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ABSTRACT

Video streaming commonly uses Dynamic Adaptive Streaming over

HTTP (DASH) to deliver good Quality of Experience (QoE) to users.

Videos used in DASH are predominantly encoded by single-layered

video coding such as H.264/AVC. In comparison, multi-layered

video coding such as H.264/SVC provides more flexibility for up-

grading the quality of buffered video segments and has the potential

to further improve QoE. However, there are two challenges for us-

ing SVC in DASH: (i) the complexity in designing ABR algorithms;

and (ii) the negative impact of SVC’s coding overhead. In this work,

we propose a deep reinforcement learning method called Grad for

designing ABR algorithms that take advantage of the quality up-

grade mechanism of SVC. Additionally, we quantify the impact

of coding overhead on the achievable QoE of SVC in DASH, and

propose jump-enabled hybrid coding (HYBJ) to mitigate the impact.

Through emulation, we demonstrate that Grad-HYBJ, an ABR algo-

rithm for HYBJ learned by Grad, outperforms the best performing

state-of-the-art ABR algorithm by 17% in QoE.
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• Information systems→Multimedia streaming; •Theory of

computation→ Reinforcement learning.

KEYWORDS

Scalable video coding; adaptive bitrate algorithm; reinforcement

learning

∗Corresponding author.

This work was supported in part by National Key R&D Program of China
2018AAA0101200, National Natural Science Foundation of China under Grant Numbers
61532012, 61960206002 and 61829201, Science and Technology Innovation Program of
Shanghai (Grant 18XD1401800), Shanghai Key Laboratory of Scalable Computing and
Systems, and the U.S. National Science Foundation under Grant Numbers CNS-1755659,
CNS-1815619, CNS-1763617, CNS-1901137, and CNS-1617437.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MM ’20, October 12ś16, 2020, Seattle, WA, USA.

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7988-5/20/10. . . $15.00
https://doi.org/10.1145/3394171.3413512

ACM Reference Format:

Yunzhuo Liu, Bo Jiang, Tian Guo, Ramesh K. Sitaraman, Don Towsley,

and Xinbing Wang. 2020. Grad: Learning for Overhead-aware Adaptive

Video Streaming with Scalable Video Coding. In 28th ACM International

Conference on Multimedia (MM ’20), October 12ś16, 2020, Seattle, WA, USA..

ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3394171.3413512

1 INTRODUCTION

Video streaming over the Internet has grown rapidly over the past

years, and it is predicted to contribute 82% of the total IP traffic in

2022 [3]. The growth is accompanied by increasing user demands

on better Quality of Experience (QoE), which has been shown to

have a huge impact on content providers’ revenue [12]. Achieving

high QoE is challenging as it often involves taking into account

conflicting requirements such as minimal rebuffering and high

bitrates in the presence of network variability.

A technology widely used to cope with network variability is

Dynamic Adaptive Streaming over HTTP (DASH). In DASH, videos

are divided into small segments, each encoded at several different

quality levels. Adaptive bitrate (ABR) algorithms are then used to

decide dynamically the quality level of each segment, based on

information such as the playback buffer state and the estimated

network bandwidth. ABR algorithms aim to maximize the overall

QoE by striking a balance between multiple conflicting goals such

as high quality, minimal rebuffering and few quality switches [19,

23, 36]. A lot of work on internet video streaming has been devoted

to the design of better ABR algorithms [9ś11, 19, 23, 33, 36], and

further improvements are still desired.

Most ABR algorithms are designed to work with the video coding

scheme called Advanced Video Coding (AVC). Versions of the same

video segment at different quality levels are encoded independently

of each other, and segments are downloaded in their playback order.

Typically all decisions on segment qualities are final, i.e., ARB algo-

rithms only execute one download for each segment. Consequently,

the ability of ABR algorithms to maximize QoE depends critically

on the accuracy of its predictions, either explicit or implicit, for

the relatively long-term average bandwidth. However, such predic-

tions are often inaccurate [16, 19], so an ABR algorithm may fail to

strike the right balance between different QoE goals. For instance,

it may download a lot of low quality segments before realizing that

a higher quality could have been selected. On the other hand, if

the selected quality is too high to be sustainable, it will then result





Basing on our hybrid coding, we further learn an overhead-aware

ABR algorithm, as described in Section 3.3.

2.3 ABR Algorithm

In this work, we consider ABR algorithms that target AVC and SVC-

encoded videos, respectively. ABR algorithm designed for AVC has

garnered a lot of interests as AVC is commonly used in DASH.

Prior work [15, 19, 33, 36] improves video streaming quality with

approaches ranging from control-theoretical approach to neural

networks. Most existing AVC-based ABR algorithms were designed

without quality upgrade mechanism and they only decide the qual-

ity level for the next video segment. Recently, BOLA-FAST [32]

considered quality upgrade for AVC-encoded videos by replacing

buffered segments with new ones of higher quality. However, such

video segment replacement incurs non-trivial bandwidth costs and

is rarely supported by other AVC-based ABR algorithms.

Existing SVC-based ABR algorithms [5, 8, 13, 16, 26, 35] were

designed with quality upgrade mechanism to exploit the flexibility

of SVC-encoded video segments. One of the key challenges is to

handle the larger decision space associated with it. Prior work [13,

35] addressed this by limiting the actions to upgrading the buffer

tail or downloading base layer for the next segment, leaving the

flexibility underutilized. Handcrafted rules have also been proposed

to exploit the flexibility [5, 8, 16, 26] by allowing more actions, but

they do not balance well across different QoE goals.

Our work differs from prior work by designing ABR algorithms

with quality upgrade mechanism that can operate on any buffered

segment through a learning-based approach. It automatically bal-

ances between different QoE goals and forms quality upgrade poli-

cies that can benefit the overall QoE.

2.4 Reinforcement Learning

Reinforcement Learning (RL) is a type of machine learning tech-

nique that is commonly used for guiding an agent to maximize

the cumulative reward through a sequence of actions. In RL, agents

learn their policies, defined as the probability distribution of actions

in each state, by interacting with the environment.

A number of prior work leveraged RL for developing ABR algo-

rithms [9ś11, 19] that target AVC-encoded videos. The ABR algo-

rithm is modeled as the agent that makes decisions such as which

video segment to download next, in order to maximize a predefined

optimization metric. By using reinforcement learning, ABR policies

that specify which action to take in each state, can be obtained

automatically to form the final ABR algorithm. Notably, Pensieve

pioneered the use of deep reinforcement learning for generating

optimized ABR algorithms. Specifically, Pensieve used a popular

actor-critic architecture [20] consisting of two neural networks.

The actor network gives the policy by mapping states to probability

distributions of actions, while the critic network evaluates the policy

by predicting its expected total reward.

Our work also explored the use of deep reinforcement learn-

ing for generating ABR algorithms, but with the focus on a more

challenging action space introduced by quality upgrade mechanism.

3 LEARNING ABR ALGORITHMSWITH

QUALITY UPGRADE MECHANISM

3.1 Overview

We describe Grad, a Deep Reinforcement Learning (DRL) method,

for designing ABR algorithms that utilize the quality upgrade mech-

anism of SVC. Grad can also be used to learn ABR algorithms for

AVC, via configuring the appropriate quality upgrade related over-

head. The learning agent automatically balances the cost and gain

of quality upgrade and learns overhead-aware ABR policies. Unlike

traditional AVC-oriented ABR algorithms without quality upgrade

mechanism, our learning agent needs to explore a larger decision

space: (i) choosing a quality version for the next video segment,

(ii) or upgrading the quality of a buffered segment. One key chal-

lenge associated with the enlarged decision space is the difficulty

in exploring and learning good quality upgrade policies. Below we

first present an overview of how we design Grad, followed by the

tailored action designs for both the vanilla SVC and our jump-aware

hybrid coding in Sections 3.2 and 3.3, respectively.

Optimization metric. As described in Section 2.4, an RL agent

learns policies by optimizing a cumulative reward. In this work, we

use the following QoE metric to quantify the attained reward,

QoE =

N
∑

n=1

log

(

Rn

Rmin

)

− log

(

Rmax

Rmin

) N
∑

n=1

Tn

−

N−1
∑

n=1

| log(Rn+1) − log(Rn )| ×
max(Rn+1,Rn )

min(Rn+1,Rn )
,

(1)

where N is the total number of video segments, Rn and Tn are the

bitrate and rebuffering time of the n-th segment, Rmin and Rmax are

the bitrates of the lowest and highest segment quality, respectively.

Note that we calculate the bitrate for an SVC-encoded segment

based on its AVC-encoded counterpart of the same visual quality.

In other words, we do not account for the extra bits associated with

the coding overhead of SVC in bitrate calculation.

The above QoE metric follows a commonly used general formula:

QoE = µ
∑

N

n=1 f (Rn ) − ν
∑

N

n=1Tn − ξ
∑

N−1
n=1 | f (Rn+1) − f (Rn )|. As

in prior work [19, 23, 36], we let f (·) be the binary logarithm,

parameter µ be 1, and ν be the highest segment quality. We set

ξ equal to the quotient between the bitrates of two consecutive

segments, which penalizes steeper quality changes more [21].

Note that this QoE metric considers the following three impor-

tant and often conflicting aspects, segment quality, rebuffering time,

and video smoothness. Segment quality, referring to the visual qual-

ity of a single segment, is mostly determined by the segment bitrate

and is accounted for by the first term in Eq. (1). It is also referred

to as bitrate utility. Rebuffering time denotes the time delay after

all previously downloaded segments have been played back and

before the new segment is ready to be played, and is accounted for

by the second term. Finally, video smoothness, which quantifies the

effect of segment quality switches, is considered in the third term.

Network input.We chose the following state inputs st = (bt , et , zt ,

xt ,dt ,qt ,wt ) for training the RL agent with SVC-encoded videos.

In particular, bt is the fraction of the buffer that is currently occu-

pied by downloaded segments; et is the number of segments in the

video that have not been downloaded; zt denotes the data size of
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Figure 2: Network architecture of Grad.

the ELs specified by our actions; xt and dt represent the measured

throughput and time over the past n downloads and we used n = 8

in this work; qt denotes the quality of each video segment in the

buffer;wt defines the time before each buffered video segment is

played back to user. Four of the inputs (bt , et ,xt ,dt )were also used

by Pensieve [19], while the remaining inputs (zt ,qt ,wt ) account

for the enlarged decision space associated with SVC.

Network architecture. Our actor-critic network (Figure 2) con-

sists of an input layer, three hidden layers, and an output layer.

The input layer consists of one-dimension CNN layers that process

(xt ,dt ,qt ,wt ), and fully connected layers that process (bt , et , zt ).

The output of the actor network is a vector specifying the probabil-

ity distribution of actions, while the output of the critic network is

a value predicting the cumulative reward.

Policy gradient. The actor-critic algorithm trains the networks

using policy gradient. The bitrate decision at step t generates a

reward rt , and policy gradient aims to increase the cumulative

reward
∑∞
t=0 γ

t rt , where γ is a discount factor. The gradient can

be computed as:

∇Eπθ

[

∞
∑

t=0

γ t rt

]

= Eπθ [∇θ logπθ (s,a)A
πθ (s,a)] (2)

The policy parameter θ is the parameter of the actor network.

πθ (s,a) is the output probability for action a in state s . Aπθ (s,a)

is the advantage function given by the difference between the ex-

pected reward of taking the deterministic action a in state s and the

expected average reward following policy πθ . During training, we

sample a trajectory of actions to compute A(st ,at ) as an unbiased

estimation of Aπθ (st ,at ) using the temporal difference method:

A(st ,at ) = rt + γV
πθ (st+1;θv ) −V

πθ (st ;θv ) (3)

θv is the parameter of the critic. The critic outputs V πθ (st ;θv )

as an estimation of the value function vπθ (st ) that represents the

accumulative reward from input state st following actor policy πθ .

Actor network parameter θ is updated using the following equation:

θ ← θ + αa

∑

t

∇θ logπθ (s,a)A(st ,at ) + β∇θH (πθ (·|st )) (4)

The second part β∇θH (πθ (·|st )) encourages the actor to explore dif-

ferent policies.H (·) is the entropy. β and αa are the exploration and

learning rate of the actor. For the critic, the update of its parameters

is as follows:

θv ← θv − αv

∑

t

∇θv (A(st ,at ))
2

(5)
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Figure 3:Neighbor-related actions for vanilla SVC and hybrid coding.

where αv is its learning rate. In the training, we configured αa and

αv to be 0.0001, γ to be 0.99, and β to decay linearly from 3.0 to

0.05 over 50000 iterations.

3.2 Action Design for Vanilla SVC

The first type of action, referred to as download-base, simply down-

loads the base layer for the next segment. This is akin to download-

ing the lowest bitrate quality of AVC-encoded videos.

The second type of action, referred to as upgrade-by-one, down-

loads the next enhancement layer to upgrade the quality of a

buffered video segment by one level. For example, if the chosen

video segment is currently at quality levelw , this action will choose

the w-th enhancement layer which upgrades the quality of the

segment tow + 1 wherew + 1 ≤ M .

With only the above two action types, it might become difficult

for the RL agent to explore a policy that achieves good video smooth-

ness. Recall that video smoothness is an important QoE metric that

desires consecutive video segments to be at the same quality level.

The key challenge stems from the enlarged decision space associated

with quality upgrade mechanism. With the enlarged decision space,

the next download decision can affect the quality of any buffered

segment. Thus its impact on video smoothness depends on the

state of the entire buffer. As the state space grows exponentially

with the buffer size and most upgrade actions are likely to damage

video smoothness, e.g., when one of its neighbors already has lower

quality, the RL agent has difficulty in exploring upgrade policies

that can maintain good video smoothness after executing a series

of actions of downloading ELs with different buffer states.

To help the RL agent learn good quality upgrade policies, we

added a third type of action called approach-neighbour. This action

type is a subset of the second one and is designed to help the agent

learn smoothness-friendly quality upgrade policies by explicitly

specifying better candidate segments. The agent will download the

w-th enhancement layer for a buffered video segment at quality

level w if at least one of its neighboring segments has a higher

quality. If multiple video segments in the buffer satisfy the neighbor

condition, the RL agent can pick the video segment that is the closest

to either buffer head or buffer tail. For example, in Figure 3(a), both

video segments 3 and 5 (coded in blue) are candidates for quality

upgrade. Figure 4(a) demonstrates that approach-neighbor action

led to better QoE and less damage in video smoothness (detailed

methodology in Section 4.1).





4 EVALUATION

In this section we evaluate Grad with HYBJ (Grad-HYBJ) by com-

paring it with state-of-the-art ABR algorithms and different coding

methods, including a progressive hybrid coding (HYBP). Performance

is evaluated in terms of QoE-relatedmetrics (Section 4.2), bandwidth

and storage costs (Section 4.3), and reaction time (Section 4.4).

4.1 Methodology

Testbed setup. For training and evaluating Grad, we used a simu-

lated and an emulated video streaming systems respectively. The

simulation system, similar to that used in Pensieve [19], was for

accelerating the training process and also used to study the impact

of SVC coding overhead on obtained QoE (Figure 5). The emulator

allowed us to conduct performance evaluation of video streaming

in a controlled network environment. We implemented a video

server with Nginx Version 1.10 and a client player in python Ver-

sion 3.6. We configured the round trip time to be 80 ms and used

Mahimahi [24] to emulate the bandwidth between the video server

and client by replaying network traces (described below). The client

had a video buffer of 60 seconds and logged important streaming

events, such as bitrate switches and rebuffering, for post analysis.

Videos. We used the following video statistics, adopted in prior

work [4, 19], in the simulator. The video has a total duration of

192 seconds and consists of 4-second segments. For AVC encoding,

each segment has six different bitrates, i.e.,[300 Kbps, 750 Kbps,

1200 Kbps, 1850 Kbps, 2850 Kbps, 4300 Kbps], under Constant Bit

Rate (CBR) mode. The simulator calculated the size of each AVC

segment basing on its bitrate and duration and used the segment

size and network condition to simulate the downloading process.

For segments whose encoding involves SVC, we added the coding

overhead to the size of their AVC counterparts as discussed in

Section 2.2. The configured overhead ratio fluctuated within a range

following an uniform distribution. We configured the range to be

consistent with the overhead level of current SVC technology for

obtaining an overhead-aware ABR algorithm workable in practice.

To determine the range, we empiricallymeasured the overhead of

three-layer SVC using an open source software JSVM recommended

by H.264/SVC [30] to encode four videos with different motion

and texture details. 200 frames of each video were used. We used

the following configurations of JSVM: (i) Group of Pictures (GoP)

of 8; (ii) an intra period of 32; (iii) inter layer prediction mode 2;

(iv) spatial scalability, with resolutions of 360P, 720P and 1080P.

Note that though temporal and quality scalability usually incur

smaller overhead[14], they cannot cover a wide range of bitrate

choices, e.g. it is not reasonable to increase the bitrate of a 360P

segment from 300 Kbps to 4300 Kbps for the limited improvement

in visual quality. Thus we implemented our design with spatial

scalability, and the proper use of other two scalability types in

bitrate adaptation remains for further work; (v) fixed Quantization

Parameter (QP) mode. The measurement is based on Bjùntegaard

Delta-rate (BD-rate)[6], which quantifies the average difference in

bitrates of encoded videos with the same quality. Peak Signal-to-

Noise Ratio (PSNR) is used to quantify video quality. We used four

QPs for base layer {16,20,24,28} as recommended, and used two QP

offsets {0,+2}. As shown in Table 1, the ranges for v(1), v(2) are

[10%, 20%] and [20%, 40%], respectively.

Video

Overhead
v(1) v(2)

BigBuckBunny 18.8% 33.5%

ElephantDreams 18.5% 35.9%

BlueSky 21.9% 38.9%

DucksTakeOff 10.9% 20.6%

Table 1: Coding overhead of three-layer SVC. We investigated the ranges

of overhead v(1), v(2) and use them as the setup in the simulation testbed to

learn an ABR algorithm for hybrid coding.

The emulator uses the first 192 seconds of BigBuckBunny video.

We implemented the bitrates [300 Kbps, 750 Kbps, 1200 Kbps, 1850

Kbps, 2850 Kbps, 4300 Kbps] as [144P, 240P, 360P, 480P, 720P, 1080P].

To encode the video, we first split it into segments of 4 seconds and

then used the fixed QP mode in JSVM to encode them into base

layers (also served as AVC segments) at designated bitrates. Then

we used the same QP parameters for each quality level to generate

enhancements layers in our HYBJ.

Network Traces. We used traces from both 3G and 4G mobile

network datasets [7, 27, 28]. Those traces were collected in differ-

ent scenarios and contain per second throughput information for

different durations. In particular, the 4G dataset [27] was collected

under different mobility patterns including home, pedestrian, car,

tram and train, and with network throughput ranging from 0 to

173 Mbps over 2100 minutes. Additionally, the two 3G network

datasets were collected in Norway with different means of trans-

portation [28] and in Sydney [7], respectively. The total duration

of traces in the two 3G datasets is more than 2000 minutes and the

throughputs range between 0 and 10 Mbps. We split the original

traces and generated more than 1000 traces with a duration of 240

seconds. We used a 4:1 ratio for training and testing.

ABR algorithms.We evaluated a number of ABR algorithms de-

signed for AVC-encoded and hybrid-encoded videos. Note that

we do not consider algorithms designed for vanilla SVC in the

emulation as simulation results (see [18] for details) showed that

the coding overhead made them perform much worse than our

algorithm, which can also be inferred from Figure 5 and Table 1.

Specifically, we compared our algorithm Grad-HYBJ to four state-

of-the-art AVC-based algorithms including (i) Pensieve [19]: a DRL-

based algorithm that includes only the limited decision space; (ii)

MPC [36]: a control-theoretical approach relying on the prediction

of bandwidth; (iii) BOLA [33]: a buffer-based algorithm that makes

bitrate decisions solely basing on the state of the buffer; and (iv)

BFAST [32]: an extension of BOLA that leverages heuristic to up-

grade qualities of buffered segments. We used the robust version of

MPC and the version of BFAST in dash.js Version 2.4 [1].

We extended BFAST to work with our HYBJ, i.e., achieving qual-

ity upgrade by downloading enhancement layers instead of AVC

segments. We also included another algorithm LAAVS [23] that

was designed for another hybrid coding, HYBP, for comparison.

Briefly, this hybrid coding works by generating base layers for all

supported qualities using AVC, and several enhancement layers to

progressively upgrade the quality of each base layer level-by-level.

For example, to support four quality levels, HYBP will generate

{BLm, 1 ≤ m ≤ 4} and {EL
(m,(m+i−1,m+i))
i

, 1 ≤ i ≤ 2}.
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