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ARTICLE INFO ABSTRACT

Keywords: Context: Several government laws and app markets, such as Google Play, require the disclosure of app data
Privacy policy practices to users. These data practices constitute critical privacy requirements statements, since they underpin
Ambigu?ty the app’s functionality while describing how various personal information types are collected, used, and with
Generality whom they are shared.

Ontology

Objective: Abstract and ambiguous terminology in requirements statements concerning information types
(e.g., “we collect your device information”), can reduce shared understanding among app developers, policy
writers, and users.

Method: To address this challenge, we propose a syntax-driven method that first parses a given information
type phrase (e.g. mobile device identifier) into its constituents using a context-free grammar and second infers
semantic relationships between constituents using semantic rules. The inferred semantic relationships between
a given phrase and its constituents generate a hierarchy that models the generality and ambiguity of phrases.
Through this method, we infer relations from a lexicon consisting of a set of information type phrases to
populate a partial ontology. The resulting ontology is a knowledge graph that can be used to guide requirements
authors in the selection of the most appropriate information type terms.

Results: We evaluate the method’s performance using two criteria: (1) expert assessment of relations between
information types; and (2) non-expert preferences for relations between information types. The results suggest
performance improvement when compared to a previously proposed method. We also evaluate the reliability
of the method considering the information types extracted from different data practices (e.g., collection, usage,
sharing, etc.) in privacy policies for mobile or web-based apps in various app domains.

Contributions: The method achieves average of 89% precision and 87% recall considering information types
from various app domains and data practices. Due to these results, we conclude that the method can be
generalized reliably in inferring relations and reducing the ambiguity and abstraction in privacy policies.

1. Introduction tions, however, is that privacy policies often contain ambiguities [5],
which admit more than one interpretation [6]. Furthermore, policies

Government regulations increasingly require mobile and web-based are intended to generalize across a wide range of data practices, and

application (app) companies to standardize their data practices con-
cerning the collection, use, and sharing of various types of information.
A summary of these practices are communicated to users through
online privacy policies [1,2], which have become a well-established
source of requirements for requirements engineers [3,4], because they
need to be consistent with software behaviors.

The challenge of acquiring requirements from data practice descrip-
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are not limited to describe a single software system, in which case they
also exhibit vagueness and generality [7]. Berry and Kamsties distin-
guish four broad categories of linguistic ambiguity, including lexical,
syntactic, semantic, and pragmatic ambiguity [8]. They further separate
vagueness and generality from ambiguity. Vagueness occurs when a
phrase admits borderline cases, e.g., the word “tall” is vague when

E-mail addresses: mbokaeihossein@stmarytx.edu (M.B. Hosseini), breaux@cs.cmu.edu (T.D. Breaux), Rocky.Slavin@utsa.edu (R. Slavin),

Jianwei.Niu@utsa.edu (J. Niu), xiaoyin.wang@utsa.edu (X. Wang).

https://doi.org/10.1016/j.infsof.2021.106608

Received 15 July 2020; Received in revised form 5 March 2021; Accepted 22 April 2021

Available online 3 May 2021
0950-5849/© 2021 Elsevier B.V. All rights reserved.


http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:mbokaeihossein@stmarytx.edu
mailto:breaux@cs.cmu.edu
mailto:Rocky.Slavin@utsa.edu
mailto:Jianwei.Niu@utsa.edu
mailto:xiaoyin.wang@utsa.edu
https://doi.org/10.1016/j.infsof.2021.106608
https://doi.org/10.1016/j.infsof.2021.106608
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2021.106608&domain=pdf

M.B. Hosseini et al.

considering a subject who is neither tall nor not tall [8]. In generality,
a superordinate term refers to two or more subordinate terms. In lin-
guistics, generality is encoded by the relationship between a hypernym,
or the general term, and more specific terms, called hyponyms.

In privacy policies, information types can be expressed using both
vague and general terms. Many policies describe the vague phrase “per-
sonal information”, which can include both a person’s “age” and their
“health conditions”, which users may consider more or less private,
leading to boundary cases. In addition, they contain general terms, such
as “address”, which are intended to refer to more specific meanings,
such as “postal address”, “e-mail address”, or “network address”, in
which case the reader must choose an interpretation to fit the given
context. Finally, these policies also contain another kind of semantic
indeterminacy that has not historically been included in ambiguity,
generality or vagueness, which concerns holonyms, or wholes, and
meronyms, or the parts of wholes. For example, when a policy refers to
“postal address”, it also refers to “city”, “country”, and “postal code”,
which are distinct parts of the postal address.

Ambiguity, generality, and vagueness have been extensively studied
in requirements engineering research, particularly in regulatory and
policy documents. This includes techniques to identify, classify, and
model ambiguity in regulations, such as HIPAA [5,9], and techniques
to identify generality [3,10,11] and vagueness [12] in privacy policies.
Recently, two studies employed hand-crafted regular expressions over
nominals, and constituency parse trees derived from individual policy
statements to extract generalities, specifically hypernyms [13,14]. This
prior work demonstrates the difficulty of scaling manual methods to
construct ontologies from policies, and thus motivates the need for
automated ontology discovery techniques.

In this paper, we focus on the role of hypernyms, meronyms and
synonyms and their formal relationships among terminology in privacy
policies (see Section 2 for examples). We propose a novel, automated
syntax-driven semantic analysis method for constructing partial ontolo-
gies to formalize these relationships. Formal ontologies can be used
to automate requirements analysis, specifically where the “informal
meets the formal”, as in where mathematical models are extracted from
natural language text [15]. Recently, such ontologies have enabled pre-
cise, reusable and semi-automated analysis to trace requirements from
policies to code execution [11,16] and in checking formal specifications
for conflicting interpretations [3,17].

Our proposed method is based on the principle of compositionality,
which states the meaning of a given phrase can be derived from the
meaning of its constituents [18,19]. Using this principle and grounded
analysis of 356 unique information type phrases (e.g., mobile device
identifier), we developed a context-free grammar (CFG) to decompose
a given information type phrase into its constituents. The production
rules in the CFG are augmented with semantic rules, which we call se-
mantic attachments [20], that are used to infer semantic relationships,
including hypernymy, meronymy, and synonymy between the given in-
formation type constituents. This method is evaluated on two sets of
491 and 1853 information type phrases extracted from 60 privacy
policies. Applying our method on these information types yields 5044
and 21,745 semantic relations, respectively.

This work extends a previous conference paper [21] with new eval-
uation of the syntax-driven method using two sources of ground-truth:
(a) relations identified by experts with experience in privacy and data
practices; and (b) the preferences expressed by a population of web and
mobile-app users (i.e., non-experts) toward relationships between infor-
mation types. This novel contribution adds a new evaluation method
that reaches beyond expert opinion, which is the historical benchmark
for constructing corpora and performing natural language evaluation,
to include popular opinion, which is better suited to measure how po-
tential users interpret data practice descriptions in privacy policies. The
overall contributions of the current paper are as follows: (1) a syntax-
driven method to infer semantic relations from a given information type
using principle of compositionality; (2) an empirical evaluation of the
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method using expert-inferred relations; (3) an empirical evaluation of
the method using population preferences; (4) an empirical evaluation of
the method using statements about mobile and web-based apps across
multiple domains.

This paper is organized as follows: in Section 2, we discuss the
problem and motivation for ontology construction with an example
ontology illustration; in Section 3, we discuss important terminology
and lexicons; in Section 5, we introduce the syntax-driven method. In
Section 6, we present the evaluation using four experiments and results,
followed by limitations in Section 7, threats to validity in Section 8,
and related work in Section 4. Finally, we discuss the application and
implication of ontologies in practice, and future work in Sections 9 and
10.

2. Problem and motivation

Ambiguous terminology in legal requirements and privacy policies
can lead to multiple, unwanted interpretations [9] and further re-
duce the shared understanding among requirements engineers, policy
authors, and regulators [22]. A lack of shared understanding has con-
sequences, such as the recent $5 billion settlement of Federal Trade
Commission with Facebook [23]. This penalty arose from poor data
practices resulting in the leaking of 87 million users’ personal infor-
mation to third parties. The best intent to comply with laws can be
obstructed by ambiguous policies. In general, ambiguity in privacy
policies creates challenges for managing privacy, tracing privacy re-
quirements to data practices in code, and checking the compliance of
privacy policies with regulations.

Researchers have proposed methods to ensure data transparency
and compliance by analyzing data practices expressed in privacy poli-
cies. For example, Breaux et al. formalized data practice requirements
from privacy policies using Description Logic [24] to automatically de-
tect conflicting requirements [3] and to trace data flows across policies
of interacting services [3]. Tracing privacy requirements across policies
can enhance developers’ understanding of third-party data use, and
assist in compliance with legal requirements, such as General Data Pro-
tection Regulation (GDPR) Articles 13.1 and 14.12. Other researchers
have proposed techniques to trace requirements from privacy policies
to app code using lookup tables, platform permissions, and information
flow analysis [25,26].

These methods are based on manually-compiled “flat” lexicons,
wherein information types were grouped into a small number of cat-
egories, such as “location”, “contact”, or “identifier” [26]. Lexicons
that group terms into a small number of broad categories introduce
inaccuracies because categorization is based on satisficing, in which
the analyst ignores subtle differences between the meanings of two or
more terms. For example, the phrase “WiFi SSID” can be construed to
mean a type of location information [26] when location is one of a few
categories to choose from (i.e., the categorization is a good fit, given
the constraints). However, the term actually describes a compound
technology that must be combined with the MAC address used by
the device that is referenced by the SSID, before it can be indirectly
correlated with location. Without this technology, SSIDs are not a kind
of location information, whereas city, zip code, and longitude and
latitude are kinds of location information.

In addition to coarse categories, ambiguity and inconsistency arise
from hypernymy, which occurs when a more general information type is
used instead of a more specific information type (e.g., the broader term
“device information” used in place of “mobile device identifier”) [27].

Consider the following snippet from EA Games’ privacy policy’
stating, “We collect other information automatically [...], including:
[...]; Mobile and other hardware or device identifiers; Browser infor-
mation, including your browser type and the language you prefer; [...];

L https://www.ea.com/legal/privacy-policy.
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Fig. 1. Example ontology.

Information about your device, hardware and software, such as your
hardware settings and components [...]”. In this example, an analyst
who is compiling this list within their company may make several
inferences: (1) that “mobile identifiers”, “hardware identifiers”, and
“device identifiers” are all kinds of “identifiers” that EA collects; (2)
that “browser type” and “browser language” are both kinds of “browser
information;” (3) “hardware information” and “software information”
can be inferred as specific kinds of “device information;” and (4) that
“hardware settings and components” are a specific kind of “hardware
information”. The analyst can infer similar hypernymy relationships
between information types intuitively by applying their domain knowl-
edge and experience. Moreover, an information type can have more
than one hypernym. An analyst documenting these inferences could
create a reusable ontology, shown in Fig. 1, to make the semantic
relationships among terms explicit via hypernymy.

Ontology Usage Scenario: In our previous research, we developed the
policy analysis tool PVDetector (Privacy-policy Violation Detector)
to identify misalignments between policy and practice [28]. This tool
maps the descriptive information types in privacy policies expressed
in natural language to privacy-related API methods implemented in
the corresponding code. This mapping provides the semantics needed
to check code for misalignment with privacy policy, and to suggest
where the code or policy may be changed to fit the functional and
legal requirements of apps [28]. During misalignment detection, the
tool utilizes an ontology of private information terms as a resource
to formalize and identify relations between information types in nat-
ural language privacy policies. PVDetector is designed to be fully
automatic for arbitrary Android apps given an up-to-date policy term
ontology and API-phrase mapping. The input of PVDetector is the
app’s byte code (i.e., apk file) and corresponding privacy policy. The
output is a list of detected misalignments which are marked as either
strong (i.e., no information type related to an API method invocation
is found in the privacy policy) or a weak (i.e., no information type
directly mapped to an API method invocation is found, but some re-
lated abstract information type is found in the privacy policy). For
example, assume an app has the following text in its privacy policy.
“We collect browsing history, contact information, mobile identifiers, and
language information.” If, upon analysis of the app’s actual dataflows,
a flow is detected from the method getMacAddress() to some
method that sends data away through the network, the possibility of
private information leakage implied. Therefore, some corresponding
information type (e.g., “MAC address”) should appear in the privacy
policy as information that may be collected. Instead, the more broad
information type “mobile identifiers”, which does not directly describe
“MAC address” but is intuitively representative of it, appears in the
policy. Without considering the hypernymy relation between “MAC
address” and “mobile identifiers” (i.e., MAC address is a kind of mobile
identifiers), an incorrect misalignment of omission by the policy would
be detected (i.e., false positive). To remedy this, an ontology containing
such relationships facilitates the detection of the hypernym in the
policy. Thus, the false negative due to the use of a broader term in
the policy is avoided, and the policy writer can be made aware of the
more specific term “MAC address” for improved clarity and precision.

In order to support automated analysis of requirements, tools and
techniques are needed to build and validate formal ontologies that
encode what analysts know using their domain knowledge and expe-
rience. In this paper, we propose a methodology to create ontologies
similar to the one shown in Fig. 1. In the next section, we discuss
important background and terminology, before introducing the syntax-
driven method to infer semantic relationships from information type
phrases.

3. Background

In this section, we introduce the terminology and three different
lexicons used throughout this paper.

3.1. Terminology

Hypernymy: a relationship between two noun phrases where the
meaning of one phrase, called the hypernym, is more generic than
the other phrase, called the hyponym, e.g., “device information” is a
hypernym of “device identifier”.

Meronymy: a relationship between one phrase, called the whole, and
a second phrase, which is a part of the whole, e.g., “device identifier”
is a part of “device”.

Synonymy: a relationship between two noun phrases with a simi-
lar meaning or an abbreviation, e.g., “IP” is a synonym of “Internet
protocol”.

Population Preferences: In psychology, preferences reflect an indi-
vidual’s attitude toward one or more objects, including a comparison
among objects [29]. In this paper, we evaluate the semantic relation-
ships inferred by the syntax-driven method using preferences expressed
by a population of web and mobile-app users (i.e., non-experts).
Expert-Inferred Relationships: Semantic relationships among infor-
mation types identified by privacy experts, including the authors of this
paper.

Lexicon: a collection or list of information type phrases.

Ontology: an arrangement of concept names in a graph in which
terms are connected via edges corresponding to hypernymy, meronymy
and synonymy relationships [30]. In this paper, we only consider
information type names as concept names.

In this paper, we use the following formal representation for an
ontology. An ontology is a knowledge base KB expressed using FL,,
a sub-language of the Attribute Language (AL) in Description Logic
(DL). A DL knowledge base KB is comprised of two components, the
T Box and the ABox [31]. The T Box consists of terminology, i.e., the
vocabulary (concepts and roles) of an application domain. The ABox
contains assertions about named individuals using this vocabulary.
Each ground-truth ontology knowledge base KB (i.e., an ontology either
constructed from populations preferences, or expert-inferred relation-
ships and used as a gold standard for our method evaluation) only
contains terminology, which we call the T Box7 .

The semantics of FL,-concepts begins with an interpretation T that
consists of a non-empty set A (the domain of the interpretation) and
an interpretation function, which assigns to every atomic concept C, a
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Table 1
List of Lexicons.
Lexicon ID  Information types App type Domain(s)
L, Platform Mobile Unrestricted
L, User-provided Mobile Finance, health, online dating
Ly Any Mobile & Web  Shopping, telecom., social

media, employment, health,
and news

set CT C AT. The T BoxT also contains terminological axioms that relate
concepts to each other in the form of subsumption and equivalence,
which we use to formalize hypernymy, meronymy, and synonymy. A
concept C is subsumed by a concept D, written 7 £ C C D, if CT ¢ D
for all interpretations 7 that satisfy the T Box7 . We define meronymy
relationship using a role called PartOf and subsumption relationship
as follows: C C 3PartOf.D.

The concept C is equivalent to a concept D, written 7 k C = D, if
C! = D? for all interpretations T that satisfy the T Box7 . Axioms of the
first kind (C C D) are called inclusions, whereas axioms of the second
kind (C = D) are called equalities [31]. Note that the equalities C = D
can be rewritten as two inclusion axioms CC D and D C C.
Morphological Variant: a concept name that is a variant of a common
lexeme, e.g., “device ID” is a morphological variant of “device”.

In the definitions above, we assume that noun phrases expressed

in text have a corresponding concept and that the text describes one
possible name for the concept. This relationship between the phrase
and concept is also arbitrary, as noted by Saussure in his theory of
the signifier, which is the symbol that represents a meaning, and the
signified, which is the concept or meaning denoted by the symbol [32].
Peirce defines a similar relationship among sign-vehicles, objects, and
interpretants [33].
Context-free Grammar: a set of production rules, expressing the way
that symbols of a language can be grouped and ordered together [30].
Semantic Attachments: a set of rules that augment the production
rules. These attachments are instructions that specify how to compute
the meaning representation of a construction from the meaning of its
constituents parts [30].

3.2. Lexicons

In this paper, we refer to three privacy policy lexicons, which
contain a list of information type phrases that were manually extracted
from privacy policies. We use the information types in these lexicons
to infer semantic relationships through our method. In this section,
we provide detailed information regarding these three lexicons pre-
sented in Table 1. Each lexicon is assigned to a unique ID and can be
distinguished by (1) the information type that analysts were asked to
extract from the source policies, (2) the app type governed by the policy
(i.e., mobile or web apps); and (3) the domains predominantly sup-
ported by the apps. Given the diversity of information types, app types,
and domains, these three lexicons represent a diverse cross-section of
app behavior.

Lexicon L, was published by Hosseini et al. [11,13], and contains
356 platform-related information types (e.g., “IP address”) defined as
“any information that the app or another party accesses through the
mobile platform that is not unique to the app”. The information types
were extracted from the data collection practices of 50 mobile app pri-
vacy policies [11,13]. These 50 policies were unrestricted by domain,
and thus cover a wide range of domains, including gaming, finance,
communication, music, productivity, social and entertainment, sports,
and shopping, to name a few. This lexicon is available online [34].

Lexicon L, was published by Wang et al. and contains 491 user-
provided information types (e.g., “user’s weight”, “credit card num-
ber”, and “sexual orientation”) defined as “any information that users
explicitly provide to the app or other party” or “any information
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that the app or other parties collect or access that are unclear about
whether the information is provided by the user or by automatic
means” [16]. These types were extracted from the top 30 mobile apps
in Google Play in finance (personal budget and banks sub-domains),
health (personal health, insurance-pharmacy sub-domains), and dat-
ing (serious and casual dating sub-domains) domain. This lexicon is
available online [34].

Finally, Lexicon L; was published by Evans et al. and contains 1853
information types related to any data collection, use, retention, and
sharing practice [14]. These types were extracted from 30 mobile and
web app privacy policies across six domains (shopping, telecommuni-
cation, social networks, employment, health, and news). This lexicon is
available online [34].

Domains further affect the types of information described in poli-
cies. In Table 2, we present the top 10 most frequent information types
across each lexicon.

4. Related work

In this section, we review related work concerning the definition of
ambiguity, tools and techniques to detect and resolve ambiguity, ontol-
ogy in requirements modeling, and ontology in requirement analysis.
Lastly, we summarize our observation over the related work and make
our contribution explicit to the body of knowledge in requirements
engineering domain.

4.1. Definition of ambiguity

According to IEEE Std 830-1998 [35], a requirement is ambiguous
if it admits more than one interpretation. Harwell et al. [36] defines
a requirement as unambiguous if different stakeholders with similar
backgrounds give the same interpretation to it. Privacy policies con-
tain privacy requirements that are subject to different interpretations
between requirement engineers, policy authors, and end-users due to
their background knowledge and experience. In general, ambiguity
is widely categorized as linguistic ambiguity and RE-specific ambigu-
ity [6]. According to Kamsties and Paech, a requirement is specifically
RE ambiguous, if it allows several interpretations with respect to other
requirements, the application domain (e.g., applicable standards, oper-
ational environment), and the system domain (e.g., conceptual models
of software systems and their behavior) [6].

Berry and Kamsties distinguish four broad categories of linguistic
ambiguity, including lexical, syntactic, semantic, and pragmatic ambi-
guity [8]. Lexical ambiguity occurs when a word has several meaning
(e.g., homonymy and polysemy) [8]. Syntactic ambiguity occurs when
a given sequence of words can be given more than one grammatical
structure, and each has a different meaning (e.g., in compiler con-
struction, syntactic ambiguity occurs when a sentence has more than
one parse) [8]. Semantic ambiguity occurs when a sentence has more
than one way of reading it within its context although it contains no
lexical or syntactic ambiguity [8]. Semantic is concerned with context-
invariant meaning. Pragmatic ambiguity occurs when a sentence has
several meanings in the context in which it is uttered [8]. Pragmatics
is concerned with context-dependent meaning. Berry and Kamsties
also discuss two phenomena closely related to ambiguity, including
vagueness and generalization [8]. A requirement is vague if it is not
clear how to measure whether the requirement is fulfilled or not
(e.g., fast response time, user-friendly). A requirement is general if
it has continuum of possible interpretations, a general meaning that
covers these readings is available, but borderline cases do not exit,
and it can be made precise [6] (e.g., collection of device information).
For subcategories and detailed examples, we urge the reader to refer
to [6,8]. In another categorization by Massey et al. [9], generality of
terms in RE is treated as part of lexical ambiguity.
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Table 2
10 most frequent information types in Lexicons L, L,, and L;.
Lexicon L, Lexicon L, Lexicon L;
Info Type Frequency Info Type Frequency Info Type Frequency
IP address 41 Personal 317 Information 1098
information
Browser type 21 Information 200 Personal 463
information
IP addresses 21 Data 41 Cookies 180
Internet protocol 16 Email address 36 Personally 165
identifiable
information
Location 16 Name 35 Name 100
information
Device identifiers 14 Health information 27 Protected health 72
information
Device type 13 Protected health 27 Email address 71
information
Information 12 Contact information 21 Data 59
Device information 11 Personal identifiable 20 Contact information 41
information
Location 11 Personal identifiable 19 CPNI 41

information

4.2. Detection and resolution of ambiguity

Detection and resolution of ambiguity in natural language require-
ments has been the subject of studies in the requirement engineering
community for decades.

Lami et al. [37] present a tool, called QuARS, for analyzing natural
language requirements. The tool allows the requirements engineers
to perform an initial parsing of the requirements for automatically
detecting potential linguistic defects that can determine ambiguity. The
tool is composed of terms and linguistic constructions characterizing
a particular defect. The categories of language defects detected by
this tool does not contain generalization and differs from established
ambiguity categories defined by [6,8,9]. Gleich et al. [38] propose
a tool for identifying lexical, semantic, syntactic, pragmatic ambigu-
ity, and vagueness and language errors. This tool relies on part of
speech tagging and set of regular expressions to identify ambiguity.
Nigam et al. [39] develop a tool to review requirements by identi-
fying ambiguous words and provide the possible sources of wrong
interpretation. The tool supports identification of lexical, syntactic, and
syntax ambiguities and utilizes parts of speech tagger and a corpus of
ambiguous words. Mich and Garigliano [40] calculate the ambiguity
index of word as a weighted function of (1) the number of semantic
meanings of and (2) the number of syntactic roles for the word. The
weights depend on frequencies of occurrences for different meanings
and roles in the language of the requirement statements [41]. Kiyav-
itskaya et al. [41] take into account the classification of ambiguity
by Berry and Kamsties [8] and develop two free tools focused on
(1) measuring lexical and syntactic ambiguities, and (2) identifying
specific instances of pragmatic, software-engineering, and language-
error ambiguities in sentences. The first tool analyzes the parse tree of
a given requirement statement for structural issues and calculates the
ambiguity index using the method proposed by [40]. The second tool
applies parsing, part of speech tags, and WordNet to identify instances
of pragmatic, software-engineering, and language-error ambiguities.
Yang et al. [42,43] investigate anaphora, also called referential, am-
biguity as a type of pragmatic ambiguity in requirement documents.
They identify heuristics leading to nocuous and innocuous anaphoric
ambiguities through grounded analysis of requirement documents. The
heuristics are further employed in a machine learning classification tool
to automate the anaphora ambiguity detection. Ferrari and Gnesi [44]
present an approach to detect pragmatic ambiguities, where the mean-
ing of a sentence is dependent on the context it is used. The approach

relies on n knowledge graphs that are built upon » individual re-
quirement documents in a specific domain. A knowledge graph for
an individual document formalizes word stems as nodes and stem co-
occurrences in sentences as edges. Given a new requirement sentence,
the proposed algorithm first constructs the stem pairs and detects
shortest paths that connects the paired stems in each knowledge graph.
The nodes within the identified »n shortest paths are then compared
using a similarity measure. Comparison of the similarity measure with a
pre-defined threshold signals potential pragmatic ambiguity in a given
requirement statement. The knowledge graphs in this work model the
contextual distance of stemmed words. However, the knowledge graphs
are not designed to formalize the semantic relations between phrases.
Ferrari et al. [45] define a framework to identify and categorize am-
biguity in requirements elicitation interviews. This framework is built
upon a set of customer-analyst interviews. Their work also addresses
the consequences of ambiguity on the loss of tacit knowledge from
customer to analyst during interviews. Massey et al. [5] propose a
manual method for modeling legal text alongside models of software
requirements. Using this method, analysts classify different elements
in regulations, such as HIPAA, using ambiguity taxonomy introduced
by Massey et al. [9]. Further, the analyst documents the ambiguity
for ambiguous elements and models the unambiguous elements using
traditional requirements modeling techniques.

Lexicons play an important role in reducing ambiguity and improv-
ing the quality of specifications [46]. Boyd et al. proposed to reduce
ambiguity in controlled natural languages by optimally constraining
lexicons using term replaceability [47]. Our proposed method improves
lexicon development through automation to account for discovering
new, previously unseen terms. By incorporating semantic relationships
between terms, a lexicon can be expanded into an ontology. Bhatia
et al. [12] introduce a theory of vagueness for privacy policy statements
based on a taxonomy of vague terms derived from an empirical content
analysis of 15 privacy policies. Their taxonomy is evaluated in a paired
comparison experiment and results were analyzed to yield a rank order
of vague terms in both isolation and composition. This theory predicts
how vague modifiers to information actions and information types can
be composed to increase or decrease overall vagueness.

Lexical ontologies, such as WordNet, are used in detecting ambi-
guity [41]. WordNet is a lexical ontology containing English words
grouped into nouns, verbs, adjectives, adverbs, and function words [48,
49]. Within each category, the words are organized by their semantic
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relations, including hypernymy, meronymy, and synonymy [49]. Word-
Net is reported as the most utilized lexicon to support NLP-related RE
tasks [50]. However, an analysis by Hosseini et al. [10] reveals that
only 14% of information type phrases from a privacy policy lexicon
are found in WordNet, mainly because the lexicon is populated with
multi-word, domain-specific phrases. Therefore, finding an information
type phrase can be a challenging task for requirement analysts. We
aim to address this limitation and facilitate automated analysis of data
requirements. Evans et al. [14] applied an extended set of 72 Hearst
patterns to privacy policies to extract hypernymy pairs. Pattern sets
are limited because they must be manually extended to address new
policies. Hosseini et al. [13] proposed 26 regular expression patterns
to parse the information types in lexicon L, (see Section 3) and to
infer semantic relations based on their syntax to address generalization
in privacy policy terminology. The discovered patterns fail to cover
all the information types in lexicon L, and the approach requires
extending the pattern set for new policies. To address this problem, we
propose a context-free grammar to formally infer all the information
types in L, with regard to pre-defined inference heuristics that are
policy-independent.

4.3. Requirements modeling

Ontologies are a standard form for representing the concepts within
a domain, as well as the relationships between those concepts in a
way that allows automated reasoning [51]. Due to such benefits, prior
work in RE has employed ontology in requirements formalization and
modeling.

Gordon and Breaux [52] proposed a manual framework to reconcile
and formalize regulatory requirements from multiple jurisdictions into
a single standard of care. The framework preserves traceability so
that a business analyst can trace observed similarities and differences
from requirements to specific sentences and phrases in the law. This
includes formalizing specific changes in generality across related re-
quirements. Breitman and do Prado Leite describe how ontologies can
be used to analyze web application requirements [17]. Breaux et al.
use an ontology to identify conflicting requirements across vendors in
a multi-stakeholder data supply chain [3]. Their proposed ontology
was formalized for three apps (i.e., Facebook, Zynga, and AOL) and
contains hierarchies for actors roles, information types, and purposes.
Their work motivates the use of ontologies in requirements analysis,
yet relies on a small set of policies and has not been applied at scale.
Oltramari et al. propose using a formal ontology to specify privacy-
related data practices [53]. The ontology is manually populated with
practice categories, wherein each practice has properties, including
information type. While the ontology formalizes natural language pri-
vacy requirements, there are no semantic relations formalized among
information types, thus the ontology does not encode hypernymy.
Humphreys et al. [54] propose a model to semi-automatically populate
legal ontologies by extracting definitions, norms, and other elements
of regulations semantic role labeling. This work emphasizes ontol-
ogy reuse in knowledge management systems. In summary, Dermeval
et al. [51] provide a systematic review of the literature in applications
of ontologies in RE. Their findings provide an empirical evidence
of benefits of using ontologies in RE activities both in industry and
academy, to reduce ambiguity, inconsistency, and incompleteness of
requirements.

4.4. Ontology application in requirement analysis

Ontologies have been applied in tracing requirements to data prac-
tices expressed in source code.

Zimmeck et al. proposed an approach to identify the misalignments
between data practices expressed in privacy requirements and mobile
app code [26]. The approach uses a bag-of-words for three information
types: “device ID”, “location”, and “contact information”. For example,
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“IP address” is contained in the bag-of-words associated with device
ID. Without an ontology, this approach cannot distinguish between
persistent and non-persistent information types, which afford different
degrees of privacy risk to users. Harkous et al. [55] introduces a
framework for privacy policy analysis, called Polisis, which aims to
present privacy policy information in two usable and scalable ways;
the first is a graph that visualizes the flow of user data being collected,
the reasons behind the collection, and the collection choices given to
users; the second is a question-and-answer system, called PriBot, that is
able to answer user questions over a privacy policy. To produce these
presentations, a policy is first divided into small text fragments, called
segments. These segments are then classified over 10 high-level classes
and 122 fine-grained classes using word embeddings, producing a set
of class-value pairs for the segment. This set of class-value pairs is then
used to visualize the graph or answer questions. Through this approach,
each segment of the privacy policy is mapped to information types from
a pre-defined set captured by Wilson et al. [56]. This approach fails to
extract the exact information type from the segment and increases the
abstraction level associated with each segment through the mapping,
which leads to ambiguity. This work also fails to consider the intro-
duction of new information types which do not exist in the pre-defined
set.

In contrast, Slavin et al. [11] and Wang et al. [16] identify app code
that is inconsistent with privacy policies using a manually constructed
ontology [10]. The approach overcomes the limitation of Zimmeck
et al. [26] and Harkous et al. [55] and exemplifies the efficacy of
ontologies for requirements traceability. However, the manual con-
struction of ontologies is costly and lacks scalability due to the time
spent by analysts to compare information types, and errors generated
by analysts during comparison [10]. Our proposed automated method
is an improvement on prior work to construct ontologies that ac-
count for semantic relationships between information types in privacy
policies.

5. Syntax-driven ontology construction method

Our method for constructing ontology fragments is based on
grounded theory [57], which is a qualitative inquiry approach that
involves applying codes to data through coding cycles to develop a
theory grounded in the data [58]. Based on this theory, we describe
three applications in this paper: (1) codes applied to information types
in Lexicon L; to construct a context-free grammar (see Section 5.3);
(2) memo-writing to capture results from applying the grammar and its
semantic attachments to infer relations from L, (see experiments E|
and E, ; in Section 6); and (3) theoretical sampling to test the proposed
method on information types in lexicons L, and L; (see experiments
E,, and E,, in Section 6).

We now describe the overview of the syntax-driven ontology con-
struction method as presented in Fig. 2. This figure is summarized as
follows: in step 1, information types in a lexicon are pre-processed and
reduced; in step 2, an analyst manually assigns semantic roles to the
words in each reduced information type, a step that is linear in effort
in the size of the lexicon; in step 3, a context-free grammar (CFG) and
its semantic attachments are used to automatically infer morphological
variants and candidate ontological relations.

Reproducibility. We now provide an example to illustrate the result
of each step in a high-level format. Given an information type “mobile
device identifiers”, in step 1, this information type is pre-processed
and reduced to “mobile device identifier”. in the step 2, an analyst
manually tags each word in the information type phrase. The result
of this step is the information type phrase accompanied with a tag
sequence “mobile device identifier-mrp”. Finally, in step 3, the CFG and
its semantic attachments are used to extract the following candidate
relationships:

» “mobile device identifier” is a hyponym (kind) of “mobile infor-
mation”.
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Typology:
m: Modifier (e.g., mobile)
e: Event (e.g., usage, registration)
a: Agent (e.g., user)
x: Information (e.g., information, data)
t: Thing (e.g., device)
p: Property (e.g., name, address)

l—L
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Fig. 3. Example of lexicon phrase, tokenized and tagged.

“mobile device identifier” is a hyponym (kind) of “device identi-
fier”.

“mobile device identifier” is a part of “mobile device”.

“device identifier” is a part of “device”.

“identifier” is a part of “mobile device”.

“identifier” is a part of “device”.

“mobile device identifier” is a part of “mobile device”.

The production rules that comprise the CFG and that are introduced
in this paper are used to formalize and analyze the syntax of a given
information type. To infer semantic relations, we implement the rule-
to-rule hypothesis [20] by mapping each production rule in the CFG to
its semantic counterpart, presented using A-calculus.

5.1. Lexicon reduction

In step 1, the information types from the input lexicon are reduced
as follows: (1) plural nouns are changed to singular nouns, e.g., “pe-
ripherals” is reduced to “peripheral;” (2) possessives are changed to
non-possessive form, e.g., “device’s information” is reduced to “device
information;” and (3) suffixes “-related”, “-based”, and “-specific” are
removed, e.g., “device-related” is reduced to “device”.

5.2. Semantic role tags

Given the reduced lexicon as input, step 2 consists of tagging each
word in a phrase with one of five semantic roles: modifier (m), which
describe the quality of a head word, such as “mobile” and “personal;”
thing (1), which is a concept that has logical boundaries and can be
composed of other things; event (e), which describe action perfor-
mances, such as “usage”, “viewing”, and “clicks;” agent (a), which
describe actors who perform actions or possess things; property (p),
which describe the functional feature of an agent, place or thing such
as “date”, “name”, “height;” and (x) which is an abstract tag indicating
any general category of information, including “information”, “data”,
and “details”, among others. In an information type ontology, the
concept that corresponds to x (e.g., “information”) is the most general,
inclusive concept in the hierarchy [13]. The roles are the result of
grounded analysis on lexicon L; conducted by Hosseini et al. [13].

Table 3
Context-free grammar for syntax analysis.

(S) > (Modifiedl) > |(Modified2)|(Final)|x

(Modifiedl) - m(Modifiedl)|m( Modified2)|m(Final)|mx
(Modified2) — a{Final)|e(Final)|a{Info)

(Final) — t{Part)|t(Info)|e{(Info)|p

(Party — (Modified1)|(Modified2)|(Final)

(Info) — x|e

Part-of-speech (POS) is commonly used to tag natural language
phrases and sentences [30]. Event words, for example, often correspond
to noun-forms of verbs with special English suffixes (e.g., “usage” is
the noun form of “use” with the suffix “-age”), and things and actors
are frequently nouns. However, the analysis of lexicon L, shows that
only 22% of tagged sequences can be identified using POS and English
suffixes [13]. Therefore, we rely on manual tagging of words using five
semantic roles by two analysts. The effort required for this task is linear
in the size of lexicon, which means each new information type only
needs to be tagged once.

The information type tagging is expressed as a continuous series
of letters that correspond to the semantic roles. Fig. 3 shows an ex-
ample information type, “mobile device identifier” that is decomposed
into the atomic words: “mobile”, “device”, and “identifier”, and pre-
sented with tag sequence mrp. The intuition behind step 2 in the
overall approach is based on the observation that information types are
frequently variants of a common lexeme.

5.3. Syntactic analysis of information types using context-free grammar

A context-free grammar (CFG) is a quadruple G = (N,V,R,S),
where N, V, and R are the sets of non-terminals, terminals, produc-
tions, respectively and S € N is the designated start symbol.

Step 3 (Fig. 2) begins by processing the tagged information types
from the reduced lexicon using the CFG in Table 3. The CFG repre-
sents the antecedent and subsequent tags used to infer morphological
variants from a given information type. The grammar is yielded by
applying grounded analysis to the tag sequences of all information
types in lexicon L,. Notably, the grammar distinguishes between four



M.B. Hosseini et al.

Table 4
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Rules and semantic attachments for “mobile device identifier-mtp”.

Production Semantic attachments Line

{Ay.Am.Final .sem(Concat(y, m)); 1

pl (Modifiedl) — m{Final) Am.KindOf(WordOf(M odi fied1), Concat(m, information-x)); 2
KindOf(WordOf(M odi fied1), WordOf(Final))} 3
{Ay.At. Part.Sem(Concat(y, 1)); 1

P2 (Final) = {Parr) KindOf(WordOf( Final), WordOf(Par1)); 2
Map(Az.PartOf(Concat(z, WordOf(Parr)), z))Ay.A t. 3
SubVariant(Concat(y, 1))}

p3 (Party — (Final) {Ay.Final.sem(y)} 1

" (Final) > p {(Map(4p.Az.PartOf(p, z)))Ay.SubVariant(y); 1
Ay.Ap.PartOf(Concat(y, p), »)} 2

<S>

p1: <Modified1> — m<Final>

/\

m p2: <Final> - t<Part>

p3: <Part> = <Final>

p4: <Fingl>—> p

mobile-m t

device-t

identifier-p

Fig. 4. Parse tree for “mobile device identifier” with tag sequence “mrp”.

kinds of tag sub-sequences: (1) a type that is modified by a modifier,
called Modified; (2) a type that is modified by an agent (e.g., “user” or
“company”) or event (e.g., “click” or “crash”), called Modified2; (3) a
Final type that describes the last sequence in a typed string, which can
end in a part, an information suffix, or an empty string; (4) for any parts
of a whole (Part), these may be optionally described by modifiers, other
parts, or things; and (5) Info, including those things that are described
by information (e.g., “device information”).

Fig. 4 shows the parse tree for the phrase “mobile device identifier”
with type sequence mtp. Next, we discuss how these productions are
extended with semantic attachments to infer ontological relationships.

5.4. Inferring morphological variants and semantic relations

Based on the compositionality principle, the meaning of a sentence
can be constructed from the meaning of its constituents [18,19]. We
adapt this principle to infer semantics between an information type and
its constituent morphological variants by extending the CFG production
rules with semantic attachments.

Each production r € R,r a — p,..p, is associated with a
semantic rule a.sem : { f(B,.sem, ..., p,.sem)}. The semantic attachment
a.sem states: the representation assigned to production r contains a
semantic function f that maps semantic attachments f;.sem to a.sem,
where each §;,1 < i < nis a constituent (terminal or non-terminal
symbol) in production r. The semantic attachments for each production
rule is shown in curly braces {...} to the right of the production’s
syntactic constituents. To ease the readability, we only present the
semantic attachments of four production rules used in Fig. 4 in Table 4.
The full table is published online [34]. We first introduce A-calculus
functions used in Table 4, before presenting an example where semantic
attachments are applied to the tagged information type “mobile device
identifier-mtp”.

In A-calculus, functions are represented by symbolic notations called
A-expressions. Variables and constants are atomic constituents of A-
expressions. Complex A-expressions can be built from variables based
on their application and abstraction [59].

Unary function WordOf(y) maps a non-terminal to its tagged
phrase sequence. For example, WordOf(Final) returns “device
identifier-rp” in Fig. 4. In this example, Final refers to the left-side
non-terminal of Modifier].

Concat(y, z) is a binary function used to concatenate two tagged
phrase sequences, for example Concat(mobile-m, information-x) pro-
duces “mobile information-mx”.

SubV ariant(y) is a higher-order function accepting other functions
like Concat as an argument. It returns a list of variants that can be
constructed using the input argument, e.g., SubV ariant(mobile device
identifier-mtp) returns the following list of variants: [mobile device
identifier-mtp, device identifier-¢p, identifier-p].

IsInfo(y) is a unary function on a tagged phrase sequence, return-
ing an empty list if the input sequence matches “information-x” and
Equ(y, information-x), otherwise. For example, IsInfo(data-x) returns
Egqu(data-x, information-x), since “data-x” and “information-x” do not
match.

KindOf(y,z), PartOf(y,z), and Equ(y, z) are higher-order functions
that map two tagged phrases to a single-element list containing a
candidate hypernymy, meronymy, and synonymy axioms, respectively.

Map(y,z) is a binary higher-order function that distributes the
application of a function over a list of tagged phrases. More precisely,
it can be shown as:

Map(f.[E,.....E,]) = [(/)E;, ....(f)E,]

We now describe step 3 (Fig. 2) using the tagged information type
“mobile device identifier-msp”. The tagged information type is first
parsed using the grammar in Table 3. Its semantics are computed
by visiting the nodes of the parse tree in Fig. 4 and applying the
corresponding semantic attachments from Table 4 during a single-pass,
top-down parse. Following this order, the semantics of production rule
pl is mapped to the following A-expressions, where 1 in pl.1 refers to
line 1 in Table 4:
pl.1 represents an abstraction with two lambda variables, where y
refers to the inherited tagged phrase from the right and top of the parse
tree and m refers to the tagged phrase “mobile-m” read through the
lexical analyzer. In this case, variable y refers to an empty string, since
no tagged phrase precedes “mobile-m”. Therefore, the first 1-expression
can be reduced to Final.sem(“mobile-m”). In this A-expression, “mobile-
m” is inherited by non-terminal Final in the parse tree. Based on the
principle of compositionality, the semantics of a phrase depends on the
order and grouping of the words in a phrase [19]. An unambiguous
grammar like the CFG cannot infer all possible variants, such as “mobile
device” and “device identifier”, by syntax analysis alone, because the
input phrase “mobile device identifier” would require both left- and
right-associativity to be decomposed into these two variants. We over-
come this limitation by introducing an unambiguous right-associative
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grammar and utilize A-calculus to ensure that each non-terminal node
inherits the sequence of words from the node’s parents and siblings.
pl.2 represents an abstraction which reduces to a list containing
a semantic relation: [KindOf(“mobile device identifier-m¢p”, “mobile
information-mx”)] through reading variable m from the lexical ana-
lyzer. One might raise a point that “mobile information” is not a
valid phrase. We acknowledge this fact, however, applying this rule
to phrases such as “unique device identifier”, “anonymous device
information”, and “anonymous demographic information” will results
in creation of “unique information”, “anonymous information”, and
“demographic information”, which are meaningful phrases. We empha-
size that the variants and relations generated through our method are
only candidates and might not be semantically sound.

p1.3 represents a A-expression which is the application of KindOf on
two operands, which reduces to a single element list [KindOf(“‘mobile
device identifier-mrp”, “device identifier-tp”)]. In the next step, we
analyze the semantics of production rule p2 that are presented using
three A-expressions:

p2.1 represents a A-expression to concatenate tagged phrases asso-
ciated with the inherited variable y and variable ¢ and passes the
concatenation result (“mobile device-mt”) to direct descendants of this
node.

p2.2 represents the application of KindOf function on “device
identifier-rp” and “identifier-p”, resulting a hypernymy relation in a
single element list.

p2.3 is an application that maps a A-expression to a list of variants. This
list is constructed using a A-abstraction that can be reduced to Sub-
Variant(“mobile device-mt”), producing [mobile device-7p, device-t].
Finally, Map applies PartOf function on all the elements of this list re-
sulting in [PartOf(“mobile device identifier-mtp”, “mobile device-mt”),
PartOf(“device identifier-rp”, “device-r")].

Without inheriting “mobile-m” from the ancestors, we would not
be able to infer the meronymy relationships between “mobile de-
vice identifier-msp” and “mobile device-mt”. Moreover, variant “mobile
device-mt” is generated using syntax analysis of the tagged phrase
sequence and semantics attached to the syntax. In contrast, other
tagged phrases like “device identifier-1p” are solely generated through
syntax analysis of “mobile device identifier-mzsp”. By augmenting syntax
analysis with semantic attachments, we capture the ambiguity of natu-
ral language as follows. If we show the grouping using parenthesis, we
can present the phrase associated with “mobile device identifier-mtp”
as (mobile (device identifier)) which means mobile is modifying device
identifier, e.g., an IP address as a kind of device identifier that changes
based on location which makes it mobile. Another possible grouping is
((mobile device) identifier) which is interpreted as an identifier associ-
ated with a mobile device, e.g., a MAC address associated with a mobile
phone, tablet or laptop. Therefore, grouping of words in “mobile device
identifier-mtp” helps us consider all the possible semantics associated
with an ambiguous phrase.
p3.1 is used to pass the inherited tagged phrase “mobile device-mt” to
Final as the right-hand side, non-terminal. The semantics of production
rule p4 as the last node visited in the parse tree is mapped to the
following attachments:
p4.1 is the application of Map to a variant list constructed from
a A-abstraction. This abstraction is reduced to SubVariant(‘“mobile
device-mt”), returning the following variant list: [“mobile device-mt”,
“device-t”]. Finally, Map applies PartOf function on all the elements
of this list resulting in [PartOf(“identifier-p”, “mobile device-mt”),
PartOf(‘““identifier-p”, “device-1”)].
p4.2 represents an abstraction that reduces to [PartOf(“mobile device
identifier-mtp”, “mobile device-mt”)].

All the above production rules and semantic attachments yield a
collection of candidate relations contained in multiple lists. As the final
procedure in step 3, we merge the lists and add the relations to the
output ontology.
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6. Evaluation and results

In this paper, we evaluate the syntax-driven method using two
approaches:

1. Expert Evaluation: relations identified by experts with experi-
ence in privacy and data practices.

2. Non-Expert Evaluation: the preferences expressed by a popula-
tion of web and mobile-app users (i.e., non-experts) toward the
relationships between information types.

Fig. 5 depicts the overview of the method evaluation. Through
this evaluation, we compare our method with expert and non-expert
viewpoints. This comparison requires different ground truths. In the
first evaluation, two ground truth sets (KB,; and KB, in Fig. 5)
are constructed by experts that review the information types and
identify relations using seven heuristics (see Section 6.1). In the second
evaluation, two new ground truth sets (KB,; and KB,, in Fig. 5)
are constructed through a survey (see Section 6.2), capturing the
preferences that reflect common population attitudes toward semantic
relations among types that share at least one common word (e.g., “de-
vice identifier” and “identifier”). The experts initiate their comparisons
by scanning the lexicons visually and applying pre-defined heuristics,
whereas the preferences evaluation studies a complete subset of com-
parisons that have an above average chance of being related. In both
approaches, a complete analysis of all possible pairs for lexicon of size
n requires w comparisons, which is not feasible for large n.

In summary, we answer the following research questions with re-
gard to the syntax-driven method.

RQ1: How much and to what extent does the method generate the
relations identified by experts using a set of pre-defined heuristics?
RQ2: How much and to what extent does the method generate relations
compared to population preferences?

RQ3: How reliable is the method when applied on information types
extracted from various data practices regarding privacy policies of mobile
or web-based apps in various domains?

In this section, we report the results of four experiments to address

the research questions. We address research questions RQ1 by conduct-
ing two experiments E;; and E;, on lexicons L, and L, and their
manually-constructed ontologies by experts. The results from these
two experiments are discussed in Section 6.1. RQ2 aims to evaluate
the method using preferences of mobile and web users population.
Experiments E, | and E,, discussed in Section 6.2 address this research
question. Research question RQ3 is addressed by examining the results
of the above replications: experiments E;, and E,, aim to replicate
the discovery of relationships extracted by experts and non-experts,
respectively, while allowing the information type scope and domains
to vary from the first set of experiments E, | and E, .
Motivation for the usage of three different lexicons: We design
experiments E,; and E,; to evaluate the syntax-driven method and
address RQ1 and RQ2 using lexicon L,. However, the method is
constructed using lexicon L;, raising doubts regarding the validity of
this evaluation. To provide an unbiased evaluation of the method,
we design experiments E;, and E,, using lexicons L, and L; for
ground truth construction to evaluate the method and further address
research questions RQ1 and RQ2. Further, we utilize these two lexicons
(i.e., L, and L;) in evaluating our method’s reliability on unseen infor-
mation types from various data practices (e.g., data collection, usage,
and sharing) across different app categories (e.g., shopping, finance,
telecommunication, social media, etc.). Therefore, through experiments
E,, and E,,, we also evaluate the method’s reliability and address
research question RQ3.
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6.1. Experts inferred relations

In this section, we address RQ1 by comparing the syntax-driven
method with expert-constructed ontologies created from lexicons L,
and L,. Experts have more extensive technical knowledge that can
be used to discover relationships between information types that non-
experts would otherwise miss. In addition, because expert-constructed
ontologies often involve only a few experts during construction, chance-
corrected statistics, such as Kappa, can be used to reduce disagreements
among which relationships are valid interpretations.

Oraganization. We first describe a manual approach used to con-
struct an ontology by privacy experts. The ontology constructed
through this manual approach is used as a gold standard (i.e., ground
truth) and we will compare this ontology with the semantic relations
inferred by our syntax-driven method. Secondly, we explain our first
experiment E;; where our privacy and data practices experts utilize
the manual approach to create a ground-truth ontology on the list of
information types in lexicon L. Through this experiment, we evaluate
the automatically inferred relationships from lexicon L, by our syntax-
driven method with the ground-truth ontology and report the results
of this comparison. Finally, we describe our second experiment E, ,,
where the experts utilize the manual ontology construction on lexicon
L, to generate a ground-truth ontology. Further, we compare the in-
ferred relationships from lexicon L, through our syntax-driven method
with the ground-truth ontology and report the results.

6.1.1. Ground-truth ontology construction method

We now explain the manual method used by experts to construct
ground-truth ontologies. Manual ontology construction begins with an
initial flat ontology, wherein each information type from the lexicon is
subsumed by the T concept and no other relationships exist between
information types. Each expert is provided a copy of the initial on-
tology, which is loaded into the ontology editor Protege.” Next, each
expert scans the alphabetical list of the information types, looking
for types with which they can create a hypernymy, meronymy, or
synonymy relation. Experts can search by keyword, and largely rely
on their memory of information types they have seen as they discover
relationships.

When an expert finds a prospect relationship, they apply one of
seven heuristics that were discovered through grounded analysis of five
privacy policies [10] and which are shown with corresponding axioms
in Description Logic:

2 https://protege.stanford.edu/.

10

Hypernym: C C D, which means concept D is a general category
of C, e.g., “password” is a kind of “authentication information”.
Meronym: C Part Of D, which means concept C is a part of
concept D, e.g., “email message” is a part of “email”.

Modifiers: C,_C, E C, and, C,_C, E C,_information, which means
concept C, is modifying concept C,, e.g., “mobile phone number”
is a kind of “phone number” and “mobile information”.

Plural: C = D, which means concept C is a plural form of concept
D, e.g., “addresses” is equivalent to “address”.

Synonym: C = D, which means concept C is a synonym of concept
D, e.g., “geo-location” is equivalent to “geographic location”.
Thing: C, = C,_information, when concept C has logical bound-
aries and can be composed of other concepts, e.g., “name” is
equivalent to ‘“name information”.

Event: C, = C,_information, when concept C describes an event,
e.g., “usage” is equivalent to “usage information”.

Finally, the expert-constructed ontologies are exported to a com-
parison table in which chance-agreement is measured using Fleiss’
Kappa [60]. To export the relations, an algorithm extracts each ex-
pressed and inferred relationship between two information types using
the Hermit® reasoner. This yields a table row where a relationship
assigned to an information type pair appears in one column per expert.

Wherever a disagreement exists (i.e., the experts identified differ-
ent relationships) the experts will review their assigned relations and
discuss their disagreements with the other expert. This includes dis-
covering missed relationships, as well as learning about new technical
information to support a relationship. After the reconciliation process,
the agreement is recalculated to measure the improvement due to
reconciliation.

With regard to evaluation, the relations inferred by the syntax-
driven method are compared to the complete entailment of the expert-
constructed ontology, which includes relations inferred using the tran-
sitive closure of hypernymy. A relation found by the method is a true
positive (TP), if it is logically entailed by the ontology, otherwise, that
relation is a false positive (FP). If both the method and the ontology do
not include a relation between two types, then that relation is counted
as a true negative (TN). If the method does not find a relation that was
found by an expert, then that relation is a false negative (FN). Precision
is computed as TP/(TP+FP), and recall is computed as TP/(TP+FN).

3 http://www.hermit-reasoner.com/.
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Table 5
Example table comparing information type pair relationships for Lexicon L,.
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Table 6
Number of relationships in the experts-constructed ontology on L, (i.e., KB, .

LHS information type RHS information type Expert 1 Expert 2 Relation Number of pairs, KB, , Number of pairs, K/l;

web pages web sites Equivalent Hyponym Direct Hypernymy 1378 404

ads clicked usage information Hyponym Hyponym Transitive Hypernymy 4902 205

computer platform Hypernym Hypernym Meronymy 327 0

log information system activity Unrelated Hypernym Synonymy 310 109

device type mobile device type Hypernym Unrelated Unrelated 60,372 1534

tablet tablet information Unrelated Equivalent

Table 7
Performance measures for Lexicon L, using expert views.
We now describe the two experimental results using ontologies built Experiment Method Ground- TP FP TN  FN Prec. Rec.
from the two lexicons L; and L,. In these experiments, we report results Truth
for the entire expert-constructed ontology, and separate results from Ontology
the ontology in which information types share at least one word. This By Syntax-Driven KB, 1347 122 60,315 5505 0.916 0.196
latter result is included to support performance comparisons with the :ﬁh::m:v:t};ccm
population preferences study reported in Section 6.2. Attachments
B, Syntax-Driven KB, 334 60 1507 351 0.847 0.487
6.1.2. Experiment E, : Lexicon L, method with CFG
Inferred relationships through the syntax-driven method. Lex- and Semantic

icon L, contains 356 platform information types which are used to Attachments
develop the context-free grammar (CFG) in Section 5.3. These informa- E,, 26 Regular KB, 306 59 1502 385 0.838 0.442

tion types are reduced by applying reduction strategies (see Section 5.1)
to yield 347 reduced information types. Next, two analysts (i.e., the
first and second authors) assign role tags to the information types as
described in Section 5.2 in two consecutive rounds. The measured de-
gree of agreement after the first round of tagging yields a Fleiss’ Kappa
of 0.720 and it is increased to 0.931 after reconciling disagreements in
the second round [60]. The 347 reduced tagged information types are
available online [34]. For the information types that share at least one
word, the syntax-driven method using CFG and semantic attachments
yield 4593 relations between information types, which we published
here [34]. The process of inferring candidate relations from lexicon L,
is shown in Fig. 2. In this figure, L, candidate relations is an output
artifact that we use as an input artifact in Fig. 5.

Ground-truth ontology. To construct the ground truth for evalu-
ation, two experts (the first and second authors) individually produce
two ontologies using the methodology described above, which consist
of 431 and 407 axioms, respectively. Table 5 is a snapshot of relation-
ships assigned to information type pairs by two experts extracted from
the two ontologies before any reconciliation; wherein “Hypernym”
means the LHS type is a superclass of the RHS type, “Hyponym” means
subclass of, “Equivalent” means equivalence to, “Whole” means the
LHS is a whole that contains the LHS type as a part, “Part” means the
LHS type is part of RHS type, and “Unrelated” means no relationship.

The first comparison of the two ontologies yields 321 differences
measured by a 0.233 Fleiss Kappa. After two rounds of reconciliation
processes, the Kappa is increased to 0.888. We utilize the reconciled
version of the ontology generated by the first expert as the ground-
truth ontology for experiment E, |, that we call KB, ;. We list 67,289
information type pairs from KB, ; that are either related (i.e., hyper-
nymy, transitive hypernymy, meronymy, and synonymy relationships)
or unrelated (i.e., two information types that have no logical rela-
tionships) [34]. The statistics regarding the number of hypernymy,
transitive hypernymy, meronymy, and synonymy relations, along with
the unrelated pairs in K B ; is presented in Table 6. Among these pairs,
we select a subset of K By | with the information type pairs that share at
least one common word (e.g., (device, device identifier)). This subset of
KB, , called I?Iﬁ , contains 2252 information type pairs [34]. Table 6
also presents the number of pairs per category for ﬁi in comparison
with KB, ;.

Evaluation. We now evaluate the 4593 candidate relations inferred
by the syntax-driven method that applies the CFG and semantic at-
tachments to information types in lexicon L,. These 4593 candidate
relationships create fragments of an ontology when expressed in De-
scription Logic. We first evaluate the ontology fragments against all the
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pairs in KB, ;. The results for this evaluation is presented in Table 7.
The syntax-driven method infers the relations in KB, with a high
precision of 0.916. However, due to the high number of FNs that cannot
be inferred by the syntax-driven method, the recall reaches 0.196. The
syntax-driven method only infers semantic relations between informa-
tion types that share at least one common word (e.g., “device” and
“device identifier”). Consequently, relations between information types
that rely on privacy policies’ contextual semantics and experts’ tacit
knowledge are ignored. For example, experts identified a hypernymy
relationship between “phone” and “device”. However, inferring any
relationship between “phone” and ‘“device” is out of the scope of
our syntax-driven method and requires additional semantic knowledge
regarding these two terms. Therefore, to provide a sound comparison
considering the scope of our syntax-driven method, we introduce I?lﬁ s
which contains a subset of K B, information type pairs that share at
least one common word. We evaluate the inferred relations through the
syntax-driven method with the relations in ﬁ? . Through this evalu-
ation, 351 of the related pairs in K/I; cannot be logically entailed in
the relations inferred through the syntax-driven method. We compute
precision and recall for the syntax-driven method, which is presented
in Table 7. To further investigate the FNs that cannot be inferred using
the syntax-driven method, we conduct an open coding study on FNs
which is presented in Section 7. Finally, we compare the results of our
method to the previously proposed ontology construction method using
26 regular expression patterns reported by Hosseini et al. [13]. These
patterns are used to parse the information types in lexicon L, and to
infer semantic relations based on their syntax. However, the discovered
patterns fail to cover all the information types in lexicon L; and the
approach requires extending the pattern set for new policies. Table 7
also presents the evaluation metrics for the relations inferred through
the 26 regular expression patterns when compared with relationships
in I?lﬁ Our method shows an improvement on precision and recall
compared to the 26 regular expressions.

6.1.3. Experiment E, ,: Lexicon L,

RQ3 aims to evaluate the reliability of the syntax-driven method
when applied on information types extracted from various data prac-
tices regarding privacy policies of mobile or web-based apps in various
domains. To address RQ3, we design a second experiment with respect
to expert-constructed ontologies.
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Table 8
Example table comparing information type pair relationships for Lexicon L, (i.e., KB, ,.
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Table 10
Performance measures for Lexicon L, using expert views.

LHS Information Type RHS Information Type Expert 1  Expert 2 Experiment Method Ground- TP FP TN FN Prec. Rec.
profile verification password verification password Subclass  Subclass Truth
preferences user profile information Subclass  Unrelated Ontology
checking account number checking account information Subclass  Subclass E,, Syntax-Driven KB, , 3928 369 350,560 12,891 0.914 0.233
account information routing number Superclass Unrelated method with CFG
activity data caloric intake Unrelated Superclass and Semantic
address zip code Whole Superclass Attachments
E , Syntax-Driven KB, 232 58 1627 44 0.800 0.840
Table 9 method wit}-1 CFG
Number of relationships in the experts-constructed ontology on L,. and Semantic
— Attachments
Relation Number of Pairs, KB, , Number of Pairs, KB, , —
E,, 26 Regular KB, 125 38 1648 150  0.766 0.454
Direct Hypernymy 3805 138 Expression Patterns
Transitive Hypernymy 12,457 106
Meronymy 116 0
Synonymy 491 33
Unrelated 350,879 1684

Inferred relationships through the syntax-driven method. This
experiment uses a previously published lexicon L, containing 491 user-
provided information types extracted from collection data practices of
30 finance, health, and dating mobile app privacy policies [16]. As
shown in Fig. 5, in step 1, we reduce the information types using
the reduction strategies in Section 5.1, yielding a total number of 464
reduced information types. In step 2, two analysts (i.e., the first and
second authors) apply role tagging (see Section 5.2) on the information
types in two consecutive rounds. The degree of agreement is mea-
sured after each round, resulting in Fleiss’ Kappa 0.656 and 0.878,
respectively [60]. Given the reduced tagged information types as the
input to step 3, the syntax-driven method yields 5044 relations between
information types that share at least one word, which is published
here [34]. This process results in L, candidate relations in Fig. 5.

Ground-truth ontology. In this experiment, we utilize an ontology
manually built from lexicon L, by privacy experts as the ground truth.
Two experts individually produce two ontologies using the methodol-
ogy described above, which consist of 2590 and 2791 axioms, respec-
tively. Table 8 is a snapshot of relationships assigned to information
type pairs by two experts extracted the two ontologies before any
reconciliation. Prior to any reconciliation, the first comparison of the
ontologies yields Fleiss’ Kappa of 0.590. After reconciliation the Kappa
is increased to 0.836 [16,60].

We utilize the reconciled version of the ontology constructed by
the first expert as the ground truth expert-constructed ontology for
lexicon L,, which we call KB, ,. This manually constructed ontology
can be retrieved here [34]. We list 367,748 information type pairs
from KB, that are either related (i.e., hypernymy, transitive hyper-
nymy, meronymy, and synonymy relationships) or unrelated (i.e., two
information types that have no logical relationships) [34].

The statistics regarding the number of hypernymy, transitive hyper-
nymy, meronymy, and synonymy relations, along with the unrelated
pairs in K B, , are presented in Table 9. Among these pairs, we select a
subset of K B, , with the information type pairs that share at least one
common word (e.g., (account balance, account contact information)).
This subset of KB, ,, called I?IE, contains 1961 information type
pairs [34]. Table 9 also presents the number of pairs per each category
for I&TZ in comparison with KB, ,.

Evaluation. The results of the second experiment E,, presented
in Table 10 assess the method’s reliability and address RQ3. We first
evaluate the ontology fragments inferred by the syntax-driven method
against all 367,748 pairs in KB,,. Similar to experiment E,, the
evaluation exhibit high precision and low recall due to the number of
pairs in KB, , that do not share any common words.

We also evaluate the syntax-driven method and the inferred ontol-
ogy fragments using I?IE We find 44 of the related pairs in the I?]E
that cannot be logically entailed in the ontology fragments inferred
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through the syntax-driven method. We compute precision and recall for
the syntax-driven method, which is presented in Table 10. Similar to ex-
periment E; |, we investigate relations identified as FNs by conducting
an open coding study, which is presented in Section 7. In comparison to
experiment E, |, lexicon L, yields a higher recall by 0.353, with nearly
equivalent precision. Finally, we compare the results of our method to
the previously proposed ontology construction method using 26 regular
expressions reported by Hosseini et al. [13]. Our method outperforms
the 26 regular expression patterns, by decreasing the number of FNs
and improving the recall significantly.

6.2. Population preferences

In this section, we describe the design of two experiments (i.e, E, |
and E,,) to address RQ2. These experiments compare the results from
the syntax-driven method to ground truths consisting of population
preferences, which are preferences from non-experts about whether two
information types are related.

Organization. We first describe our general survey design published
on Amazon Mechanical Turk (AMT) to capture users’ preferences and
interpretations toward the relationships between information types.
Users’ preferences (i.e., relationships between information types) are
then analyzed and formalized using DL axioms to construct ground-
truth ontologies. Secondly, we describe experiment E,;, where we
compare a ground-truth ontology built upon information types in lex-
icon L; with the relationships automatically inferred by our syntax-
driven method. We then report the result of this comparison. Finally,
we describe experiment E,,, where we compare a ground-truth ontol-
ogy built upon information types in lexicon L; with the relationships
automatically inferred by our syntax-driven method. We then report
the result of this comparison.

6.2.1. Ground-truth ontology construction method

In this survey, participants are asked to choose a relation for pair

(A, B) from one of the following six options [13]:

s: A is a kind of B, e.g., “mobile device” is a kind of “device”.

S: A is a general form of B, e.g., “device” is a general form of “mobile
device”.

P: A is a part of B, e.g., “device identifier” is a part of “device”.

W: A is a whole of B, e.g., “device’ is a whole of “device identifier”.
E: A is equivalent to B, e.g.,“IP” is equivalent to “Internet protocol”.
U: A is unrelated to B, e.g., “device identifier” is unrelated to “loca-
tion”.

Each response is recorded as a participant preference for the chosen
relation. Participants are only asked to compare information types that
share at least one word.

Unlike an expert-based ground truth that assumes one or two view-
points define truth, a population-based ground truth must reconcile
different, even conflicting viewpoints. Diverse participant experiences
can lead participants to perceive different information type senses and



M.B. Hosseini et al.

to assign different semantic relations to the same pair: e.g., “mac”
can be construed to mean either a MAC address for Ethernet-based
routing, or a kind of computer sold by Apple Inc. In another example,
the information type “email” can refer to three different senses: a
service or program for sending messages; a message to be sent via
the SMTP protocol; or a person’s email address, which is the recipient
address of an email message. Therefore, participants may conclude
either that “email address” is a part of “email” or is equivalent to
“email”, which are both valid interpretations. To avoid excluding valid
interpretations, we build a multi-viewpoint ground truth that accepts
multiple, competing interpretations [13].

In this experimental design, valid interpretations for a pair are those
that the observed number of responses per category exceeds the ex-
pected number of responses in a Chi-square test, where p < 0.05. This
threshold means that there is at least a 95% chance that the elicited re-
sponse counts are different than the expected counts [13]. The expected
response counts for a relation are based on how frequently participants
choose that relation across all participant comparisons, which is the
probability that a participant chooses a relation independent of the
information types being compared. With this definition of valid inter-
pretation, the multi-viewpoint ground truth is constructed as follows:
for each surveyed pair, we add an axiom to the ground truth for a given
relation, if the number of participant responses is greater than or equal
to the expected Chi-square frequency for that pair and relation; except,
if the number of unrelated responses exceeds the expected Chi-square
frequency, then we do not add any axioms.

The above survey design is used to build two ground truths upon
lexicon L; and L;, which are used to conduct two experiments E, ; and
E, ,, respectively. Experiment E,; aims to answer RQ2 by comparing
the syntax-driven method with population preferences. Experiment E, ,
serves as a replication in which the information types and domains
vary, but wherein the standard of using population preferences is
preserved. Thus, experiment E,, on lexicon Lj; is also used to address
RQ3 regarding method reliability.

6.2.2. Experiment E, ;: Lexicon L;

To address RQ2 and evaluate the syntax-driven method against
population preferences for lexicon L,, we published a population pref-
erence study and constructed a ground-truth ontology [34] using valid
interpretations produced using survey design and analysis procedure
described above. We refer to this ground-truth ontology as KB,
throughout the paper.

Inferred relationships through the syntax-driven method. As
mentioned in experiment E;; (see Section 6.1), Lexicon L; contains
356 platform information types that are used to develop our context-
free grammar (CFG) in Section 5.3. We follow the similar approach
described in experiment E;; Section 6.1 that yields 4593 relations
between information types in L;. The process of inferring candidate
relations from lexicon L, is shown in Fig. 2. In this figure, L, candidate
relations is an output artifact that we use as an input artifact in Fig. 5.

Ground-truth ontology. The survey is conducted using 2252 in-
formation type pairs obtained from L, wherein each pair consists
of information types that share at least one word in the reduced
version of lexicon L;. These pairs are also previously used in ﬁ: for
experiment E, ;. To identify relationships between information types
in each pair, we recruit participants from AMT, where each participant
had completed over 5000 HITs, had an approval rating of at least 97%,
and was located within the United States [13]. Overall, we recruit 30
participants to provide one preferred relationship for each information
type pair. This survey results in the ground-truth ontology KB, for
this experiment.

Evaluation. We compare the relations inferred by the syntax-driven
method with the relations in KB,;. An inferred relation is a true
positive (TP), if it is logically entailed by the KB, ;, otherwise, that
relation is a false positive (FP). Overall, 979 inferred relations are
logically entailed in KB, ;. We use logical entailment to identify TPs,
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Table 11
Performance measures for Lexicon L, using population preferences.
Experiment Method Ground- TP FP TN FN Prec. Rec.
Truth
Ontology
E,, Syntax-Driven KB,, 979 2 805 466 0.997 0.677
method with CFG
and Semantic
Attachments
E,, 26 Regular KB, 781 3 878 590 0.996 0.569

Expression Patterns

because subsumption is transitive and whether a concept is a hypernym
of another concept may rely on the transitive closure of that concept’s
class relationships in KB,;. We only find two inferred relations as
FPs. An unrelated information type pair in KB, is considered a true
negative (TN), if we cannot match any inferred relations with those
pairs. We find 805 pairs in KB, that are TNs. We count as false
negatives (FN) all pairs in K B, |, which are not inferred by the method.
We find 466 pairs in K B, that are not inferred by the method.

We compute Precision= TP/(TP+FP) and Recall= TP/(TP+FN) for
the syntax-driven method based on CFG and semantic attachments, pre-
sented in Table 11. In addition, we include results previously reported
by Hosseini et al. in which an ontology was constructed from L, using
26 regular expressions over a shallow typology [13]. The new method
outperforms the 26 regular expressions by decreasing the number of
FNs and thus improving recall by 0.108.

6.2.3. Experiment E, ,: Lexicon L,

RQ3 asks about the method’s reliability, which we address by
conducting experiment E,, using population preferences.

Inferred relationships through the syntax-driven method. For
this experiment, we acquire lexicon L;, that contains 1853 information
types related to any data collection, use, retention, and sharing prac-
tices, extracted from 30 mobile and web app privacy policies across
six domains (shopping, telecommunication, social networks, employ-
ment, health, and news) [14]. As shown in Fig. 5, in step 1, we
pre-process 1853 information types in lexicon L; using the strategies
mentioned in Section 5.1, yielding 1693 information types [34]. Step
2 involves manual effort for semantic tagging. During this step, two
analysts (i.e., the first and second authors) individually assign tags to
the reduced information types in L;. The inter-rater agreement for
the assigned tags is calculated using Fleiss’ Kappa co-efficient. The
comparison results in 518 disagreements with Kappa = 0.704. After
reconciling the disagreements, Kappa is increased to 0.917 and we
randomly select tag assignments from one of the analysts. In step 3,
the tagged information types are parsed using the context-free grammar
(CFG), yielding L;-candidate relations as an output artifact of this
process.

Ground-truth ontology. To address RQ3 on method reliability, we
develop a ground truth for relations in L;. Consistent with our prior
experiments, we select information type pairs that share at least one
word, yielding 1,466,328 pairs that are down-sampled using strata
based on tag sequences as follows:

Phase A: Each information type pair is mapped to their respective tag
sequence pair, e.g., pair ( mobile device, device name) is mapped to
(mzt, tp), yielding 974 unique tag sequence pairs, which we call a single
stratum.

Phase B: Proportional stratified sampling is used to draw at least 2000
samples from all strata with the stratum size range 1-490. The wide
range in stratum sizes implies unbalanced strata; e.g., a stratum that
contains 1-3 pairs when divided by the total number of information
type pairs yields zero, which would then be excluded from the sampled
dataset. Therefore, we select all the pairs from stratum with size one
to ensure complete coverage. For stratum of size two and three, we
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Table 12
Performance measures for Lexicon L; using population preferences.

Experiment Method Ground- TP FP TN FN Prec. Rec.
Truth
Ontology
E,, Syntax-Driven KB,, 1686 3 438 156 0.998 0.915
method with CFG
and Semantic
Attachments
E,, 26 Regular KB,, 952 9 748 574 0.990 0.623

Expression Patterns

randomly select one information type pair. For the remaining stratum
with sizes greater than three, sample sizes are proportional to the
stratum size, yielding one or more pairs per stratum. For each stratum,
the first sample is drawn randomly. To draw the remaining samples, we
compute a similarity distance between the already selected pairs and
remaining pairs in each stratum: First, we create a bag-of-lemmas by
obtaining word lemmas in the already selected pairs. In each stratum,
we select the pairs that contain the least common lemmas with the bag-
of-lemmas. We update the bag-of-lemmas after each selection by adding
the lemmas of the selected pairs. This strategy ensures the selection of
pairs with lower similarity measure, resulting in a broader variety of
words in the sampled set.

Finally, we ensure that each tag sequence is represented by at least
one sampled item, and that sequences with a larger number of examples
are proportionally represented by a larger portion of the sample. This
final assurance increase the initial sample size of 2000 to the final size
of 2283 samples from the original set of 1,466,328 phrase pairs. Our
samples contain 1138 unique information types from Lexicon L;.

We recruit 30 qualified AMT participants following the criteria
mentioned in Section 6.1. These participants receive the same sur-
vey prompts described in E, ;. Using the survey results, we construct
a multi-viewpoint ground-truth ontology containing 2283 semantic
relations [34]. We refer to this ontology as K B, , throughout this paper.

Evaluation. The results of applying the syntax-driven method to
the sampled information types from L; yields 21,745 inferred rela-
tions [34]. To compute precision and recall, we compare the inferred
relations with the multi-view K B, , using the same procedure described
in experiment E, ;. Overall, the method correctly identifies 1686 of
the 2283 relations in KB,,. In comparison to E,;, the lexicon L;
yields a higher recall by 0.238 with an equivalent precision. Overall,
the method’s precision remains high with few FPs, however, recall can
vary by as much as 0.238 depending on the dataset. We also compare
the inferred relations using 26 regular expressions [13] with KB,,.
The performance measures in Table 12, suggest that our syntax-driven
method reduces the number of FNs, thus improving recall by 0.292.

7. Limitations

In this section we discuss limitations of the work by analyzing false
negatives. While the syntax-driven method affords high precision, the
low recall presents a limitation of the approach. To understand this lim-
itation, we open code the false negatives (FNs) for all four experiments
(i.e., E\ |, E|,, E,,, and E,,) and identify four explanations for this
limitation. The four explanations are as follows.

(1) Tacit Knowledge: The method solely relies on syntax and in-
fers semantic relations between information types that share at least
one common word (e.g., “device identifier” and “identifier”). Con-
sequently, relations between information types that rely on privacy
policies’ contextual semantics and experts’ tacit knowledge are ignored.
For example, the hypernymy relation between “mobile phone model”
and “mobile device model” requires the knowledge that “phone” is
a hyponym (kind) of “device”. In another example, the hypernymy
relation identified by non-experts between “crash events” and “device
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event information” requires knowing that a crash is a software or
hardware failure on a device, which is tacit knowledge that our method
lacks.

(2) Parse Ambiguity: The syntax-driven method analyzes information
types by grouping words from the right and left using the CFG and
inherited variants in semantic attachments, respectively. For example,
the experts identified a hypernymy relation between “mobile device
unique device ID” and “mobile device ID”. However, applying our
method on the given information type “mobile device unique device
ID” would not infer “mobile device ID” as a variant. In another exam-
ple, an equivalence relation identified by non-experts between “device
unique identifier” and “unique device identifier” would be inferred as
two kinds of “device identifier”, but not as equivalent concepts.

(3) Role Suppression: Experts and non-experts may ignore the roles
regarding modifiers, events, and properties in information types, which
results in relations that cannot be inferred by our method. For example,
experts identified a hypernymy relation between “coarse location” and
“actual location”, ignoring “coarse” and “actual” that modify the term
“location”. In another example, experts identified a hypernymy relation
between “device ID” and “access device”, ignoring the role of “access”
in “access device”. Further, non-experts identified “actual location” and
“approximate location” as equivalent information types in population
preference studies.

(4) Unjustifiable: Some information type pairs and their relations
in the ground truths of four experiments cannot be justified by our
knowledge. For example, experts identified “contact list” as a synonym
of “contact entry”. In another example, “unique browser” is identified
as a kind of “unique application number” by the experts. In another
example, non-experts identified “‘general demographic information” as
a kind of “general geographic information” and “ mobile device type”
is identified as a kind of “mobile device unique identifier”.

Table 13 depicts the result of our analysis on the FN relationships
that cannot be identified using the syntax-driven method for four
experiments. This table shows the number of relations that fall in
each coding category. To summarize, the majority of FNs in all four
experiments belong to the “tacit knowledge” coding category, which
shows the limitation of the syntax-driven method to infer relations
that rely on privacy policy context, experts’ domain knowledge, and
humans’ general knowledge of natural language.

8. Threats to validity

In this section we discuss threats to validity of the work.

Internal Validity- Internal validity concerns whether the inferences
drawn from the experiments are valid. The relations inferred by the
syntax-driven method depend on reliable labeling of information types
by analysts (see Section 5.2). Changes in tags affect the performance of
the method when compared to a ground truth.

To understand the effect of labels on the inferred relations by the
syntax-driven method, we analyze the FNs for experiments E;; and
E,, through a second-cycle coding of the “Tacit Knowledge” category
(see Section 7). Recall that both E,, and E,, are organized using
lexicon L, and the syntax-driven method is the result of grounded
analysis on the role tagged information types in this lexicon. Through
this analysis, we observed a potential explanation for why participants
(i.e., experts and non-experts) prefer a relation that differs from our
results. As an example, the terms in “application software” are tagged
with the sequence 77, which is used to entail that “software” is part of an
“application” by the syntax-driven method. However, we believe that
participants recognize that “application software” is a single entity or
thing (tag sequence t). We also believe this explanation applies to 20
information types in lexicon L;. In summary, semantic ambiguity in
tokenization and tagging can result in changes to the inferred relations,
which is a shortcoming of the method. To minimize the effects of this
internal threat, the information types in lexicons L,, L,, and L; are
tagged by two analysts (the first and second authors). The reliability of
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Table 13
False negative analysis.
Experiment  Ground truth  FNs total No.  Tacit knowledge = Parse ambiguity = Role suppression  Unjustifiable
E,, KB, 344 268 16 59 1
E,, KB,, 44 33 0 0
E,, KB,, 466 404 17 34 11
E,, KB,, 156 128 18 4

the agreement between analysts when assigning the role tags is mea-
sured using Fleiss Kappa. Further, the ground-truth ontology K B ; for
experiment E| ; is constructed by two experts, i.e., the first and second
authors of this paper. The ground-truth ontology K B , for experiment
E, , is a dataset previously published by our group [16]. The experts for
K B, , are the first author of this paper and the second author of [16].
The reliability of the agreement between experts when identifying
semantic relationships between information types is measured using
Fleiss Kappa. Finally, we acknowledge that our proposed method can
be subject to researcher bias since the ground-truth ontologies in E|
and E, , are constructed by our research group.

External Validity- External validity concerns the extent to which the
results generalize beyond the experimental setting. The syntax-driven
method is constructed using lexicon L;, which contains platform-
related information types defined as “any information that the app or
another party accesses through the mobile platform that is not unique
to the app” [11]. The information types are extracted from collection
data practices of 50 mobile app privacy policies [11,13]. We design
experiments E;; and E,, to evaluate the method on lexicon L,. To
study generalizability beyond lexicon L, and reduce threats to external
validity, we utilize lexicons L, and L; to evaluate and conduct experi-
ments E; , and E,,. Lexicon L, covers user-provided information from
mobile apps in finance, health, and dating domains, whereas lexicon
L; covers information types related to collection, usage, retention,
and transfer data practices, extracted from web app privacy policies
in shopping, telecommunication, social networks, employment, health,
and news domains [14]. The syntax-driven method infers relations from
L, with 0.800 precision and 0.840 recall in experiment E,,, when
compared to information types that share at least one word in K/Bl\2 In
experiment E,,, the syntax-driven method results in 0.998 and 0.915
precision and recall, respectively, when compared to the population
preferences for lexicon L;. Experiments E; , and E,, suggests that the
method generalizes best for general information types than for platform
information types.

Reliability- Reliability indicates that the researcher’s approach is con-
sistent across different researchers and different projects [61]. To en-
sure the reliability of our research, we measure and report the inter-
coder agreement in three ways [62]: (1) the Kappa for information
type role tagging; (2) the Kappa measured for the expert-constructed
ontologies; and (3) the Chi-square test used to threshold population
preferences.

9. Discussion

Privacy policies contain ambiguous, general, and vague terminol-
ogy, making requirements elicitation from data practices a challenging
task. Our methodology provides requirements analysts with reusable
ontologies that formalize semantic relations between ambiguous, gen-
eral, and vague information types in privacy policies. However, such
research poses fundamental challenges due to the problem’s nature that
requires systematic validation. In the following subsections, we provide
brief responses to research questions, address the main challenges in
this research, and provide lessons learnt.
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9.1. Ontology construction methods in practice

To the best of our knowledge, our work is the first attempt to
address ambiguity, generality, and vagueness by automatically infer-
ring semantic relations, such as hypernymy, meronymy, and synonymy
between information types in privacy policies. Further, we formalize
the representation of these relationships into an ontology, which have
been previously used to identify privacy violations in mobile appli-
cations [11,16]. Prior work to construct ontologies discovered seven
heuristics that can be manually applied to infer semantic relations [10].
We build upon this method in Section 6.1.1 by constructing ground-
truth ontologies KB, and KB;, that are used in experiments E|
and E,,. Consequently, the syntax-driven method described in this
paper has only been shown to infer fragments of manually-constructed
ontologies, in which the related information types share at least one
word. Considering the manual and syntax-driven methods, we pose
two questions for discussion. First, how do the two methods compare
considering the time and manual labor required to construct an ontol-
ogy? Secondly, what percentage of an ontology can be automatically
generated using the proposed method?

To address the first question, we note that the manual method
requires comparing paired information types by at least two analysts.
Therefore, a complete analysis of n information types requires X¢=1
comparisons. The average time for a pair comparison is reported at
11.72 seconds [13], which makes the task tedious and not feasible for
large n. Further, the manual approach is susceptible to human error due
to fatigue and gaps in analysts’ domain knowledge [13]. In addition,
as language use evolves, the ontology would need to be extended
over time. Evidence from Bhatia et al. shows that between 23%-71%
of information types in any new privacy policy will be previously
unseen [63], which further motivates the need for a high-precision,
semi-automated method to infer ontological relationships. Unlike the
quadratic (O(n?)) number of paired comparisons required to identify
relationships among information types, the syntax-driven method only
requires a manual tagging step, which is linear (O(n)) in the size of the
lexicon. Furthermore, word tags can be reused across information type
phrases that reuse words to further reduce the time needed to perform
this step.

To address the second question, we first examine characteristics of
the ground-truth ontology K B, in experiment E, . Lexicon L; used
in this experiment contains 356 information types, yielding w =
63,190 possible information type pairs and relationships. According
to Table 6, 89% of pairs are identified as unrelated in KB, ;. This
percentage reflects that: (1) given all possible information type pair
comparison, there are few relationships (high sparsity); and (2) the
corresponding imbalance between related and unrelated pairs is intrin-
sic to this problem’s nature. In addition, K B, | contains 2015 positive
relationships (i.e., direct hypernymy, synonymy, and meronymy). Ac-
cording to Table 7 for experiment E; ; and KB, ;, the model identifies
1347 (TP) relationships from this positive space. Further, high precision
of 91% suggests that a requirements analyst can trust the positive
relationships (hypernymy, meronymy, and synonymy) inferred by the
model. The problem of low recall (19%) arises from 5505 pairs falsely
labeled as unrelated by the model. However, the model correctly identi-
fies 60,315 unrelated pairs (TN). Based on the results in experiment E| ,
using KB, |, we conclude that the model can identify most unrelated
pairs; however, it cannot reduce the burden of manually checking the
unrelated pairs for an analyst.



M.B. Hosseini et al.
9.2. Real-world applications of ontologies

The use of ontologies are directly impactful to novel techniques
in privacy-sensitive static and dynamic information flow tracing in
software engineering [11,55,64]. However, due to technical challenges
in information flow tracing, such approaches may not yet be broadly
used in industry. That said, continued pressure by regulators and
corporate compliance under privacy laws, including the E.U. General
Data Protection Regulation, is driving the need to understand where
companies collect and use sensitive data. A preliminary step in ra-
tionalizing corporate data flows, is classifying stored data by a broad
category, which evidence suggests can easily reach into the thousands
of distinct types [63]. Without explicit, scalable procedures to con-
struct these ontologies and detect relationships between information
type names, companies will produce compliance gaps, where rules for
protecting data are applied unevenly due to misalignments arising from
ambiguous and vague information type names. Our method for infer-
ring semantic relations between information types can bolster these
efforts and increase their viability by providing a general approach
for ontology construction, thus yielding a strong indirect benefit to
engineers and regulators.

9.3. Analysis of false negatives

Research questions RQ1 and RQ2 investigate the extent that the
method can infer relations compared to relationships identified by
experts and non-experts. To address these questions, we thoroughly
analyze the relations that cannot be inferred by the method and are
defined by experts or non-experts in ground truths. This category of
relations are counted as false negatives (FNs) in the experiments. The
analysis of FNs reveals that the majority of these relations are missed by
the method due to the tacit knowledge required to infer these relations.
Because the method is driven by word-level role labels or tags, the
method is generalizable as the assignment of a role label to a word
is dependent on the meaning of the word and is stable over time.
Moreover, the small number of role labels improves reuse and requires
less effort in labeling new words. However, as evidenced by analysis of
FNs (see Section 7), these labels do not cover tacit knowledge signaled
by the type phrases and encoded in expert experiences and non-expert
understandings.

9.4. Method validity

Experiments E, ; and E,; evaluate the syntax-driven method using
lexicon L,. However, the syntax-driven method is constructed upon
this lexicon L,. To address the validity of the method, we also design
experiments E|, and E,, using lexicons L, and L. Lexicon L, covers
user-provided information from mobile apps in finance, health, and
dating domains, whereas lexicon L; covers information types related
to collection, usage, retention, and transfer data practices, extracted
from web app privacy policies in shopping, telecommunication, social
networks, employment, health, and news domains [14]. The results
from these two experiments suggest that the method generalizes best
for general information types than for platform information types.

9.5. Method reliability on unseen information types

To evaluate the reliability of the syntax-driven method for unseen
information types and address research question RQ3, we conduct
two additional experiments using lexicons L, and L; containing in-
formation types extracted from various data practices of mobile and
web-based apps’ privacy policies in various domains. Our analysis
reveals that the method can be reliably generalized for different infor-
mation types in privacy policies with high precision and recall. Using
our method to infer the semantic relations between information types
reduces the ambiguity and improves the shared understanding between
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different stakeholders. Overall, our method shows an improvement in
reducing the number of false negatives, the time, and effort required to
infer semantic relations compared to previously proposed methods by
formally representing the information types.

9.6. Expert vs. non-expert evaluation

Comparing results of experiments E, | and E, , the non-expert pop-
ulation preferences in E, | result in higher precision and recall by 0.15
and 0.19, respectively, in comparison with expert relations. We believe
this difference in performance measures is due to the manual approach
used by experts to construct the ontology. In the manual approach,
experts are presented with all the information types in lexicon L,
without common word restriction. Experts scan the alphabetical list of
the information types, looking for types with which they can create
hypernymy, meronymy, or synonymy relations. Experts can search by
keyword, and largely rely on their memory of information types they
have seen as they discover relationships. For our evaluation purposes,
we sample a set of relations between information type pairs that share
at least one common word from the manually constructed ontology
by experts. However, to construct the population preferences, we first
select a set of information type pairs that share at least one common
word from lexicon L; and finally this set is presented to non-experts
during the study. As a result, this set is more intuitive, making it simpler
for participants to identify the relationships between information types
presented to them without scanning an alphabetical list and trying to
retain information types they have encountered in the list. Therefore,
using non-expert views as ground truth results in higher precision and
recall when compared to expert views.

10. Conclusion

Privacy policies are legal documents containing application data
practices. These documents are well-established sources of require-
ments in software engineering. However, privacy policies are written
in natural language, thus subject to ambiguity and abstraction. Elicit-
ing requirements from privacy policies is a challenging task as these
ambiguities can result in more than one interpretation of a given
term. In this paper, we focus on the role of hypernyms, meronyms,
and synonyms and their formal relationships among terminology in
privacy policies. We propose a novel, automated syntax-driven seman-
tic analysis method for constructing partial ontologies to formalize
these relationships. Formal ontologies can be used as knowledge bases
by requirements analysts for resolving conflicting interpretations of
ambiguous terminology. The syntax-driven method infers semantic
relations between information types in privacy policies and their mor-
phological variants based on a context-free grammar and its semantic
attachments. This method is constructed based on grounded analysis
of lexicon L, containing platform information types extracted from
collection data practices of 50 mobile app privacy policies.

The current paper extends a previous conference paper [21]. In the
conference version, we only evaluated our method against information
types that share at least one common word in lexicons L, and L;
using population preference surveys. The current paper extends the
evaluation by introducing the expert-constructed ontologies as ground
truths (i.e., KB;; and KB, ,) in experiments E, ; and E,,. However,
our syntax-driven method fails to infer the relations in KB, ; and K B, ,
that are between information types that share no common word. We
consider such relationships out of scope for the technical contribution
of this paper. Therefore, we introduce Ifﬁ and I@ (i.e., subsets of
KB, and K B, ,) as ground truths. In summary, experiment E, | results
in 84% precision and 48% recall when compared to expert views in
K B, . Further, experiment E, , results in 80% precision and 84% recall
when compared to expert views in K/Bl\z To show the broad image of
the problem, we also report the results of our syntax-driven method
compared to KB, | and KB, ,. We emphasize that our method is not
capable of identifying the relations in this broad space. We foresee
using word embeddings trained using Word2Vec and language models
such as BERT that can address this shortcoming for our future work.
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