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Abstract—File manipulation scripts are widely used in software
projects to operate the file system at run time. Due to the
emergence of DevOps practices in software industry, developers
also use longer and more complicated file manipulations in
their continuous integration and deployment scripts to automate
software build, testing, and deployment in different environment
configurations. A major challenge on understanding these scripts
is that they make lots of implicit assumptions on the file system
they are executed on. Such assumptions are rarely documented
and often do not hold when a script is moved to another execution
environment. In this paper, we propose a static-analysis-based
technique that statically infer the directory tree pre-condition
of the file system required to execute a file manipulation script.
We evaluated our analysis on 58 docker files and the experiment
shows that our technique is able to generate directory tree pre-
conditions on real world scripts efficiently.

I. INTRODUCTION

File systems are widely used for data storage in computer

systems. To automatically manipulate files, various software

projects use file manipulation scripts combining basic op-

erations such as touch, cp, and rm provided by the op-

erating system. Furthermore, the emerging DevOps practice

in software industry requires the developers to fully auto-

mate the software building, testing, and deployment process,

which leads to more complicated file manipulations in build

scripts (e.g., gradle scripts, makefiles), deployment scripts

(e.g., docker files), and continuous integration scripts (e.g.,

gitlab.yml, travis.yml).

A large portion of runtime errors in file manipulation scripts

are related to path existence properties of the underlying file

system. As a basis for estimation, we studied the open bug

report repositories [1] of software projects. In Github which

stores 391,231 closed bug reports in total for all Shell script

projects, searching for the key phrase “file not found” and “file

already exists” returns 33,466 results (performed on March

22nd, 2019). Furthermore, path-existence-related failures are

typically severe because they will directly cause termination

of script execution which is often followed by a software crash.

Although file manipulation scripts are relatively short, they

are still difficult to understand and run because developers

often make assumptions on the existing paths in the file system

over which they do not have full control. Once the system is

modified by other scripts, and/or the script is executed on a

different machine, the assumptions may no longer hold and

the script will suffer from path-existence-related errors. To

reduce path-existence-related errors, in this paper, we present

a novel static-analysis-based technique to infer path-existence

pre-conditions of file-manipulation scripts. In particular, given

a piece of file manipulation script, our approach calculates the

pre-condition for each control flow point in the script. The pre-

condition at the beginning of the script can be then checked

against a file system’s file structure to determine whether the

script can be executed on the file system without causing path-

existence-related errors.

The first step of our technique is to design an abstract

domain that summarizes the path-existence states of a file

system. Despite the extensive research efforts [2] [3] on

summarizing memory states including modeling both variable

values [4] [5] and heap shapes [6] [7] [8], there have been few

techniques developed to summarize file-system states, which

brings two special challenges. First of all, unlike memory

locations which are usually referred to by variable names and

field names hard-coded in the source code, file system paths

are often string values generated at run time by concatenating

string variables. Second, although a file system state on path

existence can be presented as a path tree, unlike the tree or

graph domains used in heap shape analysis where edges can be

labeled with predefined field names/indexes, the possible edge

labels (folder and file names) in a directory tree are generated

by the program at run time and thus are usually unbounded.

To overcome these two challenges, our key insight is to

summarize the run-time state of a file system as a set of string

values, each of which represents an existing path in the file

system. Thus the state of the file system is presented as all

the currently existing paths, and the abstract domain of the

file-system state in static analysis can be defined as a string

set that contains all possibly existing paths in the file system

at a program point. To handle infinite paths / path sets due

to loops and regular-expression-based path presentations (e.g.,

“rm foo/bar*”), we further use an automaton to represent the

set of all possible paths. Such an automaton is referred to as a

File-System-State (FSS) automaton, and the transfer functions

of file operations such as cp and rm can be modeled as finite

state transducers that transform one FSS automaton to another.

To sum up, this paper makes the following main contribu-
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tions.

• An intermediate language FMIL that captures path-

related semantics of file manipulation scripts.

• A static analysis FiFA that infers all possible directory

tree states of running a given file manipulation script.

Within FiFA, we use FSS automaton as abstract domains

and finite state tranducers to define transfer functions.

• An evaluation on 58 dockerfiles which shows that FiFA is

able to generate preconditions within reasonable amount

of time.

The rest of this paper is organized as follows. Section II

is going to present a motivating example to illustrate the

requirement of FiFA and just the techniques we develop. We

will introduce the details of FiFA in Section IV, and present

our evaluation setup and results in Section V. After that, we

discuss related works in Section VI. Finally, we conclude in

Section VII.

II. EXAMPLE

In this section, we present an example to illustrate the

problem we are solving. Below is a real-world dockerfile

from project Zalenium1. The original dockerfile has 434

lines so we cannot put the whole file here and can provide

only two code snippets. The two snippets show two RUN

commands (running its argument as a shell command) with

if conditions. The first snippet checks whether the option

kubernetesSlimVersion is set to true, and if it is not set,

the dockerfile will download and set up the docker libraries.

The second snippet setup the testing bots when they are

enabled in the configuration. Both snippets create and remove

some folders / files in the file system, and make assumptions

of the file system. For example, the first snippet assumes that

“docker/” exists, and the second snippet assumes that “tmp/”

exists.

RUN if [ "${kubernetesSlimVersion}" = "false" ]; then \
set −x \
&& DOCKER_VERSION="17.12.0-ce" \
&& curl −fSL "https://${DOCKER_BUCKET}/linux/static/..." \

−o docker. tgz \
&& tar −xzvf docker.tgz \
&& mv docker/docker /usr/bin/docker−${DOCKER_VERSION} \
&& rm −rf docker/ && rm docker.tgz \
&& docker−${DOCKER_VERSION} −−version | grep "${DOCKER_VERSION}

"; \
else \

echo "Skipping adding Docker because of kubernetes slim
mode"; \

fi
...

RUN if [ "${testingBotEnabled}" = "true" ]; then \
cd /tmp \
&& wget −nv "${TB_TUNNEL_URL}" \
&& mv testingbot−tunnel. jar / usr / local /bin \
&& java −jar / usr / local /bin / testingbot −tunnel . jar −−version; \
else echo "Testing Bot Disabled"; \
fi

There are many such configuration-guarded file manipula-

tion pieces, making it difficult to test all of them and find out

all the possible pre-conditions of the file system state before

running the script.

1https://github.com/zalando/zalenium

III. INTERMEDIATE LANGUAGE

File manipulation scripts can be written in many different

programming languages, such as shell script, docker files,

yml files, etc. These programming languages are also usu-

ally dynamic and flexible so that they allow code of other

programming languages to be inserted as a part of its code.

For example, it is standard practice to have embedded shell

script snippets in Docker files and yml files. Furthermore,

software configuration and deployment systems evolve very

fast, so do the file-manipulation scripts they use. In the past

decade, we witnessed the emerging of many new types of

file manipulation scripts such as gradle scripts for gradle

build tools, travis.yml for TravisCI continuous integration, and

Docker files for Docker. Based on the above observations,

we developed our technique on an intermediate language so

that various current and future file-manipulation scripts can be

benefit from our technique.

Since our technique uses its own intermediate language and

we want to analyze Docker files in our evaluation, we need

a way to convert the Docker files to data that our framework

can understand. To do this we used a Dockerfile parser to

look for Docker commands that could potentially modify the

file system2. Commands such as COPY, ADD, and RUN

can affect the Docker container’s file system. The COPY

and ADD commands are fairly straight forward and could

be translated to our framework’s copy command. The RUN

command is the most challenging one to transform because

it could be any shell command within the container. It is

possible to make almost any modification to the file system

using the RUN command. There were so many possibilities

and due to time constraints we had to only consider the

most common RUN commands. As per Docker’s Dockerfile

documentation, the RUN command is run in a shell, which

by default is ‘/bin/sh -c‘ on Linux3. In an effort to handle

most RUN file cases, we implemented a shell parser to parse

all the RUN commands within our Dockerfile data set4. We

searched through all the RUN commands and counted each

shell command occurrence. We decided to support the top 25

shell commands with the highest number of occurrences that

may modify the file system.

IV. APPROACH

A. Abstraction Domain

In our technique, we use automaton as the abstract domain.

The automaton represents all possibly existing file paths in the

file system at a program point. For example, for the following

piece of code, the automaton at the end of the program is

shown in Figure 1

mkdir ’tmp’
if ( other ) {

touch ’tmp\abc’
}else {

touch ’def’
}

2https://github.com/asottile/dockerfile
3https://docs.docker.com/engine/reference/builder/#run
4https://github.com/mvdan/sh
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Fig. 1: An Exemplar FSS Automaton

In figure 1, we can see that, FiFA uses a post fix “/” to

indicate that a path value is a folder. So FiFA can detect errors

when a file is being referred to as a folder and vice versa.

B. Transfer Functions

To infer the pre-condition of a file-manipulation script, we

need to run our analysis backward from the end of the script.

The abstract domain is initialized as an empty automaton

because no directory tree assumption is required at the end

of a script. Whenever our analysis passed a file manipulation

operation, it needs to apply the transfer function to the abstract

domain. Note that we maintain two abstraction domains, one

for positive pre-conditions (indicating that certain paths need

to be existing, denoted as D), and the other for negative pre-

conditions (indicating that certain paths must not be existing,

denoted as N ).

Since the basic operations such as union are well defined

for automaton abstract domain, we just introduce our transfer

functions for the basic file operations: touch, mkdir, cp,

and rm. The mv operation can be presented as a cp operation

and a rm operation, so we just translate it to two more basic

operations. In particular, transfer functions for the five basic

operations are presented below.

touch x : N = N ∪ automaton(x)

D = D ∪ parentdir(x)
(1)

mkdir x : N = N ∪ automaton(x+ “/”)

D = D ∪ parentdir(x)
(2)

cp x y : N = N ∪ automaton(y + basename(x))

D = D ∪ automaton(x)
(3)

rm x : D = D ∪ automaton(x) (4)

In the functions, we use D and N to denote the positive and

negative abstract domain before (on the right hand side) and

after (on the left hand side) the operation. We use function

automaton(x) to denote the automaton generated by string

analysis for path variable x. It should be noted that we do not

have a transfer function for cd because it does not change

the file system state, but only change the current directory.

We handle cd by moving CD flags (indicating Current Di-

rectory) on the states of the FSS automaton. When cd x
is encountered, we will calculate the intersection between

FSS automaton D and automaton(x), and put flags on the

states in D which are paired with an acceptance state of

automaton(x) during the intersection process, and remove

CD flags from all other states. For rm and rmr, we will do

the automaton difference only if x is a constant string, to make

sure our transfer functions are conservative. Otherwise since

automaton(x) is an over-estimation of x’s possible values,

the difference between D and automaton(x) can be an under-

estimation.
We use function basename(x) to denote the automaton

generated by extracting the base filename of a path variable x.

Here we can see that because x is an automaton, the function

basename can only be implemented as a transducer, which

is presented in Figure 2. In the finite state transducer, we use

eps to denote ε, and textttu0001-uffff to denote the whole

character set Σ, and ∗ as an output indicates that the output

of the transducer at the specific transition will be the same as

the input.

Fig. 2: FST to extract the basename

We use function parentdir(x) to denote the automaton

generated by extracting the parent directory of a path variable

x. For example, the parent directory of a regular expression

a/b/c|a/d would be a/b/|a/. The transducer to extract

parent directory from a path variable x is presented in Figure 3.

Fig. 3: FST to extract the parent folder

The definition of paths in file manipulation scripts can be

various. For example, mkdir abc and mkdir abc/ both

create a folder with name abc. This may cause our automaton

to have extra file path separators, resulting in double file path

separators or extra file path separator at the end of a path

value. To remove such extra path separators, we design the

following two finite state transducers as shown in Figures 4

and 5.
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Fig. 4: FST to remove double file path separators

Fig. 5: FST to remove the last file path separator

V. EVALUATION

A. Evaluation Setup

In our evaluation, we use a set of Docker files from a pop-

ular curated list of Docker resources and projects on Github5.

We created a simple program to extract any projects that

included any source code written using the Go programming

language. We used a Dockerfile from each repository and

automatically parsed them to generate an intermediate script

that our framework could use to perform the analysis.

The results presented in this report were performed on

a computer running Windows 10 with an Intel i7-6700K

CPU and 16GB RAM. Our implementation and all evaluation

subjects are available at our anonymous project website6.

B. Evaluation Results

Our evaluation results are presented in Table I. The Columns

2-5 present the minimal, maximal, median, and average value

of LOC (lines of code) of the file, execution time, and the total

number of nodes in precondition automatons, respectively.

From the results in the table we can see that the execution

time of our technique is minimal, with a maximal execution

time of 263ms, average execution time of 38ms, and median

execution time of 21ms. Our created precondition averagely

has 30 nodes and has 26 nodes as median. This shows that

our generated pre-conditions are generally of readable size by

users.

VI. RELATED WORKS

Horton and Parnin developed a technique [9] that aims to

solve the dependency resolution problem by taking a runnable

code snippet and installing all language-level and system-level

dependencies so that we may execute the snippet without

any import errors. Wolf et al. proposed an approach [10]

to predict build errors from the social relationship among

developers. McIntosh et al. [11] carried out an empirical study

5https://github.com/veggiemonk/awesome-docker
6https://sites.google.com/site/fifarepo/

TABLE I: Analysis Results

Type Min Max Median Average
LOC 4 51 13 17
Execution Time (ms) 3 263 21 38
PreCondition 2 88 26 30

on the efforts developers spend on the building configura-

tions of projects. Tamrawi et al. [12] proposed a symbolic-

execution-based technique to analyze Make files and detect

bad smells / common errors. Downs et al. [13] proposed an

approach to remind developers in a development team about

the building status of the project. Al-Kofahi et al. proposed

an approach [14] to detect semantic changes in Make files,

and later proposed an a fault localization approach [15] for

Make files, which provides the suspiciousness scores of each

statement in a Make file for a build error. Rehearsal [16] is a

verification framework for configurations written in puppet. In

particular, Rehearsal uses several static analyses to shrink the

puppet abstraction models to a tractable size, and then frames

determinism-checking as decidable formulas for an SMT

solver. Tamrawi et al. [17] developed a symbolic execution

framework, SYMAKE, for analysing make files and detect

errors. SYMake first produces a symbolic dependency graph

(SDG), which represents the dependencies among files during

the building process. Adams et al. [18] presented a design

and implementation of a reverse-engineering framework for

build systems. Hassan et al. studied the feasibility of automatic

software build [19], [20] and developed novel techniques to

predict build results [21] and to repair build scripts [22] /

docker files [23].

Our work is also related to string analysis [24]. Along

this line of work, Wang et al. [25], [26], [27] developed

techniques to trace origins of string values for software in-

ternationalization. Zhang et al., developed a string-analysis-

based approach [28] to detect errors in database applications.

Mostafa et al. [29] and Rodriguez et al. [30] developed

NetDroid and NTApps to summarize network traffic based on

string analysis.

VII. CONCLUSION

In this paper, we present a novel file flow analysis frame-

work that infers pre-conditions of file-manipulation scripts.

Our evaluation on more than 58 Docker files shows that

our analysis can efficiently perform the analysis averagely

within 38 milliseconds. In the future, we plan to extend our

translator tool to handle shell environment variables, Docker-

file ENV commands, and conditional statements within RUN

statements. We may also wish to add support for additional

commands within the Docker RUN command.
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