenagers to use danger-
ous kitchen devices (Oven) only when one of the parents is in
the kitchen. (d) Authorize teenagers to use non dangerous kitchen
devices (Fridge) unconditionally. (e) Allow parents to use any op-
eration in any device unconditionally. To achieve these objectives,
HABAC can be configured as shown in Table 2. Here, we have three
users, alex, bob, and anne with user attribute Relationship set to
the values kid, teenager, and parent respectively. When a user uy
creates a session, it will automatically inherit subset of u, attributes.
We have five devices TV, PlayStation, Oven, Fridge and FrontDoor.
Oven, and Fridge are assigned the following device attributes by
the house owner Fridge « (DangerouseKitchenDevices : False),
and Oven « (DangerouseKitchenDevices : True). We have twelve
operations G, PG, A3, A7, A12, BuyGames, ON, OFF, Open, Close,
Lock, and Unlock. These operations are assigned to operation at-
tributes as following, (G, A3, and A7) « (KidsFriendly : True),
while (PG, A12, BuyGames) < (KidsFriendly : False). We have

one environment state current which has three attribute functions
(day, time, and ParentInKitchen). The authorization function is
a disjunction of five propositional statements. The first statement
gives kids access to kids friendly operations during weekdays
evenings, or weekends afternoon and evenings. The second state-
ment gives teenagers access to dangerous kitchen devices only
when one of the parents is in the kitchen. The third statement
authorizes teenagers to use non dangerous kitchen devices uncon-
ditionally. The fourth statement allows teenagers to access kids
friendly operations, and non kids friendly operations uncondition-
ally. Finally, the fifth statement gives parents access to anything
unconditionally.

Table 2: HABAC Use Case

U = {alex, bob, anne},

UA = {Relationship, Location}

Relationship : u: U — {parent, kid, teenager}

Location : u : U — {Kitchen, Master BedRoom, BedRoom,
BedRoomy, LivingRoom }

Relationship(alex) = kid

Relationship(anne) = teenager

Relationship(bob) = parent

S={.}

SA = {Relationship, Location}

Relationship : s : S — {parent, kid, teenager}

Location : s : S — {Kitchen, Master BedRoom, BedRoom,
BedRoomy, LivingRoom}

D = {TV,PlayStation, Oven, Fridge, FrontDoor}
DA = {DangerouseKitchenDevices}
DangerouseKitchenDevices : d : D — {True, False}
DangerouseKitchenDevices(Oven) = True
DangerouseKitchenDevices(Fridge) = False

ES = {Current}

ESA = {day, time, ParentInKitchen}
day:es:ES — {S,M,T,W,Th,F,Sa}

time : es : ES — {x|x is an hour of a day }
ParentInKitchen : es : ES — {True, False}

OPry = {G,PG,...}

OPpiaystation = {A3, A7, A12, BuyGames, . ..}

OPoyen = {ON,OFF}

OPrpriqge = {Open, Close}

OPFrontDoor = {Lock, Unlock}

OP =0OPrv U OPPlayStation U OPogyen U OPFridge U OPFrontDoor

OPA = {KidsFriendly}

KidsFriendly : op : OP — {True, False}

KidsFriendly(G) = KidsFriendly(A3) =
KidsFriendly(A7) = True

KidsFriendly(PG) = KidsFriendly(A12) =
KidsFriendly(BuyGames) = False

Authorizationep (s : S,es : ES,d : D) =

(Relationship(s) = kidA ((day(current) € {Sa,S} A 12 : 00 <
time(current) <19:00)V (day(current) € {M,T,W,Th, F}A17 :
00 < time(current) < 19:00)) A KidsFriendly(op) = TrueV
(Relationship(s) = teenager A ParentInKitchen(current) =
TrueA DangerouseKitchenDevices(d) = True)V
(Relationship(s) = teenager\ DangerouseKitchenDevices(d)
False)Vv

(Relationship(s) = teenagerA (KidsFriendly(op) = True V
KidsFriendly(op) = False))V

(Relationship(s) = parent)

Table 3: EGRBAC Configuration in HABAC

- UnaBac = UEGRBAC

-UA = SA = {Relationship}

- Relationship : u € UgaBac — 2R

- Relationship : s € § — 2R

- (Yu; € UgaBac) [Relationship(u;) = {rx|(ui, rx) € UA}]

- UAConstraint = {uac; }

- For all ssdc; = (r;,Rj) € SSDConstraints:

uac; = ((Relationship,r;),UAP;), where UAP; =
{(Relationship,ryp)|r, € R;}

- SAConstraint = {sac;}

- For all dsdc; = (ri,R;) € DSDConstraints:

sac; = ((Relationship,r;), SAP;), where SAP; =
{(Relationship,ryp)|r, € R;}

- ES = {Current}
-ESA=ER
(Yesa; € ESA)|esa; : es € ES — {True, False}]|

- Duapac = DEGrBAC, OPraBac = OPEGRBAC

-DA =0OPA=DR

- (Yda; € DA) [da:d € Dyapac — {True, False}]

- (Yopa; € OPA)[opa : op € OPgapac — {True, False}]

- (Y(dry € DR, px € {pil(pi,dry) € PDRA}))[dry(px.0p) =
True,dry(px.d) = True]

- (Y(dry € DR,py € {pjl(pj,dry) ¢ PDRA}))[dry(px.op) =
False,dry(px.d) = False]

- For each rpdra; = ((ri, ER;),dr;) € RPDRA, we construct an autho-
rization policy as following:

[Authorizationep (s : S,es : ES,d : D) = Relationship(s) = ri A
dri(op) = TrueA(NesacEr; esa(current) = True) Adri(d) = True]
- The final authorization policy is the disjunction of every created au-
thorization policy.

4 Constructing HABAC From EGRBAC

In this section, we take a further step toward comparing HABAC,
and EGRBAC. We introduce HABAC configuration that translates
EGRBAC policies in a manner that they can be implemented by
HABAC. The purpose is to see whether we can fully express any
EGRBAC configuration in HABAC model, and if not which model is
more expressive, and in what terms. The configuration of HABAC
for a given EGRBAC configuration is shown in Table 3. The goal is to
construct HABAC elements (U, UA, SA, ES, ESA, D, DA, OP, OPA)
and the authorization policy function from EGRBAC policy in such
a way that the authorizations are the same as those under EGRBAC.
The inputs are EGRBAC component sets R, Usgrac, UA, EC, ER,
EA, DR, PDRA, PEGrBAC, DEGRBAC, OPEGRBAC- The outputs are
Unapac, UA, ES, ESA, OPgagac, OPA, Dyapac, DA, and the au-
thorization policy function Authorizationgy(s : S,es : ES,d : D).
The set of users, devices, and operations are the same in both sys-
tems. Roles are expressed through the user attribute Relationship
in HABAC. Relationship is a user and a subject attribute that takes
a user or a subject as an input and returns the set of roles assigned
to that user or that subject. Static separation of duty constraints
SSDConstraints are translated into user attributes constraints in
HABAC. Dynamic separation of duty constraints DSDConstraints

are translated into subject attributes constraints in HABAC. En-
vironment roles are translated into atomic environment state at-
tributes. How to trigger different environment states attributes in re-
sponse to environment’s changes is outside the scope of this model.
In EGRBAC device roles are ways of categorizing permissions. Since
we do not have permission attributes in HABAC, and since a per-
mission is mapping between a device and an operation, we translate
device roles in EGRBAC into atomic operation attributes and atomic
device attributes with a range of values equal to {True, False}. The
final step is to translate the authorization policies. In EGRBAC it is
the RPDRA that gives specific role pairs and hence users access to
specific device roles and hence permissions. Therefore, we translate
each rpdra; = ((ri, ER;),dr;) € RPDRA into an authorization pol-
icy. The final authorization policy is the disjunction of every created
authorization policy. As a result, we have only one user attribute
which is Relationship. The number of user attributes constraints
is equal to the number of SSDConstraints. The number of subject
attributes constraints is equal to the number of DSDConstraints.
The number of operation attributes, and the number of device at-
tributes are equal to the number of device roles. The number of
environment state attributes is equal to the number of environ-
ment roles. In HABAC we can not create something equivalent
to EGRBAC PRConstraints. As shown in Section 2.1, in EGRBAC,
the way a user get access to specific set of permissions happens
through a series of assignments, the most critical assignment is the
RPDRA which assigns role pairs to device roles. Hence, by control-
ling RPDRA we can control which role pairs and hence roles get
access to which device roles and hence permissions. In HABAC on
the other hand, we don’t have similar "attack point" that can be
controlled to prevent specific access permission. The only way to
make sure that certain users can not get access to specific permis-
sions is by checking each request to access these permissions and
look for those prohibited users. This is a significant advantage of
EGRBAC in which we can enforce such constraints at assignment
time whereas HABAC-like models would need to enforce these
at enforcement time. To summarize, the construction of HABAC
shown in Table 3 is equivalent to the given EGRBAC configuration
including static and dynamic separation of duty constraints. The
claim of equivalence is intuitively obvious since the construction
is effectively one for one and straightforward. A formal argument
can be presented along the lines of [40] but is tedious and does not
provide meaningful insight.

5 Constructing EGRBAC from HABAC

In this section, we introduce our methodology to construct EGR-
BAC components and configurations from HABAC policy config-
uration. Our EGRBAC constructing approach works perfectly for
HABAC policies that contain environment attributes, and static
sessions, operations, and devices attributes. It can also handles poli-
cies that do not involve comparing two different types of attributes.
Furthermore, we found that due to some limitations in EGRBAC, it
is either not possible to capture policies involving dynamic sessions,
operations, and devices attributes, or costly (leads to role explosion).
We followed a bottom-up role engineering approach. Traditional
algorithms for translating ABAC systems into RBAC using bottom-
up approach, first represents the ABAC system in UPA matrix, and
then do some sort of role mining. The rows and columns of the

matrix correspond to users and permissions, respectively. If a user
is assigned a particular permission, the corresponding entry of the
matrix contains a 1; otherwise, it contains a 0. From this perspec-
tive, role engineering is a process of matrix decomposition, wherein
the Boolean matrix UPA is decomposed into two Boolean matrices
(UA and PA), which together give the original access control policy
[29]. EGRBAC is a more sophisticated model than RBAC; since in
addition to user roles, it captures environment, and device charac-
teristics through environment roles, and device roles respectively.
In EGRBAC we do not give access to permissions directly, instead
we give access to device roles. Hence, instead of UPA matrix, we
first need to construct a user-device role assignment matrix, we
call it user device role assignment array UDRAA. Moreover, users
do not get access to authorized device roles unconditionally, some
times specific set of environment roles need to be active. UDRAA
need to capture these information; each cell (u;, dr;) in UDRAA
contains zero if u; cannot access dr;, contains one if u; can access
dr; unconditionally, or contains C if u; can access dr; when the set
of conditions C is satisfied, were C is a set of session conditions (for
example role), and environment conditions.

5.1 From Authorization policy to

Authorization Array

An authorization policy is expressed in a logical clause. First
we convert it into a disjunctive normal form (DNF). All logical
formulas can be converted into an equivalent DNF form. Here is
the authorization policy of our HABAC use case which introduced
in Table 2 after following the standard approach to convert it into
a DNF format.

Authorizationep(s : S,es : ES,d : D) =
(Relationship(s) = kidA day(current) € {Sa,S} A 12 : 00 <
time(current) < 19: 00 A KidsFriendly(op) = True) V
(Relationship(s) = kidA day(current) € {M,T,W,Th,F} A 17 :
00 < time(current) < 19:00 A KidsFriendly(op) = True) V
(Relationship(s) = teenager A ParentInKitchen(current) = TrueA
DangerouseKitchenDevices(d) = True) V
(Relationship(s) = teenager\ DangerouseKitchenDevices(d) =
False) v
(Relationship(s) = teenagerA KidsFriendly(op) = False) V
(Relationship(s) = teenager A KidsFriendly(op) = True) V
(Relationship(s) = parent).

We call each conjuncted term a condition. We have session,
environment, device, operation, and mix conditions which are con-
ditions that involve session, environment, device, operation, and
any two types of attributes respectively. In the DNF authorization
policy of our HABAC use case mentioned above we have seven
conjunctive clauses, each conjunctive clause represents one access
authorization rule. To construct the authorization array we eval-
uate every u; € U, dj € D, and opy € OP combination against
each conjunctive clause, whenever a combination satisfies every
term (condition) in a conjunctive clause except those conditions
which involve environment state attributes, we create a raw (u;,
d;, opy., current, C) for that combination in the authorization array.
Where, C is the set of session and environment related conditions
in the examined conjunctive clause. Authorizations array (AA):
an authorization raw (u;, dj, opy., es;, C) denotes that the user u;
is allowed to perform an operation opj on a device d; during the

Table 4: AA for HABAC Use Case

‘ Useru Deviced Operation op Environment state es Conditions C
alex TV G current X
alex PS A3 current X
alex PS A7 current X
alex TV G current zZ
alex PS A3 current Z
alex PS A7 current Z
bob TV G current {Relationship(s) = parent}
bob TV PG current {Relationship(s) = parent}
bob PS A3 current {Relationship(s) = parent}
bob PS A7 current {Relationship(s) = parent}
bob PS Al12 current {Relationship(s) = parent}
bob PS BuyGames current {Relationship(s) = parent}
bob Oven ON current {Relationship(s) = parent}
bob Oven OFF current {Relationship(s) = parent}
bob Fridge Open current {Relationship(s) = parent}
bob Fridge Close current {Relationship(s) = parent}
bob FrontDoor Lock current {Relationship(s) = parent}
bob FrontDoor Unlock current {Relationship(s) = parent}
anne vV G current {Relationship(s) = teenager}
" anne vV PG current {Relationship(s) = teenager}
anne PS A3 current {Relationship(s) = teenager}
" anne PS A7 current {Relationship(s) = teenager}
anne PS Al12 current {Relationship(s) = teenager}
anne PS BuyGames current {Relationship(s) = teenager}
anne Oven ON current Y
anne Oven OFF current Y
anne Fridge OPEN current {Relationship(s) = teenager}
anne Fridge CLOSE current {Relationship(s) = teenager}

X = {Relationship(s) = kid ,
day(current) € {Sa,S},12: 00 < time(current) < 19:00}.
Y = {Relationship(s) = teenager , ParentInKitchen(current) = True} .
Z= {Relationship(s) = kid ,
day(current) € {M,T,W,Th,F},17 : 00 < time(current) <19:00}.

Table 5: PDRA array for HABAC Use Case

itchenDevices D: itchenDevices KidsFriendly = KidsFriendly = po
= True - False True False
(TV,G) 0 0 1 0 0
(1V,PG) 0 0 0 1 0
(PlayStation, A3) 0 0 1 0 0
(PlayStation, A7) 0 0 1 0 0
(PluySmlmn,AlZ) 0 0 0 1 0
(PlayStation, BuyGames) 0 0 0 1 0
(Oven, ON) 1 0 0 0 0
(Oven, OFF) 1 0 0 0 0
(Fridge, Open) 0 1 0 0 0
(Fridge, Close) 0 1 0 0 0
(FrontDoor, Lock) 0 0 0 0 1
(FrontDoor, Unlock) 0 0 0 0 1
Table 6: UDRAA for HABAC Use Case
b KitchenDevices) D KitchenDs KidsFriendly = True KidsFriendly = False RemPerm
= True = False
alex 0 0 x.2) 0 0
bop | (0 5= It 5= «)= ()= R)=

parent}} parent}} parent}) parent}} parent}}

anne i} R teerznger))A): R teenager}) ' ! teenager)})= 0

X = {Relationship(s) = kid ,
day(current) € {Sa,S},12: 00 < time(current) < 19:00}.
Y = {Relationship(s) = teenager , ParentInKitchen(current) = True} .
Z= {Relationship(s) = kid ,
day(current) € {M,T,W,Th,F},17 : 00 < time(current) <19:00}.

environment state es; whenever the set of environment and session
conditions in C are satisfied. The AA of the use case in Table 2
is shown in Table 4. For illustration purposes each different color
presents the authorization fields for different user.

5.2 Approach

The goal is to construct EGRBAC elements (U, R, EC, ER, RP,
D, OP, P, DR), assignments (UA, EA, PDRA, RPDRA), and associa-
tions (RPRA, RPEA) from HABAC policies in such a way that the
authorizations are the same as those under HABAC. The inputs
are HABAC set of users U apAc, set of devices Dipapac, set of op-
erations OPgagac, UA, SA, ESA, OPA, DA, and the authorization

array AA. The outputs are EGRBAC components U, R, UA, EC, ER,
EA, RP, RPRA, RPEA, D, OP, P, DR, PDRA, and RPDRA. The steps
are following:

Step 1: Initialization. The set of users, devices, and operations are
the same in both systems, hence U = Ugapac, D = DyaBac, and
OP = OPyapac. For every operation op;, and device d; pair, where
op; is assigned to d; by the device manufacturers, create a permis-
sion.

Step 2: Create the set of device roles DR. (a) Create a device role dr
for each operation attribute instance, or device attribute instance.
DR here are represented as a condition of the form opa = x, or
da = x. Where x is an instance of the attribute value. (b) Create
one device role call it remaining permissions RemPerm for all the
permissions p; = (dj, 0p;j), where d; is not assigned to any device
attributes, and op; is not assigned to any operation attribute. This
device role captures the cases where some users have access to spe-
cific permissions directly without involving device’s or operation’s
attributes.

Step 3: Construct the permission device role assignment array
PDRA. It is a many-to-many mapping of P set and DR set (con-
structed in Step 2). To construct PDRA we first make a column for
each DR, and make a row for each permission py. Then, we fill
the array PDRA, where PDRA(, j] = 1 in two cases, first if for the
permission p; (corresponding to the row i) p;.op or p;.d satisfies
the condition corresponding to the device role of the column j dr;.
Second, if p;.op is not assigned to any operation attribute, and p;.d
is not assigned to any device attribute, and the device role corre-
sponding to this column is RemPerm. PDRA[i, j] = 0 otherwise.
For every PDRALi, j] = 1, add the pair (p;, drj) to the set PDRA of
EGRBAC. See Table 5 for the PDRA array of our HABAC use case.
Step 4: Construct the user device role authorization array UDRAA
from the authorization array AA, and PDRA. UDRAA C U X DR, a
many to many mapping between U and DR. To construct UDRAA,
we first make a raw for each user, and a column for each device
role. Then, for every UDRAALJi, j] € UDRAA we check the AA for
every u;, and py combination, where (py,dr;) € PDRA. Here, we
have three cases: (a) UDRAA[, j|] = 1 if user u; can access all the
permissions assigned to the device role dr; without any condition.
(b) UDRAALJ, j] = 2€, where C is a set of session, and environment
conditions that need to be satisfied together for a u; to access all
the permissions assigned to dr;. Note that these sets of conditions
have to be the same for each permission assigned to dr;. (c) Fi-
nally, UDRAA(i, j] = 0 if user u; is not allowed to access all the
permissions assigned to the device role drj, or is allowed to access
different permissions in dr; but under different set of conditions.
Table 6 shows UDRAA for our use case.

Step 5: Construct the rest of EGRBAC elements (R, EC, ER, RP),
assignments (UA, EA, RPDRA), and associations (RPRA, RPEA) by
following our proposed EGRBAC users and environment roles con-
structing algorithm introduced in Section 5.3. The set of users roles
R constructed here is the set of candidate users roles.

Step 6: Merge similar users roles. To do so, we run our developed
role merging algorithm illustrated in Section 5.4.

Algorithm 1 EGRBAC Users and Environment Roles Construction

Require: UDRAA

Require: ColumnDR(j): return the device role corresponding to the col-
umn j in UDRAA.

Require: RawUser (i): return the user corresponding to the raw i in
UDRAA.

Require: ContainsSC(X): Return True if the set of conditions X contains
at least one session condition.

Require: ContainsESC(X): Return True if the set of conditions X con-
tains at least one environment state condition.

Require: IsESC(c): Return True if ¢ is an environment state condition.

Require: ToString(x) : Return the value of x in a string format.

1: Initilize n = Number of users, m = Number of device roles, R = {},

UA={},EC={},ER={},EA={},RP = {},and RPDRA = {},

2: for j <« 1tomdo

3 fori <« 1tondo

4 if UDRAA(i, j] = 1 then

5: erx = Any_Time, ecx = True

6 EC =ECU {ecx}, ER=ERU {ery}
7 EA=EAU {({ecx},erx)}

8

9.

SER = {ery }
: rm = ToString(ColumnDR(j))
10: R=RU{rm}
11: RP =RPU {rp.}, where rp,.r = rp, rp-.ER = SER
12: RPDRA = RPDRA U {(rp,, ColumnDR(j))}
13: UA=UAU {(RawUser(i),rm)}
14: else if UDRAALJi, j] # 1 AUDRAALJI, j] # 0 then
15: for each X € UDRAA[i, j] do
16: if (=ContainsSC(X) A ContainsESC(X) then
17: SER = {}
18: for each y € X do
19: Create ecy, and ery
20: EC = ECU {ecy}, ER=ERU {ery}
21: EA =EAU {({ecy},ery)}
22: SER = SERU {ery}
23: end for
24: rm = ToString(ColumnDR(j)) + A 7+
ToString(X)
25: R=RU {rm,}
26: RP = RPU{rp,},whererp,.r = rp, rp;.ER = SER
27: RPDRA = RPDRA U (rp,, ColumnDR(j))
28: UA=UAU {(RawUser(i),rm) }
29: else if (ContainsSC(X) A =ContainsESC(X) then
30: ery = Any_Time, ecx = True
31: EC=ECU {ecx}, ER=ERU {ery}
32: EA=EAU {({ecx},erx)}
33: SER = {ery}
34: rm = ToString(ColumnDR(j)) +> A 7+
ToString(X)
35: R=RU {rm}
36: RP = RPU{rp.,},whererp,.r = rp,, rpz.ER = SER
37: RPDRA = RPDRA U (rp, ColumnDR(j))
38: UA=UAU {(RawUser (i), rm)}
39: else if (ContainsSC(X) A ContainsESC(X)) then
40: SER = {}
41: for each y € {y|(y € X) AIsESC(y)} do
42: Create ecy, and ery
43: EC =ECU {ecy}, ER=ERU {ery}
44: EA=EAU {({ecy},ery)}
45; SER = SERU {ery}

46: end for

47: rm = ToString(ColumnDR(j)) + 7 A7 +
ToString(X)

48: R=RU {rm}

49: RP =RP U {rp;}, where rp;.r = rm,rpz.ER =
SER

50: RPDRA = RPDRA U (rpz, ColumnDR(j))

51: UA =UAU {(RawUser(i),rm)}

52 end if

53: end for

54: end if

55: end for

s56: end for

5.3 EGRBAC Users and Environment Roles

Constructing Algorithm:
The goal is to Construct EGRBAC elements (R, EC, ER, RP), as-
signments (UA, EA, RPDRA), and associations (RPRA, RPEA) from

UDRAA. See Algorithm 1 for the full algorithm. The input is UDRAA.

The outputs are R, UA, EC, ER, EA, RP, and RPDRA. The steps are
shown as following:

Step 1: Initialize the following EGRBAC sets R = {},UA = {}, EC =
{},ER={},EA={},RP = {}, RPDRA = {}, and the following con-
stants m = Number of device roles, n = Number of users.

Step 2: Loop through the columns of UDRAA, Table 6 for our
HABAC use case. Each column is corresponding to users access
rights to a specific device role. Inside each column loop through
the fields of different rows. Here we have two cases:
A.UDRAALi, j] = 1, according to the way UDRAA was constructed
this means the user corresponding to this raw u; can access the
device role of this column dr; unconditionally. In this case, the
algorithm does the following:

a Creates an environment role ery = Any_Time and add it to
the set ER, an environment condition ecy = True and add
it to the set EC. Add ({ecx}, erx) to the set EA, this implies
that the environment role Any_Time will always be active.
Create a set of environment roles SER and add er, to it
SER = {erx}.

b Creates a role ry, = ToString(ColumnDR(j)) which corre-
sponds to accessing this column device role anytime, and
unconditionally. Add this role to the set R.

¢ Defines a role pair rp,, where rp,.r = rpy and rp;.ER = SER.
Add rp; to the set RP.

d Assigns the role pair rp; to the device role corresponding to
this column by adding the pair (rp;, ColumnDR(j)) to the
set RPDRA.

e Assigns the role ry, to the user corresponding to this raw by
adding the pair(RawUser (i), rp) to the set UA.

B. UDRAALi, j] # 1AUDRAAL[I, j] # 0, which means that the user
u; can access the device role dr;j under specific set of user and en-
vironment conditions defined by UDRAAL, j]. Here, UDRAALi, j]
is a set of sets of conditions, each set of conditions define a group
of session, and environment conditions that need to be satisfied
together in order for the user u; to be able to access the device
role drj. Loop through each set of conditions X € UDRAA[I, j], X
satisfies only one of the three following options:

(1) X contains environment conditions only. In this case the
algorithm first loops through each environment condition
to create a corresponding environment condition ecy, envi-
ronment role ery, and add these environment roles to the
set SER. Second, the algorithm creates a corresponding role
which represents accessing this column device role when
the set of environment attributes conditions that form X is
satisfied. Finally, it follows the same three steps c, d, and e
explained in the previous case (when UDRAAL[i, j] = 1).

(2) X contains session conditions only. Here the algorithms fol-
lows the same steps explained in case A (when UDRAALJ, j] =
1). The only difference here is that the created role corre-
sponds to access this column device role anytime, under the
set of user conditions expressed by X instead of uncondi-
tionally as in case A.

(3) X contains session and environment conditions. In this case
the algorithm creates corresponding environmnet roles, en-
vironment conditions, and user role. It then follows the same
three step c, d, and e explained in case A.

5.4 Users Roles Merging Algorithm
The main purpose of this algorithm is to merge roles that have

similar users assignments. For each two roles r;, r; which are as-
signed to the same set of users, the algorithm does the following:
(a) For every role pair rpy, in which the role part of it rpy.r is equal
to r;, change the role part of it to rj (rpg.r = r;). (b) Remove r;
from the set of roles R. (c)For every (uy,ri) € UA, remove the pair
(uy, ri) from the set UA. See Algorithm 2 for the complete algorithm.
After applying the first five steps of the approach of constructing
EGRBAC from HABAC introduced in Section 5.2 on our HABAC
use case, we will end up having eleven roles as following: R = {

r1 = DangerouseKitchenDevices = True A Relationship(s) = parent,
r2 = DangerouseKitchenDevices = True A {Relationship(s) =
teenager, ParentInKitchen(current) = True},

r3 = DangerouseKitchenDevices = False A Relationship(s)
parent ,

r4 = DangerouseKitchenDevices = False A Relationship(s) =
teenager ,

rs = KidsFriendly = True A {Relationship(s) = kid,
day(current) € {Sa, S},12 : 00 < time(current) < 19 : 00},

r¢ = KidsFriendly = True A {Relationship(s) = kid,
day(current) € {M,T,W,Th,F},17 : 00 < time(current) < 19 :
00},

r; = KidsFriendly = True A Relationship(s) = parent,

rg = KidsFriendly = True A Relationship(s) = teenager,

r9 = KidsFriendly = False A Relationship(s) = parent,

ri0 = KidsFriendly = False A Relationship(s) = teenager,

ri1 = RemPerm A Relationship(s) = parent}.
These roles will be assigned to different users as following: UA =
{(alex,rs), (alex,r¢), (bob, r1), (bob, r3), (bob, r7), (bob, r9), (bob, r11),
(anne, ry), (anne, r4), (anne, rg), (anne, rip)}.
After running the users roles merging algorithm, the constructed
eleven roles will be merged into three roles only, and the user role
assignment set will end up having three pairs as shown in the fol-

lowing: R = {rq =r1,73,77,79, 711, F'p =T2,74,78, 710, T'c = I'5,76}.

UA = {(alex,rc), (bob,ry), (anne, rp)}.

Algorithm 2 Users Roles Merging Algorithm

Require: R: The set of roles
Require: U (r): Returns the set of users assigned to
the role r.
Require: RP(r): Returns the set of role pairs asso-
ciated with the role r. .
1: for each r;,r; € Rdo

2 if U(r;) =U(rj) Ar; # rj then
3 for each rpy € RP(r;) do

4 rpE.r =r;j

5: end for

6 R=R\r;

7 > Delete all UA pairs related to r;
8 for each (a,b) € UA do

9 if b = r; then

10: UA=UAN\ (a,b)

11: end if

12: end for

13: end if

14: end for
5.5 The output of EGRBAC Constructing

Approach on HABAC Use Case
The output of EGRBAC role constructing algorithm for the Use
case in Table 2 is shown in Table 7. Maximum number of cre-
ated device roles is O(|OPA| + |DA|). Since we create an environ-
ment role and an environment condition for each logical envi-
ronment condition, maximum number of environment roles and

conditions is Q(|ESA]|). Finally, maximum number of user roles is
O(2ISAI+IESAl)

6 Discussion and Future Directions

Our proposed HABAC model is a user to device access control
model. It captures different users, environment, operations, and
devices characteristics. Therefore, it is a dynamic model. It is a fine
grained model; since it is capable of giving users access to some
operations within a single device without the need to give them
access to the entire device. Our approach of constructing HABAC
from EGRBAC is a simple, straightforward approach that is capable
of translating EGRBAC configuration into an HABAC policy config-
uration. However, as we discussed in Section 4, in HABAC we can
not create something equivalent to EGRBAC PRConstraints. This
makes it troublesome to prevent future authorization of specific
users to access specific operations on specific devices, since the only
way to do so is dynamically at enforcement time when the user is
trying to access the prohibited operation, unlike EGRBAC in which
we can enforce this prevention at assignment time. In EGRBAC,
determining the role structure could take a lot of efforts, but when
completed it is easy to define who has what permissions, and who is
not allowed to have a future access to specific permissions. On the
other hand, in HABAC this is not achievable. In addition to users,
sessions, devices, and operations static attributes, our EGRBAC
constructing approach is capable of handling HABAC policies that
contain environment attributes. Due to some limitations in EGR-
BAC, our approach can’t handle HABAC policies that involve users,
devices and operations dynamic attributes. As explained in Section
3, dynamic attributes are those attributes that are rapidly chang-
ing without involving administration actions. For instance device

Table 7: The output of EGRBAC Constructing Approach on
HABAC Use Case

(a) UegrBac = Un-aBAC: DEGRBAC = DH-ABAC, OPEGRBAC =
OPH-aBAC, PEGrBAC = {(TV,G), (TV, PG), (PlayStation,
A3), (PlayStation, A7), (PlayStation, A12), (PlayStation,
BuyGames), (Oven, ON), (Oven, OFF), (Fridge, Open), (Fridge,
Close), (FrontDoor, Lock), (FrontDoor,Unlock) }

(b) DR = {DangerouseKitchenDevices = True,
DangerouseKitchenDevices = False,

KidsFriendly = True , KidsFriendly = False,
RemPerm}.

(c) PDRA = {((TV,G),KidsFriendly = True),
(PlayStation, A3),KidsFriendly = True),

((PlayStation, A7), KidsFriendly = True),

((TV,PG), KidsFriendly = False),

((PlayStation, A12), KidsFriendly = False),
((PlayStation, BuyGames), KidsFriendly = False),
((Oven, ON), DangerouseKitchenDevices = True),
((Oven, OFF), DangerouseKitchenDevices = True),
((Fridge, Open), DangerouseKitchenDevices = False),
((Fridge, Close), DangerouseKitchenDevices = False),
((FrontDoor, Lock), RemPerm),

((FrontDoor,Unlock), RemPerm) }.

(d) EC = {True,

ecy = ParentInKitchen(current) = True,

ecy =day(current) € {Sa, S},

ec3 =12:00 < time(current) <19:00,

ecy =day(current) € {M,T,W,Th,F},

ecs =17 : 00 < time(current) < 19:00}.

(e) ER = {Any_Time,

ery = ParentInKitchen(current) = True,

ery =day(current) € {Sa, S} = Weekend,

ers =12:00 < time(current) <19 :00 = Afternoon and Evening,
ery =day(current) € {M,T,W,Th,F} = Weekdays,

ers =17 : 00 < time(current) < 19 : 00 = Evening}.

(f) EA = {({True}, Any_Time) , ({ec1 },er1) ,

({ecz} er2) , ({ecs},ers), ({ecs}, erq), ({ecs},ers) }.

(&) R={ra,rp,rc}.

(h) UA = {(bob, ra), (anne,rp), (alex,rc) }.

(i) RP = {(rq, Any_Time),

(rp, Any_Time),

(rp, {er1}),

(re, {erz, ers}),

(re, {ers, ers}) }.

() RPDRA = {((rq,Anyrime) , DangerouseKitchenDevices =
True),

((ra, Any_Time) , DangerouseKitchenDevices = False),
((ra, Any_Time) , KidsFriendly = True),
((ra,Any_Time) , KidsFriendly = False),

((rq, Any_Time) , RemPerm),

((rp, {er1}) , DangerouseKitchenDevices = True),

((rp, Any_Time) , DangerouseKitchenDevices = False),
((rp, Any_Time) , KidsFriendly = True),

((rp, Any_Time) , KidsFriendly = False),

((rc, {ers, ers}) , KidsFriendly = True),

((re, {ers, ers}) , KidsFriendly = True) }.

temperature. In our approach, we translate device, and permission
attributes instances into device roles. In EGRBAC, device roles are
means of categorizing permissions of different devices according
to relatively static characteristics. when a permission is assigned to
a specific device role, then it is part of that device role until some
administration change happens, there is no way to dynamically acti-
vates and deactivates neither device roles, nor assignment of permis-
sions to different device roles. For example, in HABAC we may have
a device attribute device_temperature : d : D «— {Low, High}.
We can easily configure an access policy that authorizes some users
to access a device dy only if device_temperature(dy) = Low. To
do so in EGRBAC we have two options, the first one is by creating
two device roles one for high temperature, and another for low

temperature for each device. This will result in a role explosion.
Furthermore, there is no mechanism in EGRBAC that can dynami-
cally activates dy’s high temperature device role while deactivating
the low temperature device role when the temperature of dry is
high and vice versa. The second option is for those devices which
have similar access conditions we create a device role for low tem-
perature, and a device role for high temperature. However, there
is no way to dynamically activates or deactivates devices mem-
bership in different device roles according to their temperatures.
The similar argument holds when we deal with dynamic user at-
tributes. Our EGRBAC constructing approach didn’t consider the
following: (1)Policies that compare two different types of attributes.
(2)HABAC configurations that involve user attributes constraints
and session attributes constraints. Unfortunately, we don’t have
enough space to analyze and include such use cases. However, this
may be a possible future direction.

From the above, a hybrid model combining HABAC and EGR-
BAC features may be the most suitable for smart home IoT, and
likely more generally. A possible future direction is developing a
combined model which prevents a “role explosion” to cover differ-
ent authorizations for every possible user, environment, operation,
and device conditions while retains advantages of EGRBAC, such
as ease of user provisioning and the ability to specify the maximum
permissions available to each user.

7 Conclusion

In this paper, we introduce HABAC access control model for
smart home IoT. It is a dynamic, fine grained ABAC based model
that captures different attributes of users, environment, operations,
and devices. We provide a use case scenario demonstration. More-
over, we compare the theoretical expressive power of our model
to EGRBAC [4] which is a dynamic contextual aware RBAC based
access control model. We do that by providing approaches for con-
verting an HABAC specification to EGRBAC and vice versa. We
found that while EGRBAC is capable of handling environment
attributes, and relatively static users, and device attributes, it is in-
capable of handling relatively dynamic users, and devices attributes.
On the other hand, unlike EGRBAC, in HABAC it is hard to prevent
future authorization of specific users to access specific operations
on specific devices. In conclusion, we believe that a hybrid model
retaining HABAC and EGRBAC features may be the most suitable
for smart home IoT, and likely more generally.

Acknowledgement
This work is partially supported by NSF CREST Grant 1736209.

References

[1] [n.d.]. Internet of things. https://en.wikipedia.org/wiki/Internet_of_things.

[2] G. Ali, et al. 2019. Blockchain based permission delegation and access control in
Internet of Things (BACI). Computers & Security (2019).

[3] M. Alramadhan and K. Sha. 2017. An overview of access control mechanisms for
internet of things. In ICCCN. IEEE.

[4] S. Ameer, et al. 2020. The EGRBAC Model for Smart Home IoT. In 2020 IEEE 21st
International Conference on Information Reuse and Integration for Data Science
(IRD). IEEE.

[5] O. Arias, et al. 2015. Privacy and security in internet of things and wearable
devices. TMSCS (2015).

[6] S.Bandara, et al. 2016. Access control framework for api-enabled devices in
smart buildings. In APCC. IEEE.

[7] E.Barka, et al. 2015. Securing the web of things with role-based access control.
In C2SI Springer.

[8] B.Bezawada, et al. 2018. Securing Home IoT Environments with Attribute-Based
Access Control. In ABAC’18. ACM.

[9] S.Bhatt, et al. 2017. Access control model for AWS internet of things. In Interna-
tional Conference on Network and System Security.

[10] S. Bhatt and R. Sandhu. 2020. ABAC-CC: Attribute-Based Access Control and
Communication Control for Internet of Things. In Proceedings of the 25th ACM
Symposium on Access Control Models and Technologies.

[11] M.]. Covington, et al. 2000. Generalized role-based access control for securing
future applications. Technical Report. Georgia Tech.

[12] T. Denning, et al. 2013. Computer security and the modern home. Commun.
ACM (2013).

[13] S. Ding, et al. 2019. A novel attribute-based access control scheme using

blockchain for IoT. IEEE Access (2019).

E. Fernandes, et al. 2016. Security analysis of emerging smart home applications.

In SP. IEEE.

[15] E.Fernandes, et al. [n.d.]. Flowfence: Practical data protection for emerging iot
application frameworks. In USENIX Security 16.

[16] D.F. Ferraiolo, et al. 2001. Proposed NIST standard for role-based access control.
TISSEC (2001).

[17] J. Granjal, et al. 2015. Security for the internet of things: a survey of existing
protocols and open research issues. IEEE Comm. Surv. & Tutorials (2015).

[18] Z. Guoping and G. Wentao. 2011. The research of access control based on UCON
in the internet of things. Journal of Software (2011).

[19] M. Gupta, et al. 2019. Dynamic groups and attribute-based access control for
next-generation smart cars. In Ninth ACM Conference on Data and Application
Security and Privacy.

[20] M. Gupta and R. Sandhu. 2018. Authorization framework for secure cloud assisted
connected cars and vehicular internet of things. In Proceedings of the 23nd ACM
on Symposium on Access Control Models and Technologies.

[21] W. He, et al. 2018. Rethinking access control and authentication for the home
internet of things (IoT). In USENIX Security 18.

[22] K. Hill. 2013. Baby Monitor Hack Could Happen To 40,000 Other Foscam
Users. https://www.forbes.com/sites/kashmirhill/2013/08/27/baby-monitor-
hack-could-happen-to-40000- other-foscam-users/613ec55458b5.

[23] G.Ho, et al. 2016. Smart locks: Lessons for securing commodity internet of things
devices. In ASIA CCS ’16. ACM.

[24] V.C.Hu, etal. 2015. Attribute-based access control. Comp. (2015).

[25] X.Jin, et al. 2012. A unified attribute-based access control model covering DAC,
MAC and RBAC. In IFIP Annual Conf. on Data and App. Sec.

[26] J.Jindou, et al. 2012. Access control method for web of things based on role and
sns. In CIT 2012. IEEE.

[27] S.Kaiwen and Y. Lihua. 2014. Attribute-role-based hybrid access control in the
internet of things. In APWeb. Springer.

[28] F. Martinelli, et al. 2018. Too long, did not enforce: a qualitative hierarchical risk-
aware data usage control model for complex policies in distributed environments.
In CPSS ’18. ACM.

[29] B. Mitra, et al. 2016. A survey of role mining. Comput. Surveys (2016).

[30] A. Mutsvangwa, et al. 2016. Secured access control architecture consideration
for smart grids. In IEEE PES PowerAfrica.

[31] O.Novo. 2018. Blockchain meets IoT: An architecture for scalable access man-
agement in IoT. IEEE IoT Journal (2018).

[32] A.Ouaddah, et al. 2017. Towards a novel privacy-preserving access control model
based on blockchain technology in IoT. In Europe and MENA Coop. Adv. in Inf.
and Comm. Tech. Springer.

[33] A.Ouaddah, et al. 2017. Access control in the Internet of Things: Big challenges

and new opportunities. Comp. NW 112 (2017).

J. Park. 2003. Usage control: A unified framework for next generation access control.

Ph.D. Dissertation. George Mason University.

[35] J. Park and R. Sandhu. 2002. Towards usage control models: beyond traditional
access control. In SACMAT ’02. ACM.

[36] J. Qiu, et al. 2020. A survey on access control in the age of internet of things.
IEEE Internet of Things Journal (2020).

[37] S.Ravidas, et al. 2019. Access control in Internet-of-Things: A survey. Journal of
Network and Computer Applications (2019).

[38] R.Sandhu. 1998. Role-based access control. In Advances in computers. Vol. 46.

[39] A. Tilley. 2016. How A Few Words to Apple’s Siri Unlocked a Man’s Front
Door. http://www.forbes.com/sites/aarontilley/2016/09/21/apple-homekit- siri-
security.

[40] M. Tripunitara and N. Li. 2007. A theory for comparing the expressive power of
access control models. Journal of Computer Security 15 (02 2007), 231-272.

[41] B. Uy, et al. 2013. The current state of access control for smart devices in homes.
In HUPS.

[42] Y.Xie, et al. 2015. Three-layers secure access control for cloud-based smart grids.
In IEEE 82nd VTC2015-Fall. IEEE.

[43] N. Ye, et al. 2014. An efficient authentication and access control scheme for

perception layer of internet of things. Applied Math. & Inf. Sciences (2014).

G. Zhang and J. Tian. 2010. An extended role based access control model for the

Internet of Things. In 2010 ICINA. IEEE.

[14

&
=

S
it

https://en.wikipedia.org/wiki/Internet_of_things
https://www.forbes.com/sites/kashmirhill/2013/08/27/baby-monitor-hack-could-happen-to-40000-other-foscam-users/613ec55458b5
https://www.forbes.com/sites/kashmirhill/2013/08/27/baby-monitor-hack-could-happen-to-40000-other-foscam-users/613ec55458b5
http://www. forbes. com/sites/aarontilley/2016/09/21/apple-homekit-siri-security
http://www. forbes. com/sites/aarontilley/2016/09/21/apple-homekit-siri-security

	Abstract
	1 Introduction and Motivation
	2 Related Work
	2.1 Background: EGRBAC For Smart Home IoT

	3 HABAC Model for Smart Home IoT
	3.1 HABAC Use Case

	4 Constructing HABAC From EGRBAC
	5 Constructing EGRBAC from HABAC
	5.1 From Authorization policy to Authorization Array
	5.2 Approach
	5.3 EGRBAC Users and Environment Roles Constructing Algorithm:
	5.4 Users Roles Merging Algorithm
	5.5 The output of EGRBAC Constructing Approach on HABAC Use Case

	6 Discussion and Future Directions
	7 Conclusion
	References

