2021 IEEE/ACM 29th International Conference on Program Comprehension (ICPC)

Understanding Execution Environment of
File-Manipulation Scripts by Extracting
Pre-Conditions

Rodney Rodriguez and Xiaoyin Wang
Department of Computer Science
University of Texas at San Antonio
rodney.rodriguez@my.utsa.edu, xiaoyin.wang@utsa.edu

Abstract—TFile manipulation scripts are widely used in software
projects to operate the file system at run time. Due to the
emergence of DevOps practices in software industry, developers
also use longer and more complicated file manipulations in
their continuous integration and deployment scripts to automate
software build, testing, and deployment in different environment
configurations. A major challenge on understanding these scripts
is that they make lots of implicit assumptions on the file system
they are executed on. Such assumptions are rarely documented
and often do not hold when a script is moved to another execution
environment. In this paper, we propose a static-analysis-based
technique that statically infer the directory tree pre-condition
of the file system required to execute a file manipulation script.
We evaluated our analysis on 58 docker files and the experiment
shows that our technique is able to generate directory tree pre-
conditions on real world scripts efficiently.

I. INTRODUCTION

File systems are widely used for data storage in computer
systems. To automatically manipulate files, various software
projects use file manipulation scripts combining basic op-
erations such as touch, cp, and rm provided by the op-
erating system. Furthermore, the emerging DevOps practice
in software industry requires the developers to fully auto-
mate the software building, testing, and deployment process,
which leads to more complicated file manipulations in build
scripts (e.g., gradle scripts, makefiles), deployment scripts
(e.g., docker files), and continuous integration scripts (e.g.,
gitlab.yml, travis.yml).

A large portion of runtime errors in file manipulation scripts
are related to path existence properties of the underlying file
system. As a basis for estimation, we studied the open bug
report repositories [1] of software projects. In Github which
stores 391,231 closed bug reports in total for all Shell script
projects, searching for the key phrase “file not found” and “file
already exists” returns 33,466 results (performed on March
2274 2019). Furthermore, path-existence-related failures are
typically severe because they will directly cause termination
of script execution which is often followed by a software crash.

Although file manipulation scripts are relatively short, they
are still difficult to understand and run because developers
often make assumptions on the existing paths in the file system
over which they do not have full control. Once the system is
modified by other scripts, and/or the script is executed on a

2643-7171/21/$31.00 ©2021 IEEE
DOI 10.1109/ICPC52881.2021.00048

406

different machine, the assumptions may no longer hold and
the script will suffer from path-existence-related errors. To
reduce path-existence-related errors, in this paper, we present
a novel static-analysis-based technique to infer path-existence
pre-conditions of file-manipulation scripts. In particular, given
a piece of file manipulation script, our approach calculates the
pre-condition for each control flow point in the script. The pre-
condition at the beginning of the script can be then checked
against a file system’s file structure to determine whether the
script can be executed on the file system without causing path-
existence-related errors.

The first step of our technique is to design an abstract
domain that summarizes the path-existence states of a file
system. Despite the extensive research efforts [2] [3] on
summarizing memory states including modeling both variable
values [4] [5] and heap shapes [6] [7] [8], there have been few
techniques developed to summarize file-system states, which
brings two special challenges. First of all, unlike memory
locations which are usually referred to by variable names and
field names hard-coded in the source code, file system paths
are often string values generated at run time by concatenating
string variables. Second, although a file system state on path
existence can be presented as a path tree, unlike the tree or
graph domains used in heap shape analysis where edges can be
labeled with predefined field names/indexes, the possible edge
labels (folder and file names) in a directory tree are generated
by the program at run time and thus are usually unbounded.

To overcome these two challenges, our key insight is to
summarize the run-time state of a file system as a set of string
values, each of which represents an existing path in the file
system. Thus the state of the file system is presented as all
the currently existing paths, and the abstract domain of the
file-system state in static analysis can be defined as a string
set that contains all possibly existing paths in the file system
at a program point. To handle infinite paths / path sets due
to loops and regular-expression-based path presentations (e.g.,
“rm foo/bar*”), we further use an automaton to represent the
set of all possible paths. Such an automaton is referred to as a
File-System-State (FSS) automaton, and the transfer functions
of file operations such as cp and rm can be modeled as finite
state transducers that transform one FSS automaton to another.

To sum up, this paper makes the following main contribu-

tions.

o An intermediate language FMIL that captures path-
related semantics of file manipulation scripts.

o A static analysis FiFA that infers all possible directory
tree states of running a given file manipulation script.
Within FiFA, we use FSS automaton as abstract domains
and finite state tranducers to define transfer functions.

o An evaluation on 58 dockerfiles which shows that FiFA is
able to generate preconditions within reasonable amount
of time.

The rest of this paper is organized as follows. Section II
is going to present a motivating example to illustrate the
requirement of FiFA and just the techniques we develop. We
will introduce the details of FiFA in Section IV, and present
our evaluation setup and results in Section V. After that, we
discuss related works in Section VI. Finally, we conclude in
Section VII.

II. EXAMPLE

In this section, we present an example to illustrate the
problem we are solving. Below is a real-world dockerfile
from project Zalenium'. The original dockerfile has 434
lines so we cannot put the whole file here and can provide
only two code snippets. The two snippets show two RUN
commands (running its argument as a shell command) with
if conditions. The first snippet checks whether the option
kubernetesSlimVersion is set to true, and if it is not set,
the dockerfile will download and set up the docker libraries.
The second snippet setup the testing bots when they are
enabled in the configuration. Both snippets create and remove
some folders / files in the file system, and make assumptions
of the file system. For example, the first snippet assumes that
“docker/” exists, and the second snippet assumes that “tmp/”
exists.

RUN if ["${kubernetesSlimVersion}" = "false"]; then \
set —x \
&& DOCKER_VERSION="17.12.0-ce" \
&& curl -fSL "https://${DOCKER_BUCKET}/linux/static/..."\
—o docker.tgz \

&& tar —xzvf docker.tgz \

&& mv docker/docker /ust/bin/docker—${ DOCKER_VERSION} \

&& rm —1f docker/ && rm docker.tgz \

&& docker-${DOCKER_VERSION} ——version | grep "$ { DOCKER_VERSTION }
H; \

else \
echo "Skipping_adding, Docker because_of, kubernetes _slim_
mode"; \
fi
RUN if ["S{testingBotEnabled}" = "true"]; then \
cd /tmp \

&& wget —nv "$ {TB_TUNNEL_URL}" \

&& mv testingbot—tunnel. jar /usr/local /bin \

&& java —jar /usr/local /bin/ testingbot —tunnel. jar ——version; \
else echo "Testing_Bot _Disabled";\

fi

There are many such configuration-guarded file manipula-
tion pieces, making it difficult to test all of them and find out
all the possible pre-conditions of the file system state before
running the script.

Uhttps://github.com/zalando/zalenium

III. INTERMEDIATE LANGUAGE

File manipulation scripts can be written in many different
programming languages, such as shell script, docker files,
yml files, etc. These programming languages are also usu-
ally dynamic and flexible so that they allow code of other
programming languages to be inserted as a part of its code.
For example, it is standard practice to have embedded shell
script snippets in Docker files and yml files. Furthermore,
software configuration and deployment systems evolve very
fast, so do the file-manipulation scripts they use. In the past
decade, we witnessed the emerging of many new types of
file manipulation scripts such as gradle scripts for gradle
build tools, travis.yml for TravisCI continuous integration, and
Docker files for Docker. Based on the above observations,
we developed our technique on an intermediate language so
that various current and future file-manipulation scripts can be
benefit from our technique.

Since our technique uses its own intermediate language and
we want to analyze Docker files in our evaluation, we need
a way to convert the Docker files to data that our framework
can understand. To do this we used a Dockerfile parser to
look for Docker commands that could potentially modify the
file systemz. Commands such as COPY, ADD, and RUN
can affect the Docker container’s file system. The COPY
and ADD commands are fairly straight forward and could
be translated to our framework’s copy command. The RUN
command is the most challenging one to transform because
it could be any shell command within the container. It is
possible to make almost any modification to the file system
using the RUN command. There were so many possibilities
and due to time constraints we had to only consider the
most common RUN commands. As per Docker’s Dockerfile
documentation, the RUN command is run in a shell, which
by default is ‘/bin/sh -c* on Linux®. In an effort to handle
most RUN file cases, we implemented a shell parser to parse
all the RUN commands within our Dockerfile data set*. We
searched through all the RUN commands and counted each
shell command occurrence. We decided to support the top 25
shell commands with the highest number of occurrences that
may modify the file system.

IV. APPROACH
A. Abstraction Domain

In our technique, we use automaton as the abstract domain.
The automaton represents all possibly existing file paths in the
file system at a program point. For example, for the following
piece of code, the automaton at the end of the program is
shown in Figure 1
mkdir " tmp’
if (other) {

touch ’ tmp\abc’

Jelse {
touch ’def’

Zhtps://github.com/asottile/dockerfile
3https://docs.docker.com/engine/reference/builder/#run
“https://github.com/mvdan/sh

Fig. 1: An Exemplar FSS Automaton

In figure 1, we can see that, FiFA uses a post fix “/” to
indicate that a path value is a folder. So FiFA can detect errors
when a file is being referred to as a folder and vice versa.

B. Transfer Functions

To infer the pre-condition of a file-manipulation script, we
need to run our analysis backward from the end of the script.
The abstract domain is initialized as an empty automaton
because no directory tree assumption is required at the end
of a script. Whenever our analysis passed a file manipulation
operation, it needs to apply the transfer function to the abstract
domain. Note that we maintain two abstraction domains, one
for positive pre-conditions (indicating that certain paths need
to be existing, denoted as D), and the other for negative pre-
conditions (indicating that certain paths must not be existing,
denoted as V).

Since the basic operations such as union are well defined
for automaton abstract domain, we just introduce our transfer
functions for the basic file operations: touch, mkdir, cp,
and rm. The mv operation can be presented as a cp operation
and a rm operation, so we just translate it to two more basic
operations. In particular, transfer functions for the five basic
operations are presented below.

touch x : N = N U automaton(x)

1
D = D Uparentdir(x) M
mkdir x : N = N U automaton(z + “/”) 2
D = D U parentdir(x)
epxy: N =N Uautomaton(y + basename(x)) 3)
D = D U automaton(x)
rm x : D = D Uautomaton(x) 4)

In the functions, we use D and N to denote the positive and
negative abstract domain before (on the right hand side) and
after (on the left hand side) the operation. We use function
automaton(x) to denote the automaton generated by string

408

analysis for path variable x. It should be noted that we do not
have a transfer function for cd because it does not change
the file system state, but only change the current directory.
We handle cd by moving CD flags (indicating Current Di-
rectory) on the states of the FSS automaton. When cd x
is encountered, we will calculate the intersection between
FSS automaton D and automaton(z), and put flags on the
states in D which are paired with an acceptance state of
automaton(x) during the intersection process, and remove
CD flags from all other states. For rm and rmr, we will do
the automaton difference only if « is a constant string, to make
sure our transfer functions are conservative. Otherwise since
automaton(x) is an over-estimation of x’s possible values,
the difference between D and automaton(x) can be an under-
estimation.

We use function basename(z) to denote the automaton
generated by extracting the base filename of a path variable z.
Here we can see that because x is an automaton, the function
basename can only be implemented as a transducer, which
is presented in Figure 2. In the finite state transducer, we use
eps to denote €, and textttuO001-uffff to denote the whole
character set 3, and * as an output indicates that the output
of the transducer at the specific transition will be the same as
the input.

Fig. 2: FST to extract the basename

We use function parentdir(z) to denote the automaton
generated by extracting the parent directory of a path variable
z. For example, the parent directory of a regular expression
a/b/cla/d would be a/b/|a/. The transducer to extract
parent directory from a path variable x is presented in Figure 3.

w0001 -uffff ==

Fig. 3: FST to extract the parent folder

The definition of paths in file manipulation scripts can be
various. For example, mkdir abc and mkdir abc/ both
create a folder with name abc. This may cause our automaton
to have extra file path separators, resulting in double file path
separators or extra file path separator at the end of a path
value. To remove such extra path separators, we design the
following two finite state transducers as shown in Figures 4
and 5.

Fig. 5: FST to remove the last file path separator

V. EVALUATION
A. Evaluation Setup

In our evaluation, we use a set of Docker files from a pop-
ular curated list of Docker resources and projects on Github®.
We created a simple program to extract any projects that
included any source code written using the Go programming
language. We used a Dockerfile from each repository and
automatically parsed them to generate an intermediate script
that our framework could use to perform the analysis.

The results presented in this report were performed on
a computer running Windows 10 with an Intel i7-6700K
CPU and 16GB RAM. Our implementation and all evaluation
subjects are available at our anonymous project website®.

B. Evaluation Results

Our evaluation results are presented in Table I. The Columns
2-5 present the minimal, maximal, median, and average value
of LOC (lines of code) of the file, execution time, and the total
number of nodes in precondition automatons, respectively.
From the results in the table we can see that the execution
time of our technique is minimal, with a maximal execution
time of 263ms, average execution time of 38ms, and median
execution time of 21ms. Our created precondition averagely
has 30 nodes and has 26 nodes as median. This shows that
our generated pre-conditions are generally of readable size by
users.

VI. RELATED WORKS

Horton and Parnin developed a technique [9] that aims to
solve the dependency resolution problem by taking a runnable
code snippet and installing all language-level and system-level
dependencies so that we may execute the snippet without
any import errors. Wolf et al. proposed an approach [10]
to predict build errors from the social relationship among
developers. Mclntosh et al. [11] carried out an empirical study

Shttps://github.com/veggiemonk/awesome-docker
Ohttps://sites.google.com/site/fifarepo/

409

TABLE I: Analysis Results

Type Min | Max | Median | Average
LOC 4 51 13 17
Execution Time (ms) 3 263 21 38
PreCondition 2 88 26 30

on the efforts developers spend on the building configura-
tions of projects. Tamrawi et al. [12] proposed a symbolic-
execution-based technique to analyze Make files and detect
bad smells / common errors. Downs et al. [13] proposed an
approach to remind developers in a development team about
the building status of the project. Al-Kofahi et al. proposed
an approach [14] to detect semantic changes in Make files,
and later proposed an a fault localization approach [15] for
Make files, which provides the suspiciousness scores of each
statement in a Make file for a build error. Rehearsal [16] is a
verification framework for configurations written in puppet. In
particular, Rehearsal uses several static analyses to shrink the
puppet abstraction models to a tractable size, and then frames
determinism-checking as decidable formulas for an SMT
solver. Tamrawi et al. [17] developed a symbolic execution
framework, SYMAKE, for analysing make files and detect
errors. SYMake first produces a symbolic dependency graph
(SDG), which represents the dependencies among files during
the building process. Adams et al. [18] presented a design
and implementation of a reverse-engineering framework for
build systems. Hassan et al. studied the feasibility of automatic
software build [19], [20] and developed novel techniques to
predict build results [21] and to repair build scripts [22] /
docker files [23].

Our work is also related to string analysis [24]. Along
this line of work, Wang et al. [25], [26], [27] developed
techniques to trace origins of string values for software in-
ternationalization. Zhang et al., developed a string-analysis-
based approach [28] to detect errors in database applications.
Mostafa et al. [29] and Rodriguez et al. [30] developed
NetDroid and NTApps to summarize network traffic based on
string analysis.

VII. CONCLUSION

In this paper, we present a novel file flow analysis frame-
work that infers pre-conditions of file-manipulation scripts.
Our evaluation on more than 58 Docker files shows that
our analysis can efficiently perform the analysis averagely
within 38 milliseconds. In the future, we plan to extend our
translator tool to handle shell environment variables, Docker-
file ENV commands, and conditional statements within RUN
statements. We may also wish to add support for additional
commands within the Docker RUN command.

ACKNOWLEDGMENTS

This work is supported in part by NSF Awards NSF-
1736209, NSF-1846467, and NSF-2007718.

(1]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

Y. Song, X. Wang, T. Xie, L. Zhang, and H. Mei, “Jdf: detecting
duplicate bug reports in jazz,” in 2010 ACM/IEEE 32nd International
Conference on Software Engineering, vol. 2. IEEE, 2010, pp. 315-316.
A. Miné et al., “Tutorial on static inference of numeric invariants
by abstract interpretation,” Foundations and Trends® in Programming
Languages, vol. 4, no. 3-4, pp. 120-372, 2017.

P. Cousot, “Abstract interpretation,” ACM Computing Surveys (CSUR),
vol. 28, no. 2, pp. 324-328, 1996.

D. Monniaux and L. Gonnord, “Cell morphing: From array programs
to array-free horn clauses,” in International Static Analysis Symposium.
Springer, 2016, pp. 361-382.

A. Cortesi and M. Zanioli, “Widening and narrowing operators for
abstract interpretation,” Computer Languages, Systems & Structures,
vol. 37, no. 1, pp. 24-42, 2011.

R. Wilhelm, M. Sagiv, and T. Reps, “Shape analysis,” in International
Conference on Compiler Construction. Springer, 2000, pp. 1-17.

C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang, “Compositional
shape analysis by means of bi-abduction,” in Proceedings of the 36th an-
nual ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, 2009, pp. 289-300.

B. Guo, N. Vachharajani, and D. I. August, “Shape analysis with induc-
tive recursion synthesis,” in Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2007, pp. 256-265.

E. Horton and C. Parnin, “Dockerizeme: Automatic inference of en-
vironment dependencies for python code snippets,” in Proceedings of
the 41st International Conference on Software Engineering, 2019, p.
328-338.

T. Wolf, A. Schroter, D. Damian, and T. Nguyen, “Predicting build
failures using social network analysis on developer communication,” in
Proceedings of ICSE, 2009, pp. 1-11.

S. MclIntosh, B. Adams, T. Nguyen, Y. Kamei, and A. Hassan, “An
empirical study of build maintenance effort,” in Software Engineering
(ICSE), 2011 33rd International Conference on, May 2011, pp. 141-150.
A. Tamrawi, H. A. Nguyen, H. V. Nguyen, and T. Nguyen, “Build code
analysis with symbolic evaluation,” in Software Engineering (ICSE),
2012 34th International Conference on, June 2012, pp. 650-660.

J. Downs, B. Plimmer, and J. G. Hosking, “Ambient awareness of build
status in collocated software teams,” in Proceedings of ICSE, 2012, pp.
507-517.

J. Al-Kofahi, H. V. Nguyen, A. T. Nguyen, T. T. Nguyen, and T. Nguyen,
“Detecting semantic changes in makefile build code,” in Proceedings of
ICSM, 2012, pp. 150-159.

J. Al-Kofahi, H. V. Nguyen, and T. N. Nguyen, “Fault localization
for build code errors in makefiles,” in Companion Proceedings of
the 36th International Conference on Software Engineering, ser. ICSE
Companion 2014, 2014, pp. 600-601.

R. Shambaugh, A. Weiss, and A. Guha, “Rehearsal: A configuration
verification tool for puppet,” in Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2016, p. 416-430.

410

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

A. Tamrawi, H. A. Nguyen, H. V. Nguyen, and T. N. Nguyen, “Build
code analysis with symbolic evaluation,” in Proceedings of the 34th
International Conference on Software Engineering, 2012, p. 650-660.
B. Adams, H. Tromp, K. De Schutter, and W. De Meuter, “Design
recovery and maintenance of build systems,” in Software Maintenance,
2007. ICSM 2007. IEEE International Conference on, Oct 2007, pp.
114-123.

F. Hassan, S. Mostafa, E. S. Lam, and X. Wang, “Automatic building
of java projects in software repositories: A study on feasibility and
challenges,” in 2017 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM). 1EEE, 2017, pp. 38—
47.

F. Hassan and X. Wang, “Mining readme files to support automatic
building of java projects in software repositories,” in 2017 IEEE/ACM
39th International Conference on Software Engineering Companion
(ICSE-C). 1EEE, 2017, pp. 277-279.

, “Change-aware build prediction model for stall avoidance in
continuous integration,” in 2017 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM). 1EEE,
2017, pp. 157-162.

——, “Hirebuild: An automatic approach to history-driven repair of
build scripts,” in 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE). 1EEE, 2018, pp. 1078-1089.

F. Hassan, R. Rodriguez, and X. Wang, “Rudsea: recommending updates
of dockerfiles via software environment analysis,” in Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering, 2018, pp. 796-801.

A. S. Christensen, A. Mgller, and M. 1. Schwartzbach, “Precise analysis
of string expressions,” in Proc. 10th International Static Analysis Sym-
posium (SAS), ser. LNCS, vol. 2694. Springer-Verlag, June 2003, pp.
1-18, available from http://www.brics.dk/JSA/.

X. Wang, L. Zhang, T. Xie, H. Mei, and J. Sun, “Locating need-to-
translate constant strings for software internationalization,” in 2009 IEEE
31st International Conference on Software Engineering. 1EEE, 2009,
pp. 353-363.

——, “Locating need-to-translate constant strings in web applications,”
in Proceedings of the eighteenth ACM SIGSOFT international sympo-
sium on Foundations of software engineering, 2010, pp. 87-96.

, “Transtrl: An automatic need-to-translate string locator for soft-
ware internationalization,” in 2009 IEEE 31st International Conference
on Software Engineering. 1EEE, 2009, pp. 555-558.

H. Zhang, H. B. K. Tan, L. Zhang, X. Lin, X. Wang, C. Zhang, and
H. Mei, “Checking enforcement of integrity constraints in database
applications based on code patterns,” Journal of Systems and Software,
vol. 84, no. 12, pp. 2253-2264, 2011.

S. Mostafa, R. Rodriguez, and X. Wang, “Netdroid: Summarizing net-
work behavior of android apps for network code maintenance,” in 2017
IEEE/ACM 25th International Conference on Program Comprehension
(ICPC). IEEE, 2017, pp. 165-175.

R. Rodriguez, S. Mostafa, and X. Wang, “Ntapps: A network traffic
analyzer of android applications,” in Proceedings of the 22nd ACM on
Symposium on Access Control Models and Technologies, 2017, pp. 199—
206.

