Grad: Learning for Overhead-aware Adaptive Video Streaming
with Scalable Video Coding

Yunzhuo Liu Bo Jiang® Tian Guo
Shanghai Jiao Tong University Shanghai Jiao Tong University Worcester Polytechnic Institute
liu445126256 @sjtu.edu.cn bjiang@sjtu.edu.cn tian@wpi.edu
Ramesh K. Sitaraman Don Towsley Xinbing Wang

University of Massachusetts, Amherst
& Akamai Technologies
ramesh@cs.umass.edu

ABSTRACT

Video streaming commonly uses Dynamic Adaptive Streaming over
HTTP (DASH) to deliver good Quality of Experience (QoE) to users.
Videos used in DASH are predominantly encoded by single-layered
video coding such as H.264/AVC. In comparison, multi-layered
video coding such as H.264/SVC provides more flexibility for up-
grading the quality of buffered video segments and has the potential
to further improve QoE. However, there are two challenges for us-
ing SVC in DASH: (i) the complexity in designing ABR algorithms;
and (ii) the negative impact of SVC’s coding overhead. In this work,
we propose a deep reinforcement learning method called Grad for
designing ABR algorithms that take advantage of the quality up-
grade mechanism of SVC. Additionally, we quantify the impact
of coding overhead on the achievable QoE of SVC in DASH, and
propose jump-enabled hybrid coding (HYB]) to mitigate the impact.
Through emulation, we demonstrate that Grad-HYBJ, an ABR algo-
rithm for HYB]J learned by Grad, outperforms the best performing
state-of-the-art ABR algorithm by 17% in QoE.

CCS CONCEPTS

« Information systems — Multimedia streaming; » Theory of
computation — Reinforcement learning,.

KEYWORDS

Scalable video coding; adaptive bitrate algorithm; reinforcement
learning

“Corresponding author.

This work was supported in part by National Key R&D Program of China
2018AAA0101200, National Natural Science Foundation of China under Grant Numbers
61532012, 61960206002 and 61829201, Science and Technology Innovation Program of
Shanghai (Grant 18XD1401800), Shanghai Key Laboratory of Scalable Computing and
Systems, and the U.S. National Science Foundation under Grant Numbers CNS-1755659,
CNS-1815619, CNS-1763617, CNS-1901137, and CNS-1617437.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MM °20, October 12—16, 2020, Seattle, WA, USA.

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7988-5/20/10...$15.00
https://doi.org/10.1145/3394171.3413512

University of Massachusetts Amherst
towsley@cs.umass.edu

Shanghai Jiao Tong University
xwang8@sjtu.edu.cn

ACM Reference Format:

Yunzhuo Liu, Bo Jiang, Tian Guo, Ramesh K. Sitaraman, Don Towsley,
and Xinbing Wang. 2020. Grad: Learning for Overhead-aware Adaptive
Video Streaming with Scalable Video Coding. In 28th ACM International
Conference on Multimedia (MM °20), October 12—-16, 2020, Seattle, WA, USA..
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3394171.3413512

1 INTRODUCTION

Video streaming over the Internet has grown rapidly over the past
years, and it is predicted to contribute 82% of the total IP traffic in
2022 [3]. The growth is accompanied by increasing user demands
on better Quality of Experience (QoE), which has been shown to
have a huge impact on content providers’ revenue [12]. Achieving
high QoE is challenging as it often involves taking into account
conflicting requirements such as minimal rebuffering and high
bitrates in the presence of network variability.

A technology widely used to cope with network variability is
Dynamic Adaptive Streaming over HTTP (DASH). In DASH, videos
are divided into small segments, each encoded at several different
quality levels. Adaptive bitrate (ABR) algorithms are then used to
decide dynamically the quality level of each segment, based on
information such as the playback buffer state and the estimated
network bandwidth. ABR algorithms aim to maximize the overall
QoE by striking a balance between multiple conflicting goals such
as high quality, minimal rebuffering and few quality switches [19,
23, 36]. A lot of work on internet video streaming has been devoted
to the design of better ABR algorithms [9-11, 19, 23, 33, 36], and
further improvements are still desired.

Most ABR algorithms are designed to work with the video coding
scheme called Advanced Video Coding (AVC). Versions of the same
video segment at different quality levels are encoded independently
of each other, and segments are downloaded in their playback order.
Typically all decisions on segment qualities are final, i.e., ARB algo-
rithms only execute one download for each segment. Consequently,
the ability of ABR algorithms to maximize QoE depends critically
on the accuracy of its predictions, either explicit or implicit, for
the relatively long-term average bandwidth. However, such predic-
tions are often inaccurate [16, 19], so an ABR algorithm may fail to
strike the right balance between different QoE goals. For instance,
it may download a lot of low quality segments before realizing that
a higher quality could have been selected. On the other hand, if
the selected quality is too high to be sustainable, it will then result

in rebuffering. The problems are exacerbated by the fact that very
frequent quality switching degrades user QoE.

To address the aforementioned limitations of AVC, we inves-
tigate in this work the problem of improving user QoE with the
alternative coding scheme Scalable Video Coding (SVC). In contrast
to AVC, SVC encodes different versions of the same segment in an
incremental manner. High quality versions can be obtained from
lower quality ones by adding their difference. This allows ABR
algorithms to be conservative and download low quality segments
to avoid rebuffering in the presence of bandwidth uncertainty. If the
bandwidth turns out to be high, the segments can then be upgraded
to higher qualities. The ability to upgrade provides ABR algorithms
with more flexibility in making download decisions and hence helps
even out bandwidth fluctuations and improve QoE.

However, the use of SVC in DASH faces two challenges. The first
one is the enlarged decision space due to the quality upgrade mech-
anism. An ABR algorithm not only needs to select quality levels for
new segments, but also has to decide whether to upgrade buffered
segments and to which quality levels. This adds to the complexity
in designing ABR algorithms. As a result, existing ABR algorithms
often underutilize the flexibility provided by SVC, either limiting
upgrades to the most recently downloaded segment [13, 35], or
using unoptimized handcrafted rules [5, 8, 16, 23, 26]. The second
challenge is the coding overhead. SVC typically requires more bits
than AVC to achieve the same visual quality. This coding over-
head consumes extra bandwidth and can potentially degrade QoE.
However, most existing ABR algorithms for SVC do not explicitly
mitigate the negative impact of overhead on QoE [5, 8, 13, 16, 26, 35],
resulting in suboptimal performance.

We address the challenges associated with SVC by answering
the following questions: (i) How to design ABR algorithms that
better utilize the built-in quality upgrade mechanism? (ii) What is
the impact of coding overhead on QoE and how to mitigate it? We
make the following main contributions.

e We propose Grad, a Deep Reinforcement Learning (DRL)
method for designing ABR algorithms that fully utilize the
quality upgrade mechanism of SVC. We tailor actions for
more effective learning that leads to better upgrade policies.

e We propose jump-enabled hybrid coding (HYB]), an overhead-
aware way of using SVC in DASH. This design is grounded
on our empirical evaluations of the impact of coding over-
head on achievable SVC QoE. In particular, we find that SVC
starts to perform worse than AVC when coding overhead
per enhancement layer exceeds 7%.

o Using Grad and HYBJ, we obtain an ABR algorithm called
Grad-HYB] that achieves a 17.0% higher QoE with only 2.2%
more transmitted data, compared to the best performing
state-of-the-art ABR algorithm. Grad-HYB] transmits 12.7%
more data, but achieves 25.9% higher QoE compared to the
most bandwidth-efficient method.

2 BACKGROUND & RELATED WORK

2.1 Dynamic Adaptive Streaming over HTTP

Dynamic Adaptive Streaming over HTTP (DASH) is a standard that
allows the client player, e.g. a web browser, to adaptively stream
segmented video from HTTP servers based on network conditions.

Video S

S \

1

[ISegmentation] | ,

= = . = !

[[Encoding]] Bitrates |

= = = = bt

oo oO - Ob |

-

:chmcmu ono O bu :
1

‘Number: 1 2 3 = N H

Server S

Figure 1: DASH.

Figure 1 illustrates the key components of a DASH architecture. At
the core of DASH are video segments and Adaptive Bitrate (ABR)
algorithms. Each video segment corresponds to a short interval of
playback time. For example, a minute-long video might be divided
to 5 segments of 12 seconds each. Each segment can have different
quality versions, i.e., bitrates, associated with it. Those versions can
be generated with different video coding methods. In this work we
consider two coding methods as described in the next subsection.
During playback, the client player will leverage an ABR algorithm
for bitrate adaptation, described in Section 2.3, to decide which
quality version to download for each video segment. The download
decisions are often made in the same order as the video segment
playback order. The player stores and plays the downloaded video
segments using a first-in-first-out queue, often referred to as buffer.
The video segments that have waited in the queue for the longest
and shortest time are referred to as the buffer head and buffer tail,
respectively. When the buffer is full, ABR algorithms typically pause
downloading the next segment until the buffer head is played back.

2.2 Video Coding

Video coding standards such as Advanced Video Coding (AVC) [34]
are used to compress raw videos. AVC is commonly used in Video
on Demand (VoD) with DASH to encode one video segment to
independent versions at different quality levels. In contrast, a stan-
dard called Scalable Video Coding (SVC) [29] can implement those
different versions as dependent video layers. Video segment of a
given quality can be reconstructed with a base layer (BL) and one
or more enhancement layers (ELs). For example, to support m levels
of quality, one can encode a video segment to a base layer and
m — 1 enhancement layers. We call this vanilla SVC. The multi-layer
property of SVC provides better flexibility for bitrate adaption as
ABR algorithms can adjust prior bitrate decisions by upgrading
buffered video segments with newly downloaded enhancement
layers. However, an SVC-encoded video segment is often larger in
size than its AVC-encoded counterpart of the same quality level.
Such size differences are referred to as coding overhead and they
are usually proportional to the number of enhancement layers of
the desired quality level [14, 17].

To reduce the coding overhead associated with SVC in DASH,
prior work proposed hybrid coding [14, 23]. The idea is to reduce
the number of required enhancement layers for each quality level
by keeping more base layers of higher qualities. In this work, we
propose a jump-enabled hybrid coding that focuses on further reduc-
ing the number of enhancement layers by allowing the quality of a
segment to jump multiple levels using only one enhancement layer.

Basing on our hybrid coding, we further learn an overhead-aware
ABR algorithm, as described in Section 3.3.

2.3 ABR Algorithm

In this work, we consider ABR algorithms that target AVC and SVC-
encoded videos, respectively. ABR algorithm designed for AVC has
garnered a lot of interests as AVC is commonly used in DASH.
Prior work [15, 19, 33, 36] improves video streaming quality with
approaches ranging from control-theoretical approach to neural
networks. Most existing AVC-based ABR algorithms were designed
without quality upgrade mechanism and they only decide the qual-
ity level for the next video segment. Recently, BOLA-FAST [32]
considered quality upgrade for AVC-encoded videos by replacing
buffered segments with new ones of higher quality. However, such
video segment replacement incurs non-trivial bandwidth costs and
is rarely supported by other AVC-based ABR algorithms.

Existing SVC-based ABR algorithms [5, 8, 13, 16, 26, 35] were
designed with quality upgrade mechanism to exploit the flexibility
of SVC-encoded video segments. One of the key challenges is to
handle the larger decision space associated with it. Prior work [13,
35] addressed this by limiting the actions to upgrading the buffer
tail or downloading base layer for the next segment, leaving the
flexibility underutilized. Handcrafted rules have also been proposed
to exploit the flexibility [5, 8, 16, 26] by allowing more actions, but
they do not balance well across different QoE goals.

Our work differs from prior work by designing ABR algorithms
with quality upgrade mechanism that can operate on any buffered
segment through a learning-based approach. It automatically bal-
ances between different QoE goals and forms quality upgrade poli-
cies that can benefit the overall QoE.

2.4 Reinforcement Learning

Reinforcement Learning (RL) is a type of machine learning tech-
nique that is commonly used for guiding an agent to maximize
the cumulative reward through a sequence of actions. In RL, agents
learn their policies, defined as the probability distribution of actions
in each state, by interacting with the environment.

A number of prior work leveraged RL for developing ABR algo-
rithms [9-11, 19] that target AVC-encoded videos. The ABR algo-
rithm is modeled as the agent that makes decisions such as which
video segment to download next, in order to maximize a predefined
optimization metric. By using reinforcement learning, ABR policies
that specify which action to take in each state, can be obtained
automatically to form the final ABR algorithm. Notably, PENSIEVE
pioneered the use of deep reinforcement learning for generating
optimized ABR algorithms. Specifically, PENSIEVE used a popular
actor-critic architecture [20] consisting of two neural networks.
The actor network gives the policy by mapping states to probability
distributions of actions, while the critic network evaluates the policy
by predicting its expected total reward.

Our work also explored the use of deep reinforcement learn-
ing for generating ABR algorithms, but with the focus on a more
challenging action space introduced by quality upgrade mechanism.

3 LEARNING ABR ALGORITHMS WITH
QUALITY UPGRADE MECHANISM

3.1 Overview

We describe Grad, a Deep Reinforcement Learning (DRL) method,
for designing ABR algorithms that utilize the quality upgrade mech-
anism of SVC. Grad can also be used to learn ABR algorithms for
AVC, via configuring the appropriate quality upgrade related over-
head. The learning agent automatically balances the cost and gain
of quality upgrade and learns overhead-aware ABR policies. Unlike
traditional AVC-oriented ABR algorithms without quality upgrade
mechanism, our learning agent needs to explore a larger decision
space: (i) choosing a quality version for the next video segment,
(ii) or upgrading the quality of a buffered segment. One key chal-
lenge associated with the enlarged decision space is the difficulty
in exploring and learning good quality upgrade policies. Below we
first present an overview of how we design Grad, followed by the
tailored action designs for both the vanilla SVC and our jump-aware
hybrid coding in Sections 3.2 and 3.3, respectively.

Optimization metric. As described in Section 2.4, an RL agent
learns policies by optimizing a cumulative reward. In this work, we
use the following QoE metric to quantify the attained reward,

N R R N
QoE=Zlog(R -)—log(Rm“)Z;Tn
n= n=

min min
N-1
= > Hog(Rps1) — log(Ry)|
n=1

max(Rn+1, Rn)
min(Rp+1, Rn) ’

where N is the total number of video segments, R, and T, are the
bitrate and rebuffering time of the n-th segment, Rin and Rmax are
the bitrates of the lowest and highest segment quality, respectively.
Note that we calculate the bitrate for an SVC-encoded segment
based on its AVC-encoded counterpart of the same visual quality.
In other words, we do not account for the extra bits associated with
the coding overhead of SVC in bitrate calculation.

The above QoE metric follows a commonly used general formula:
QoE = p 3L, f(Rn) = v E0L) To = E XN fF(Ruen) = f(Rn)l- As
in prior work [19, 23, 36], we let f(-) be the binary logarithm,
parameter u be 1, and v be the highest segment quality. We set
& equal to the quotient between the bitrates of two consecutive
segments, which penalizes steeper quality changes more [21].

Note that this QoE metric considers the following three impor-
tant and often conflicting aspects, segment quality, rebuffering time,
and video smoothness. Segment quality, referring to the visual qual-
ity of a single segment, is mostly determined by the segment bitrate
and is accounted for by the first term in Eq. (1). It is also referred
to as bitrate utility. Rebuffering time denotes the time delay after
all previously downloaded segments have been played back and
before the new segment is ready to be played, and is accounted for
by the second term. Finally, video smoothness, which quantifies the
effect of segment quality switches, is considered in the third term.

Network input. We chose the following state inputs s; = (b, e;, zs,
xt,dt, q,, wy) for training the RL agent with SVC-encoded videos.
In particular, b; is the fraction of the buffer that is currently occu-
pied by downloaded segments; e; is the number of segments in the
video that have not been downloaded; z; denotes the data size of

/State Current buffer sizé""-\
: e

Number of segments left

D
Size of specified ELs Output

- — .
History throughput Actor: mg(sy, a)
: Q=
Segment download time Critic: V™(st;)
AR 2K AR

Buffered segment qualities

- 0 0 00 @ —
Time before playing back |
A dd A

Figure 2: Network architecture of Grad.

the ELs specified by our actions; x; and d; represent the measured
throughput and time over the past n downloads and we used n = 8
in this work; q, denotes the quality of each video segment in the
buffer; w; defines the time before each buffered video segment is
played back to user. Four of the inputs (b, e;, x¢, d ;) were also used
by PENSIEVE [19], while the remaining inputs (z;, q,, w;) account
for the enlarged decision space associated with SVC.

Network architecture. Our actor-critic network (Figure 2) con-
sists of an input layer, three hidden layers, and an output layer.
The input layer consists of one-dimension CNN layers that process
(x¢,d¢, q;, we), and fully connected layers that process (by, e, z;).
The output of the actor network is a vector specifying the probabil-
ity distribution of actions, while the output of the critic network is
a value predicting the cumulative reward.

Policy gradient. The actor-critic algorithm trains the networks
using policy gradient. The bitrate decision at step t generates a
reward r;, and policy gradient aims to increase the cumulative
reward }}j7 y'r:, where y is a discount factor. The gradient can
be computed as:

(o]

S

t=0

VEnrq = Exy [V log mp(s,)A™ (s, a)] @

The policy parameter 0 is the parameter of the actor network.
7y (s, a) is the output probability for action a in state s. A" (s, a)
is the advantage function given by the difference between the ex-
pected reward of taking the deterministic action a in state s and the
expected average reward following policy 7y. During training, we
sample a trajectory of actions to compute A(s;, a;) as an unbiased
estimation of A0 (s, a;) using the temporal difference method:

A(strar) =re + YV (sp41500) = V70 (s4505) (3)

0, is the parameter of the critic. The critic outputs V7 (s¢;0,)
as an estimation of the value function v”9(s;) that represents the
accumulative reward from input state s; following actor policy 7y.
Actor network parameter 6 is updated using the following equation:

0 —0+aq) Vologry(s,a)Als,ar) + BVgH(ma(lsr) ()
t

The second part SV gH (g (-|s;)) encourages the actor to explore dif-
ferent policies. H(:) is the entropy. and «, are the exploration and
learning rate of the actor. For the critic, the update of its parameters
is as follows:

O — 0y — o Y Vo, (Alst, ar))? 5)
t

Download B Download ;
Othionl Option2 Quality Quality
_ Q3 | Q
Decoding Q2 Q
BL |« Q1 Q1
1 2 3 4 5 6 7 1 2 3 4 5 6 7
Segment Number Segment Number
Buffer Head Buffer Tail Buffer Head Buffer Tail

(a) Vanilla SVC: approach-neighbour. (b) Hybrid coding: match-neighbour.

Figure 3: Neighbor-related actions for vanilla SVC and hybrid coding.

where @y, is its learning rate. In the training, we configured o, and
ay to be 0.0001, y to be 0.99, and f to decay linearly from 3.0 to
0.05 over 50000 iterations.

3.2 Action Design for Vanilla SVC

The first type of action, referred to as download-base, simply down-
loads the base layer for the next segment. This is akin to download-
ing the lowest bitrate quality of AVC-encoded videos.

The second type of action, referred to as upgrade-by-one, down-
loads the next enhancement layer to upgrade the quality of a
buffered video segment by one level. For example, if the chosen
video segment is currently at quality level w, this action will choose
the w-th enhancement layer which upgrades the quality of the
segment to w + 1 where w + 1 < M.

With only the above two action types, it might become difficult
for the RL agent to explore a policy that achieves good video smooth-
ness. Recall that video smoothness is an important QoE metric that
desires consecutive video segments to be at the same quality level.
The key challenge stems from the enlarged decision space associated
with quality upgrade mechanism. With the enlarged decision space,
the next download decision can affect the quality of any buffered
segment. Thus its impact on video smoothness depends on the
state of the entire buffer. As the state space grows exponentially
with the buffer size and most upgrade actions are likely to damage
video smoothness, e.g., when one of its neighbors already has lower
quality, the RL agent has difficulty in exploring upgrade policies
that can maintain good video smoothness after executing a series
of actions of downloading ELs with different buffer states.

To help the RL agent learn good quality upgrade policies, we
added a third type of action called approach-neighbour. This action
type is a subset of the second one and is designed to help the agent
learn smoothness-friendly quality upgrade policies by explicitly
specifying better candidate segments. The agent will download the
w-th enhancement layer for a buffered video segment at quality
level w if at least one of its neighboring segments has a higher
quality. If multiple video segments in the buffer satisfy the neighbor
condition, the RL agent can pick the video segment that is the closest
to either buffer head or buffer tail. For example, in Figure 3(a), both
video segments 3 and 5 (coded in blue) are candidates for quality
upgrade. Figure 4(a) demonstrates that approach-neighbor action
led to better QoE and less damage in video smoothness (detailed
methodology in Section 4.1).

EE Naive-SVC Grad-SVC EE® Naive-HYBJ Grad-HYBJ

E E

< <

= B

o]

g S

= 1.0 = 1.0

Eos E0s

Z 0 gL Z 0 L

QoE Smoothness penalty QoE Smoothness penalty

(a) Effectiveness of approach-neighbor. (b) Effectiveness of match-neighbor.

Figure 4: Comparison between our action designs and naive designs
without the neighbor-related actions. Note that Naive-HYBJ simply al-
lows upgrading the quality of any buffered segment to any available level.

—e— Grad-SVC --#-- CURSOR-SVC RASD-SVC

o —#4-- SLOPE-SVC e WQUAD-SVC ===-- Grad-AVC
812
=
S1oF
g038
5

0.6
Z%0T 1 32 3 4 5 6 7 8 9 10

Overhead ratio o (%)

Figure 5: Impact of coding overhead. QoEs were obtained with « increas-
ing from 1% to 10% in simulation, normalized to Grad-AVC.

3.3 Action Design for Hybrid Coding

Before describing a set of actions tailored for hybrid coding, we
first provide our rationale and our jump-enabled hybrid coding.

Vanilla SVC incurs high coding overhead that can neutralize its
benefits in DASH. It implements a video segment of the m-th qual-
ity level as a base layer and m — 1 enhancement layers. Its coding
overhead can be represented as v(k) - Ry, where R,, is the average
bitrate of an AVC-encoded video at quality level m, and v(-) is a
function of the number of enhancement layers k that make up the
SVC-encoded segment at quality level m. In this case, k = m — 1.
It is commonly agreed that v(-) increases monotonically with k
and prior work suggested that v(k) = k * », where w can be set
to 0.1 or 0.15 [14, 17]. Note that SVC base layers do not incur any
overhead; in fact, they can be made compatible with AVC. Figure 5
shows the QoEs obtained from simulation with our Grad-SVC and
four existing SVC-based ABR algorithms (SLOPE [5], CURSOR [8],
WQUAD [16], and RASD [26]) under different w, compared to the
ABR algorithm learned for AVC using Grad (denoted as Grad-AVC,
detailed methodology in Section 4.1). When the overhead ratio w is
small, e.g., smaller than 7%, at least one SVC-based ABR algorithm
(i.e., our Grad-SVC) outperformed Grad-AVC. However, as the cod-
ing overhead continued to increase to 10%, all SVC-based algorithms
including Grad-SVC had at least 9.2% lower QoE than Grad-AVC.
Our observations suggest the potential of leveraging SVC to im-
prove the QoE, when the coding overhead is low. However, as prior
work [17, 22] and our investigation suggested (Table 1), using SVC
would incur coding overhead that has © > 10% .

Our proposed jump-enabled hybrid coding. Hybrid coding can
be broadly thought of as a way of using SVC that mitigates the
coding overhead associated with enhancement layers. For example,
prior work [14] encoded each video segment first into multiple base

[ELQ(L(:;A))

EL. (1,(2,4))J
EL,(1(2:3)) { 2 5L (1.(1.3) EL,(1(1.4))
EL;(1(1,2)) EL;(1(1,2)) 1
BL; BLy BLy BLy
EL28,8,4£ £, 224) (EL,3.(4))
EL,%(2:3 BL
4
BLg
BLo BL,
-

Figure 6: Our proposed jump-enabled hybrid coding for SVC. The color
of a layer here denotes the attained quality.

layers at different qualities using AVC; enhancement layers were
then generated for each base layer to produce more quality levels.
We propose a new hybrid coding, referred to as jump-enabled hybrid
coding (HYB]), that generates enhancement layers for all possible
quality upgrade combinations in advance. Formally, we denote the
base layer at quality level m as BL,, and the i-th enhancement layer
that upgrades the segment quality from level w to r as EL(im’(W’r)),
where w < r < M and M is the total number of supported quality
levels. Obviously HYB] requires much more storage than vanilla
SVC, but this problem can be largely mitigated (Section 4.3). We
denote by I the maximum number of enhancement layers that can
pile on a base layer. Note that 1 < i < [,1 <[< M — 1. HYBJ with
larger I provides more chances for quality upgrade and has more
potential to benefit bitrate adaptation, but also (i) has higher storage
cost, (ii) expands the exploration space of the agent and thus adds
to the difficulty of learning, and (iii) includes enhancement layers
with larger index i that introduce high overhead that outweighs the
gain. Therefore, the choice of] is a tradeoff. In our implementation,
we use [= 2.

Figure 6 illustrates all the layers we need to implement HYBJ with
M = 4and! = 2. The key is to allow the quality of a segment to jump
to any available quality level using only one enhancement layer. By
doing so we limit the overhead incurred by quality upgrade to the
coding overhead associated with only one enhancement layer. We
describe and compare to a different hybrid coding [23] in Section 4.

Actions for hybrid coding. Actions for hybrid coding are similar
to those of vanilla SVC but with important modifications. The first
action, download-base, downloads a base layer for the next segment
of a chosen quality instead of only the lowest quality. The second
action, upgrade-by-one, is the same action as the one for vanilla SVC.
The third action match-neighbor differs from approach-neighbor for
vanilla SVC in that the downloaded EL will upgrade the segment
quality to the same as its neighbor, as illustrated in Figure 3(b). If
both neighbors have higher qualities, the RL agent will refer to the
quality of the right neighbor. The function of the second action
here is to account for scenarios where all video segments are of
the same quality and the third action cannot find a target segment.
We limit the upgrade in the second action to one level based on
the intuition that the quality adjustment requirement is low when
all video segments in the buffer have the same quality. Similar to
vanilla SVC, we also observed the effectiveness of match-neighbor
action for hybrid coding in Figure 4(b). We also applied this action
design to learning ABR algorithms for AVC-encoded videos.

4 EVALUATION

In this section we evaluate Grad with HYBJ (Grad-HYB]J) by com-
paring it with state-of-the-art ABR algorithms and different coding
methods, including a progressive hybrid coding (HYBP). Performance
is evaluated in terms of QoE-related metrics (Section 4.2), bandwidth
and storage costs (Section 4.3), and reaction time (Section 4.4).

4.1 Methodology

Testbed setup. For training and evaluating Grad, we used a simu-
lated and an emulated video streaming systems respectively. The
simulation system, similar to that used in PENSIEVE [19], was for
accelerating the training process and also used to study the impact
of SVC coding overhead on obtained QoE (Figure 5). The emulator
allowed us to conduct performance evaluation of video streaming
in a controlled network environment. We implemented a video
server with Nginx Version 1.10 and a client player in python Ver-
sion 3.6. We configured the round trip time to be 80 ms and used
Mahimabhi [24] to emulate the bandwidth between the video server
and client by replaying network traces (described below). The client
had a video buffer of 60 seconds and logged important streaming
events, such as bitrate switches and rebuffering, for post analysis.

Videos. We used the following video statistics, adopted in prior
work [4, 19], in the simulator. The video has a total duration of
192 seconds and consists of 4-second segments. For AVC encoding,
each segment has six different bitrates, i.e.,[300 Kbps, 750 Kbps,
1200 Kbps, 1850 Kbps, 2850 Kbps, 4300 Kbps], under Constant Bit
Rate (CBR) mode. The simulator calculated the size of each AVC
segment basing on its bitrate and duration and used the segment
size and network condition to simulate the downloading process.
For segments whose encoding involves SVC, we added the coding
overhead to the size of their AVC counterparts as discussed in
Section 2.2. The configured overhead ratio fluctuated within a range
following an uniform distribution. We configured the range to be
consistent with the overhead level of current SVC technology for
obtaining an overhead-aware ABR algorithm workable in practice.

To determine the range, we empirically measured the overhead of
three-layer SVC using an open source software JSVM recommended
by H.264/SVC [30] to encode four videos with different motion
and texture details. 200 frames of each video were used. We used
the following configurations of JSVM: (i) Group of Pictures (GoP)
of 8; (ii) an intra period of 32; (iii) inter layer prediction mode 2;
(iv) spatial scalability, with resolutions of 360P, 720P and 1080P.
Note that though temporal and quality scalability usually incur
smaller overhead[14], they cannot cover a wide range of bitrate
choices, e.g. it is not reasonable to increase the bitrate of a 360P
segment from 300 Kbps to 4300 Kbps for the limited improvement
in visual quality. Thus we implemented our design with spatial
scalability, and the proper use of other two scalability types in
bitrate adaptation remains for further work; (v) fixed Quantization
Parameter (QP) mode. The measurement is based on Bjentegaard
Delta-rate (BD-rate)[6], which quantifies the average difference in
bitrates of encoded videos with the same quality. Peak Signal-to-
Noise Ratio (PSNR) is used to quantify video quality. We used four
QPs for base layer {16,20,24,28} as recommended, and used two QP
offsets {0,+2}. As shown in Table 1, the ranges for v(1), v(2) are
[10%, 20%] and [20%, 40%], respectively.

Overhead
Video o) | @@
BigBuckBunny 18.8% | 33.5%
ElephantDreams 18.5% | 35.9%
BlueSky 21.9% | 38.9%
DucksTakeOff 10.9% | 20.6%

Table 1: Coding overhead of three-layer SVC. We investigated the ranges
of overhead v(1), v(2) and use them as the setup in the simulation testbed to
learn an ABR algorithm for hybrid coding.

The emulator uses the first 192 seconds of BigBuckBunny video.
We implemented the bitrates [300 Kbps, 750 Kbps, 1200 Kbps, 1850
Kbps, 2850 Kbps, 4300 Kbps] as [144P, 240P, 360P, 480P, 720P, 1080P].
To encode the video, we first split it into segments of 4 seconds and
then used the fixed QP mode in JSVM to encode them into base
layers (also served as AVC segments) at designated bitrates. Then
we used the same QP parameters for each quality level to generate
enhancements layers in our HYB].

Network Traces. We used traces from both 3G and 4G mobile
network datasets [7, 27, 28]. Those traces were collected in differ-
ent scenarios and contain per second throughput information for
different durations. In particular, the 4G dataset [27] was collected
under different mobility patterns including home, pedestrian, car,
tram and train, and with network throughput ranging from 0 to
173 Mbps over 2100 minutes. Additionally, the two 3G network
datasets were collected in Norway with different means of trans-
portation [28] and in Sydney [7], respectively. The total duration
of traces in the two 3G datasets is more than 2000 minutes and the
throughputs range between 0 and 10 Mbps. We split the original
traces and generated more than 1000 traces with a duration of 240
seconds. We used a 4:1 ratio for training and testing.

ABR algorithms. We evaluated a number of ABR algorithms de-
signed for AVC-encoded and hybrid-encoded videos. Note that
we do not consider algorithms designed for vanilla SVC in the
emulation as simulation results (see [18] for details) showed that
the coding overhead made them perform much worse than our
algorithm, which can also be inferred from Figure 5 and Table 1.
Specifically, we compared our algorithm Grad-HYB]J to four state-
of-the-art AVC-based algorithms including (i) PENSIEVE [19]: a DRL-
based algorithm that includes only the limited decision space; (ii)
MPC [36]: a control-theoretical approach relying on the prediction
of bandwidth; (iii) BOLA [33]: a buffer-based algorithm that makes
bitrate decisions solely basing on the state of the buffer; and (iv)
BFAST [32]: an extension of BOLA that leverages heuristic to up-
grade qualities of buffered segments. We used the robust version of
MPC and the version of BFAST in dash.js Version 2.4 [1].

We extended BFAST to work with our HYB], i.e., achieving qual-
ity upgrade by downloading enhancement layers instead of AVC
segments. We also included another algorithm LAAVS [23] that
was designed for another hybrid coding, HYBP, for comparison.
Briefly, this hybrid coding works by generating base layers for all
supported qualities using AVC, and several enhancement layers to
progressively upgrade the quality of each base layer level-by-level.
For example, to support four quality levels, HYBP will generate

{BLm,1 < m < 4} and {EL™ (M 70m40) 1 < < 9y

EEE Grad-HYB] 5 Grad-AVC MPC-AVC BFAST-AVC LAAVS-HYBP
E= Grad-HYBP Pensieve-AVC EZZ BOLA-AVC [IIT] BFAST-HYBJ

T Better

Normalized value
O WA WU

i Better

S = 0 W A

Switch tim

@

S Switch amptitude
bitrate

(a) QoE-related metrics.

—— Grad-HYBJ e Pensieve-AVC v MPC-AVC e LAAVS-HYBP

x . ’ ., X 1Bcncr
i

0 80 160 240 320 400
Trace index

(b) QoE distribution.

Figure 7: QoE comparison of different DASH methods. 7(b) demonstrates
that the large error bars in 7(a) represent the QoE variations under different
network conditions instead of performance fluctuations. Traces are indexed
basing on the QoE that our Grad-HYBJ obtained on them.

To use those algorithms for evaluation, we retrained PENSIEVE
and optimized the hyperparameters of other algorithms for our QoE
function. We denote each ABR algorithm and its targeted coding
as ABR-coding, e.g., PENSIEVE-AVC vs. our proposed Grad-HYB].

Performance metrics. User QoE of a video session can be quan-
tified based on the quality of each segment played back. We re-
ported both the overall QoE score (as described in Equation (1)) and
its three components including bitrate utility, rebuffering penalty,
smoothness penalty. Further, we looked at five commonly used
metrics[16, 21, 25, 26, 31]: (i) average bitrate and (ii) standard devia-
tion bitrate of the segments in a video session; (iii) total rebuffering
time in a video session; (iv) quality switch times in a video session;
and (v) switch amplitude describing the bitrate improvement of a
switch. Every test on a single trace is a video session, and the results
are the average value of all the video sessions.

We also evaluated bandwidth and storage cost for each ABR algo-
rithm with its respective video coding. Bandwidth cost is measured
as the average total bits downloaded in a video session, while storage
cost is the total storage size for storing all segments belong to one
video. Both metrics are of interests to video streaming providers.

Additionally, we quantified the delay between when the band-
width increases and when a user experiences higher quality seg-
ments. This is an important metric for its impact on user perceived
quality improvement as pointed out in prior work [32]. We evalu-
ated this delay separately as it is difficult to be incorporated into
the overall QoE formula. We measured such delays under two con-
ditions: (i) when a user experienced the highest quality that can be
supported by the increased bandwidth, denoted as reaction time;
(ii) when a user experienced any higher quality segments after the
bandwidth increases, denoted as reaction to higher time.

4.2 Quantifying QoE and its Breakdown

Figure 7(a) compares the overall QoE and its breakdown for existing
ABR algorithm and coding method combinations, normalized to
our Grad-HYBJ. We make the following three key observations.

First, our Grad in conjunction with HYBJ achieved the best over-
all QoE score compared to state-of-the-art AVC-based DASH meth-
ods. Specifically, Grad-HYB]J outperformed PENSIEVE-AVC, the best
performing state-of-the-art method, by 17%. Note that the large er-
ror bars in Figure 7(a) represent the QoE variations under different
network traces rather than performance fluctuations inherent to the
algorithms. Figure 7(b) further compares the algorithms in terms
of their performance on the same trace, and the results show that
Grad-HYBJ outperformed others most of the time. For visual clarity,
only three other algorithms are included here. Among the tested
algorithms, PENSIEVE-AVC has the highest average QoE, while
MPC-AVC and LAAVS-HYBP have the largest error bars (see [18]
for comparison with other algorithms). The performance gains of
Grad-HYB]J can be largely attributed to the rebuffering time reduc-
tion and improved video smoothness, achieving the lowest switch
times and standard deviation bitrate. However, as a combined effect
of overhead incurred by quality upgrade of buffered segments and
intrinsic tradeoff policy of Grad-HYBJ, Grad-HYBJ had 7.3% and
8.7% lower average bitrate utility compared to PENSIEVE-AVC and
MPC-AVC. Additionally, Grad-HYB]J achieved comparable switch
amplitude that is only higher than that of BOLA-AVC by 2.6%,
due to its ability to adjust bitrate decisions after obtaining infor-
mation of the relatively long-term bandwidth and thus distribute
bandwidth more evenly to each segment.

Second, we observed that Grad-HYB]J achieved 13.8% and 9.4%
higher QoE than Grad-AVC and Grad-HYBP, respectively. In par-
ticular, due to the high overhead for quality upgrade, Grad-AVC
performed poorly for bitrate utility, which is 9.9% lower compared
to Grad-HYB]J. Note that Grad-HYB] performed better in all QoE-
related metrics than Grad-HYBP, as HYB] is more flexible for quality
grade and can reduce associated coding overhead more effectively.

Third, Grad-HYB] outperformed both BFAST-HYB]J and LAAVS-
HYBP, whose ABR algorithms also include quality upgrade mech-
anism, by 22.1% and 30.8%. The breakdown shows that neither
BFAST-HYBJ nor LAAVS-HYBP were able to balance across impor-
tant QoE-related metrics. Further, using Grad-HYBP resulted in
19.4% higher QoE compared with LAAVS-HYBP, highlighting the
effectiveness of our RL-based ABR design.

Additionally, we evaluated the QoE performance of our algo-
rithm with smaller buffers and with distributional shift between the
training and test sets (details omitted due to page limit; see [18]).

Normalized value
S o= =
S W O W O

Grad Grad Grad Pensieve MPC BOLA BFAST BFAST LAAVS
-HYBJ -HYBP -AVC -AVC -AVC -AVC -AVC -HYBJ -HYBP

Figure 8: Bandwidth cost.

We observe similar gains with small buffers. Our algorithm also
performs better than Pensieve-AVC when trained on network traces
with low variance and tested on traces with high variance.

4.3 Impacts on Bandwidth and Storage Costs

Bandwidth cost. Figure 8 compares the bandwidth cost of each
algorithm for video downloading. First, Grad-HYB] had comparable
bandwidth cost compared to the best performing state-of-the-art
method PENSIEVE-AVC, achieving 17.0% increase in QoE with only
2.2% more transmitted data. Compared to the most bandwidth-
efficient method BOLA-AVC, Grad-HYB]J consumed 12.7% more
data but achieved 25.9% higher QoE. Grad-AVC executes quality up-
grade but has negligible improvement in QoE over other AVC-based
algorithms. The overhead of its quality upgrade neutralizes most of
the benefits in QoE and lead to its extremely high bandwidth cost.
Second, Grad-HYBJ had a bandwidth cost comparable to (i.e.,only
1.7% and 4.9% higher) or even slightly lower than other hybrid
coding based alternatives, but achieved up to 22.1% higher QoE. In
summary, our method Grad-HYBJ only incurred modest increase
in bandwidth cost, in exchange for substantial QoE improvement.

Storage cost. Through our evaluation, we found that it takes
8X more storage space to store video segments generated by our
HYB]J than by AVC, for six quality levels. However, we observed
that 95.7% of all the quality upgrades were made through one of
the following seven base and enhancement layer combinations:
{(BL4, EL*) (BLy, ELS-), (BLs, EL-0)),

(BLs, EL D), (BLy, ELC), ELG) (BLy, L)),

(BLg, EL(ZZ’(Z’S)))}‘ Our observation suggests the potential to reduce
storage cost by only keeping enhancement layers in the most fre-
quently used combinations and all base layers. For example, with
only the enhancement layers in the above seven combinations, we
can reduce the storage cost of Grad-HYB]J to 2.27X of that required
by AVC and still achieve 13.9% higher QoE than the best performing
state-of-the-art method. As the unit storage cost is likely to halve
every two years, based on Moore’s Law, we think trading off storage
for improved QoE can be reasonable for video streaming providers.

4.4 Comparisons of Reaction Time

Next, we study the reaction time achieved by different combina-
tions of ABR algorithms and coding methods. We constructed 500
network traces, each with 300 seconds, from the FCC dataset [2],
which contains traces of small durations with different but sustain-
able bandwidth. All constructed traces have an initial bandwidth of
less than 0.6 Mbps and then an upward jump between 20 and 130
seconds. The increased bandwidth is sustainable and higher than

Grad-HYBJ Pensieve-AVC BFAST-AVC

—— Grad-HYBP ---- MPC-AVC ——+ BFAST-HYBIJ

---- Grad-AVC - BOLA-AVC ---- LAAVS-HYBP
1.0
505
S

0.0 =
0 20 40 60 80 100

Reaction time (s)

15 20 25
Reaction to higher time (s)

Figure 9: Reaction time evaluation.

the highest bitrate at 4.3 Mbps, with a range of [7, 10] Mbps. Fig-
ure 9 shows the CDFs for two reaction time metrics. We observed
that Grad-HYB]J and Grad-AVC had the fastest reaction to higher
time for all tested traces. In most cases, Grad-HYB] was able to
upgrade video quality immediately after observing the bandwidth
increase. Further, Grad-HYBJ achieved comparable reaction time to
BFAST-AVC, with 3 seconds and 2 seconds differences in median
and 95th percentile, respectively. Although LAAVS-HYBP had the
fastest reaction time, it did so by aggressively upgrading without
meticulously tracking the bandwidth fluctuations, as demonstrated
by its lower QoE in Section 4.2. Combined, it demonstrates that
our Grad-HYB]J was able to react to the bandwidth changes more
discreetly and this allows it to better cope with different types of
bandwidth increases, e.g., a sustainable improvement or a mere fluc-
tuation, as suggested by its advantage in rebuffering time reduction
and video smoothness improvement in Section 4.2.

5 CONCLUSION

In this work, we explored the design of ABR algorithms with quality
upgrade mechanism for streaming SVC-encoded videos through a
Deep Reinforcement Learning based approach Grad. We addressed
two key challenges, namely enlarged decision space in ABR al-
gorithm designing and coding overhead of SVC, through tailored
action designs and hybrid coding. We evaluated the performance
of our proposed Grad-HYBJ on an emulated streaming system,
with commonly used network traces and video. Grad-HYB] outper-
formed state-of-the-art AVC-based methods including PENSIEVE-
AVC by at least 17.0% in average QoE. Additionally, Grad-HYB] re-
quired 12.7% more transmitted data, but achieved 25.9% higher QoE
compared to the most bandwidth-efficient method BOLA with AVC.
Lastly, Grad-HYB] reacted to bandwidth increase more discreetly
and its storage cost can be reduced to 2.27X of that of AVC-based
methods while still maintaining a 13.9% improvement in QoE. To
sum up, our work demonstrated an effective way to design ABR
algorithms with quality upgrade mechanism and to utilize SVC to
benefit video streaming in practice.

REFERENCES

[1] 2016. Dash.js. https://github.com/Dash-Industry-Forum/dash.js/
[2] 2017. Federal Communications Commission. 2017. Raw Data - Measuring Broad-
band America. https://www.fcc.gov/reports-research/reports

[3] 2019. Cisco Visual Networking Index: Forecast and Trends, 2017-2022 White

[10

[11

[12

(13

[14

[15

[16

[17

(18

[19

]

]

]

Paper. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/white-paper-c11-741490.html

Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan, Sanjay Rao, Jessica Chen,
Ethan Katz-Bassett, Bruno Ribeiro, Jibin Zhan, and Hui Zhang. 2018. Oboe:
Auto-Tuning Video ABR Algorithms to Network Conditions. In Proceedings of
the 2018 Conference of the ACM Special Interest Group on Data Communication.
44-58.

Travis Andelin, Vasu Chetty, Devon Harbaugh, Sean Warnick, and Daniel Zappala.
2012. Quality Selection for Dynamic Adaptive Streaming over HTTP with Scalable
Video Coding. In Proceedings of the 3rd Multimedia Systems Conference. 149-154.
G. Bjontegaard. 2001. Calculation of average PSNR differences between RD-
Curves. Proceedings of the ITU-T Video Coding Experts Group (VCEG) Thirteenth
Meeting (01 2001).

Ayub Bokani, Mahbub Hassan, Salil S. Kanhere, Jun Yao, and Garson Zhong.
2016. Comprehensive Mobile Bandwidth Traces from Vehicular Networks. In
Proceedings of the 7th International Conference on Multimedia Systems. Article 44,
6 pages.

Niels Bouten, Steven Latré, Jeroen Famaey, Filip De Turck, and Werner Van Leek-
wijck. 2013. Minimizing the Impact of Delay on Live SVC-based HTTP Adaptive
Streaming Services. Proceedings of the 2013 IFIP/IEEE International Symposium on
Integrated Network Management, IM 2013.

Federico Chiariotti, Stefano D’Aronco, Laura Toni, and Pascal Frossard. 2016.
Online Learning Adaptation Strategy for DASH Clients. In Proceedings of the 7th
International Conference on Multimedia Systems. Article 8, 12 pages.

Maxim Claeys, Steven Latré, Jeroen Famaey, Tingyao Wu, Werner Van Leekwijck,
and Filip De Turck. 2013. Design of a Q-Learning based client quality selection
algorithm for HTTP Adaptive Video Streaming.

Maxim Claeys, Steven Latré, Jeroen Famaey, TY Wu, W Van Leekwijck, and
Filip De Turck. 2014. Design and optimisation of a (FA)Q-learning-based HTTP
adaptive streaming client. CONNECTION SCIENCE 26, 1 (2014), 22.

Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica, Dilip Antony Joseph, Aditya
Ganjam, Jibin Zhan, and Zhang Hui. 2011. Understanding the impact of video
quality on user engagement. In Acm Sigcomm Conference. 362-373.

A. Elgabli, V. Aggarwal, S. Hao, F. Qian, and S. Sen. 2018. LBP: Robust Rate
Adaptation Algorithm for SVC Video Streaming. IEEE/ACM Transactions on
Networking 26, 4 (2018), 1633-1645.

Michael Grafl, Christian Timmerer, Hermann Hellwagner, Wael Chérif, and
Adlen Ksentini. 2013. Evaluation of Hybrid Scalable Video Coding for HTTP-
based Adaptive Media Streaming with High-Definition Content. 2013 IEEE 14th
International Symposium on a World of Wireless, Mobile and Multimedia Networks,
WoWMoM 2013, 7.

Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark
Watson. 2014. A Buffer-Based Approach to Rate Adaptation: Evidence from a
Large Video Streaming Service. In Proceedings of the 2014 ACM Conference on
SIGCOMM. 187-198.

Jaehyun Hwang, Junghwan Lee, and Chuck Yoo. 2016. Eliminating bandwidth
estimation from adaptive video streaming in wireless networks. Signal Processing:
Image Communication 47 (2016), 242 — 251.

Christian Kreuzberger, Daniel Posch, and Hermann Hellwagner. 2015. A Scalable
Video Coding Dataset and Toolchain for Dynamic Adaptive Streaming over
HTTP. In Proceedings of the 6th ACM Multimedia Systems Conference. 213-218.
Yunzhuo Liu, Bo Jiang, Tian Guo, Ramesh K. Sitaraman, Don Towsley, and
Xinbing Wang. 2020. Technical report: Grad: Learning for Overhead-aware
Adaptive Video Streaming with Scalable Video Coding.

Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural Adaptive
Video Streaming with Pensieve. In Proceedings of the Conference of the ACM

[20

[21

[22

[24

[25

[26

[27

[29

[30

[31

[32

[34

[35

[36

]

Special Interest Group on Data Communication. 197-210.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-
othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous Methods for Deep Reinforcement Learning. In Proceedings of The 33rd
International Conference on Machine Learning.

Ricky K. P. Mok, Xiapu Luo, Edmond W. W. Chan, and Rocky K. C. Chang.
2012. QDASH: A QoE-Aware DASH System. In Proceedings of the 3rd Multimedia
Systems Conference. 11-22.

Afshin Taghavi Nasrabadi, Anahita Mahzari, Joseph D. Beshay, and Ravi Prakash.
2017. Adaptive 360-Degree Video Streaming Using Scalable Video Coding. In
Proceedings of the 25th ACM International Conference on Multimedia. 1689-1697.
Afshin Taghavi Nasrabadi and Ravi Prakash. 2018. Layer-Assisted Adaptive
Video Streaming. In Proceedings of the 28th ACM SIGMM Workshop on Network
and Operating Systems Support for Digital Audio and Video. 31-36.

Ravi Netravali, Anirudh Sivaraman, Keith Winstein, Somak Das, Ameesh Goyal,
and Hari Balakrishnan. 2014. Mahimahi: A Lightweight Toolkit for Reproducible
Web Measurement. In Proceedings of the 2014 ACM Conference on SIGCOMM.
129-130.

Pengpeng Ni, Ragnhild Eg, Alexander Eichhorn, Carsten Griwodz, and Pal
Halvorsen. 2011. Flicker Effects in Adaptive Video Streaming to Handheld

Devices. In Proceedings of the 19th ACM International Conference on Multimedia.
463-472.

S. G. Ozcan, T. Kivilcim, C. Cetinkaya, and M. Sayit. 2017. Rate adaptation
algorithm with backward quality increasing property for SVC-DASH. In 2017
IEEE 7th International Conference on Consumer Electronics - Berlin (ICCE-Berlin).
24-28.

Darijo Raca, Jason J. Quinlan, Ahmed H. Zahran, and Cormac J. Sreenan. 2018.
Beyond Throughput: A 4G LTE Dataset with Channel and Context Metrics. In
Proceedings of the 9th ACM Multimedia Systems Conference. 460-465.

Haakon Riiser, Paul Vigmostad, Carsten Griwodz, and Pal Halvorsen. 2013. Com-
mute Path Bandwidth Traces from 3G Networks: Analysis and Applications. In
Proceedings of the 4th ACM Multimedia Systems Conference. 114-118.

S. Rimac-Drlje, O. Nemcic, and M. Vranjes. 2008. Scalable Video Coding extension
of the H.264/AVC standard. In Elmar, International Symposium. 9 — 12.

Heiko Schwarz, Detlev Marpe, and Thomas Wiegand. 2007. Overview of the
Scalable Video Coding Extension of the H.264/AVC Standard. Circuits and Systems
for Video Technology, IEEE Transactions on 17 (10 2007), 1103 — 1120.

C. Sieber, T. Hof3feld, T. Zinner, P. Tran-Gia, and C. Timmerer. 2013. Implementa-
tion and user-centric comparison of a novel adaptation logic for DASH with SVC.
In 2013 IFIP/IEEE International Symposium on Integrated Network Management
(IM 2013). 1318-1323.

Kevin Spiteri, Ramesh Sitaraman, and Daniel Sparacio. 2018. From theory to prac-
tice: improving bitrate adaptation in the DASH reference player. In Proceedings
of the 9th ACM Multimedia Systems Conference. 123-137.

K. Spiteri, R. Urgaonkar, and R. K. Sitaraman. 2016. BOLA: Near-optimal bitrate
adaptation for online videos. In IEEE INFOCOM 2016 - The 35th Annual IEEE
International Conference on Computer Communications. 1-9.

Gary Sullivan, Pankaj Topiwala, and Ajay Luthra. 2004. The H.264/AVC Ad-
vanced Video Coding Standard: Overview and Introduction to the Fidelity Range
Extensions. Proceedings of SPIE - The International Society for Optical Engineering
(11 2004).

Siyuan Xiang, Min Xing, Lin Cai, and Jianping Pan. 2015. Dynamic Rate Adap-
tation for Adaptive Video Streaming in Wireless Networks. Signal Processing:
Image Communication 39 (09 2015).

Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A Control-
Theoretic Approach for Dynamic Adaptive Video Streaming over HTTP. In Acm
Conference on Special Interest Group on Data Communication. 325-338.

	Abstract
	1 Introduction
	2 Background & Related work
	2.1 Dynamic Adaptive Streaming over HTTP
	2.2 Video Coding
	2.3 ABR Algorithm
	2.4 Reinforcement Learning

	3 Learning ABR algorithms with quality upgrade mechanism
	3.1 Overview
	3.2 Action Design for Vanilla SVC
	3.3 Action Design for Hybrid Coding

	4 Evaluation
	4.1 Methodology
	4.2 Quantifying QoE and its Breakdown
	4.3 Impacts on Bandwidth and Storage Costs
	4.4 Comparisons of Reaction Time

	5 Conclusion
	References

