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1 Introduction 5

Developing numerical models for practical simulations in science and engineeringAQ2 6

usually results in problems regarding the presence of wide-range time scales. These 7

problems involve both slow and fast components leading to rapid variations in the 8

solution. This gives rise to the so-called stiffness phenomena. Typical examples 9

are models in molecular dynamics (see e.g. [36]), chemical kinetics, combustion, 10

mechanical vibrations (mass-spring-damper models), visual computing (specially 11

in computer animation), computational fluid dynamics, meteorology, etc., just to 12

name a few. They are usually formulated as systems of stiff differential equations 13

which can be cast in the general form 14

u′(t) = F(u(t)), u(t0) = u0, (1)

where u ∈ R
n is the state vector and F : Rn −→ R

n represents the vector field. The 15

challenges in solving this system are due to its stiffness by means of the eigenvalues 16

of the Jacobian matrix of F differing by several orders of magnitude. In the early 17

days of developing numerical methods for ordinary differential equations (ODEs), 18

classical methods such as the explicit Runge–Kutta integrators were proposed. For 19

stiff problems, however, they are usually limited by stability issues due to the CFL 20

condition leading to the use of unreasonable time steps, particularly for large-scale 21
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applications. The introduction of implicit methods such as semi-implicit, IMEX (see 22

[2]), and BDF methods (see [10, 14]) has changed the situation. Theses standard 23

methods require the solution of nonlinear systems of equations in each step. As the 24

stiffness of the problem increases, considerably computational effort is observed. 25

This can be seen as a shortcoming of the implicit schemes. 26

In the last 20 years, with the new developments of numerical linear algebra 27

algorithms in computing matrix functions [1, 25, 41], exponential integrators have 28

become an alternative approach for stiff problems (see the survey [24]; next 29

to physics simulations, exponential integrators are nowadays also employed for 30

different applications as for the construction of hybrid Monte Carlo algorithms, see 31

[7]). For the fully nonlinear stiff system (1), we mention good candidates, the so- 32

called explicit exponential Rosenbrock methods, which can handle the stiffness of 33

the system in an explicit and very accurate way. This class of exponential integrators 34

was originally proposed in [23] and further developed in [26, 30, 32, 34]. They have 35

shown to be very efficient both in terms of accuracy and computational savings. In 36

particular, the lower-order schemes were recently successfully applied to a number 37

of different applications [8, 15, 17, 46, 49] and very recently the fourth- and fifth- 38

order schemes were shown to be the method of choice for some meteorological 39

models (see [35]). 40

In this work, we show how the exponential Rosenbrock methods (particularly 41

higher-order schemes) can be also applied efficiently in order to solve problems in 42

computational modeling of elastodynamic systems of coupled oscillators (particle 43

systems) which are often used in visual computing (e.g. for computer animation). In 44

their simplest formulation, their dynamics can be described using Newton’s second 45

law of motion leading to a system of second-order ODEs of the form 46

miẍi +
∑

j∈N(i)
kij (‖xi − xj‖ − �ij )

xi − xj

‖xi − xj‖ = gi(xi, ẋi , ·), i = 1, 2, · · · , N,

(2)

where N is the number of particles, xi ∈ R
3, mi , kij , �ij denote the position of 47

particle i from the initial position, its mass, the spring stiffness, the equilibrium 48

length of the spring between particles i and j , respectively, and N(i) denotes 49

the set of indices of particles that are connected to particle i with a spring (the 50

neighborhood of particle i). Finally, gi represents the external force acting on 51

particle i which can result from an external potential, collisions, etc., and can 52

be dependent of all particle positions, velocities, or external forces set by user 53

interaction. 54

Our approach for integrating (2) is first to reformulate it in the form of (1) 55

(following a novel approach in [40]). The reformulated system is a very stiff one 56

since the linear spring forces usually possess very high frequencies. Due to the 57

special structure of its linear part (skew-symmetric matrix) and large nonlinearities, 58

we then make use of exponential Rosenbrock methods. Moreover, we propose 59

to use the improved algorithm in [35] for the evaluation of a linear combination 60
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of ϕ-functions acting on certain vectors v0, . . . , vp , i.e.
∑p
k=0 ϕk(A)vk which is 61

crucial for implementing exponential schemes. Our numerical results on a number 62

of complex models in visual computing indicate that this approach significantly 63

reduces computational time over the current state-of-the-art techniques while 64

maintaining sufficient levels of accuracy. 65

This chapter is organized as follows. In Sect. 2, we present a reformulation of 66

systems of coupled oscillators (2) in the form of (1) and briefly review previous 67

approaches used for simulating these systems in visual computing. In Sect. 3, we 68

describe the exponential Rosenbrock methods as an alternative approach for solving 69

large stiff systems (1). The implementation of these methods is discussed in Sect. 4, 70

where we also introduce a new procedure to further improve one of the state- 71

of-the-art algorithms. In Sect. 5 we demonstrate the efficiency of the exponential 72

Rosenbrock methods on a number of complex models in visual computing. In 73

particular, we address the simulation of deformable bodies, fibers including elastic 74

collisions, and crash scenarios including nonelastic deformations. These examples 75

focus on relevant aspects in the realm of visual computing, like stability and 76

energy conservation, large stiffness values, and high fidelity and visual accuracy. 77

We include an evaluation against classical and state-of-the-art methods used in this 78

field. Finally, some concluding remarks are given in Sect. 6. 79

2 Reformulation of Systems of Coupled Oscillators 80

We first consider the system of coupled oscillators (2). Let x(t) ∈ R
3N , M ∈ 81

R
3N×3N , D ∈ R

3N×3N , K ∈ R
3N×3N and g(x) ∈ R

3N denote the vector of 82

positions, the mass matrix (often diagonal and thus nonsingular), the damping 83

matrix, the spring matrix (stiff), and the total external forces acting on the system, 84

respectively. Using these matrix notations and denoting A = M−1K , (2) can be 85

written as a system of second-order ODEs 86

x ′′(t)+ Ax(t) = g(x(t)), x(t0) = x0, x
′(t0) = v0. (3)

Here x0, v0 are some given initial positions and velocities. For simplicity we neglect 87

damping and assume that A is a symmetric, positive definite matrix (this is a 88

reasonable assumption in many models, see [38]). Therefore, there exists a unique 89

positive definite matrix � such that A = �2 (and clearly �−1 exists). 90

Following our approach in [40], we introduce the new variable 91

u(t) =
[
�x(t)

x ′(t)

]
. (4)
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Using this one can reformulate (3) as a first-order system of ODEs of the form like 92

(1): 93

u′(t) = F(u(t)) = A u(t)+G(u(t)), u(t0) = u0, (5)

where 94

A =
[

0 �

−� 0

]
, G(u) =

[
0
g(x)

]
. (6)

Since the linear spring forces usually possess high frequencies (thus ‖K‖ � 1 and 95

so is ‖A‖), (5) becomes a very stiff ODE. Regarding the new formulation (5)–(6), 96

we observe the following two remarks. 97

Remark 1 Clearly, the new linear part associated with A , that is a skew-symmetric 98

matrix. We note that this significantly differs from the common way of refor- 99

mulating (3) that is to use the change of variable X(t) = [x(t), x ′(t)]T which 100

results in a non-symmetric matrix. The advantage here is that since A is a skew- 101

symmetric matrix, its nonzero eigenvalues are all pure imaginary and are in pairs 102

±λki. We also observe that A is an infinitesimal symplectic (or Hamiltonian). This 103

is because, by definition of an infinitesimal symplectic matrix, we check whether 104

WA + A T W = O, where W is the anti-symmetric matrix W =
[

0 I

−I 0

]
. This 105

can be easily verified since 106

WA =
[−� 0

0 −�
]
,

which is clearly a symmetric matrix, i.e., WA = (WA )T . 107

Remark 2 If the Jacobian matrix F ′(u) = A + G′(u) is infinitesimal symplectic, 108

(5) is a Hamiltonian system. This can be fulfilled since a typical situation in 109

Hamiltonian systems is that g(x) = ∇f (x) for some function f (x) and thus 110

g′(x) = ∇2f (x) becomes a Hessian matrix, which is symmetric. 111

As seen, either using the common way (mentioned in Remark 1) or the new way 112

(4) for reformulating (3), one has to solve the stiff ODE (5). In visual computing 113

it is usually solved by explicit methods such as the fourth-order Runge–Kutta 114

methods, semi-implicit methods such as the Störmer–Verlet methods, the backward 115

differentiation formulas (BDF-1 and BDF-2) methods, or IMEX methods. In this 116

regard, we refer to some contributions in the context of interacting deformable 117

bodies, cloth, solids, and elastic rods, see [3, 4, 12, 16, 19, 47]. For large-scale 118

applications associated with stiff systems, however, both types of these time 119

integration techniques have their own limitations as mentioned in the introduction. 120

In recent years, exponential integrators have shown to be competitive for large- 121

scale problems in physics and for nonlinear parabolic PDEs, as well as for highly 122
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oscillatory problems (see [24]). They have attracted much attention by the broad 123

computational mathematics community since mid-1990s. At the time while solving 124

linear systems (I − αhJ )x = v with some Jacobian matrix J (required when 125

using implicit methods) is generally only of linear convergence, it was realized that 126

Krylov subspace methods for approximating the action of a matrix exponential on a 127

vector, ehJ v, offer superlinear convergence (see [21]). Unless a good preconditioner 128

is available, this is clearly a computational advantage of exponential integrators 129

over implicit methods. This has been addressed in the visual computing community 130

very recently through a number of interesting work on exponential integrators, 131

see e.g.[37–40]. Inspired by this interest, in the following sections we will show 132

how exponential Rosenbrock methods—one of the popular classes of exponential 133

integrators—can be applied for simulating systems of coupled oscillators. 134

3 Explicit Exponential Rosenbrock Methods 135

In this section, based on [23, 26, 29, 32, 34] we present a compact summary 136

of the introduction of exponential Rosenbrock methods and their derivations for 137

methods of order up to 5. We then display some efficient schemes for our numerical 138

experiments for some applications in visual computing. 139

3.1 Approach 140

Motivated by the idea of deriving Rosenbrock-type methods, see [18, Chap. IV.7], 141

instead of integrating the fully nonlinear system (1) (which has a large nonlinearity 142

for stiff problems), one can replace it by a sequence of semilinear problems 143

u′(t) = F(u(t)) = Jnu(t)+ gn(u(t)), (7)

by linearizing the forcing term F(u) in each time step at the numerical solution un 144

(due to [42]) with 145

Jn = F ′(un), gn(u) = F(u)− Jnu (8)

are the Jacobian and the nonlinear remainder, respectively. An advantage of this 146

approach is that g′
n(un) = F ′(un)− Jn = 0 which shows that the new nonlinearity 147

gn(u) has a much smaller Lipschitz constant than that of the original one F(u). 148

The next idea is to handle the stiffness by solving the linear part Jnu exactly and 149

integrating the new nonlinearity gn(u) explicitly. For that, the representation of the 150

exact solution at time tn+1 = tn + h of (7) using the variation-of-constants formula 151

u(tn+1) = ehJnu(tn)+
∫ h

0
e (h−τ )Jngn(u(tn + τ ))dτ (9)
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plays a crucial role in constructing this type of integrators. As seen from (9), 152

while the linear part can be integrated exactly by computing the action of the 153

matrix exponential ehJn on the vector u(tn), the integral involving gn(u) can 154

be approximated by some quadrature. This procedure results in the so-called 155

exponential Rosenbrock methods, see [23, 26]. 156

Remark 3 For the system of coupled oscillators (2), the forcing term F(u) has the 157

semilinear form (5), which can be considered as a fixed linearization. Therefore, 158

one can directly apply explicit the exponential Runge–Kutta methods (see [22]) 159

to (5). The advantage of these methods is that the time-step h is not restricted 160

by the CFL condition when integrating the linear part A u. In our applications, 161

however, the nonlinearity G(u) is large in which the CFL condition usually serves 162

as a reference for setting the time-step. In particular, for the stability hLG should be 163

sufficiently small (LG is the Lipschitz constant ofG(u)). In this regard, the dynamic 164

linearization approach (7) applied to (5) 165

u′(t) = F(u) = A u+G(u) = Jnu+Gn(u) (10)

with 166

Jn = A +G′(un), (11)

offers a great advantage in improving the stability (in each step) when integrating 167

G(u). This is because instead of integrating the original semilinear problem with 168

large nonlinearity G(u), we only have to deal with a much smaller nonlinearity 169

Gn(u) (as mentioned above). Note that the new linear part Jnu with the Jacobian Jn 170

now incorporates both A and the Jacobian of the nonlinearity G(u), which can be 171

again solved exactly. It is thus anticipated that this idea of exponential Rosenbrock 172

methods opens up the possibility to take even larger time steps compared to 173

exponential Runge–Kutta methods. 174

3.2 Formulation of a Second-Order and General Schemes 175

In this subsection, we will illustrate the approach of exponential Rosenbrock meth- 176

ods by presenting a simple derivation of a second-order scheme and formulating 177

general schemes. 178

3.2.1 A Second-Order Scheme 179

First, expandingu(tn+τ ) in a Taylor series gives u(tn+τ ) = u(tn)+τu′(tn)+O(τ 2). 180

Then inserting this into gn(u(tn + τ )) and again expanding it as a Taylor series
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around u(tn) (using g′
n(u(tn)) = 0) leads to 181

gn(u(tn + τ )) = gn(u(tn))+ O(τ 2) . (12)

Inserting (12) into the integral of (9) and denoting ϕ1(hJn) = 1
h

∫ h
0 e (h−τ )Jndτ gives 182

u(tn+1) = ehJnu(tn)+ hϕ1(hJn)gn(u(tn))+ O(h3). (13)

Neglecting the local error term O(h3) results in a second-order scheme, which can 183

be reformulated as 184

un+1 = un + hϕ1(hJn)F (un) (14)

by replacing gn(u(tn)) by (8) and using the fact that ϕ1(z) = (ez − 1)/z. This 185

scheme was derived before and named as exponential Rosenbrock-Euler method, see 186

[23, 26] (since when considering the formal limit Jn → 0, (14) is the underlying 187

Euler method). The derivation here, however, shows directly that this scheme has 188

an order of consistency three and thus it is a second-order stiffly accurate method 189

(since the constant behind the Landau notation O only depends on the regularity 190

assumptions on u(t) and gn(u), but is independent of ‖Jn‖). 191

3.2.2 General Schemes 192

For the derivation of higher-order schemes, one can proceed in a similar way as for 193

the construction of classical Runge–Kutta methods. Namely, one can approximate 194

the integral in (9) by using some higher-order quadrature rule with nodes ci in [0, 1] 195

and weights bi(hJn) which are matrix functions of hJn, yielding 196

u(tn+1) ≈ ehJnu(tn)+ h

s∑

i=1

bi(hJn)gn(u(tn + cih)). (15)

The unknown intermediate values u(tn + cih) can be again approximated by using 197

(9) (with cih in place of h) with another quadrature rule using the same nodes cj , 198

1 ≤ j ≤ i − 1, (to avoid generating new unknowns) and new weights aij (hJn), 199

leading to 200

u(tn + cih) ≈ ecihJnu(tn)+ hn

i−1∑

j=1

aij (hJn)gn(u(tn + cjh)). (16)

Let us denote un ≈ u(tn) andUni ≈ u(tn+cihn). As done for (14), using (12) (with 201

cih, h in place of τ , respectively) one can reformulate (15) and (16) in a similar 202

manner, which yields the general format of s-stage explicit exponential Rosenbrock 203
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methods 204

Uni = un + cihϕ1(cihJn)F (un)+ h

i−1∑

j=2

aij (hJn)Dnj , (17a)

un+1 = un + hϕ1(hJn)F (un)+ h

s∑

i=2

bi(hJn)Dni (17b)

with 205

Dni = gn(Uni)− gn(un), (17c)

As in (12), we have Dni = O(h2). Thus, the general methods (17) are small 206

perturbations of the exponential Rosenbrock–Euler method (14). Note that the 207

weights aij (hJn) and bi(hJn) are usually linear combinations of ϕk(cihJn) and 208

ϕk(hJn), respectively, where the ϕ functions (similar to ϕ1) are given by 209

ϕk(hZ) = 1

hk

∫ h

0
e (h−τ )Zτ k−1dτ, k ≥ 1 (18)

and satisfy the recursion relation 210

ϕk+1(z) = ϕk(z)− 1
k!

z
, k ≥ 1. (19)

It is important to note that these functions are bounded (uniformly) independently of 211

‖Jn‖ (i.e. the stiffness) so are the coefficients aij (hJn) and bi(hJn) (see e.g. [24]). 212

Clearly, using exponential Rosenbrock schemes (17) offers some good advan- 213

tages. First, they do not require the solution of linear or nonlinear systems of 214

equations. Second, as mentioned above, they offer a better stability when solving 215

stiff problems with large nonlinearities and thus allow to use larger time-steps. 216

Third, since the Jacobian of the new nonlinearity vanishes at every step (g′
n(un) = 217

0), the derivation of the order conditions and hence the schemes can be simplified 218

considerably. In particular, higher-order stiffly accurate schemes can be derived with 219

only a few stages (see the next section). 220

The convergence analysis of exponential Rosenbrock methods is usually carried 221

out in an appropriate framework (strongly continuous semigroup) under regularity 222

assumptions on the solution u(t) (sufficiently smooth) and gn(u) (sufficiently 223

Fréchet differentiable in a neighborhood of the solution) with uniformly bounded 224

derivatives in some Banach space. For more details, we refer to [26, 32]. 225
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3.3 Selected Schemes for Numerical Simulations 226

First, we discuss some important points for the derivation of exponential Rosen- 227

brock schemes. Clearly, the unknown coefficients aij (hJn) and bi(hJn) have to be 228

determined by solving order conditions. For nonstiff problems, where the Jacobian 229

matrix has a small norm, one can expand those matrix functions using classical 230

Taylor series expansions, leading to nonstiff order conditions and in turn classical 231

exponential schemes (see e.g. [9, 27]). For stiff problems, however, one has to be 232

cautious when analyzing the local error to make sure that error terms do not involve 233

powers of Jn (which has a large norm). Recently, Luan and Ostermann [30, 33] 234

derived a new expansion of the local error which fulfills this requirement and thus 235

derived a new stiff order conditions theory for methods of arbitrary order (both for 236

exponential Runge–Kutta and exponential Rosenbrock methods). As expected, with 237

the same order, the number of order conditions for exponential Rosenbrock methods 238

is significant less than those for exponential Runge–Kutta methods. For example, in 239

Table 1, we display the required 4 conditions for deriving schemes up to order 5 240

in [32] (note that for exponential Runge–Kutta methods, 16 order conditions are 241

required for deriving schemes of order 5, see [31]). 242

We note that with these order conditions one can easily derive numerous different 243

schemes of order up to 5. Taking the compromise between efficiency and accuracy 244

into consideration, we seek for the most efficient schemes for our applications. 245

Namely, the following two representative fourth-order schemes are selected. 246

exprb42 (a fourth-order 2-stage scheme which can be considered as a super- 247

convergent scheme, see [29]): 248

Un2 = un + 3
4hϕ1(

3
4hJn)F (un), (20a)

un+1 = un + hϕ1(hJn)F (un)+ h 32
9 ϕ3(hJn)(gn(Un2)− gn(un)). (20b)

Table 1 Stiff order conditions for exponential Rosenbrock methods up to order five. Here Z and

K denote arbitrary square matrices and ψ3,i(z) = ∑i−1
k=2 aik(z)

c2
k

2! − c3
i ϕ3(ciz)

t3.1No. Order condition Order

t3.21
∑s
i=2 bi(Z)c

2
i = 2ϕ3(Z) 3

t3.32
∑s
i=2 bi(Z)c

3
i = 6ϕ4(Z) 4

t3.43
∑s
i=2 bi(Z)c

4
i = 24ϕ5(Z) 5

t3.54
∑s
i=2 bi(Z)ciKψ3,i(Z) = 0 5
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pexprb43 (a fourth-order 3-stage scheme, which can be implemented in 249

parallel, see [34]): 250

Un2 = un + 1
2hϕ1(

1
2hJn)F (un), (21a)

Un3 = un + hϕ1(hJn)F (un), (21b)

un+1 = un + hϕ1(hJn)F (un)+ hϕ3(hJn)(16Dn2 − 2Dn3)

+ hϕ4(hJn)(−48Dn2 + 12Dn3). (21c)

Note that the vectorsDn2 andDn3 in (21) are given by (17c), i.e.,Dn2 = gn(Un2)− 251

gn(un) andDn3 = gn(Un3)− gn(un). 252

4 Implementation 253

In this section, we present the implementation of exponential Rosenbrock methods 254

for the new formulation (5) of the system of coupled oscillators. First, we discuss 255

on the computation of the matrix square root � needed for the reformulation. We 256

then briefly review some state-of-the-art algorithms for implementing exponential 257

Rosenbrock methods and introduce a new routine which is an improved version 258

of one of these algorithms (proposed very recently in [35]) for achieving more 259

efficiently. Finally, we specifically discuss applying this routine for implementing 260

the selected schemes exprb42 and pexprb43. 261

4.1 Computation of the Matrix Square Root � = √
A 262

For the computation of � = √
A used in (5), we follow our approach in [40]. 263

Specifically, we use the Schur decomposition for moderate systems. For large 264

systems, the Newton square root iteration (see [20]) is employed in order to avoid an 265

explicit precomputation of�. Namely, one can use the following simplified iteration 266

method for approximating the solution of the equation�2 = A: 267

(i) choose�0 = A (k = 0), 268

(ii) update�k+1 = 1
2 (�k +�−1

k A). 269

This method offers unconditional quadratic convergence with much less cost com- 270

pared to the Schur decomposition. We note that �−1 can be computed efficiently 271

using a Cholesky decomposition since � is symmetric and positive definite and it 272

is given by �−1 = S−1S−T, where S is an upper triangular matrix with real and 273

positive diagonal entries. For more details, we refer to [20, 40]. 274
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With � at hand, one can easily compute the Jacobian Jn as in (11) and 275

F(u),Gn(u) as in (10). As the next step, we discuss the implementation of the 276

exponential Rosenbrock schemes. 277

4.2 Implementation of Exponential Rosenbrock Methods 278

In view of the exponential Rosenbrock schemes in Sect. 3, each stage requires 279

the evaluation of a linear combination of ϕ-functions acting on certain vectors 280

v0, . . . , vp 281

ϕ0(M)v0 + ϕ1(M)v1 + ϕ2(M)v2 + · · · + ϕp(M)vp, (22)

where the matrixM here could be hJn or cihJn. Starting from a seminal contribution 282

by Hochbruck and Lubich [21] (which they analyzed Krylov subspace methods for 283

efficiently computing the action of a matrix exponential (with a large norm) on some 284

vector), many more efficient techniques have been proposed. A large portion of 285

these developments is concerned with computing the expression (22). For example, 286

we mention some of the state-of-the-art algorithms: expmv proposed by Al-Mohy 287

and Higham in [1] (using a truncated standard Taylor series expansion), phipm 288

proposed by Niessen and Wright in [41] (using adaptive Krylov subspace methods), 289

and expleja proposed by Caliari et al. in [5, 6] (using Leja interpolation). With 290

respect to computational time, it turns out that phipm offers an advantage. This 291

algorithm utilizes an adaptive time-stepping method to evaluate (22) using only 292

one matrix function (see Sect. 4.2.1 below). This task is carried out in a lower 293

dimensional Krylov subspace using standard Krylov subspace projection methods 294

i.e. the Arnoldi iteration. Moreover, the dimension of Krylov subspaces and the 295

number of substeps are also chosen adaptivity for improving efficiency. 296

Recently, the phipm routine was modified by Gaudreault and Pudykiewicz in 297

[13] (Algorithm 2) by using the incomplete orthogonalization method (IOM) within 298

the Arnoldi iteration and by adjusting the two crucial initial parameters for starting 299

the Krylov adaptivity. This results in the new routine called phipm/IOM2. It is 300

shown in [13] that this algorithm reduces computational time significantly compared 301

to phipm when integrating the shallow water equations on the sphere. 302

Very recently, the authors of [35] further improvedphipm/IOM2which resulted 303

in a more efficient routine named as phipm_simul_iom2. For the reader’s 304

convenience, we present the idea of the adaptive time-stepping method (originally 305

proposed in [41]) for evaluating (22) and introduce some new features of the new 306

routine phipm_simul_iom2. 307
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4.2.1 Computing of Linear ϕ-Combinations Based on Time-Stepping 308

It was observed that the following linear ODE 309

u′(t) = Mu(t)+ v1 + tv2 + · · · + tp−1

(p − 1)!vp, u(0) = v0, (23)

defined on the interval [0, 1] has the exact solution at t = 1, u(1) to be the expression 310

(22). The time-stepping technique approximates u(1) by discretizing [0, 1] into 311

subintervals 0 = t0 < t1 < · · · < tk < tk+1 = tk + τk < · · · < tK = 1 with 312

a substepsize sequence τk (k = 0, 1, . . . ,K − 1) and using the following relation 313

between u(tk+1) and its previous solution u(tk): 314

u(tk+1) = ϕ0(τkM)u(tk)+
p∑

i=1

τ ikϕi(τkM)

p−i∑

j=0

t
j
k

j !vi+j . (24)

Using the recursion relation (19) and (24) can be simplified as 315

u(tk+1) = τ
p
k ϕp(τkM)wp +

p−i∑

j=0

t
j
k

j !wj , (25)

where the vectors wj satisfy the recurrence relation 316

w0 = u(tk), wj = Mwj−1 +
p−j∑

�=0

t�k

�!vj+�, j = 1, . . . , p. (26)

Equation (25) implies that evaluating u(tK) = u(1) i.e. the expression (22) requires 317

only one matrix function ϕp(τkA)wp in each substep instead of (p + 1) matrix- 318

vector multiplications. As 0 < τk < 1, this task can be carried out in a Krylov 319

subspace of lower dimensionmk , and in each substep only one Krylov projection is 320

needed. With a reasonable number of substeps K , it is thus expected that the total 321

computational cost of O(m2
1)+ · · · +O(m2

K) for approximating ϕp(τkM)wp is less 322

than that of O(m2) for approximating ϕp(M)v in a Krylov subspace of dimension 323

m. If K is too large (e.g. when the spectrum of M is very large), this might be 324

not true. This case, however, is handed by using the adaptive Krylov algorithm in 325

[41] allowing to adjust both the dimension m and the step sizes τk adaptivity. This 326

explains the computational advance of this approach compared to standard Krylov 327

algorithms. 328
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4.2.2 New Routine phipm_simul_iom2 [35] 329

First, we note that the resulting routine phipm_simul_iom2 optimizes com- 330

putational aspects of phipm/IOM2 corresponding to the following two specific 331

changes: 332

1. Unlike (22), where each of the ϕk functions is evaluated at the same argument 333

M , the internal stages of exponential Rosenbrock schemes require evaluating the 334

ϕ functions at fractions of the matrixM: 335

wk =
p∑

l=1

ϕl(ck M)vl, k = 2, . . . , s, (27)

where now the node values c2, . . . , cs are scaling factors used for each vk 336

output. To optimize this evaluation, phipm_simul_iom2 computes all wk 337

outputs in (27) simultaneously, instead of computing only one at a time. This 338

is accomplished by first requiring that the entire array c2, . . . , cs as an input to 339

the function. Within the substepping process (24), each value cj is aligned with 340

a substep-size τk . The solution vector is stored at each of these moments and 341

on output the full set {wk}sk=1 is returned. Note that this approach is similar but 342

differs from [48] that it guarantees no loss of solution accuracy since it explicitly 343

stops at each ck instead of using interpolation to compute wk as in [48]. 344

2. In view of the higher-order exponential Rosenbrock schemes (see also from 345

Sect. 3.3), it is realized that they usually use a subset of the ϕl functions. There- 346

fore, multiple vectors in (27) will be zero. In this case, phipm_simul_iom2 347

will check whether wj−1 �= 0 (within the recursion (26)) before computing 348

the matrix-vector product M wj−1. While matrix-vector products require O(n2) 349

work, checking u �= 0 requires only O(n). This can result in significant savings 350

for large n. 351

4.2.3 Implementation of exprb42 and pexprb43 352

Taking a closer look at the structures of the two selected exponential Rosenbrock 353

schemes exprb42 and pexprb43, we now make use of phipm_simul_iom2 354

for implementing these schemes. For simplicity, let us denote M = hJn and v = 355

hF(un). 356

Implementation of exprb42: Due to the structure of exprb42 given in (20), one 357

needs two calls to phipm_simul_iom2: 358

1. Evaluate y1 = ϕ1(
3
4M)w1 with w1 = 3

4v (so w0 = 0) to get Un2 = un + y1, 359

2. Evaluate w = ϕ1(M)v1 + ϕ3(M)v3 (i.e. v0 = v2 = 0) with v1 = v, v3 = 360
32
9 hDn2 to get un+1 = un +w. 361
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Implementation of pexprb43: Although pexprb43 is a 3-stage scheme, its 362

special structure (21) allows to use only two calls to phipm_simul_iom2: 363

1. Evaluate both terms y1 = ϕ1(
1
2M)v and z1 = ϕ1(M)v simultaneously to get the 364

two stages Un2 = un + 1
2y1 and Un3 = un + z1, 365

2. Evaluate w = ϕ3(M)v3 + ϕ4(M)v4 (i.e. v0 = v1 = v2 = 0) with v3 = 366

h(16Dn2 − 2Dn3), v4 = h(−48Dn2 + 12Dn3) to get un+1 = Un3 +w. 367

5 Numerical Examples 368

In this section we present several numerical examples to study the behavior of 369

the presented exponential Rosenbrock-type methods, in particular the fourth-order 370

scheme exprb42 using two stages and the fourth-order pexprb43 scheme using 371

three stages implemented in parallel. 372

In particular, we focus on relevant aspects in the realm of visual computing, like 373

stability and energy conservation, large stiffness, and high fidelity and visual accu- 374

racy. A tabular summary of the models that are used throughout this section can be 375

found in Table 2. Furthermore, our simulation includes important aspects like elastic 376

collisions and nonelastic deformations. The presented exponential Rosenbrock-type 377

methods are evaluated against classical and state-of-the-art methods used in visual 378

computing, in particular against the implicit-explicit variational (IMEX) integrator 379

(cf. [44, 45]), the standard fourth-order Runge–Kutta method (see [28, 43]), and 380

the implicit BDF-1 integrator (see [11]). All simulation results visualized here have 381

been computed using a machine with an Intel(R) Xeon E5 3.5 GHz and 32 GB 382

DDR-RAM. For each simulation scenario the largest possible time step size is used 383

which still leads to a desired visually plausible result. 384

5.1 Simulation of Deformable Bodies 385

In order to illustrate the accurate energy preservation of the presented exponential 386

Rosenbrock-type methods, we set up an undamped scene of an oscillating coil 387

spring, which is modeled as a deformable body composed of tetrahedra, in particular 388

of 8000 vertices corresponding to N = 24 000 equations of motion, which are 389

derived from a system of coupled oscillators with uniform spring stiffness of 390

k = 106. Since the coil spring is exposed to an external forces field, it starts to 391

oscillate as illustrated in Fig. 1. It can be seen that the top of the coil spring returns 392

to its initial height periodically during the simulation which can be seen as an 393

indicator for energy conservation. In fact when using the exponential Rosenbrock- 394

type methods exprb42 and pexprb43we observe that the discrete energy is only 395

slightly oscillating around the real energy without increasing oscillations over time. 396

In contrast, the standard fourth order Runge–Kutta method respectively the BDF-1 397
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Fig. 1 Simulation of an oscillating coil spring

integrator generate significant numerical viscosity leading to a loss of energy around 398

22% respectively 40% after 60 s of simulated time. 399

The exponential Rosenbrock-type methods exprb42 and pexprb43 show 400

their advantageous behavior since these methods can be applied with orders of 401

magnitude larger time steps compared to the other integrators. Even with a step 402

size of h = 0.05 the relative error is still below 2% for exprb42 and about a single 403

percent for pexprb43.1 From a point of view of computation time, we achieve 404

a speed up of a factor of around thirteen using exprb42 and of over fifteen using 405

pexprb43 compared to the second best method, the variational IMEX integrator as 406

illustrated in Table 2. Compared to the other methods, the exponential Rosenbrock- 407

type methods allow for accurate simulations in real-time. 408

5.2 Simulation of Fibers Including Elastic Collisions 409

Fibers are canonical examples for complex interacting systems. According to the 410

work of Michels et al. (see [39]), we set up a toothbrush composed of individual 411

bristles. Each bristle consists of coupled oscillators that are connected in such a 412

way that the fiber axis is enveloped by a chain of cuboid elements. For preventing 413

a volumetric collapse during the simulation, additional diagonal springs are used. 414

The toothbrush consists of 1500 bristles, each of 20 particles leading to 90 000 415

equations of motion. We make use of additional repulsive springs in order to 416

prevent from interpenetrations.2 Since the approach allows for the direct use of 417

realistic parameters in order to set up the stiffness values in the system of coupled 418

oscillators, we employ a Young’s modulus of 3.2 · 106 Ncm−2, a torsional modulus 419

of 105 Ncm−2, and segment thicknesses of 0.12 mm. 420

1We estimated the error after 60 s of simulated time based on the accumulated Euclidean distances
of the individual particles in the position space compared to ground truth values which are
computed with a sufficiently small step size.
2In order to detect collisions efficiently, we make use of a standard bounding volume hierarchy.
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Fig. 2 Simulation of a brush cleaning a bronze-colored paperweight

Fig. 3 Simulations of two frontal nonelastic crash scenarios: a car with moderate velocity (top)
and high velocity (bottom)

We simulate 15 s of a toothbrush cleaning a paperweight illustrated in Fig. 2. This 421

simulation can be carried out almost in real-time which is not possible with the use 422

of classical methods as illustrated in Table 2. 423

5.3 Crash Test Simulation Including Nonelastic Deformations 424

As a very complex example with relevance in the context of special effects, we 425

simulate a frontal crash of a car into a wall as illustrated in Fig. 3. The mesh of the 426

car and its interior is composed of 120 000 vertices leading to 360 000 equations of 427

motion. The global motion (i.e. the rebound of the car) is computed by treating the 428

car as a rigid body. Using an appropriate bounding box, this can be easily carried out 429

in real-time. The deformation is then computed using a system of coupled oscillators 430

with structural stiffness values of k = 104 and bending stiffness values of k/100. If 431

the deformation reaches a defined threshold, the rest lengths of the corresponding 432

springs are corrected in a way, that they do not elastically return to their initial 433

shape. Using the exponential Rosenbrock-type methods, the whole simulation can 434

be carried out at interactive frame rates. Such an efficient computation can not be 435

achieved with established methods as illustrated in Table 2. 436
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6 Conclusion 437

We introduced the class of explicit exponential Rosenbrock methods for the time 438

integration of large systems of nonlinear differential equations. In particular, the 439

exponential Rosenbrock-type fourth-order schemes exprb42 using two stages 440

and pexprb43 using three stages were discussed and their implementation 441

were addressed. In order to study their behavior, a broad spectrum of numerical 442

examples was computed. In this regard, the simulation of deformable bodies, fibers 443

including elastic collisions, and crash scenarios including nonelastic deformations 444

was addressed focusing on relevant aspects in the realm of visual computing, like 445

stability and energy conservation, large stiffness values, and high fidelity and visual 446

accuracy. An evaluation against classical and state-of-the-art methods was presented 447

demonstrating their superior performance with respect to the simulation of large 448

systems of stiff differential equations. 449
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