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ABSTRACT

Relationship-Based Access Control (ReBAC) expresses authoriza-
tion in terms of various direct and indirect relationships amongst
entities, most commonly between users. The need for ReBAC policy
mining arises when an existing access control system is reformu-
lated in ReBAC. This paper considers the feasibility of ReBAC policy
mining in context of user to user authorization, such as arises in
various social and business contexts. In accordance with the pol-
icy mining literature, we assume that complete data is provided
regarding user to user authorizations for a given user set, along
with complete relationship data amongst these users comprising a
labeled relationship graph. A ReBAC policy language is also speci-
fied. ReBAC policy mining seeks to formulate a ReBAC policy with
the given policy language and relationship graph, which is exactly
equivalent to the given authorizations. ReBAC policy mining feasi-
bility problem asks whether such a policy exists and if so to provide
the policy. We investigate this problem in context of different Re-
BAC policy languages which differ in the relationships, inverse
relationships and non-relationships that can be used to build the
policy. We develop a feasibility detection algorithm and analyze its
complexity. We show that our policy languages are progressively
more expressive as we introduce additional capability. In case of
infeasibility, various solution approaches are discussed.
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1 INTRODUCTION

In accordance with the emerging popularity of various Online Social
Network (OSN) applications such as Facebook, Twitter, Instagram,
LinkedlIn, effective access control is required to protect the huge
amount of personal data shared online from unauthorized access.
Popular OSN systems have employed various policies to mitigate
user’s privacy concern. For instance, Facebook allows the user to set
the privacy to only himself, all friends, a particular list of friends,
or public while creating a photo album; while LinkedIn allows
the user to keep their job seeking status to be seen by recruiters
only. In addition to individual user policies, there are some policies
applied system-wide as well, for example, the profile picture is
public applies to all users on Facebook. Subsequently, academic
research has been conducted to study and develop access control
mechanisms for OSNs. Relationship-Based Access Control (ReBAC)
is a prominent one in that regard. While ReBAC is relatively new,
there is significant literature on defining the structure and features
of ReBAC models. While its primary motivation originated from
its applications in OSNSs, it offers promising capabilities in more
general applications [2].

Recently, the ReBAC policy mining problem has begun to attract
attention. This problem seeks to automate the process of obtaining
an equivalent ReBAC policy when a complete access control system
along with supporting relationship data is given. ReBAC policy
mining algorithms offer promising advancement in automating
policy generation, whereas manual effort requires more time, and
could be error-prone. In this paper, we investigate the ReBAC policy
mining approach from a novel perspective. We study the feasibility
of the ReBAC policy mining process, in context of various ReBAC
rule structures.

ReBAC policy mining approaches such as [4-8] permit use of
the unique identity (id) of entities (e.g., users and resources) in the
generated ReBAC policies. Hence, ReBAC policy mining is always
feasible. We believe that use of such ids is contrary to the core
ReBAC spirit. Thereby, determining feasibility becomes a significant
question in mining ReBAC policies. In case of infeasibility, we
propose various solutions as an alternative to using ids in ReBAC
policy generation. Throughout this study, we use the terms ReBAC
policy and ReBAC rule set interchangeably.

Our central contributions in this paper are as follows.

(1) The first formal notion of ReBAC RuleSet Existence Problem
(RREP) is developed.

(2) A novel algorithm for ReBAC policy mining feasibility de-
tection is presented along with examples.

(3) RREP variations based on increasingly powerful ReBAC pol-
icy languages are identified and shown to be solved by es-
sentially the same algorithm mentioned above.
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(4) Resolution of infeasibility is addressed, and a formal solution
is proposed.
(5) Significant directions of future work are discussed.

The rest of the paper is organized as follows. Section 2 discusses
relevant background for this paper. Section 3 formalizes the core Re-
BAC RuleSet Existence Problem (RREP-0) and provides a feasibility
detection algorithm along with associated proofs and complexity
analysis. Section 4 extends the RREP with different ReBAC policy
languages along with examples which demonstrate the increasing
power of these languages. Section 5 develops an infeasibility solu-
tion for RREP-0, and discusses other solution approaches. Section 6
discusses a case study and implementation details. Finally, Section
7 discusses the pros and cons of the proposed approach to ReBAC
policy mining, as well as significant directions for enhancements.

2 RELATED WORK

The rule set existence problem has been previously defined for
Attribute-Based Access Control (ABAC) from given enumerated
authorization [9] and given Role-Based Access Control (RBAC)
authorization [10]. This paper is the first to consider this problem
in context of ReBAC. We review the literature on ReBAC models
and ReBAC policy mining below.

The recent proliferation of OSNs has accelerated the research of
finding an access control paradigm which is different from tradi-
tional dominant access control models like ABAC [17], RBAC [14],
etc. According to the early literature, ReBAC policy is character-
ized by the explicit tracking of interpersonal relationships between
users [15]. ReBAC is a general-purpose access control model which
supports the natural expression of parameterized roles, the composi-
tion of policies, and the delegation of trust [16]. A further extended
hybrid-logic based ReBAC policy is given in [3].

In general, given an OSN, users and resources are interconnected
via various types of relationships. In order to specify ReBAC poli-
cies, particular relationship directions between users and resources
can play significant roles. For example, [12] specifies ReBAC poli-
cies based on user to user (U-U) relationships in OSN. Similarly,
[1] uses resource to resource (R-R), and [11] uses resource to user
(R-U) and vice versa to express ReBAC policies. In addition, [2]
presents a comparative analysis of expressive power and perfor-
mance implications between ReBAC and ABAC features, [19] does
an extensive analysis when the OSN is updated, and [13] proposes
ReBAC to be integrated with ABAC to enhance the capability and
allows finer-grained controls.

Given an access control system along with supporting data, Re-
BAC policy mining algorithms find the equivalent ReBAC policy.
This provides partial automation to the overall migration process,
reduces cost and uses some measures to find the most efficient rule
set. A few works on ReBAC policy mining are discussed briefly
as follows. The work in [6] presents ReBAC as an object-oriented
extension of ABAC where the "class" structure is able to realize
the relationship between various entities, beyond the user and re-
sources paradigms. In [7], the work in [6] is basically extended,
where heuristic-guided greedy and grammar-based evolutionary
algorithms for ReBAC policy mining are presented. A further exten-
sion is proposed in [5], to the evolutionary ReBAC policy mining in

[7]. The extended ReBAC policy mining in [5] follows the simplifi-
cation as well as feature selection by using neural network resulting
in a more scalable and efficient algorithm. Some other ReBAC policy
mining algorithms use decision tree [4], incomplete and noisy input
data [8], and mine ReBAC policies from graph transition [18]. In
comparison with [4, 8, 18], this feasibility study is limited to static
relationship graph with complete input information only.

Compared to [4-8], our work in this paper concentrates on
whether ReBAC mining is feasible or not without altering the core
spirit of ReBAC, i.e., relationships should be the key to express
policies and use of ids is prohibited. This is a fundamental differ-
ence since ReBAC policy mining is always feasible with ids. The
feasibility issue in ReBAC policy mining has been considered for
the first time in this paper, to the best of our knowledge.

Two relatively similar research works on ABAC ruleset existence
problem can be found in [9] and [10]. In [9], where an authorization
state and supporting attribute data are given as input, ABAC ruleset
existence problem has been introduced for the first time. Based on
the definition of conflict-free partition, [9] introduces a feasibility
detection algorithm and an infeasibility correction approach. In [10],
the core solution provided in [9] has been extended to accomplish
the solution of ABAC ruleset existence problem when an RBAC
system along with supporting attribute data are given as input.
Similar to our work in this paper, [9, 10] also prohibit the use of ids
in their respective rulesets.

3 ReBAC RULESET EXISTENCE PROBLEM

This section develops the formal definition of the ReBAC RuleSet
Existence Problem (RREP). As we are going to investigate variations
of RREP later in this paper, we call the the core RREP problem
defined in this section as RREP-0.

3.1 Preliminaries

A user is an entity who performs operations (also called actions).
An operation is an act performed by a user on another user. A
user can be an initiator or a target of an operation. The finite (but
unbounded) set of current users is denoted as U. The finite set
of operations is denoted by OP, where each operation in OP is
independently authorized.

Given that a user requests to perform an operation on another
user, every access control system must define a checkAccess func-
tion to decide whether or not this operation is permitted or denied.
The specification of checkAccess, typically as a logical formula,
depends upon the details of the underlying access control model.

Definition 3.1. checkAccess
checkAccess: U X U X OP — {True, False} where U and OP are
finite sets of users and operations respectively. A user u € U
is allowed to perform operation op € OP on a user v € U iff
checkAccess(u,v, op) is True.

Without loss of generality, we assume OP is the singleton set {op},
since each operation is independently authorized. For simplicity,
OP is thereby omitted from further definitions. For a specific access
control model M we write checkAccesspy(u, v).

An access request is a tuple (u,v), where u,0 € U and u # v,
which specifies user u has requested to perform operation op on



user v. A simple authorization system, where user to user tuples
are used directly to control access authorization is as follows.

Definition 3.2. Enumerated Authorization System (EAS)
An EAS is a tuple (U, AUTH, checkAccessgas) where, U is the fi-
nite set of users, AUTH C U X U, is the authorization relation
where V(u,v) € AUTH.u # v, and checkAccessgas(u,v) = (u,0) €
AUTH.

For example, given the set of users U = {Alice, Bob, Cathy} and
AUTH = {(Alice, Bob), (Bob, Cathy)}, an access request (Alice, Bob)
is granted whereas (Alice, Cathy) is denied. AUTH is essentially
an access matrix.

Relationships are represented as a directed labeled graph.

Definition 3.3. Relationship Graph (RG)
The Relationship Graph RG = (V,E, ¥) of a system is a directed
labeled graph where,
i) V is the set of vertices in RG, representing the current set of users,
ii) E € V X V X X is a finite set of labeled directed edges where ¥ is
a finite set of relation type specifiers.
An edge (u,0,0) € E, u # v, represents the relation o € ¥ from
user u € V tov € V in RG where ¢ is the edge label.

For example, in Fig. 1 let F represent the friend relation. Then Alice
is a friend of Bob, but not vice versa, whereas Cathy is a completely
isolated user.

Direct relationships are represented as edges in RG, while indi-
rect relationships are represented as paths. For our purpose, it is
convenient to define path in two steps as follows.

Definition 3.4. Linked Sequence of Vertices

Given RG = (V,E, %) and a vertex pair (u,v) € V XV where u #
v, a (simple) linked sequence of vertices is a set of triples where
the terminating (i.e., second) vertex of each triple is same as the
starting (i.e., first) vertex of the next triple given by ((u,v;, o),
(91,9, 0x), ..., (0%, 01, 0y), (01,0, 02)), Where u, v;,0j, ..., 0, 03,0 € V,
and oy, Oy, ..., Oy, 0z € ¥, such that once a vertex v; occurs as a start
vertex it cannot be the terminating vertex in subsequent triples.

Definition 3.5. Path in Relationship Graph
A (simple) linked sequence of vertices is a (simple) path from u to v
if each triple belongs to E in RG, i.e., it is an edge. The path label
of a path is 4,0x.....0407. Its length is the number of triples, or
equivalently the number of symbols in the path label.

Since we only consider simple paths in this paper we will often
drop the simple qualifier. It should be noted that Def. 3.4 and 3.5
would traditionally be merged to define a path, but separating them
makes it convenient to define path variations later in Def. 4.1. For
convenience, given a path p in RG we understand pathLabel(p) to
denote the path label of path p.

A crucial component of ReBAC is a set of rules called the ReBAC
policy, formally defined as follows:

Definition 3.6. ReBAC Policy
A ReBAC policy, POLgepac is a tuple, given by (X, RuleSet) where:
e X denotes the finite set of relation type specifiers in the
system.
o RuleSet is a set of rules where, for each operation op €
OP, RuleSet contains the single rule Ruleyp. Each Ruleo, is

Alice F Bob

Figure 1: RG with V = {Alice, Bob, Cathy}, E = {(Alice, Bob,
F)},and X = {F}.

specified using the grammar below.

Ruleop = Ruleop V Ruleop | pathRuleExpr

pathRuleExpr ::= pathRuleExpr A pathRuleExpr |
pathLabelExpr

pathLabelExpr ::= pathLabelExpr.pathLabel Expr |
edgeLabel

edgeLabel :=0,0€ ¥

"

Here "" is the concatenation operator. As stated earlier, it suffices
to consider OP to be a singleton, so RuleSet consists of a single
rule. The Rule,, expression consists of disjunction of pathRuleExpr,
where each pathRuleExpr consists of conjunction of pathLabelExpr.
The pathLabelExpr is a concatenated string of relationship type
specifiers. The Rule,, evaluation procedure is described in Def. 3.7.

This leads to the following definition of a ReBAC system.

Definition 3.7. ReBAC System
A ReBAC system is a tuple, (RG, POLgpac, checkAccessgrepac)
where checkAccessgrepac(a:V, b:V) is evaluated as follows: (i) for
each pathLabelExpr in Rule,) substitute True if there exists a simple
path p from a to b in RG with path label pathLabelExpr, otherwise
substitute False, (ii) evaluate the resulting boolean expression.

For example, consider Fig. 1 with Rule,p = F. Given an access
request (Alice, Bob), there is a simple path from Alice to Bob with
path label F so True is substituted for F and Rule,, evaluates to
True whereby the access request is granted.

The definitions provided above bring us to definition of the
central problem addressed in this paper.

Definition 3.8. ReBAC RuleSet Existence Problem (RREP-0)
Given an EAS = (U, AUTH,checkAccessgas) and RG = (V,E,X) with
V=U, does there exist a RuleSet as in Def. 3.6 so that the resulting
ReBAC system satisfies:

(Yu,v € U)|[checkAccessgepac(u,v) < checkAccessgas(u,v)]
Such a RuleSet, if it exists, is said to be a suitable RuleSet, otherwise

the problem is said to be infeasible.

For example, for the RG in Fig. 1, a suitable RuleSet exists only if the
given AUTH = {(Alice, Bob)}, with Rule,p = F. Any other AUTH
relation will not have a suitable ReBAC RuleSet.



RuleSet Generality

A natural question to investigate at this point is the generality of our
ReBAC RuleSet structure. We consider three criteria in this regard:
variety of entities available, expressiveness of policy language and
relationship depth. In this paper, we limit our scope to user to
user relationships only which is a common case in OSNs. More
generally, ReBAC policy mining may incorporate multiple entity
types. For example, [6] uses the familiar class-object concept in
their ReBAC rules, where each class represents a a particular entity
type and an object is an instance of a class. In comparison with
[6], we deal with a single class User. We discuss expressiveness
in Section 4 and will show by examples that our rule structure
is not the most general one. Given a vertex pair (a,b) in RG and
simple path p from a to b, the relationship depth is the length
of the path. With finite RG, the relationship depth is inherently
limited by the maximum simple path length between any vertex
pair in RG. In [6], relationship depth is provided as algorithm input.
While in our paper relationship depth is not provided as input, a
slight modification would accommodate this. Specifically, adding
a constraint in line 5 of Algorithm 1 to limit the maximum simple
path length to a provided value. Other constraints could be similarly
enforced. For example, a constraint that limits the number of path
labels used in the conjunctive term generation in line 16-17 of
Algorithm 1 to a given numeric value.

3.2 Feasibility Detection Algorithm

In this subsection, the feasibility detection Algorithm 1 for RREP-0is
presented along with proofs and complexity analysis. The algorithm
iterates through each tuple (a,b) € AUTH, and either finds a rule
that is correct for (g, b) or deems the tuple to be infeasible and
records it in failed AuthList. In each iteration it computes all possible
simple paths from a to b to find whether the resulting collection
of pathLabels is collectively satisfied by any unauthorized tuple
(i.e., a tuple not in AUTH). The function FindAllSimplePath, which
is able to find all simple paths between any vertex pair in RG,
is described briefly in appendix A. If (a,b) is disconnected in RG
then it is infeasible. Otherwise, all possible pathLabels for (a,b) are
generated in line 9 as in Def. 3.5. If there exists any unauthorized
vertex pair which satisfies all possible pathLabels from a to b, (a,b)
is infeasible as in line 14. The Rule,, is updated otherwise and (a,b)
is removed from further consideration, as shown in line 16-17.

At the end, if rule generation is not feasible for any particular tu-
ple in AUTH, i.e., failedAuthList is not empty, the algorithm returns
an infeasible result along with all infeasible tuples in failedAuthList.
Another alternative is to abort at the point where first infeasible
tuple is encountered if failedAuthList is not available. If rule gener-
ation is feasible for every tuple (a, b) € AUTH, Rule,, is generated
and feasible status is returned.

THEOREM 3.9. The overall complexity of RREP-0 feasibility detec-
tion Algorithm 1is O(|V|* x (|E|)).

Proof:
In order to compute Algorithm 1 complexity, Algorithm 2 and 3
in appendix A are needed to be considered first. Algorithm 2 finds
the set all possible simple paths between a vertex pair in RG using
a variant of DFS in Algorithm 3. Since it considers only simple

Algorithm 1 ReBAC RuleSet Existence Problem-0 Algorithm

Input: An EAS ( U AUTH,checkAccessgas) and a RG = (V.E,X)
where V=U

Output: Feasible/infeasible status. If feasible — generate ReBAC
rule, return "infeasible" and set of infeasible authorization tu-
ples otherwise.

: Ruleop == NULL

: failedAuthList := 0

: AUTHset := AUTH //copying AUTH

: while 3(a,b) € AUTHset do

SP(a,b) := FindAllSimplePath(a,b, RG) //see appendix A

if SP(a,b) = 0 then
failedAuthList = failedAuthList U {(a, b)} //Not Feasi-
ble for (a,b) tuple

8: AUTHset)\ := {(a,b)} and Continue

9:  PATHLABEL(a.b) := {pathLabel(p)|p € SP(a,b)}

10:  for each pl € PATHLABEL(a.b) do

P I N B T

11: SAT,, (pl) = {(c,d) € V X V| there exists a simple path s
from c to d in RG, c#d, (c,d)¢AUTH, pl=pathLabel(s)}
12: Qab = SATab(pl)

plePATHLABEL(a.b)
13 if Qup # 0 then
14: failedAuthList := failedAuthList U {(a, b)} //Not Feasi-

ble for (a,b) tuple
15: AUTHset)\ := {(a,b)} and Continue
16 if Ruleyy is NULL then Ruley, := A pl
plePATHLABEL(a.b)
else Ruleyp := Ruleop Vv /\ pl

plePATHLABEL (a.b)
17: AUTHset\ = {(a,b)}
18: if failedAuthList is () then return ("feasible’, Rule,)) else re-
turn ("infeasible”, Rule,p, failed AuthList)

path, the overall complexity of Algorithm 2 is O(|E|!), considering
|V| < |E|. Therefore, the complexity of line 5 and 9 in Algorithm
11is O(|E|"). In line 10-11, the SAT,;, function computation takes
overall O(]V|? x (|E|!)). The computation complexity of finding set
intersections in line 10 takes O(|E[!). Line 13-17 produces trivial
complexity compared to the others. The while loop in line 4-17 runs
|AUTH]| < |V|? times. Hence, the overall complexity of Algorithm
1is O(|V|* x (|E|!)).

The asymptotic complexity of the current approach is high, es-
pecially because computation of all possible simple paths between
any pair of vertices in RG gives the ultimate lower bound. How-
ever, RG can be a sparse one. Also, it can be easily noticed that
pre-computing and storing all possible simple paths between any
pairs in RG regardless of the AUTH can effectively reduce the com-
putation time inside the loop. Moreover, for many such practical
problems heuristic solutions are often effective. Later in this study,
it has been discussed that our ReBAC rule structure is not the most
general one. Feasibility algorithm can certainly change based on
the variety of ReBAC rule structures. Therefore, overall complexity
of determining ReBAC policy mining feasibility can vary based on
such factors. A detailed study of these is out of scope of this paper.

The correctness proof of Algorithm 1 is as follows.



THEOREM 3.10. Given a RREP-0 instance as in Def. 3.8, a suitable
RuleSet exists iff Algorithm 1 generates the Ruleo.

Proof:

Assume, Algorithm 1 generates the Rule,p. According to Algorithm
1, for each (a,b) € AUTH, all possible paths from a to b in RG are
searched over to find the collection of pathLabel(p) where p is a
simple path from a to b, such that there exists no unauthorized tuple
(c,d) € VXV\AUTH, c # d where the collection of pathLabel(q) is
a superset of the collection of pathLabel(p), where q is a simple path
from c to d in RG. In Algorithm 1, Rule,, consists of disjunctions
of such conjunction of the collection of pathLabel(p), generated
for each (a,b) € AUTH. By the definition of checkAccess in Def.
3.7, the generated Rule,, evaluates to true for each (a,b) € AUTH
while denying all (c,d) € V xV \ AUTH,c # d. Hence, Ruleo)
constitutes a suitable RuleSet.

To prove the opposite direction, assume a suitable RuleSet Rule,, p
constituted by Def. 3.6 exists. Therefore, by the definition of RREP-
0, Ruleg,, evaluates to true for each (a,b) € AUTH while denying
all unauthorized tuple (¢,d) € VXV \ AUTH, ¢ # d. By the proce-
dure of Ruleép evaluation provided in Def. 3.7, there exists at least
a conjunctive term in Rule), which is true for a (a,b) € AUTH
where for all pathLabelExprs in the corresponding conjunctive
term, there exists a simple path p from a to b in RG such that
pathLabel(p) = pathLabelExpr. According to Algorithm 1, for each
(a,b) € AUTH, all possible paths from a to b in RG are searched
over to find such conjunction of the collection of pathLabel(p) and
Ruleoy consists of disjunction of such conjunctions, generated for
each (a,b) € AUTH. Thereby, Algorithm 1 generates the feasible
status and Rule,p, where each conjunctive term denoted by t” in
Rule;,, must have at least a conjunctive term ¢ in Rule, where the
pathLabels in t’ are a subset of the pathLabels in t. Hence, the claim
holds in both directions and Theorem 3.10 is proved.

RREP-0 is the core of our ReBAC feasibility analysis. An example
of ReBAC rule generation is discussed in Section 6.

4 VARIATIONS OF ReBAC RULESET
EXISTENCE PROBLEM

By definition of RREP-0 in Def. 3.8, there are three key factors which
affect the feasibility detection process: i) the authorization relation
AUTH, ii) Rule,p structure, and iii) RG. For example, an AUTH
relation can be symmetric or asymmetric, RG can be directed or
undirected, and the Rule, specification grammar can be modified
to add more or less expressive power. In this section, we consider
some RREP variations focusing on ReBAC rule structure.

4.1 Proposed RREP Variations

The following discussion proposes four variations of RREP. Accord-
ing to Def. 3.3, the given RG is a directed labeled graph. Therefore,
Algorithm 1 can work with directed RG only. Given an undirected
relationship graph RGY = (V, E¥, %), an equivalent directed labeled
relationship graph RG = (V, E, ) can be generated by enhancing
the set of edges. For each edge (a,b,0) € EY, symmetric edges
(a,b,0) and (b, a, o) are added to E. For each (u,0) € AUTH, sym-
metric authorization tuples (u,v) and (v, u) are added to updated
AUTH relation as well. It is evident that the undirected RG along

Table 1: Path variations in RG

| Characteristics | SCP| SPP| SCPP |
(a,b,0) = (a,b,0) € E,0€X v |V VvV
(a,b,7) > (a,b,0) ¢E,G€X v’ v’
(a, b, 0'_1) — (b,a,0) € E, clexyl v | Vv
(b5 1) > (hao)¢Es e ' v

with undirected AUTH can be reduced to core RREP-0 and Algo-
rithm 1 can be deployed to solve the feasibility detection. Thus it
suffices to consider directed RG.

Before proceeding to the other variations of RREP, three ex-
tended sets of relationships are defined as follows for a given X.

e = = {Glo € Z}. For each relation type specifier o € %,
& denotes "no o relation". Therefore, 3, is the set of non-
relationship type specifiers in RG.

e 71 = {67! € 2}. For each relation type specifier o € %,
o1 denotes "inverse o relation”. Therefore, 3! is the set of
inverse relation type specifiers in RG.

o3 ! = {76 € 3}. Here, 37! denotes the set of non-
relationship inverse relation type specifiers in RG.

The inverse non-relationship specifier 6~1 is not considered, since
as shown in Appendix B it is equivalent to 5! and hence redundant.
There is no redundancy amongst 5,0~ and !, as we will see in
Section 6.

RREP-0 uses simple path definition in RG. In order to specify
extensions to RREP-0, three path variations in RG are defined as
follows utilizing the extended relation types defined above.

Definition 4.1. Path Variations in RG
The definition of (simple) linked sequence of vertices in Def. 3.4
is extended to include the extended symbols in 3, > ! and i_l, in
addition to X. The definition of (simple) path in Def. 3.5 is extended
as summarized in Table 1 to give the following three extended
notions of path.

i) Simple Complementary Path (SCP) allows symbols from X
and T respectively requiring the triple to be an edge or not
an edge as indicated in the top two rows of Table 1.

ii) Simple Permissive Path (SPP) allows symbols from ¥ and
%71 respectively requiring the triple to be an edge or the
inverse of an edge as in the first and third rows of Table 1.

iii) Simple Complementary Permissive Path (SCPP) allows sym-
bols from %, 3, =~ and 5! respectively requiring the triple
to be an edge, not an edge, the inverse of an edge or the
inverse of a “not an edge” as in the four rows of Table 1.

Based on the three path definitions introduced above, three vari-
ations of RREP problem, named as RREP-1, RREP-2, and RREP-3
are defined as follows.

Definition 4.2. RREP-1, RREP-2, and RREP-3
Given the definition of RREP-0 as in Def. 3.8, the definitions of
RREP-1, RREP-2, and RREP-3 are similar, except for distinctions
noted in Table 2.



Table 2: RREP variations

(a) RREP-0 | (b) RREP-1 | (c) RREP-2 | (d) RREP-3 |

|
RuleSet as | edgeLabel ::=| edgeLabel ::=| edgeLabel ::=
‘ in Def. 3.6 | olo ‘ olo7! ‘ olalo gt
check simple path | simple path | simple path
Access as | is replaced | is replaced | is replaced
in Def. 3.7 | by SCP by SPP by SCPP

Figure 2: RG of Fig. 1 enhanced with non-relationship edges.

F
Alice L =] [ Bob

Figure 3: RG of Fig. 1 enhanced with inverse edges.

Table 2 describes the distinctions of RREP-1 to 3 in terms of
comparison with RREP-0 features. Table 2 shows that RREP-1 to
3 vary from RREP-0 based on two related aspects: RuleSet and
checkAccess definitions. Row 1 of Table 2 shows that, the Rule,
grammar specified for RREP-1 to 3 vary in edgeLabel definitions
only, compared to RREP-0 RuleSet definition as in Def. 3.6. Row 2 of
Table 2 shows that Ruleyp of RREP-1 to 3 uses the same evaluation
criteria compared to RREP-0, except simple path is changed to SCP,
SPP and SCPP respectively.

4.2 Reduction of RREP Variations

The major difference between RREP-0 and the proposed variations
RREP-1 to RREP-3 is that simple path definition in RREP-0 consists
of given edges in RG, whereas SCP, SPP and SCPP bring additional
“virtual edges” into consideration. We can reduce the enhanced path
definitions of SCP, SPP and SCPP to the traditional path definition
by enhancing the original RG with these virtual edges. Given the RG
of Fig. 1, its enhancements with additional edges for SCP, SPP and

Figure 4: RG of Fig. 1 enhanced with non-relationship, in-
verse and non-relationship inverse edges.

SCPP are respectively shown in Figs. 2, 3 and 4. These enhancements
are formally stated as follows.

Definition 4.3. Enhancements of RG
Given a directed labeled relationship graph RG = (V, E, %), let
¢ E={(4,0,0) |u#0A (u,0,0) ¢ E}
These are called non-relationship edges.
e Bl ={(u,0,07Y) |u#0A (v,u,0) € E}
These are called inverse edges.
o E = {(wo,5 Du#vA (vu0) ¢E}
These are called non-relationship inverse edges.
The enhanced RG, denoted RGg, is defined as follows:
e For RREP-1: RGg = (V,EUE, S U3)
e For RREP-2: RGg = (V,EUE"L,sus™h)
e For RREP-3: RGg = (V,EUEUE-'UE ,suSus-lus )

Note that RGg imposes some consistency requirements such as
(u,v,0) is an edge in RGg iff (4, v, 0) is not an edge in RGg.
The lemma below follows trivially from the definitions.

LEMMA 4.4. There is an SCP (respectively SPP, SCPP) p from u to
v with pathLabel(p) in RG iff there is a simple path p from u to v in
RGg for RREP-1 (respectively RREP-2, RREP-3) with pathLabel(p).

It follows that Algorithm 1 for RREP-0 with correspondingly
enhanced RG can be used to solve the feasibility detection problem
for RREP-1, RREP-2 and RREP-3 as well.

4.3 Limitation of RREP-0 to RREP-3

It is easy to construct examples that are beyond the scope of the
variations discussed above. In the RGs of both Fig. 5 and Fig. 6, there
are two simple paths from Alice to Ray with path labels "F.F" and
"F.EF". However, there is a significant difference between the two
RGs. In Fig. 5 the simple paths from Alice to Ray are disjoint with
respect to their edges, while this is not so for Fig. 6. Specification of
disjoint paths is not possible in our rule structure variations. In the
most general case any computable property of RG can be utilized
in the rule structure.

A ReBAC policy language for user to user relationship is pre-
sented in [12]. Although [12] offers different rule structures for
accessing user, target user as well as system administrator views, a
basic comparative study between the rule set structure of our work
and the ReBAC policy presented in [12] is as follows.
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Figure 5 Figure 7: RREP-0 infeasibility example.
Priority=4 Priority=1
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Priority=2 Priority=3
Figure 6 Figure 8: Adding "priority" attribute to Fig. 7.
(1) In [12], each pathLabelExpr is limited by the maximum num- 5.1 PI'OPOSCd Infeasibility Correction
ber of edges allowed in the path, specified as hopcount. Our Given a RREP-0 instance as in Def. 3.8, if no suitable RuleSet ex-
rule structure does not allow such numeric value on edge ists (i.e., Algorithm 1 returns infeasible result) we say there is an
count in RG. Moreover, [12] offers negative pathLabelExpr, infeasibility problem. In such cases we can make a suitable RuleSet
that means an entire relationship pattern that must not exist generation possible by adding new relationships as follows.

from accessing user to target user in the RG. In our work, al-
lowing non-relationship edges accomplish the fact of travers-
ing the graph in "not in a relationship" directions, however,
its semantics is completely different.

i) Select a symbol op ¢ X.
ii) Add the path expression op as a disjunction to the generated
Ruleoy by Algorithm 1 to construct Rulegp V op.
iii) For each (u,v) € failedAuthList add an edge (u,v,0p) to E

(2) Repeating a relationship pattern unlimited (*) or 0/1 times inRG
(?) has been included in [12]. Our ReBAC policy can accom- '
plish the similar task by repeating the rule expressions as THEOREM 5.1. The infeasibility correction solution above is correct
many times as desired. Note that infinite repetitions are not for the modified RREP-0 problem with modified RG and 3.

possible for simple paths in a finite graph.

(3) The rule evaluation in [12] can start from a particular user
as noted in the rule, but our ReBAC policy evaluation starts
from any node in RG, therefore, can be referred as system
policy. For both of the works, pathLabelExprs are constituted
by using disjunction and conjunction operators.

Proof:
For each (u,0) € AUTH, where Algorithm 1 fails to generate the
rule, the proposed solution above adds an edge from u to v in RG
with edge label op. It is trivial that a simple path of length 1 with
pathLabelExpr op thereby exists in the modified RG for each such
(u,v) € failedAuthList, generated by Algorithm 1. Therefore, the

From the discussions above, it can be summarized that, our rule pathLabelExpr op turns true for each such infeasible authorization

structure lacks some features as compared to [12] such as hopcount tuples only.

on the pathLabelExpr, enhances a few such as allowing comple- Fig. 7 presents an RG the set of users V = {Alice, Bob, Cathy, Ray},
mentary and permissive path in RG, and has similar structure such the set of edges E = { (Alice, Bob, F), (Bob, Cathy, F), (Cathy, Ray, F),
as use of disjunction and conjunction of pathLabelExpr. (Ray, Alice, F)}, and the set of relation type specifiers, ¥ = {F}.

Let AUTH = {(Alice, Bob), (Cathy, Ray)}. According to the RuleSet
5 PROPOSED INFEASIBILITY SOLUTIONS structure given in Def. 3.6, RREP-0 fails since there exists a single
In this section we propose a solution to infeasibility in RREP-0 simple path from Alice to Bob, where path label is F. However, "F"
and illustrated by examples. Other possible direction of solution is also true for (Alice, Bob), (Bob, Cathy), (Cathy, Ray), and (Ray,
approaches and limitations will be discussed briefly. Alice). The same scenario occurs while finding rule for (Cathy, Ray).



Therefore, the given AUTH is concluded as infeasible by Algorithm
1, and failed AuthList contains both (Alice, Bob) and (Cathy, Ray).
According to the solution above, two additional edges (Alice, Bob,
op) and (Cathy, Ray, op) are added to E, and X is updated to {F, op}.
The generated Rule,) is op.

5.2 Alternate Infeasibility Correction

An alternate approach to infeasibility correction is to add an at-
tribute named "priority” to each vertex in the RG, illustrated by ex-
ample as follows. Consider the solution provided in Fig. 8, given the
prior infeasibility example: AUTH = {(Alice, Bob), (Cathy, Ray)}
and RG is as shown in Fig. 7. Each user vertex in the given RG in
Fig. 7 has been assigned a positive integer priority value, and the
ordered sequence of vertex priority values associated with the path
p from vertex a to b in RG is the same order followed by the ver-
tices through the path p. For example, ordered sequence of vertex
priority values associated with the path from Alice to Ray in Fig.
81is (4,1,3,2). The Ruleyp given in Def. 3.6 is modified in order to
accommodate the use of priority value as follows:

Ruleop := Ruleop V Ruleop | pathRuleExpr
pathRuleExpr ::= pathRuleExpr A pathRuleExpr |
(pathLabelExpr, priorityOrder)

priorityOrder ==>| < | ¢
pathLabelExpr := pathLabelExpr.pathLabelExpr | edgeLabel
edgeLabel := 0,0 € X
where >,<, and ¢ represent increasing, decreasing and don’t care
orders, respectively, and pathRuleExpr consists of conjunction of
(pathLabelExpr, priorityOrder) pairs.

The evaluation procedure of checkAccessgrepac(a:V, b:V) in a
ReBAC system with the specified Rule,, is as follows:
(i) for each (pathLabelExpr, Order) pair in Rule,, substitute True
if there exists a simple path p from a to b in RG with path label
pathLabelExpr where the ordered sequence of vertex priority values
associated with path p follows the priorityOrder order, otherwise
substitute False, (ii) evaluate the resulting boolean expression.

Let’s recall the AUTH = {(Alice, Bob), (Cathy, Ray) } noted ear-
lier for Fig. 7. According to the proposed Rule,, structure, the
generated Ruleop = (F, <) solves the infeasibility because the sim-
ple path labeled F from Alice to Bob follows the decreasing order as
4 > 2. The same case occurs for (Cathy, Ray) since 3 > 2, whereas
(Bob, Cathy) and (Ray, Alice) do not.

5.3 Limitations of Current Infeasibility
Solution

The infeasibility solution provided in Section 5 adds only a sin-
gle pathLabelExpr "op" to the Rule,p, regardless of the number
of infeasible tuples in the AUTH, adding |AUTH| number of ad-
ditional edges in RG in the worst case. To clarify more with an
example, given the RG in Fig. 9 and the set of authorization tu-
ples {(Alice, Ray), (Alice, Bob), (Alice, Cathy)}, this solution adds
three edges with label op originating from Alice to Bob, Ray, and
Cathy, respectively. Therefore, the Rule, is "op". However, a so-
lution fewer added edges can be obtained for the given AUTH by

Figure 9

adding a single edge from Alice to Tom labeled as "op". It is clearly
evident that the edge from Alice to Tom creates simple paths from
Alice to Ray, Bob, and Cathy. Therefore, the possible Ruleop for
the given AUTH is "op.F". This demonstrates the trade-off between
minimum size of rule and adding minimum number edges in RG
to correct infeasibility. The solution of Subsection 5.1 keeps the
given RG unchanged while adding new relationship edges to RG.
An alternative approach could be to remove some edges from the
given RG.

6 CASE STUDIES

In this section we present case studies to show the relative power
of the rule structures of RREP variations defined in this paper. We
also discuss the need for rule optimization.

Consider the RG shown in Fig. 10(a), along with its inverse,
non-relationship and non-relationship inverse edges shown in Figs.
10(b), 11(a) and 11(b). For different values of AUTH we get different
feasibility results as follows, where we understand that Algorithm
1 will be run with correspondingly enhanced RGs (i.e., Fig. 10(a)
for RREP-0, union of Figs. 10(a) and 11(a) for RREP-1, union of Figs.
10(a) and 10(b) for RREP-2, and union of Figs. 10(a), 10(b), 11(a) and
11(b) for RREP-3).

(1) Let AUTH = {(Ray,Cathy), (Bob,Cathy)}. Then Algorithm 1
will return success for RREP-0, RREP-1, RREP-2 and RREP-3.
Note that feasibility of RREP-0 always implies feasibility of
RREP-1, RREP-2 and RREP-3 since the simple path of RREP-
0 is included in the enhanced path definitions of the latter.
The rule returned for RREP-0 and RREP-2 is FVF which is
logically equivalent to F. The rules generated for RREP-1 and
RREP-3 are more complex due to the increased number of
paths in the enhanced RGs.
Let AUTH = {(Cathy,Ray), (Cathy,Bob)}. For RREP-0 and
RREP-1 Algorithm 1 will return failure. For RREP-2 it will
return F~'VF~!. The formula for RREP-3 is more complex.
Let, AUTH = {(Alice, Bob), (Alice, Cathy), (Alice, Ray), (Bob,
Alice), (Bob, Ray), (Cathy, Alice), (Cathy, Bob), (Cathy,Ray),
(Ray, Alice), (Ray,Bob)}. For RREP-0 and RREP-2 Algorithm
1 will return failure. For RREP-1 and RREP-3 it will return
success with complex formulae due to the multiplicity of
paths in the enhanced RGs.
(4) Let’s consider, AUTH = {(Ray,Cathy), (Bob,Cathy), (Cathy,Ray),
(Cathy,Bob), (Alice, Cathy)}. For RREP-0, RREP-1 and RREP-2
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Figure 10: (a) Given RG
(b) Inverse edges for RG of Fig. 10(a)

Figure 11: (a) Non-relationship edges for RG of Fig. 10(a)
(b) Non-relationship inverse edges for RG of Fig. 10(a)

Algorithm 1 will return failure. For RREP-3 it will return suc-
cess with a complex formula which would logically reduce
toF ' F ' FVFL
These examples establish that the rule structure of RREP-3 is strictly
more expressive than RREP-0, RREP-1 and RREP-2. Note that RREP-
0 is the weakest as argued above. RREP-1 and RREP-2 are incompa-
rable.

The generated rule may contain unnecessary path labels in con-
junctive terms if all possible path labels are being used. Therefore, a
few simple rule optimization techniques are used in the implemen-
tation. As stated in Algorithm 1, for any tuple (a,b) in AUTH, all
possible path labels from a to b are AND’ed to form the conjunctive
term after determining the feasibility. Instead of using all possible
path labels, the smallest possible subset of those is used to form
the conjunctive term such that it does not evaluate to true for any
unauthorized tuple. For example, given the RG in Fig.10(a), and an
EAS where V is identical and set of authorization relations AUTH
= {(Alice, Ray), (Alice, Bob)}, the Rule,p computed using RREP-3
by Algorithm 1 comprises a conjunction of 24 terms as follows:
FE AT ARF AT FARF AT F L A R A
F L AF AR ARF L FAF P LF AR
FFF AF FF _/\F__.lf‘__.]l:/\IiF‘l FAF.FFAFAF F.FIA
FF F'AF FFAF F AFFF!

Both tuples (Alice, Bob) and (Alice, Ray) in AUTH would generate
this conjunction since they have the same set of path labels. After
applying the specified smallest possible subset of path labels in a

conjunctive term technique, the specified Rule, turns into signifi-
cantly smaller rule, given by F.F~!. Another way of rule minimiza-
tion is: after completion of rule generation, a conjunctive term in the
generated rule, say c1, removes all conjunctive terms c2 in the rule
if all path labels in c1 are included in c2. The Java implementation
of feasibility detection along with the described rule minimization
techniques can be found here (https://github.com/shuvrac7/Formal-
Analysis-of-ReBAC-Policy-Mining-Feasibility.git).

7 FUTURE RESEARCH

The RREP has been introduced for the first time in this paper. Here,
a few directions for future enhancement will be addressed briefly.

(1) The proposed feasibility detection Algorithm 1 produces
overall exponential asymptotic complexity, considering the
rule minimization applied in the implementation. Given a
directed RG = (V, E, X) and an EAS as defined in Def. 3.3 and
3.2, respectively, Algorithm 1 needs to compute all possible
simple paths for all (u,0) € V X V,u # 0. In the worst
case, the total possible path labels in RG can be estimated as
follows:

o The length of simple path from for any (u,0v) € VXV,u # v
in RG ranges from 1 to (|V| — 1), where V is the set of
users in the system.

e Given the finite set of relation type specifiers X, for all
possible simple paths of length 1, the number of possible
path labels in RG is |2|. By using the same concept, for all
possible simple paths of length 2, the number of possible
path labels in RG is |2| X |Z|. Therefore, for all possible
simple paths of length | V| — 1, the total number of possible
path labels in RG is |Z] V-1,

o Therefore, given a graph RG, all possible path labels con-
sidering all possible simple paths in RG is: £ + 3% + 33 +
L+l

A significant form of improvement in the current approach

would be to reduce computation complexity.

(2) In this paper, the context to ReBAC rule set structure is
restricted to RREP-0 to RREP-3. The feasibility detection
algorithm depends on the intended rule set structure, as
shown in the paper. Adding new features to the existing
rule structures, how much modification does the feasibility
detection algorithm need when some new features are added
to rule structure, which features make the rule structures
more general in practical scenario, etc., can be interesting
research problems.

(3) An advanced direction could be: given any ReBAC rule struc-
ture, can the process of the feasibility detection be completely
automated?

(4) Here, some solution approaches to infeasibility have been
discussed. More efficient solution approaches can be pro-
posed, which remained as open research problem.

(5) In this study, no loops are allowed in RG. What could be done
in order to manage such a RG with self loops, as well as path
including cycles? Our current algorithm would work with
path including cycles where length limit is given if slightly
modified. We have not investigated cycles without length
limits.


https://github.com/shuvrac7/Formal-Analysis-of-ReBAC-Policy-Mining-Feasibility.git
https://github.com/shuvrac7/Formal-Analysis-of-ReBAC-Policy-Mining-Feasibility.git

(6) Only exact solutions have been considered so far. Is having
inexact solution reduce computation complexity? In that
case, what are the factors needed to be considered?

(7) Extend the feasibility problem definition as well as infeasib-
lity solutions beyond user to user context.
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A PATH GENERATION ALGORITHM

Algorithm 2 FindAllSimplePath

Input: Vertex source, vertex dest, RG = (V,E, %)
Output: Set of all simple paths from source to dest in RG
1: //visitVertex is a map where visitVertex[u € V] = white means
"not visited", visitVertex[u € V] = grey means "visited but not
finished yet"
2. //visitEdge is a map where visitEdge[e € E]=white means "not
visited", visitEdge[e € E]=grey means "visited but not finished

yet"
3: foru € V do
4. visitVertex[u]:=white
5. fore € E do
6:  visitEdge[e]:=white
7: PS:=0
8: Modified-DFS-Visit(source, dest, RG, PS, ()) //assuming vis-

itVertex and visitEdge are globally defined
9: return PS

Algorithm 3 Modified-DFS-Visit

Input: vertex src, vertex dest, RG(V, E, ¥), PS, tempPath
Output: Path generation from src to dest in RG
. if src == dest then
PSU := tempPath

1

2

3 return

4: visitVertex[src]:=grey

s: for each edge e € E, where e=(x,y,0) and x=src do

6:  if visitEdge[e] == white and visitVertex[y] == white then

7 Modified-DFS-Vist(y,dest,RG,PS,appendSeq(tempPath,e))
//appendSeq() is a trivial function which appends edge
e to the path sequence, tempPath and returns the new
ordered path sequence

8: visitVertex[src]:=white

9: for each edge e € E, where e=(x,y,0) and x=src do

10:  visitEdge[e] := white

11: return

For completeness, the algorithm used for all possible path gener-
ation in Algorithm 1, called FindAllSimplePath has been included.
Given a RG and a vertex pair (source,dest), algorithm FindAllSim-
plePath returns the set of all possible simple paths from source to
dest in RG. It is basically a modified form of core Depth-First-Search
from vertex source to vertex dest in RG.
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Figure 12: Givena o € X, o~ ! = 6=1 where solid and dotted
lines represent the edges that must and must not exist, re-
spectively.

B INVERSE NON-RELATIONSHIP EDGE

Given a ¢ € %, 07! is called the inverse non-relationship of o.
We show that ! = ¢~1. Fig. 12 shows a sequence of equiva-
lences going from top to bottom, or vice versa, which establish this.
Relationships that cannot exist are shown in dotted lines while
relationships that must exist are shown in solid lines. From top to
bottom, a relationship o~! from a to b precludes a relationship of
o~! from a to b, which in turn precludes a relationship of o from b
to a. Thereby there is a non-relationship ¢ from b to a, and finally
its inverse o ! from a to b. The argument in reverse holds from
bottom to top.
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