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Abstract. We prove that the Fermi surface of a connected doubly periodic self-adjoint discrete
graph operator is irreducible at all but finitely many energies provided that the graph (1) can
be drawn in the plane without crossing edges (2) has positive coupling coefficients (3) has two
vertices per period. If “positive” is relaxed to “complex”, the only cases of reducible Fermi surface
occur for the graph of the tetrakis square tiling, and these can be explicitly parameterized when
the coupling coefficients are real. The irreducibility result applies to weighted graph Laplacians
with positive weights.
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1 Introduction

The Fermi surface (or Fermi curve) of a doubly periodic operator at an energy E is the analytic set of
complex wavevectors (ki,k2) admissible by the operator at that energy. Whether or not it is irreducible
is important for the spectral theory of the operator because reducibility is required for the construction
of embedded eigenvalues induced by a local defect [10, 11, 14] (except, as for graph operators, when an
eigenfunction has compact support). (Ir)reducibility of the Fermi surface has been established in special
situations. It is irreducible for the discrete Laplacian plus a periodic potential in all dimensions [13] (see
previous proofs for two dimensions [1],[7, Ch. 4] and three dimensions [2, Theorem 2]) and for the continuous
Laplacian plus a potential that is separable in a specific way in three dimensions [3, Sec. 2]. Reducibility of
the Fermi surface is attained for multilayer graph operators constructed by appropriately coupling discrete
graph operators [14] or metric graph (quantum graph) operators [14, 15, 6].

The multilayer graphs in [14, 15] are inherently non-planar by their very construction—they cannot be
rendered in the plane without crossing edges. This led us to ask whether planarity prohibits reducibility of
the Fermi surface. In this work, we address this problem by direct computation, and we are able to give
a complete answer for discrete graph operators with real coefficients and two vertices per period. It turns
out that planarity together with positivity of the coefficients prohibits reducibility. Our results apply to
discrete weighted graph Laplacians (Theorem 2), where the positivity of the weights are a discrete version
of coercivity of second-order elliptic operators.

Additionally, we find that irreducibility occurs even for complex operator coefficients, including magnetic
Laplacians, except for the planar graph whose faces are the tetrakis square tiling (Fig. 2). For that graph,
reducibility occurs for all energies for certain non-positive choices of the coefficients. All the reducible cases
can be explicitly parameterized when the coupling coefficients are real. Our results are stated in section 2.3.

Our study of the Fermi surface is part of a more general effort to understand fine properties of the
dispersion function D(k1, ke, E) of wavevector and energy, particularly using computational methods to
attack problems that hitherto evade theoretical methods. Recently, computational techniques from algebraic
geometry [5] have been used to analyze the genericity of the extrema of the zero set of D, also focusing on
doubly periodic discrete graph operators with two vertices per period, as in our present work.
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2 Periodic graph operators and their Fermi surfaces

Let T be a graph with vertex set V(I") and edge set £(T") drawn in the plane R?, such that I is invariant with
respect to shifts along two linearly independent vectors & and &;. For any n = (n1,n2) € Z2, denote the
shift of a vertex v € V(I') or an edge e € £(I") along n1&; + na&s by nv or ne. This realizes the shift group
7?2 as a free group of isomorphisms of I'. We assume from the beginning that V(I') has exactly two orbits;
a fundamental domain contains one vertex from each orbit, and the set of these two vertices is denoted by
V = {v1,v2}. Denote the Z2-orbit of v; by V;, so that V(I') = V;UV;.

2.1 Periodic operators

This section sets the background and notation for periodic operators on the space ¢2(V(I'),C) of square-
integrable functions from the vertex set of I' to the complex field C. Given an operator on ¢2(V(T), C), the
edges of the graph I' correspond to nonzero matrix elements of this operator. ~
Any function g : V — C is identified with the vector (g1, g2) € C* with g; = g(v;); and any function f €
2(V(T),C) is identified with a function f € £2(Z2,C?) by f(n); = f(nv;). Denote the standard elementary
basis vectors in C? by {e;}7_,. A periodic, or shift-invariant, operator A on £*>(V(I'),C) = £*(Z?,C?) is a
convolution operator. Precisely, for each n € Z2, let A(n) be a 2x2 matrix. For f € ¢2(Z2, C?), define

Ahm) = 3 A@m)fn—m). (2.1)
meZ?

The operator A is said to be of finite extent if there is a number M such that A(n) =0 for |n| > M. Ais
self-adjoint if A(—n) = A(n)* for all n € Z2. This class of operators includes the standard and magnetic
discrete Laplacians (see [8, §2] and [9, eqn. (1.4)]).

The graph I is called the graph associated to the operator A provided each entry of A, as a matrix indexed
by V(I'), is nonzero if and only if the corresponding pair of vertices is connected by an edge in £(I"). More
precisely, for all 4,5 € {1,2} and all n € Z2,

{vi,m)j} S g(F) <~ (Gi,A(’I’L)Ej) #0. (22)

Double edges do not make sense for discrete graph operators, but loops do.

2.2 The Fermi surface
The z-transform (or Floquet transform f(n, z) at n = 0) of a function f € ¢2(Z2,C?) is the formal Laurent

Fy= )" fm)z", 2= (21,2). (2.3)

meZ?

The notation is 2 = 27" 252, for m = (my, ma). The Floquet transform of the finite-extent operator A is
a Laurent polynomial in z = (21, 22) with 2x2 matrix coefficients,

A(z) = > A(m)z"™ (2.4)
meZ?

Under the Floquet transform, the operator A becomes a matrix multiplication operator,
(Afy(z) = A(2) f (). (2.5)
The dispersion function for A is the determinant
D(z1,20, E) = det (A(21,22) — E). (2.6)

It is a Laurent polynomial in z; and 2o and a polynomial in E. The Floquet surface ®g for A at energy FE
is the algebraic set
O = {(21.22) € (C")2: D(z1, 22, E) = 0}, @7



where C* = C\ {0}. A pair (z1, 22) lies on ®p if and only if A admits a Floquet mode u at (z1, 22, E'), which
is a function u : V(I') — C (not in #2) such that, for all v € V(') and n = (ny,nz) € Z2,

Au=FEu and u(nv)= z]"z52u(v), (2.8)

that is, u is a simultaneous eigenfunction of A and of the Z? action. When considered as a relation between
the wavenumbers (ki, ko) € C? (for fixed F), where z; = %t and 2y = e?*2, the Floquet surface is called the
Fermi surface.

The Floquet surface (or the Fermi surface) ®p at energy F is reducible whenever D(z1, z2, E') can be
factored nontrivially, that is,

D(z1,22,E) = D1(21, 22, E)Da(21, 22, E), (2.9)

in which Dy and Dy are Laurent polynomials in z; and z3, neither of which is a monomial. That is to say,
reducibility of @ is the same as nontrivial factorization of D(z1, 22, E).

Figure 1 shows an example of (one period of) a periodic (nonplanar) graph with two vertices and ten
edges per period, including two loops. The matrix elements of a self-adjoint periodic operator A with this
associated graph are labeled. The matrix A(z) — E is

~ aO—E bo ay 0 as 0 as 0
Az)—E = | %
(2) o co—E]+Zl[d1 Cl]+zz |:d2 0]—&-2122 {ds 0]4—

o o o (2.10)
! {m C1}+22_1[a2 2}+Zl_122_1[a3 3].

0 0

In section 3, we show that, by collecting all planar connected periodic graphs into isomorphism classes, it is
sufficient to consider only the edges shown in Fig. 1.

Figure 1: All possible edges in a fundamental domain for the sixteen equivalence classes discussed in Section 3.

2.3 Theorems

The main result of this work is Theorem 1, and Theorem 2 is an application of it to weighted graph Laplacians
with positive coeflicients. Subsequent sections develop their proofs.

Theorem 1 (Irreducible Fermi surface for planar graphs). Let A be a doubly periodic self-adjoint discrete
graph operator (with complex graph coefficients) whose associated graph T is connected and planar with two
vertices per fundamental domain. The Fermi surface for A is either (i) irreducible for all but a finite number
of energies E or (ii) reducible for all energies E.

(a) If the matriz elements of A corresponding to the edges of I' are real and those corresponding to
non-loops are positive, then (i) holds.

(b) If (i) holds, then T minus its loops is the graph of the tetrakis square tiling. If a factorization of type
D(z1,22) = D1(z1)D2(22) is admitted, it must be of the form

D(z1,22) = C(a121 + 5[12;1 + (81 + ’Y1E)) (OQZQ + O?QZ{I + (B2 + ’VQE))7 (2.11)



in which C is a constant, ay and as are complexr numbers, and B; and ~y; are real numbers. If the graph
coefficients are real, then (2.11) is the only possible factorization and «; are real. The set of all operators
with real coefficients and reducible Fermi surface is parameterized explicitly by four real variables.

The parameterization of the set of graph operators with real coefficients associated to the tetrakis tiling
will be given in section 4.2 (equations (4.75)).

Part (a) of this theorem applies to weighted discrete graph Laplace operators. Such an operator A acts
on a function f € /2(V(T),C) by

(AN = D> a(f(w) - fv)). (2.12)

e=(w,v)e&(T)

By identifying f with f € (?(Z2,C?) as described in section 2.1, A can be written in the convolution
form (2.1). The matrices A(m) = {a;? }Z e} and the off-diagonal elements of A(0) can be chosen inde-

pendently through the choice of the weights a.. Then the diagonal entries of A(0) are determined by the
following relations for i = 1, 2:
> ai+al =0. (2.13)
mezZ?
The graph associated with this operator (as described in section 2.1) typically has loops (af; # 0) due to
the “self-interactions” coming from the —f(v) terms in (2.12). If all the numbers a. in (2.12) are positive,
then only the loops contribute non-positive (but real) coefficients to A. Thus part (a) of Theorem 1 yields
a corollary.

Theorem 2. Let A be a doubly periodic discrete graph Laplace operator with positive weights, whose asso-
ciated graph T is connected and planar with two vertices per fundamental domain. Then the Fermi surface
for A is irreducible for all but a finite number of energies E.

Figure 2: The periodic graph corresponding to the tetrakis square tiling of the plane.

3 Reduction to sixteen equivalence classes

This section describes the reduction of all graphs associated to the operators we are considering to sixteen
cases of equivalent graphs. Each of these cases is represented by a distinguished graph drawn in the plane
whose fundamental domain contains a subset of the edges drawn in Fig. 1.

Let us call a graph admissible if it is periodic, connected, and planar and has two vertices per fundamental
domain and no loops. We argue in this section that each admissible graph is isomorphic to one of sixteen
graphs. A loop may be added to any of these graphs without losing planarity. The strategy is to show
that each admissible graph has one of three special periodic tilings of the plane as a subgraph, where the
boundaries of the tiles contain certain vertices and their shifts. These special graphs, denoted by T4, Ip,
and I'c, are drawn in Figs. 3 and 4. New edges are then added to the tiles to produce all admissible graphs,
which are depicted in Figs. 5, 6, and 8.

Recall the set decomposition V(I') = ViUV, of the vertices of T' into the two disjoint sets of equivalent
vertices (the two orbits of the Z? action). For i € {1,2}, let T'; denote the subgraph induced by V;, that is,
the graph with vertex set V; and edge set containing those edges in £(I") both of whose vertices are in V;.

There are three disjoint cases to consider.



Case A. T is bipartite with respect to the decomposition V(I') = V;UVs, that is, both I'; and I's have
no edges.

Case B. Either I'; or I'; has (or both have) one edge per fundamental domain, and neither has more
than one edge per fundamental domain.

Case C. Either I'; or I'; has at least two edges per fundamental domain.

In each of these cases, we determine a minimal subgraph that I' must contain, which will be I'y, I'g, or I'c.
Afterwards, we will find all possible admissible graphs containing that subgraph.

3.1 Minimal subgraphs

For each Case X € {A,B,C}, we determine a minimal admissible graph I'y. The graph I'x satisfies the
conditions of Case X and has the property that any graph I' satisfying the conditions of Case X must
contain I’y up to interchanging V; and Vs, and transformation by a matrix in GL(2,7Z).

Case A. This construction is illustrated in Fig. 3. T' must contain an edge ey connecting a vertex wv;
in V; to a vertex vy in V. Set W = {vy,v}. Since T' is connected, it has an edge e; connecting a vertex in
W with a vertex in a translate gWW of W for some nonzero g € Z2. The translates of the vertices v; and v
and the edges ey and e; by elements ng € Z2, with n € Z, form an infinite periodic subchain C; of T', with
vertices alternating between V; and V,. The Z? orbits of v1, vg, eg and e; form an array of identical, disjoint
copies of (' that contains all vertices of I'. Since I' is connected, there is an edge es connecting a vertex in
Cy with a vertex in a translate of Cy (that is not equal to C itself); and since I' is planar, this connection
must be between adjacent chains. The Z? orbits of v1, va, €g, e1 and ey is a hexagonal lattice, and contains
all vertices of I'.

Ty

Figure 3: Case A. Every graph I' must have Iy as a subgraph. The chain C; is described in the text for the
construction of I'4. Vertices in V; are depicted by blue dots, and vertices in V> are depicted by red stars.

Case B. This construction is illustrated in Fig. 4 (left). Let T have an edge e; between a vertex vy € V;
and gv; for some nonzero g € Z?. The translates of this edge and its vertices by elements ng € Z?2, with
n € Z, form a chain C] connecting a one-dimensional array of vertices in V;. All the Z? translates produce
an array of disconnected translates of Cy, which is just the graph I'; induced by V; since Case B disallows
more than one edge per fundamental domain of I';. Since I is connected and planar, and no edge can join
a vertex in C7 with one of its disjoint translates, there is an edge es connecting vy to a vertex vy € Vo and
another edge es connecting vy to a vertex hv; € Vi in an adjacent translate of C;. The Z? orbit of the
vertices v; and vy and the edges eq, e, and es, form a connected periodic graph I'z, as depicted in Fig. 4.
As in Case A, since I' is planar, 'z contains all the vertices of T'.

Case C. This construction is illustrated in Fig. 4 (right). Let I have an edge e; connecting two vertices
v1 and gv; in V;. The Z? orbits of v1, gv; and e; form an array of disjoint chains, which contain all vertices



in V1. Since I' is connected and planar, and has an edge from v; to a vertex in V; that is different from vy,
gv1 and g~ 'vy, v; has to be connected to a vertex in Vi on an adjacent chain by an edge ey. The Z? orbits
of v1, e; and eg form a square lattice and contain all vertices in V;. When T is drawn in the plane, this grid
can be depicted as a square grid with each square containing exactly one vertex from Vs in its interior. Since
T is connected, a vertex of V; (and therefore every vertex of V; by periodicity) must be connected by an
edge to a vertex of V,. Let ey be an edge connecting vy to a vertex vy € Vs, such that eg does not cross any
edge of the square grid. Define I'c to be this grid together with all the vertices in Vo and the Z? translates
of eg. This subgraph is depicted in Fig. 4.

x x x
€3
* Vax x* eo V2
(&2 €
2 Cl 0
U1 €1 U1 €1
x* x x
x x x
I I'c

Figure 4: Case B. Every graph I' must have Iz as a subgraph. Its construction is described in the text in the
construction of ['s. Case C. Every graph I' must have ['c as a subgraph. Vertices in V; are depicted by blue dots,
and vertices in Vs are depicted by red stars.

3.2 Equivalent graphs for each case

For each of the three cases, we determine up to graph isomorphism all of the planar periodic graphs, with
two vertices per period, that contain the given subgraph.

Case A. The minimal graph I’y (Fig. 3) has as a fundamental domain two vertices and three edges—one
edge of each of the three orientations on the boundary of a hexagon. Besides I'4 itself, the only way to
produce an admissible graph satisfying Case A and containing I'4 is to connect two opposite vertices within
the hexagon in Fig. 5. All three ways of doing this lead to periodic graphs that are isomorphic by rotation.
Thus, the two subcases A1l and A2 in Fig. 5 represent the only equivalence classes for Case A. Each of these
subcases can be identified with the graph in Fig. 1, in which only certain edges are retained.

SR,

Case A Case Al Case A2
o o
’ >\ ’ >< ’

Figure 5: The hexagon is one face of the minimal graph I'y shown in Fig. 3 for Case A. In each subcase, the edges
in one fundamental domain are identified with edges in the standard representation in Fig. 1.

Case B. The minimal graph I'z (Fig. 4) has a fundamental domain consisting of two vertices and three
edges on the boundary of a rectangular face, as illustrated in Fig. 6. All other graphs of Case B are obtained



by joining vertices on the boundary of the face by edges passing through the face provided that no edges
cross and no two vertices in V; (blue circles) are connected. We argue that there are six equivalence classes
of isomorphic graphs, represented by the diagrams in Fig. 6. First consider the graphs for which the vertices
in Vs (stars) are not connected. There are four ways in which a single edge connects a circle to a star, and
all of these are isomorphic by reflections (Case B2). There are four ways to have two edges connecting circle
to star (Case B3), and all of them are isomorphic. The one illustrated in Fig. 6 yields only one of the other
four upon reflection. To obtain the other two (both interior edges sloped the same way), one has to shear

by the matrix {(1) H € GL(2,Z) while keeping the two points in any shift of % (circle and star) rigid; this

is illustrated in Fig. 7. The other three equivalence classes (Cases B4-B6) are obtained by adding an edge
connecting the two stars to each of Cases B1-B3.

A
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e

Figure 6: The rectangle is one face of the minimal graph I's shown in Fig. 4 for Case B. In each of the six subcases,
the edges in one fundamental domain are identified with edges in the standard representation in Fig. 1.
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Figure 7: In the description of Case B in section 3.2, it is mentioned how Case B3 in Fig. 6 can be represented by
either of the two diagrams on the right through an application of a shear matrix to I'. This is illustrated by the
periodic shift that transforms the drawing (a) to the drawing (b) of the same graph I'.

Case C. The minimal graph I'c (Fig. 4) has a fundamental domain consisting of two edges and one
vertex of the square, the vertex at the center, and the edge connecting to it, as depicted in Case C1 of
Fig. 8. We argue that each admissible graph containing I'c as a subgraph is isomorphic to one of the eight
cases shown in Fig. 8. Without adding any diagonal edge, one obtains Cases C1-C4, taking into account
equivalence through rotation and reflection, and Case C8. The other cases are obtained by adding a diagonal
edge to Cases C1-C4. This results in only three new Cases C5—C7 because in fact Case C4 with an extra
diagonal is isomorphic to Case C6. This is seen through applying a shear and then a reflection, similarly to
the argument for Case B. This is illustrated in Fig. 9.

4 (Ir)reducibility of the Fermi surface

Let the graph variables not corresponding to loops be denoted by the multi-variable S = (a1, as, as, by, c1, ds, d2, ds),
and let S denote the complex conjugates as independent variables. A graph operator of any of the sixteen
types is determined by a choice of values of the variables ag, ¢, S.

We argue that, without sacrificing the generality of our analysis, we may take ¢y = 0. Indeed, with the
alternatives (i) and (ii) in Theorem 1 in mind, let S be fixed at some arbitrary values. For any o € C,
factorability of D(z1, 22, E) for all energies E with ag = a and ¢y = 0 is equivalent to factorability for all
energies E for any choice of ag and ¢y with ag — ¢p = «; this is evident from the definition of D in (2.6)
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Figure 8: The repeating unit of the minimal graph I'c is a face of the subgraph I'y (grid on circle vertices) plus an

extra edge connecting a star vertex. The edges of each of the eight subcases are drawn according to the standard
representation in Fig. 1.
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Figure 9: In the description of Case C in section 3.2, it is mentioned how Case C4 with an extra diagonal is isomorphic
to Case C6. This is illustrated, up to reflections, by the periodic shift that transforms the drawing (a) to the drawing
(b) of the same graph T

and (2.10). Similarly, non-factorability of D(z1, 22, E) at all but finitely many energies F with ag = a and
co = 0 is equivalent to non-factorability at all but finitely many energies E for any choice of ag and ¢y with
ag — ¢g = a. Therefore, we will henceforth take

co = 0. (4.14)

4.1 Alternatives (i) and (ii) in Theorem 1

In this subsection, we justify that either (i) or (ii) in Theorem 1 holds.

The dispersion function D(z1, 22, E) is a Laurent polynomial in (21, z3) with coefficients that are poly-
nomials in (E, ag, S, S). There is a nontrivial factorization D(z1, 20, F) = D1 (21, 29, E)Do(21, 22, E) at given
values of (E,ap,S) if and only if a certain finite set P; of polynomials (P; is GB¢(I) as defined precisely
in Step 7 of Section 4.2) in the variables (F,ag,S,S) vanishes at those values, with the values S being
numerically conjugate to the values S.

Let P5 be the set of all coefficients of the polynomials in Py, viewed as polynomials in E (P» is Coeffg
as defined precisely in Step 8 of in Section 4.2). The elements of P, are polynomials in (ag, S, S). First, let
(ag, S, S) take on values, with S and S being numerical conjugates, at which all elements of P, vanish. Then
all elements of Py vanish at all energies E, which implies that D(z1, 22, F) admits a nontrivial factorization.
Alternatively, let (ag, S, S) take on values at which some element of P, does not vanish. Thus some element
of P; is a nonzero polynomial in E. For any value of F that is not a root of this polynomial, there is then an
element of P; that does not vanish at the values (E, ag,.S). This implies that D(z1, 22, E) is not factorable
at such (F,ag,S). Thus, in the second alternative, D(z1, z2, F) is not factorable at each value of E that is
not a root of a certain polynomial.



4.2 Algorithm

We present an algorithm for determining reducibility of the Fermi surface, which leads to a proof of Theo-
rem 1. We implement it in later sections, with a combination of Mathematica® and by-hand computations.

Loop I: do the following steps for each of the sixteen graphs shown in Figs. 5, 6, and 8.

1. Let I' denote one of the sixteen cases shown in Figs. 5, 6, and 8. Let Spr C S be the set of variables
corresponding to edges of I'. That is, the values of the variables in St are nonzero but are otherwise
undetermined and the values of the variables in S\Sr are zero. Set Kr = |Sr| and let St denote the set
of the complex conjugates of the variables in St, viewed as independent from St. Compute D(z1, 29, E) :=
det(A(z) — E), where A(z) is defined in (2.10) with the variables in S\Sp and their complex conjugates set
equal to zero. D(z1, 22, F) is a Laurent polynomial in z; and z5 with coefficients that are polynomials in the
variables (E, ag, Sr, Sr). It possesses the symmetry

D(z1,20) = D(z1 ", 2371), (4.15)

in which D indicates conjugation of the coefficients (Sr, Sr) and not conjugation of the variables (z1, 22).

2. Compute P, := 2{"°25°D, where mgo and ng are the highest powers of z; and 2z in the monomials
of D, which, by (4.15) are also minus the lowest powers of z; and 2 in the monomials of D. In all cases
we compute below, it turns out that, for all choices of agp € R and Sp € (C*)XTr, P, is a polynomial in z;
and zo with neither z; nor zo as a common factor for all but finitely many values of . Let M denote the
degree of P.. Factoring D nontrivially (neither factor is a monomial) into Laurent polynomials in z; and zo
is equivalent to factoring P. into nonconstant polynomials in z; and zs.

3. The polynomial P is of the form Pe =3, c7 cmn2{"23, where Z. = {(m,n) €U :m+n < M}
and U = Z>o X Z>¢. Compute ¢, ,, as a polynomial in the variables (E, ao, Sr, Sr). Identify the set Cy
of “always zero” coefficients ¢, , and the set Cy of “almost never zero” coefficients c,, ,,. More precisely,
(m,n) € Cz if and only if ¢, , = 0 for all real £ and ag and Sr € ((C*)KF, that is, ¢, is identically zero as
a polynomial in these variables; and (m,n) € Cy if and only if for any real ag and Sp € (C*)%r, ¢, =0
for at most finitely many real E, that is, ¢, , is a nonzero polynomial in E for each choice of real ap and
St € ((C*)KF.

4. The polynomial P, factors if and only if there exist polynomials P, and P, of the form P, =
D mmyez, Omm21'25 and Py =37, o7 bmaz{"25 such that

Cmn = > ai b, ¥ (myn) €U, (4.16)
(ivj)+(k7l):(m7n)a(i7j)eI¢1a(kvl)ezb

in which Z, = 7, = {(m,n) € U : m +n < M —1}. To decrease the computational cost, the index sets Z,
and Z, can be reduced by exploiting the relations (4.16). Consider all (m,n) € Cz such that the right-hand
side of (4.16) is a monomial in the a and b coefficients; each of these relations gives a product of coefficients
equal to zero. For each of these (m, n), one of the coefficients (say a; ;) in the monomial must be set to zero
and its index removed from the corresponding index set (say, (i,j) removed from Z,). There are different
ways in which this can be done, and each way yields a reduced pair of index sets (Z,,Z;) with a corresponding
factorization P, = P, P,. Each of these new pairs of index sets leads to new relations obtained by setting the
appropriate coefficients in (4.16) to zero. The new relations may again contain monomials in the right-hand
side, and one can further reduce the index set in different ways. This process can be continued to obtain a
tree of index pairs (Z,,Z;) with terminal nodes being those for which the relations (4.16) have no monomial
right-hand sides for all (m,n) € Cz. Some of these index pairs can be ruled out, namely those for which the
right-hand side of (4.16) vanishes identically for some (m,n) € Cy. In practice, we terminate any part of
the tree whenever this occurs.

Let Nr be the number of reduced index pairs. (We find that, for each of the sixteen cases there are zero
to six reduced index pairs.) Obviously, for any fixed real ag and Sp € (C*)Xr, P, factors at energy E if and
only if P, factors into P, and P, with one of the reduced index pairs at energy FE.

Loop II: do Steps 5-8 for each of the Nr reduced index pairs (Z,,Z;) of index sets obtained in Step 4.



5. Construct the set

I=qcmn— Z a; by, ¥V (m,n)eU ;. (4.17)
(4,9)+(k,1)=(m,n),(i,5)€La,(k,1) €Ty

I is a finite set. Recall that for given {cin,n : (m,n) € L.}, P factors into Py = 37, ez, Gmn27"25 and
Py =3 nnyer, bmn2T' 23 if and only if there exist {ap,n : (m,n) € Lo} and {by,n : (m,n) € Iy} such that
every element of I vanishes.

6. Let £ = |Z,| + |Z|, and fix an ordering O of {a; j,bki;Cmn : (4,7) € Lo, (k,1) € Ty, (m,n) € I}, where
the variables {cy ., : (m,n) € Z.} are placed at the end. Compute the Groebner basis of the (£+1)th
elimination ideal of I with the ordering O, and denote it by GBx(I). By standard nonlinear elimination
theory [4], the Groebner basis GB¢(I) is a set of polynomials in {cp, p, : (m,n) € Z.}, whose zero set is the
projection of the zero set of I onto {¢y p : (m,n) € Z.}. That is, P, factors into some polynomials P, and
P, with reduced index sets Z, and 7, if and only if {¢;, , : (m,n) € Z.} is a root of all elements of GB¢(I).
Note that the {c;,n : (m,n) € Z.} being a root of GB¢(I) is independent of the choice of the ordering O,
as long as {cp n 0 (M, n) € I.} are placed at the end.

7. Compute the set GB of polynomials in (E,ag, Sr, Sr), which is obtained from GB¢(I) by replacing
each ¢, @ (m,n) € I, by its expression as a polynomial in (E, ag, Sr, Sr), according to Step 3. Compute
Coeff g, which is defined to be the totality of all coefficients of the elements of G B when treated as polynomials
in the variable E. It can be seen that Coeffg is a set of polynomials in the variables (ag, S, Sp).

8. Determine whether all elements of Coeffg vanish for some allowed ag and Sr, where St is an element
in (RT)Er or (R*)Er or (C*)Er, with Sp and Sr related through conjugation. When a choice of values of
(a0, Sr) is a root of all elements of Coeffg, then P, factors into P, and P, of types Z, and Z, for all real E.
When a choice of values of (ag, Sr) is not a root of all elements of Coeffr then P. factors into P, and P,
of types Z, and Z; for at most finitely many values of E. This is because, for such (ag, St), GB contains
a nonzero polynomial ¢ in the variable E, whose value will be nonzero for all E except for the finite set of
roots of q. (Note that if Coeffg never identically vanishes for any real ag and Sp € (C*)ET | then it never
identically vanishes for any real ag and Sr € (R*)Er or Sp € (RT)ET))

Here is a summary of the sets of polynomials involved:
I contains the polynomials in (¢ n, @; 5, bk,;) whose vanishing is equivalent to a factorization P, = P, P,.
GBc(I) is a Groebner basis for I that eliminates (a; ;,br,) and retains (cpm ).

GB results from substituting ¢, , in GBc(I) by its expression in the variables (E, ag, Sr, St).

Coeffp  contains the coefficients of the elements of GB as polynomials in F; they are polynomials in (ag, St, Sr).

4.3 Example for the algorithm

We apply the algorithm to Case C5 as an example.
Loop 1.
1. Case C5 has edges St = {a1,a2,as3,by} € (C*)*, and Kt = |Sp| = 4. Thus

1 1 . |
. —E+ap+a1z1 + @127 +agze + Gozy 4 a3zi122 + G32] 25 bo

A(Zl, 2’2) —F = (418)
bo —-F
The highest powers of z; and 29 in D(z1, 29, F), the determinant of (4.18), are 1 and 1.
2. We obtain P. = z125D,
Pc = — angng — (IlZ%ZQE — agzleE + 2’12’2(7|b0|27a0E + Ez) - C_lQZlE - (_1122E - C_L3E. (419)
3. The degree of P, is M = 4. The coefficients ¢, ,,, as polynomials in (E, ag, Sr, Sr), are
cap=—a3E, cy1=-a1E, ci2=—aE, c11=—bobo—aok + E?, (4.20)
c10=—a2E, co1=—-a1E, coo=—ask. .
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The index sets of zero and non-zero coefficients are

Cz ={(4,0),(3,1),(1,3),(0,4),(3,0),(0,3),(2,0),(0,2)} U{(m,n) €U : m+n >4}, (4.21)
Cn =U\Cxz. (4.22)

4. Using the constraints in Cz and Cy = {(2,2),(0,0)} C Cy, we obtain Ny = 3 pairs of reduced index
sets Z, and Z. The corresponding P, and P, are of the forms

P, = a1 12122+ ao0, Py =0b1,12122 +b1,021 + bo,122 + bo,0; (4.23)
P, =ai112120 + ag22 + ao0, Py =b112122 + b1,021 + bo,o; (4.24)
P, = ap,122 + ag,0, P, = bg}lz%ZQ + b1712122 + bl)ozl + b070. (425)

For Loop II, we take Pair (4.23) as an example.
5. The set of coefficients of P. — P, P, in terms of {a; j,bk.1,cmn : (i,)) € Za, (k1) € Ty, (m,n) € I} is

I ={co,0 — bo,0, 0,1 — bo,1,¢1,0 — b1,0,¢1,1 —a1,1bo0, c1,2 — a1,1bo,1, 2,1 — a1,1b10,c22 —a11bii}.  (4.26)

Here, ag,o is set equal to 1 without loss of generality.
6. USng the Ordering 0 = {al,la 0,0, bl,la bl,Oa bO,la b0,0a 02,27 C2.1, 01,27 Cl,l; C1,0, CO,la CO,O}, we Compute
GBc¢(I) in Mathematica®:

2 2
GBc(I) ={ — c1,0¢1,2 + €2,1€0,1,C0,0CT 5 — €1,1€1,2C0,1 + €2,2C5 1,
: ’ (4.27)

2 2
€0,0C2,1C1,2 — €1,0€C1,1C1,2 + €1,0C2,2€C0,1, €0,0C2 1 + €1,002,2 — 61,062,161,1}~

7. Substitute the relations in (4.20) for ¢, , in (4.27) to obtain GB. The set of coefficients of GB as
polynomials in E is

_ o 7 _ o 2 a7
Coeffp ={ a1a1 + asas, —a1as bobo, —apaias — afas — azas, aias, —azas bobo, (4.28)
o I 9 2 _ :

—apaay — Q10203 + A10203, a2d2, a1d2bobo, aga1Gz — G503 — ajds, —a1ds .

When seeking common solutions of the polynomials in Coeffg, we keep in mind that the values of St and
Sr are complex conjugates of each other.

8. The second term in Coeffg is —ajas|by|?, which can not be zero when Sp € (C*)%. This means that,
for all choices of Sp € (C*)%, one of the elements of GB is a nonzero polynomial in E. So if E is not in the
finite set of roots of this polynomial, one of the elements of GB does not vanish at (E, Sr). We conclude
that, for all real ag and Sp € (C*)*, Case C5 factors into Pair (4.23) for at most finitely many values of E.

Repeating Steps 5-8 for the pair (4.24) reveals that Coeffz contains the element ajasas|bo|?. Thus for all
ag and Sp € (C*)*, Case C5 factors into the pair (4.24) for at most finitely many values of E. Similarly, for
the pair (4.25), Coeffz contains the element ajas|bg|?, and thus for all ag and Sp € (C*)*, Case C5 factors
into the pair (4.25) for at most finitely many E values.

The conclusion in this example is that, for all ag and Sp € (C*)*, Case C5 factors for at most finitely
many values of F.

4.4 Proof of Theorem 1(a): Irreducibility

Now we present the proof of Theorem 1 by showing the key results when the Algorithm is performed for
each of the sixteen cases.

Case C7. Sr = {a1,a2,as,by,d1,ds}. Thus Kr = 6 and

Pc = (—bodg — agE)Z%Z% —+ (—bodl — alE)szQ =+ (—d_ldg — (LQE)ZlZS

+ (—‘b0|2 — |d1|2 — |d3|2—aoE + E2)Z122 + (—dlgg — dzE)zl + (—Bodil — dlE)ZQ — 60J3 —ask.
(4.29)
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Case C6. Sr = {a1,az2,as,bo,d1} and P, is equal to (4.29) with d3 = 0.

Case C4. Sr = {a1,a2,bp,ds} and P. is equal to (4.29) with a5 =d; = 0.

Case C3. Sr = {a1,a2,bg,d1,ds} and P. is equal to (4.29) with a3 = 0.

Case B2. We use the isomorphic graph shown in Fig. 10. Then St = {a1, bo, d1,ds} and P, is equal to (4.29)
with as = a3 = 0.

Case Al. We use the isomorphic graph shown in Fig. 10. Then Sr = {bg,d1,ds} and P. is equal to (4.29)

with a1 = as = a3z = 0.
[} o o o
/< ’ /< £ éﬁ
O
Case Al Case B2 Case B4 Case BH
o ° ) )
>\, . >\ O: kﬁ
O
Figure 10: These figures of a fundamental domain depict isomorphisms of the corresponding periodic graph, which
are used for convenience in the analysis of the dispersion function D(z1, 22; E).

In each of these cases, the coefficients in (4.29) do not identically vanish, and thus they all have a common
index set C'z,

Cz ={(4,0),(3,1),(1,3),(0,4),(3,0),(0,3),(2,0),(0,2)} U {(m,n) € U : m +n > 4}. (4.30)
And since |bods|? + |as|? # 0 for all these cases, they have a common subset Cy of Cly,
Cy ={(2,2),(0,0)}. (4.31)

The constraints from (4.30) and (4.31) allow three pairs of reduced index sets, whose corresponding P, and
P, are of the forms (4.23), (4.24) and (4.25). Thus, we can compute Coeffy for Case C7, and obtain Coeffy
for the other cases by setting the appropriate variables equal to zero. Table 1 displays the nonvanishing
entries in Coeffg for each pair in each of these cases.

For Case C4, Coeffg for pair (4.24) does not directly contain an element that is nonzero for ap € R and
{a1,az,bo,d3} € (C*)*. We show that two particular elements of Coeffg cannot be simultaneously zero for
ap € R and {a1,az,bg,ds} € (C*)*. These elements are

{a%a% + ajasbods, —alazbggodg + aldlbgdg + agagbgdg — alagbodgcig} . (432)

The vanishing of the first element in (4.32) requires that a; = —bods/as and a3 = —bodz/az. With these
constraints, the second element in (4.32) becomes b3d3(|az|? +|bo|?)(|az|®+|d3|?)/|az|?, which is nonvanishing
for for ag € R and {a17a27b0,d3} S ((C*)4.

For Case C3, Coeffg for pair (4.24) does not directly contain an element that is nonzero for ag € R and
{ay,as,bo,dy,ds} € (C*)°. We show that three particular elements of Coeffg cannot be simultaneously zero
for ap € R and {ay, az, by, d1,ds} € (C*)°. These elements are

{a3a3 + arasbods,
2@1&%60&1—&0&1&260&3 + 2a§a2d1<f3 + 5@6%&1&3 + Ele)odldg,
a%bgd% — alagb%i)odg—aoagbgdldg + 3a1a2b0d1J1d3 + a1@1b(2)d§ + agégbgdg—aoalboaﬂdg

+ bgdljldg + a%(ﬁd?,, — alagbodgjg}.

(4.33)

The vanishing of the first two elements in (4.33) requires that by = —ayas/ds, ag = (a3dy — d1d3)/(azds).
With these constraints, the third element in (4.33) becomes a%a3(|a1|? + |ds|?)(|az|? + |d3|?)/(d3d3), which
is nonvanishing for all ag € R and {ay, as, by, d1,ds} € (C*)5.
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Class | Pair | non-vanishing element in Coeffg for ag € R and Sy € (C*)Er

C7 | (4.23) bod1dids
(424) a1a203
(4.25) bgbods

C6 | (4.23) bobod1dy
(424) a102a3
(4.25) —aias

C4 | (4.23) a1a2
(4.24) explaned in text
(425) —a1a1

C3 (423) 70,1(7,2
(4.24) explained in text
(4.25) d3bodyds

B2 | (4.23) bod1d3ds
(4.24) arbodyd3
(4.25) bgbodids

Al | (4.23) bodids
(4.24) bidyd,d?
(4.25) bgbodids

Table 1: Nonvanishing entries in Coeffg for the pairs (4.23), (4.24) and (4.25) for Cases C7, C6, C4, C3, B2,
and Al.

In Case C8, St = {a1, az2,bp,d1,da,ds}. Thus Kr = 6 and

P. = (—bodg)zfzg + (—b0d1 — J2d3 — alE)zfzg + (—bodg — d}dg — agE)zle
+ (=didz)z} + (—|bol* — |di|? — |da|?® — |ds|*—ao E + E?)z125 + (—d1d2) 75 (4.34)
+ (7b_0d_2 — dld_g — CL_QE)Zl + (71)_0({1 — dgd_g — a_lE)ZQ — b_od_g
For case B3, Sr = {a1, by, d1,ds,ds} and P, is equal to (4.34) with az = 0.
For case A2, St = {bg, d1,d2,ds} and P, is equal to (4.34) with a; = ag = 0.

In each of these three cases, the coefficients in (4.34) do not identically vanish, and thus they all have a
common index set C'z,

Cz ={(4,0),(3,1),(1,3),(0,4),(3,0),(0,3)}U{(m,n) € U : m+n >4}, (4.35)
and since byds # 0 in these three cases, they have a common subset Cn of C,
Cn ={(2,2),(0,0)}. (4.36)

The constraints from (4.36) allow three pairs of reduced index sets, corresponding to factorizations P, P, of
the forms

(a1,12122 + a1,021 + o122 + ao,0) (b1,12122 + b1021 + bo,122 + bo o) (4.37)
(a0,225 + o122 + ao) (b2,021 + b1,0z1 + boy) , (4.38)
(@122 + ao,0) (2,125 22 + b2 g2} + by 12122 + b1 ozt + bo122 + boyo) - (4.39)

Therefore, we can compute Coeffg for Case C8 and obtain Coeffg for the other two cases by setting the
corresponding variables equal to zero. Table 2 displays the nonvanishing entries in Coeffg for each pair in
each case. The determinant D in Case C8 may factor for all E for some ag € R and Sp € (C*)ET; in fact it
also may factor for all E for some ag € R and Sr € (R*)XT but it only factors for at most finitely many F
for ap € R and Sp € (R*)Er. This is discussed in more detail in Sec. 4.5. The items listed for Case C8 in
Table 2 are items that do not vanish for any ag € R and Sp € (RT)&r.
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Class | Pair | nonvanishing element in Coeffg for ag € R and Sp € (RT)Er
C8 (437) —a%a% - ala%dldg - ala%b()dg — a2b[)d1d2d3
(4.38) a1as + dids
(4.39) a%a% + ajasdids + aiasbods + bodidads
Class | Pair | nonvanishing element in Coeffz for ag € R and Sr € (C*)&r
B3 (437) a%bodldgdg)
(4.38) —bods
(4.39) bodydads
A2 | (4.37) bodidads
(4.38) —bods
(4.39) bodydads

Table 2: Nonvanishing entries in Coeffg for Pairs (4.37), (4.38) and (4.39) for Cases C8, B3, and A2.

Case B6: Sr = {a1,by,dy,da,ds,c1}. Thus K = 6 and

P, = alclzfzg — bodngzg + (0,061 — body — Cigdg — (a1 + Cl)E)Z%ZQ + (—bodz — czldg)zfzg

—dldgzi)) + (—|b()|2 +ajc1 +a1¢p — |d1|2 — |d2‘2 — |d3|2—a0E + E2)Z%ZQ — d_ldgzlzg

o ST _ (4.40)
—|—(a061 - bodg — d1d3)Zl + (—b0d1 - d2d3 - ((_741 + El)E)leg
—60J321 +aicizs.
Since ajc; # 0 and byds # 0, we obtain Cz and a subset C’N of Cy:
Cz ={(5,0),(2,3),(1,4),(0,5), (4,0), (1,3),(0,4), (0,3), (0,2), (0,0)} U {(m,n) € U : m +n > 5} (4.41)

CN = {(47 1)7 (37 2)7 (17 0)7 (07 1)} .

The constraints from (4.41) yield six pairs of reduced index sets, whose corresponding factorizations P, P
are of the forms

(a1,12122 + ag o) (ba,ozf + by 12529 + ba 2 4+ by 12122 + b1 oz1 + bo,122) (4.42)
(a2,027 + a1,021 + ao) (ba,12122 + b1,22125 + b1 12122 + b1 g21 + bo122) (4.43)
(GQ,ozf + a1,12122 + a1,021 + ag ) (52,12’%22 +b112122 + b1o21 + bo,122) (4.44)
(a2,OZ% +ai,12122 + a1,021 + CLo,122) (b2,1Z%Z2 +b112122 + b1 021 + bo,o) , (4.45)
(a1,021 + ao,0) (b371z§’z2 + b2,2zfz§ + ngZ%ZQ + bnglzg + bg,ozf + b1 12122 + b1z + bo,lzg) , (4.46)
(a1,021 + ao,122) (b312722 + ba,121 22 + bagz] + b1,12122 + b1 021 + boy) - (4.47)

Nonvanishing elements of Coeffr for ag € R and Sr € (}C*)6 are, for these six cases respectively, a;cid;ds,
bididad?, a1b3cididad3, b3did3d3, bidid3d3, and a1bocids.

For Cases B4 and B5, using the isomorphic graphs shown in Fig. 10, we obtain Sr = {a1, bo, ds, c1} and
Sr = {a1,bo,d1,ds3, c1}, respectively. By setting di = dz = 0 or d; = 0 in (4.40), we find that these two
cases possess a common Cyz and a common subset Cy of Cy,
Cz ={(5,0),(2,3),(1,4),(0,5),(4,0), (1,3),(0,4), (3,0),(1,2),(0,3),(0,2),(0,0)} U {(m,n) €U : m +n > 5}

C~’N = {(47 1)7 (3a 2)7 (170)v (07 1)} :

(4.48)
The constraints in (4.48) do not allow any reduced index pairs, and so these cases are done.
For Case C1, St = {a1,a2,bp} and
P.=—a921F —a120F — ChZ%ZQE — agzlng + 2122(—b0l30—a0E + EQ) (449)

14



For Case C2, Sr = {a1,as2,bg,d1} and
P.= —ayx1 F — agzlng + zfzz(—bodl — a1 B) + z3(—body — a1 E) + 21 22(—bobo — didi—aoE + EQ). (4.50)
For Case B1, Sr = {a1,bp,d2} and
P, = —bodyz1 — bodgzlzg —a129F — alszQE + 21 20(—boby — doda—apE + E2). (4.51)
In each of these cases P, is of degree 3, and
Cz =1{(3,0),(0,3),(2,0),(0,2),(0,0)} U{(m,n) €U : m+n > 3},

~ (4.52)
Cn = {(2,1), (1,2)} c Cn.

The constraints in (4.52) do not allow any reduced index pairs, so we have taken care of these three cases.

4.5 Proof of Theorem 1(b): Reducibility for the tetrakis graph

We examine the factorizations in Case C8, which is the tetrakis graph. We saw in the previous section that
this is the only case in which the Fermi surface can be reducible. Recall that reducibility can result from three
possible factorizations (4.37, 4.38, 4.39). To determine the graph coefficients that realize these factorizations,
we seek common roots (ag,ay,as, by, d1,ds,ds) of all the elements of Coeffg for each of these three pairs
of factors. For pairs (4.38) and (4.39), we find all roots with ag real and (a1, as,bg,ds,ds,ds) complex,
and for pair (4.37), we find all real roots (ag, a1, as,bo,d1,ds2,ds). Each of these 7-tuples of coefficients
(ag, a1, as,by,dy,ds,ds) corresponds to a discrete graph whose Fermi surface is reducible. The difficulty in
finding all complex solutions to pair (4.37) is discussed at the end of this section.

4.5.1 Complex roots of Coeffy for factorization (4.38)
A subset of Coeffg for the factorization (4.38) in Case C8 is

J = { —a1ay — bods, ayas + dida, —azbody — ayboda+aobods — ardids — azdads, (4.53)
—b3dids + bobgds — didad3 + bodzd3, —bjdids + bjbods — didads + bod3ds ). ’

A common root of Coeffg has to be a common root of 7. We will find all roots of (4.53) and check that
they are in fact roots of Coeffg. From the first two entries in J, a1 = —bods/as and d; = aabods/(aads).
Note that the condition for a; is not achievable if all non-loop edge weights are positive. By substituting
these relations and their complex conjugates into (4.53), the five elements of 7 become (in the same order)
J = {0, 0, J3(a060 — aggg/dg — agdy + 5(2)672/@2 + boBod;;d},/((Zng)),
—(—C_lQbon + aggojz)dg(azl_)gczg - C_LQdegczg)/(agddeJQ), (454)
—(—agbodg + aggojg)dz;(—agbgdg + ClgCZngCZg)/((IQanQJQ)}.
Vanishing of the third entry in (4.54) requires that ag = asbo/dz + Gada /by — boda Gz — bodsds/(azds) and
that this expression be real (since ap must be real). By making this substitution for ag in (4.54), J is
updated to S ~ -
J = {07070, —(—agbods + a2bod2)d3(a2b(2)d2 — Godadsds)/(azaadads),
—(—agbodz + QQBUCZQ)dg(—fLngdQ + a2J2d3gg)/(a2d2d2JQ)}.
For (4.55) to vanish, either as = QQBO_JQ/(I_)Od_Q) oras = a%czgdgtfgi/(b%dg). In the former case, (4.55) identically
vanishes and ag — agbo/dg + deQ/bo — bodg/(_IQ — bodgdg/(agdg) € R. Note that ao = a2b0d2/(b0d2) is a
constraint on as and as but does not eliminate as and as. We obtain that the substitutions
ap = asby/dz + aads /by — boda/as — bodsds/(azds),
a; = —bodz/az,
Ay = agbodg/(bodg),
dy = @Qbodg/(agdg)

(4.55)

(4.56)
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cause (4.53) to vanish. In the latter case, by substituting @y = asdadsds/(b2dz) into (4.55), J is updated
into

J =1{0,0,0,0, —(boby — dsds)?(bobo + dsds)/(bods) }. (4.57)

Thus bobg — d3d3 = 0. In fact, the relations @y = aadadsds/(b3ds) and boby — dzdz = 0 combine to give
@y = agbodsy/(bodz), which turns the latter case (@ = asdadzds/(b3dz2)) into a subcase of the former case
(@y = asboda/(bodsz)). We check in Mathematica® that Coeffr vanishes identically for (4.56). Thus all
complex solutions to Coeffg; for ag € R and Sp € (C*)S are represented by (4.56).

We conclude that P, factors into the form (4.38) if and only if the relations (4.56) are satisfied. These
relations provide a parameterization of all factorizations of P. by the four variables {as, by, d2,ds}. The
factorizations are

|do|* P. = —(dadsz} + dads + (|ds]® + |da|* + a2d2E/bo)21) (bod225 + boda + (|da| + [bo|* + bod2E/az)z2).
(4.58)

4.5.2 Complex roots of Coeffy for factorization (4.39)
A subset of Coeffy is

K= {(6_11(12 + didz)(@1az + bods), (—dida + bods)(didz — bods ) (body — Cl2d_3)2 )

—ayaydydydady + a3bodydads 4 atbodydads — ayarbobodads ,

apbpd2dy — asbodidyds + a1b3bodidads —agbadi dads — arbodsdydads + asbodidads — arbodydada

—agb3bodydz — a1 b3bidads+aobibodydads+agbodididads — adididads — azbididedads

—agbobody dads + asdidy dads + a1bobodadads+agbodidadads — ardydydadads — asdydadyds

+agbibodads — agbodydydadi—agbobodads + 2a1bodydada—agdydidada + azbodsds + aodidads

tasbidids + 2a1b3d3 dyds — a1bibodydzds—aobididsds + ai1bodidydsds — azbodidadsds

+agbididids — aybobodadids+agbodidadads + aydidydadids — agbodadsds — aybodydads

a1d@1 aza2bobo+agtyazdzbodi +agaraztobody + ararastadidy — aztiabobodidi+agararazbods

—ayagbidido—adayasdidy + ayasaididy + ayasbobody da+2a0asbodidyds + 2a1aadydadsy (4.59)
—|—a0a161a250c72—a%dla2d152 + dlagdgdljg + a1asbobodids — alagggd_1622+2aoa250d1(zlg2
+2a1azdidydo + a1a1azazdads — aya1bobodadat-2a0ay body dada+2a0a1body dads—3aidy dydads
+2asa9d1dydady + bobodidydads + 3did:dads + 2a1aad1dads + 261 azdydads + 3dydydads
—aya5a3bods+agayayasdids — Gyasbodydids — ayasbodsds — a2bodydads+agaiazdodads
—aya1bodydods — agasbodydads — 2apaydydydads — bodyddads — a1asbodadads+2a0asd; dadads
falaQBojﬁdg — l_)oczldgcgdg — d1a2J1J2d§ — alagdgl_)ocngragal&lagleg — dlagbodfczg
—ayazbodidids+agarasasdeds — ararbodidads — ax@zbodidads+2apardididads — bodidydads
—ayasbodads — a3bodydads — ayasbodadads+2agasdidadads — bodydadads + 1@y asasdsds

—a1d1d1d1dsds + a1Godydadsds + Gyasdidadsds — asdadedadsds + didydadadsds — &1&2d1d2(i§ }

A root of Coeffg has to be a root of K. From the first entry in &, a; = —dldg/ag or a; = —bods/ay. From
the second entry in K, dy = byds/dy or di = dyds/by. Next, following the approach in Sec. 4.5.1, it turns
out that all roots of I take four forms; one of them is equivalent to (4.56), and the others are subsets of the
set defined by (4.56). A factorization of the form (4.38) implies a factorization of the form (4.39). Thus all
roots of Coeffg for pair (4.39), and therefore all factorizations of the form (4.39), are given exactly by the
parameterization (4.56). This implies that each factorization of the form (4.39) is in fact a factorization of
the form (4.38).
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4.5.3 Real roots of Coeffy for factorization (4.37)

Observe that, if P, factors into the form (4.38) for some graph operator, then it also factors into the
form (4.37). We now seek all graphs for which P, factors into the form (4.37). As stated in Theorem 1, we
are able to parameterize all such graphs with real coefficients.

Let us briefly summarize the methods of the previous two subsections. For pairs (4.38) and (4.39) of
Case C8, the method for obtaining all roots of Coeffg for ap € R and Sr € (C*)° goes as follows. Coeffx
is generically a set of polynomials in variables {z; : 1 <i < N}. Suppose Coeffg contains an element that
factors into M factors and, for each k : 1 < k < M, when the kth factor is zero, one variable, say x;,,
can be solved in terms of other variables (complex conjugates are treated as independent variables). In this
situation, finding roots of Coeffg is equivalent to considering M cases where each factor is zero. In the kth
case, we substitute for x;, its expression in terms of other variables into all the elements of Coeffg. When this
expression does not involve Z;, , we also substitute Z;, by the conjugate of the expression for z;,. After this
substitution, Coeffg is updated and the number of variables decreases. If this process can be repeated until
all polynomials in Coeffg either identically vanish or one of them is identically nonzero (such as aja; + b252)7
then we have obtained all common roots of the elements of Coeffr and therefore all graphs that factor into
the given form P, = P, P,.

It turns out that, by this method and symmetry analysis in this section, all admissible graph operators
with real coefficients and factorable dispersion function can be determined. But the algebraic equations
become prohibitively complicated when the graph coefficients are allowed to be complex, even with a com-
bination of computer and by-hand computations. Thus the only part of this study that remains incomplete
is the determination of all graph operators associated to the tetrakis graph that have non-real coefficients
and for which the Fermi surface is reducible.

For E,ap € R and Sr € (R*)S, we can obtain all factorizations of P, into pair (4.37) by exploiting
symmetry. When all these variables are real, the symmetry D(z1,29; F) = D(2; ', 25 '; E)) becomes

D(z1,22;F) = D(27 Y, 25 1 E). (4.60)

Suppose that D(z1, 22; F) factors into two Laurent, non-monomial, polynomials D(z1, ze; E) = A(z1, 22)B(z1, 22).
Then
D(z1,29; E) = A(21, 22)B(21, 22) = A(zl_l,zgl)B(zl_l,zgl). (4.61)

Multiplying by z]"°z5° as in Step 3 of the algorithm yields
Pu(z1,22) = 20250 A(21, 22) B(21, 20) = 270250 A(27 Y, 25 D B2t 257 h). (4.62)
If P, factors into pair (4.37), then (4.62) implies
P, = F\F; = FyFy, (4.63)

in which

Fi = a1121220 + a1,021 + ao,122 + ao,0,
Fy = by 12122 + b1,021 + bo,122 + bo 0,
F3=a11+a1,072 + ao,121 + ao,02122,
Fy =b1,1 4+ b10z2 + bo,121 + bo 021 22.

If one of Fy, Fy, F3 and F, factors, then it is reduced to pair (4.39). All the graphs in this case are
parameterized by (4.56) with the values of {az, bg, d2,d3} being real.

Thus we need only to consider the situation in which Fy, F5, F3 and F} are all irreducible. In this case,
we have F3|Fy or else F3|Fy, since Clz,y] is a unique-factorization domain.

Claim 3. F3 'I,Fl
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P?”OOf. The assumption that F3|F1 implies that (a171, a1,0, a071,a0,0) = O(a070,a071, a1,0, Cl171). This leads to
C? =1 and therefore C = +1. Thus P, factors into either
P, = ap,0z122 + ag,121 + ag,122 + ag o

(4.68)
Py = b1 12120 + b1,021 + bo,122 + boo

or else

P, = —ag0z122 — ao,121 + ag,122 + ag o (4.69)
Pb = b1712122 + bl’ozl + b0712’2 + b()’o. ’

Performing Steps 5-8 of the algorithm for the pair (4.68) reveals that Coeffg contains the element —1; and
performing the algorithm for the pair (4.69) reveals that Coeffy contains the element 1. In either case, P,
is not factorable, which is inconsistent with the assumption (4.63). O

In the case in which Fy, F», F5 and Fy are all irreducible and F5|Fs, we have (a11,a1,0,a0,1,00,0) =
C(bo,0, bo,1,b1,0,b1,1) for some complex C. That is, P, factors into

P, = C(bo,oz122 + bo121 + b1oz2 +b11),

(4.70)
Py = b1 12120 + b1,021 + bo,122 + boo.

Performing the algorithm for the pair (4.70), we obtain that Coeffg consists of the following four polynomials
in the variables (ag, a1, az, bo, d1,ds, d3):
Coeffg = {(alag + dids)(aras + bods) ,
2a1a§bod1 + 2a%a2b0d2—aoa1agd1d2 + agbod%dg + albodldg—a0a1a2b0d3 + 2a§a2d1d3 + agbgdldg
+2ay1a3dads + a1bidads—2agbodydads + aydideds + agdydads + aybodyds + agbodads
asb3ds + 3ayasbidyda—agazbodids — ayasdids + atbids—agaibodids + aidids + a3dids
+badids — ajagdyds — ayasbidz—agazbidyds + 3aiazbodi dz—agar bideds+aibody dads — bydydads
—apadidads — bodidads + 3a1asbodids—apasdidids — bodydads + a2b3ds + a2bid3—agarbod,da
+aidid; + bydids—apasbodads + 3ajasdideds + asdads + bidsds + didsds — ayasbods — bodydads
asbydidy — azbodids + arbydyda—agbidids + aibodsds + asbodidy — a1bodids — azbydids + asbidids
—a1bgdadz+aobydidads — 2a1b3d2dods+agbodidads — ardidads — 2asb3dydids + axdidads + aybidsds
+apbodydids + ardidsds — asdidyds + a1b3didi—agbid2d3 + ai1bodids + asbidadi — 2abod? dyd>
—apbZd3d3 — 2a1bodyd3ds—agdidada + azbodsds + asbidids + a1bidadi+agbodidads + ardidads

—‘ragdld%dg - a1b0d1d§ — a2b0d2d§ }
(4.71)
We will find all simultaneous real roots (ag, a1, as,bg, d1, ds, ds) to the set (4.71). The vanishing of the first
element in Coeffy implies that a; = —dyda/az or a1 = —bods/as. Updated with a; = —dyda/ag, the second
element in Coeffr, becomes

a;l(—dldg + bodg) (—aoagdldg — dldg(bodz + dldg) + a%(bodl =+ d2d3)) (472)

Thus d1 = bodg/dg or ag = (—dldQ (bodg + dldg) + a% (bodl + dgdg))/(agdldz). With these two substitutions
separately, the third element becomes

42 (—apasbods + a2(b3 + d2) — b (d2 + d2))* /(a3d2) (4.73)

or

(a5 + d}) (a3 + d3)(dids — bods)? /a3, (4.74)
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respectively. By setting (4.73) to zero and solving for ag or setting (4.74) to zero and solving for d;, one

obtains exactly the same expressions for ag and d;. Thus in the case a; = —djds/as, we must have
ao = (a5(bg + d3) — by(d5 + d3))/(azbods),
a1 = —bpds/az, (parametrization for real coefficients) (4.75)
dy = bods/ds.

Similarly in the case that a; = —bgd3/as, we obtain exactly these same expressions for d; and ag (for this,

the fourth element of Coeffg is used). Thus, (4.75) holds in any case. It can be checked that all elements of
Coeff; vanish when (4.75) holds. Thus all solutions to Coeffg for ag € R and Sr € (R*)S are given by (4.75).

Summarizing, we have proved in the case of real graph coefficients that if the polynomial P. admits
a factorization of the form (4.37) and the polynomials Fy, Fy, F3 and Fj are irreducible, then the graph
coefficients must satisfy the relations (4.75). One finds that the set of real tuples (ag, a1, a2, bg, d1, ds2,ds3)
that satisfy (4.75) coincide exactly with the relations (4.56) when all variables are real. Those relations
correspond to the graphs for which one (and therefore all) of the F; is reducible, and, as mentioned above,
such graphs are subsumed by the factorization form (4.39) and therefore also of the form (4.38). This implies
that the assumption that all F; are irreducible is untenable.

This concludes the proof that all graphs with real coefficients and reducible Fermi surface must admit
a factorization of the form (4.38) and that all such factorizations are parameterized by four real variables
according to (4.75). Explicitly, the factorizations are

d%Pc = —(dgdng + dods + (d§ + d% + &2d2E/bo)Z1) (bodgz’% + bodo + (d% + b% + bonE/ag)Zg), (476)
and the corresponding factorizations of the dispersion function are

2 2
D(z1, 20, E) = — (dg(zl TR S ‘;—OE) <b0(22 + ) rdy+ By Z—°E> . (4.77)

We end this section with a short discussion on complex graph coefficients, particularly, explaining why
symmetry does not help with the search for all factorizations of P.. A factorization of the form (4.37) implies
eight variables in the polynomials in the set I in Step 5 of the algorithm. When ay € R and Sp € (C*)S, this
factorization, together with the symmetry D(z1,20; F) = D(zfl, z;l; E) implies P. = F1 F» = F5Fy with

Fy= 21" 25" A(21, 22) = a1,12122 + a1,021 + Q0,122 + 0,0, (4.78)
Fy = 21252 B(#1,22) = b1,12122 + 01,021 + bo,122 + bo 0, (4.79)
I3 = zi"‘”’zg‘“*A(zl_l, z;l) = {11 + Q1,072 + Go,121 + Q0,021 22, (4.80)
Fy =2z 4B(z:l_l, 22_1) =b11 + b1022 + bo121 + bo 02122 (4.81)

If Fy, Fy, F3 and Fy are all irreducible, then either F5|F) and Fy|F5 or F3|Fy and Fy|F). In the case F3|Fy
and Fy|Fy, we obtain
C(ay,1,a1,0,G0,1,00,0) = (bo,0,00,1,01,0,b1,1), (4.82)

where C' is some complex number. This means that P, factors into

P, = a1,12122 + a1021 + ag,122 + ago (4.83)

Py, = C(agpz122 + Go,121 + G1,0%2 + G1,1)- .
Since complex conjugates must be treated as independent variables in the process of variable elimination
using Groebner-basis routines, the symmetry has not reduced the number of variables in the polynomials of
the set I in Step 5 of the algorithm. In fact, GBx(I) has not changed at all. Determining all factorizations
of the form (4.37) for the tetrakis graph with complex coefficients remains unsolved.

5 Necessity of positivity and planarity: Reducible Fermi surfaces

The examples in this section demonstrate that the positivity of the coefficients and the planarity conditions
for irreducibility of the Fermi surface cannot be dispensed with.
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5.1 A non-planar graph with arbitrary coefficients

Non-planar graphs obtained by coupling two identical copies of a given periodic graph provide easy examples
of reducible Fermi surfaces, as demonstrated in [14]. Fig. 11 depicts two identical copies of a (planar) square
graph coupled by edges between corresponding vertices. The resulting graph is not planar. The matrices
A(ny,ng) for this example are

A(0,0):{g 8] A(l,O):[g 2} A(O,l):{g 0], (5.84)

c

plus A(—1,0) = A(1,0)* and A(0,—1) = A(0, 1)* being determined by self-adjointness and the rest vanishing.
The Floquet transform for the operator A — F is

. azy +az;t fezm+izn — E b

A(Zl, 22) —F = y (585)

b azy +az; +em et — E
and its determinant is
det(A(z1,20) — E) = (az1 +a@z; ' + ez + ezt + [b| — E) (az1 + az; ' +cza 2 — b - E),  (5.86)

which demonstrates the reducibility of the Fermi surface for all energies E. This type of graph is a case of
a more general construction of coupled graph operators with reducible Fermi surface [14].

Figure 11: A periodic non-planar graph with reducible Fermi surface. The solid vertices and edges form a fundamental
domain.

5.2 Planar graphs with indefinite coefficients

According to Theorem 1(a), the Fermi surface of admissible graphs with positive coefficients is always
irreducible. But for the tetrakis graph, factorizations of the form (2.11) described in Theorem 1(b) and
parameterized in section 4.5.1 can be obtained with indefinite graph coefficients. Fig. 12 shows some of these
graphs with coefficients equal to £1. The associated factorizations of the dispersion function are

Dwy(B,z1,20) = (s14+ 27" +2—E) (22 + 25 +2+ E),

Dy (E,z1,20) = (1 + 2] " 42— E) (22+2, ' —2—E),

D) (E,21,22) = (zlJrzl_l 72+E) (22+z2_1 foE).
These three graph operators are unitarily equivalent by gauge transformation since they have identical circuit
fluxes, by extending [12, Lemma 2.1] to periodic graph operators. Their Fermi surfaces are transformed by
21+ z1€1 and 29 — 20€'®t, where ¢; is the phase advance along the j-th period vector. Each of these

phases is 0 or 7 (mod 27), depending on the sign of the coefficient along the horizontal or vertical edge.
This implies that the spectra of these three operators are identical; in each case, the first factor of D;
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Figure 12: Doubly periodic planar graphs with indefinite coefficients and reducible Fermi surface. The solid vertices
and edges form a fundamental domain, and £1 are coupling coefficients, as described in section 5.2.

(j € {a, b, c}) contributes the interval E € [0, 4], and the second contributes E € [—4,0]. The dependence of
the spectrum of periodic discrete magnetic operators on fluxes is studied in [9].
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