Reducible Fermi surface for multi-layer quantum graphs
including stacked graphene
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Abstract. We construct two types of multi-layer quantum graphs (Schrédinger operators
on metric graphs) for which the dispersion function of wave vector and energy is proved
to be a polynomial in the dispersion function of the single layer. This leads to the
reducibility of the algebraic Fermi surface, at any energy, into several components. Each
component contributes a set of bands to the spectrum of the graph operator. When the
layers are graphene, AA-, AB-, and ABC-stacking are allowed within the same multi-
layer structure. One of the tools we introduce is a surgery-type calculus for obtaining
the dispersion function for a periodic quantum graph by joining two graphs together.
Reducibility of the Fermi surface allows for the construction of local defects that engender
bound states at energies embedded in the radiation continuum.
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1 Introduction

The Fermi surface of a d-periodic operator at an energy A is the set of wavevectors (ki, ..., kq) ad-
missible by the operator at that energy. It is the zero-set of the dispersion function D(ky, ..., kg, A),
and for periodic graph operators, this is a Laurent polynomial in the Floquet variables (z1, ..., z4) =
(et*1 ..., e*d). When the dispersion function can be factored, for each fixed energy, as a product
of two or more polynomials in (z1,...,z4), each irreducible component contributes a sequence of
spectral bands and gaps. Reducibility is required for the existence of embedded eigenvalues en-
gendered by a local defect [39, 40], except for the anomalous situation when an eigenfunction has
compact support.

Irreducibility appears to be generic in the sense that a polynomial in several variables is generi-
cally not factorable into nonconstant polynomials of lower degree—factorability requires the coeffi-
cients of the polynomial to lie on a certain algebraic variety in coefficient space. Thus it is natural
that proofs of reducibility rely on specific constructions that are tailored to result in factorability
of the dispersion function. This work describes two such constructions. On the other hand, proofs
of irreducibility invoke more ad hoc methods. Let us first briefly describe the known results on
(ir)reducibility.
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Irreducibility of the Fermi surface is known to occur for the discrete Laplace operator plus
a periodic potential in any dimension. This was proved in two and three dimensions in [6],[31,
Ch. 4],[7, Theorem 2] for all but finitely many energies, and recently for all energies in dimension
higher than two [46]. Proofs rely on the algebraic structure arising from the relative simplicity of
the discrete Laplacian on a square graph. Irreducibility is also known for the continuous Laplacian
in three dimensions plus a periodic potential of the form ¢ (z1)+g2(x2, z3) [8, Sec. 2]. Irreducibility
for all but finitely many energies is established for discrete graph Laplacians with positive weights
and more general graph operators, where the underlying graph is planar with two vertices per
period [44]. The proof is purely computational.

All constructions so far of graph operators with reducible Fermi surface involve multiple coupled
layers [59, 60]. The simplest are constructed by coupling several identical copies of a discrete
graph operator, using Hermitian coupling constants [59, §2]; or by coupling two identical layers
of a quantum graph by edges between corresponding vertices, where the potential g.(x) of the
Schrodinger operator —d?/dz? + q.(z) on each coupling edge e is symmetric about the center of
the edge [59, §3]. When the layers are not coupled symmetrically, a compatibility condition for the
potentials on the coupling edges, which is sufficient for reducibility, was proved in [60, Theorem 4].
The condition involves a certain “spectral asymmetry function” a4, (A) depending on the potential
¢e(), which is defined in that article. Two potentials g, (z) and ge,(z) are compatible if their
spectral asymmetry functions are identical. It turns out that each class of compatible potentials,
corresponding to a given asymmetry function a(\), contains exactly one square-integrable potential
for each admissible Dirichlet spectral sequence [13].

The present work introduces two new classes of self-adjoint periodic multi-layer quantum graph
operators with reducible Fermi surface. For both types, several layers are connected at corre-
sponding vertices by general graphs, as illustrated in Fig.1. Reducibility results from a different
mechanism from [60], namely that the dispersion function of the multi-layer graph turns out to be
a polynomial function of a “composite Floquet variable” ((z1,...,zq, A),

D(z1,...,24,\) = P(C(zl,...,zd,)\),)\).

The function (¢ is a Laurent polynomial in (z1,. .., z4) with coefficients that are meromorphic in A;
and P is a polynomial in ¢ with coefficients that are meromorphic in A\. The components of the
Fermi surface at energy A are therefore of the form ((z1,...,24;A) = p(A), where p()) is one of the
roots of P((,\) as a polynomial in (.

Here is a summary of properties of the two types of multi-layer quantum graphs, introduced in
this work, that have reducible Fermi surface, with the number of components equal to the number
of layers. All potentials are electric; we do not treat magnetic potentials in this work. We include
in this summary the bilayer quantum graphs studied in [60], which we call type 0.

Type-0 bilayer graphs. ([60])
1. The two layers are identical, and otherwise there is no restriction on the individual layers.

2. The layers are coupled by single edges connecting corresponding vertices.

3. The potentials on all connecting edges possess the same spectral asymmetry function a(\)
mentioned above.

Type-1 multilayer graphs. (Fig.1 left; and section 3)

1. Each layer is separable—it breaks into an infinite array of finite pieces when a vertex and its
shifts are removed (Fig. 2).



2. The dispersion function D(z, A) of each layer is a polynomial function of a single function {(z, A);
for example, all layers may all have the same dispersion function.

3. Several layers are connected at the vertices of separation by edges or by a more complicated
graph.

4. An example is AB-stacked graphene, with arbitrary potentials on the three edges of a period
of each layer. Layers may be rotated 180°. See section 5.4.

The proof of Theorem 7 on type 1 employs a calculus for obtaining the dispersion function of
a periodic graph in terms of the dispersion functions of component graphs, where the component
graphs are joined at the periodic shifts of a single vertex (Lemma 5). It is a sort of periodic-graph
version of surgery techniques for compact graphs, studied in [11].

Type-2 multilayer graphs. (Fig.1 right; and section 4)

1. Each layer has the same underlying graph, which is bipartite with one vertex of each type, or
color, per period (each edge connects vertices of different colors).

2. The potentials on corresponding edges in different layers are isospectral in the Dirichlet sense.

3. Several layers are connected along vertices of the same color by edges or more complicated
graphs.

4. An example is AA-stacked graphene, with arbitrary potentials on the three edges of a period.
Layers may be rotated 180°. See section 5.3.

The proof of Theorem 10 on type 2 is linear-algebraic. It is a generalization of A A-stacked
bilayer graphene discussed in [60, §6], where it was noticed that the potentials of the connecting
edges, miraculously, did not have to lie in the same asymmetry class in order to obtain reducibility
of the Fermi surface.

Multi-layer graphene models. (Section5)

A salient application of the theory we develop is to two-dimensional periodic graphs with hexag-
onal, or honeycomb, structure. Graphene is the most familiar of these structures. We will use
the word “graphene” to encompass any periodic quantum graph with the hexagonal structure of
graphene, shown in Fig. 4.

Quantum graphs offer an intermediate model between full partial differential equation models
and tight-binding ones, and they have been used to model graphene and other honeycomb structures
in single-layer form [18, 38, 4] and multi-layer form [19, 20, 21]. The model is also called a quantum
or free-electron network model [18]; see [43, Appendix A] for a historical discussion.

The quantum-graph model of single-layer graphene satisfies the properties of the individual
layers of both typel and type2: (a) Being bipartite, each layer is separable at any vertex; and
(b) isospectrality of the potentials on corresponding edges across layers implies that each layer is a
polynomial in a common function ((z, ). By applying the techniques of both types, one finds that
very generally stacked multi-layer graphene has reducible Fermi surface. This includes AA-, AB-,
ABC-, and mixed stacking, as illustrated in the figures of Section 5.

The differences between single- and multiple-layer graphene are expounded in [16, 1], which
offers much physical context. The most important feature of two or more layers, which occurs typi-
cally but not always, is a transition from conical singularities of the dispersion relation (linear band
structure at Dirac points) for a single layer to nonconical singularities (quadratic band structure)
for multiple layers, accompanied by spectral gaps; see [51, 47, 15], for example. Refs. [33, 53, 56]



present some interesting work on opening gaps by twisting two layers relative to one another. The
work [54] provides a review of physical phenomena of stacked bi-layer graphene.

The present work contributes to the spectral properties of graph models of multi-layer graphene
with electric potentials in these ways: (1) The reducibility of the Fermi surface allows the construc-
tion of local defects in multi-layer graphene that would allow bound states within the radiation
continuum (cf. [40]); (2) The theorems demonstrate the range of allowed potentials on the layers
and the connecting edges in order to obtain a reducible Fermi surface, and (3) The theory offers
insight into the effect of multiple layers on conical singularities, or Dirac cones. Particularly, a
condition for conical singularities to persist in AA-stacked graphene is given (section 5.7, Proposi-
tion 11); this result is subsumed by [10, Theorem 2.4, which exploits symmetries to obtain Dirac
cones; here it arises through different calculations.

Figure 1: 1-periodic examples of multi-layer graphs with reducible Fermi surface. Type 1 (left): Each layer
is a separable periodic graph whose dispersion function is a polynomial in a fixed Laurent polynomial {(z, A).
The layers are connected at corresponding vertices of separation by the periodic translates of a finite (blue)
graph. Type 2 (right): Each layer has the same underlying bipartite periodic graph with two vertices per
period, and the potentials on corresponding (vertically displaced) edges have the same Dirichlet spectrum.
Vertically displaced green vertices are connected by periodic translates of a finite (green) graph; and similarly
for the red vertices.

Quantum graphs have been used as models for a variety of physical systems, such as single- and
multi-layer graphene, as mentioned above, tubes of graphene or other planar materials [35, 34, 38,
50, 61], and related band-gap structures [55, 43, 3, 22, 9]. We also refer the reader to the works
[2, 36], the collection [24], and the monograph [12].

The multi-layer graphs types 0, 1, and 2, described above allow general vertex conditions of
Robin type, defined below (see 2.1). The condition stipulates that the value of a function at a
vertex v is proportional to a flux from the vertex into the adjacent edges, and the proportionality
constant is called the Robin parameter a,,. Different values of o can model different types of atoms
at the vertices. The Robin condition is essentially a d-potential of strength «, concentrated at a
vertex v [26, Eq.2.6], and it is also known as the § vertex condition. A quantum graph with the
Robin vertex condition emerges as the limit of a Schrodinger operator on a thickened graph, as
the thickness tends to zero [26, §2-3]. Taking the limit in different ways results in other types
of self-adjoint vertex conditions; see also [25, 17] for discussions of these limits and their physical
relevance.

The Robin condition also allows different coupling strengths imparted by the edges (denoted
by ¢ in (2.1) below). This accommodates, for example, adjusting interlayer couplings, which can
be much weaker than the intralayer bonds [42, 48, 45, 5], and quite complex variations of atom
interactions [14, 51]. This strength parameter has been implemented in the quantum-graph models
of multi-layer graphene in [19, 20, 21].

Bound states in the continuum are impossible for locally defective periodic Schrédinger partial



differential operators in R [39, 37], and this makes the prospect of creating multi-layer structures
where local defects can engender embedded eigenvalues intriguing. In Section 7, we show how to
construct a local defect in a periodic quantum graph with reducible Fermi surface, that creates a
bound state at an energy embedded in the continuous spectrum. We do this for AA- and AB-stacked
bilayer graphene. The associated eigenstates are not those of compact support that are peculiar to
graph operators, but rather, they decay exponentially with unbounded support. Bound states in
the continuum are associated with interesting and useful resonance phenomena, with applications
notably in optics—see for example [28, 27, 62, 32] and other references therein; and in the theory
of Fano resonance—see the work of Fano [29] and a description of how it fits into the context of
embedded eigenvalues in [58, Section 5.1]. A motivation for the present work is to understand the
mechanisms underlying the creation of embedded eigenvalues and resonances in diverse material
structures.

2 Periodic quantum graphs, Fermi surface, reducibility

This section lays down the notation for periodic quantum graphs and the Fermi surface. Lemma 5
introduces a calculus for joining two periodic graphs by the “single-vertex join”, defined in Def-
inition 4; this calculus serves as the basic tool for proving reducibility of multi-layer graphs of

type 1.

2.1 Quantum graphs and notation

We give a brief account of periodic quantum graphs that is sufficient for the analysis in this paper.
The notation specific to periodic graphs essentially follows [60, §3.1-3.2]; and the standard text [12]
provides a more general exposition of quantum graphs.

The structure of a quantum graph begins with an underlying graph I', with vertex set V(I")
and edge set £(I'), and I" becomes a metric graph when each edge e is coordinatized by an interval
[0, Le]. When referring to an edge e connecting vertices v and w, we write e{v, w} when the edge
is unoriented and e(v,w) when the edge is oriented from v to w. A periodic graph has a free
shift action of Z%, denoted by x — gz for z € T and ¢ = (g1,...,94) € Z?. We assume that a
fundamental domain of the action (a period of the graph) has finitely many vertices and edges.
Then, each edge e is endowed with a Schrédinger operator

—— + ge(x) (0 <z < Le).

A global operator on I' is determined by coupling these edge operators by a condition at each
vertex v. To define the coupling condition, each vertex v is endowed with a real weight «, and
each edge e is endowed with a real weight .. Then, for a continuous function f on I' (which has
values on the vertices and along the edges), let f. denote its restriction to the edge e. The vertex
condition is

S e fw) = auf), (2.1)

ec&(v)

which is called the Kirchoff or Neumann condition when «,, =0. The sum is over all edges incident
to v, and the prime denotes the inward derivative, in the direction from the vertex into the edge.
Thus, if an edge e{v,w} is coordinatized by x € [0, L¢] running from v to w, then f.(v) = df./dx(0)
and fl(w) = —dfe/dz(Le).



The vertex condition (2.1) is called a Robin condition. The weight «,, called a Robin coefficient,
can be considered as a singular J-potential of strength o, at the vertex (see [26, Eq. 2.6] for example),
and thus the condition is also called the § vertex condition. The weight e, for an edge e{v,w}
controls the strength of the connection between vertices v and w. In multi-layer graphene, the
inter-layer coupling is considered to be much weaker than the intra-layer bonds, and this is modeled
by small values of €. on those edges that connect vertices in different layers.

These ingredients are sufficient to determine a self-adjoint operator A in the complex Hilbert
space L2(T,¢) of weighted square-integrable functions on I', that is, functions f such that the
following norm is finite:

lews = 3 / ol f()|2da (2.2)

ecE() V€

The operator A, being unbounded, has domain D(A) that is not all of L?(T', &) but consists of those
functions in L?(T, ) whose restriction to each edge e is in the Sobolev space H?(e) and that are
continuous on I' and satisfy the Robin condition at each vertex. The pair (I', A) is called a quantum
graph, and it is periodic provided that the coordinatizations of the edges, the potentials ¢., and
the weights v, and &, are invariant under the shift group Z¢. All vertex conditions that correspond
to self-adjoint operators in L?(T', ) are described in [12, Theorem 1.4.4]. The operator A can in
fact be applied to any continuous function on I' that is in H? of each edge and satisfies the Robin
vertex condition but that does not necessarily lie in L?*(T,e). The extended domain consisting of
these functions will be called D(A).

2.2 Spectral matrix and dispersion function

That A is a periodic operator is to say that it commutes with the Z¢ action. According to the
principles of harmonic analysis, one seeks simultaneous eigenfunctions u of A and the Z¢ action,

Au = lu (2.3)
u(gx) = 29u(x), (2.4)
in which A is the energy (eigenvalue of A) and z = (z1,...,24) = (e?*1,...,¢%4) is the vector

of Floquet multipliers (eigenvalues of the elementary shifts), with z9 = Hle zJ" for each g =
(g1,--.,94) € Z%. Such u is called a Floquet (or Floquet-Bloch) mode of A. If the wavevector, or
quasi-momentum, k = (ki,...,kq) is real, then u is a Bloch wave and the k; are phase shifts of u
across the d period vectors of the structure.

The pair (2.3,2.4) is used to obtain a “spectral matrix” A(z, \) for A, from which is derived the
dispersion function and the Fermi surface. We now describe the elements of its derivation, which
is described in more detail, including its relation to the Floquet-Bloch (Fourier) transform, in [60,
§3.1-3.2].

Let us first consider the eigenvalue problem Au = A\u. Eigenfunctions u lie in D(A) but not
generally in D(A) since they are typically not square integrable. But if an eigenfunction does lie
in D(A), then the energy A is an eigenvalue of A considered as a self-adjoint operator in L?(I")
and counts as point spectrum; and this only occurs for a discrete set of energies where A has
a “flat band”. These eigenfunctions are formed by linear combinations of compactly supported
eigenfunctions. They are peculiar to graph operators (discrete and quantum; see [40]) and are
discussed in Section 2.6.

The equation Au=\u means that u satisfies the ODE —u” + g.(z)u = Au on each edge. This
allows one to use the Dirichlet-to-Neumann (DtN) map for this ODE on each edge to write the



equation (A — A)u = 0 solely in terms of the values of u on V(I'). This leads to the reduction of
Au = A\u to a discrete graph problem, often called the discrete, or combinatorial, reduction of the
quantum graph, which we now describe. By definition, the DtN map N()) for an edge e{v,w}
takes the values of u at the vertices of the edge to the inward derivatives of u at the vertices, that
is N(\)[u(v), u(w)]t = [o/(v),u (w)]t. The vertex condition (2.1) for u can then be written solely
in terms of the values of u at the vertices. This results in a discrete, or combinatorial, reduction
of the graph operator. To compute the DtN map for edge e, let e be parameterized by a variable
x € [0, L] such that £=0 corresponds to v and x =L corresponds to w. First, consider the transfer
matrix (an entire function of \)

(2.5)

Lo [cew sem] |

ce(A)  se(X)

which is defined by its action: It takes the value and x-derivative of u at vertex v to its value and
x-derivative at w, that is, T,(\)[u(0), du/dx(0)]* = [u(L),du/dx(L)]*. The determinant of T, () is
always equal to 1. The DtN map is formed from the entries of T¢(\) by

N = [—ce(A) }(A)]_ (2.6)

1 -5,

Enforcing the second eigenvalue equation u(gz) = z9u(x) (2.4) allows one to restrict analysis
of the solution to a single fundamental domain, or period, W. This is because this equation shows
how the values u(z) for z € W and the Floquet multipliers z = (21, ..., z4) determine the values
of u(gx) for gr € gW for any shift vector g € Z%, just by multiplying by 29. In this way, the
equation Au= Au becomes equivalent to a discrete graph equation 2((A)u = 0, where the function
u is evaluated at the vertices only. (We will make use of () only in section 7, where we construct
embedded eigenvalues.)

Combining the analyses of both eigenvalue problems, the pair (2.3,2.4) becomes equivalent to
a homogeneous system of linear equations, depending on A and z, for the values of w on the finite
set of vertices in a fundamental domain. The square matrix for that system is what we call the
spectral matrix A(z, \),

~

A(z,N)u=0 = u satisfies (2.3,2.4). (2.7)

On the left, u is reused to denote the vector of values of the function u on the vertices.

The construction of A(z, A) can be described algorithmically as follows. Let Vy and &y denote
the vertices and edges of a fixed fundamental domain W for (I', A). The matrix A(z, \) is indexed
by the vertices Vy minus those that have the Dirichlet condition. Given an edge e € &y, there are
vertices v, w € Vy and g € Z¢ such that e connects v and gw. If both v and w have Robin conditions
(including Neumann when the Robin parameter is 0) and v # w, then the following modified DtN
matrix goes into the 2x 2 submatrix of A(z, \) indexed by v and w:

Ne(g, z,\) = 35(6)\) [_26(9)\) _Szg()\)] ’ (2.8)

in which the off-diagonal entries come from the Floquet eigenvalue condition (2.4). If v=w, then
ge(29 + 279 — ce(\) — sL(N)) goes into the diagonal entry indexed by v. If w has the Dirichlet



condition, then —e.c.(A)/se(\) goes in the diagonal entry for v. Then a diagonal matrix with
entries —ay, is added.
The dispersion function for (I', A) is defined by

Dr ay(z,A) = det A(z,\), (2.9)

and its zero set is the set of all (z, ) pairs at which (I', A) admits a Floquet mode.

The spectral matrix does depend on the choice of fundamental domain, but of course the
Floquet modes of (I, A) corresponding to null vectors of A(z,\) are independent of this choice.
More importantly, A(z, ) and D(r,4)(z,A) has poles in \. Both are Laurent polynomials in z with
coefficients that are meromorphic functions of A. The poles lie at the roots of the functions s(\)

for all edges. This set is denoted by
op(T,A) = {A:Fee &), se(N) =0}. (2.10)

Observe that the function s.(A) is independent of the orientation of the parameterization of e by
[0, Le]. We call s¢(\) the Dirichlet spectral function for e, as its roots are the Dirichlet eigenvalues
of the operator —d?/dxz? + q(x) on e.

This means that, with the construction of A(z,\) as described, (2.7) is only valid for A &
op(T, A). This can be remedied by considering A(z, A) and D(r 4)(2, A) to be defined up to mero-
morphic factors in the following sense. For each A, there is an equivalent quantum graph (f, A) such
that A\ ¢ UD(I‘, A) This graph is obtained by inserting artificial vertices in the interior of edges
of I, as described in [41, §IV], and imposing the Kirchhoff vertex condition at the new vertices so
that the operator does not change. The following result is proved in section 8.

Proposition 1. Let (', A) be a periodic quantum graph, let e{vi,va} be an edge of T'. Let (I‘,A)
be the periodic quantum graph obtained by placing an additional vertez v in the interior of e (and
gu in each shift ge), thus dividing e into two edges e;{vi,v} and ea{v,va}, with the potentials on e;
and ey being inherited from qe on e. Let s(X\), s1(\), and sa(X\) be the Dirichlet spectral functions
for the edges e, e1, and e3. Then

81(/\)82()\) D(f‘7A)(Z’ /\) = :I:s()\) D(I‘,A) (Z, )\) (2.11)
By inserting an extra vertex at an appropriate point in each edge that has A as a Dirichlet
eigenvalue, the spectral matrix and dispersion function become analytic at .
2.3 The Fermi surface

As described above, the zero-set of the dispersion function Dr 4)(z, ) for (I', A) is the set of all
(2, A) pairs at which (', A) admits a Floquet mode. This relation D(p 4)(z,A) = 0 in (C*)? x C is
called the dispersion relation or the Bloch variety of the periodic operator A. By fixing an energy
A € C, one obtains the Floquet surface, or Floquet variety, of (I', A):

Dy =Py = {2z € (C): Dip 4)(2,A) = 0}. (2.12)

When considered as a set of wavevectors (ki,...,kq) € C (with z; = %), it is the Fermi surface of
(T, A). We will just call &) the “Fermi surface.” The spectrum of (I', A) consists of all energies A
such that the Fermi surface intersects the d-torus T? = {z € C%: |z = --- = |z4| = 1},

o(r,A) = {)\G(C: (ID(F,A)’AﬂTd#@}. (2.13)

8



Importantly, when I" is disconnected, with each connected component being a compact graph,
a fundamental domain can be chosen to be one component T, and thus A(z,A) and D(z,\) are
independent of z. All of the matrices (2.8) have g=0 and reduce to the Dirichlet-to-Neumann maps
for the edges. In this case, the spectral matrix, which can be denoted by A()\), is the spectral matrix
of A confined to the finite graph I'g, and the roots of its determinant D(\) are the eigenvalues of
this finite quantum graph.

The Fermi surface is an algebraic set in (C*)?, and it is reducible at A whenever @, is the union
of two algebraic sets. This occurs whenever D(z,\) is factorable into two polynomials, neither of
which is a monomial. One should be aware of the situation when a Laurent polynomial Dj(z, A)™
divides D(z,\), with m > 1, particularly when D(z,A) = D;(z, A\)™. This makes &) reducible on
account of having a component of multiplicity greater than 1.

2.4 A calculus for joining two periodic graphs

The lemma in this section is the building block for the analysis of the Fermi surfaces for multi-
layer quantum graph operators of type 1. It can be viewed as a sort of periodic-graph version
of the surgery principles for finite quantum graphs in [11]. These describe how the spectrum
of a new graph is related to the spectra of old graphs under various modifications and joinings.
When writing and manipulating formulas dealing with joining two quantum graphs together, it will
be convenient to use the following abbreviated notation for the dispersion function of a periodic
quantum graph (I", A), which emphasizes the dependence on T,

1] := D ay (2, 2. (2.14)

This notation will be used only in the rest of section 2 and in section 3, when A, z, and A fall into
the background and the vertices where the joining takes place become important.

Definition 2 (T'V). Let T" be a d-periodic graph, and let v be a vertex of T of degree r. Denote by
IV the periodic graph obtained by replacing, for each g € Z2, the vertex gv by r terminal vertices
incident to the r edges that are incident to gv in I.

If a Schrodinger operator A is defined on I' as a metric graph, define a Schrédinger operator AY on
I'Y as follows.

Definition 3 ((I'V, AY)). Let (', A) be a d-periodic quantum graph containing vertex v € V(I').
Denote by (I', AY) the quantum graph obtained by replacing the vertex condition at each vertex in
the orbit {guv : g € Z%} in T with the Dirichlet condition. Thus T' may as well be replaced by T.

Definition 4 (Single-vertex join I'i(vy v2)['2). Let I'y and T’ be d-periodic quantum graphs with
Robin parameter oy at v1 € V(I'1) and ag at va € V(I'y). The single-vertex join of 'y and 'y at
the pair (vi,v2), denoted by I'1(v1 v2)I'e, is a quantum graph with vertex set V(I'1) UV(I'2)/ =, in
which gui = gua for all g € Z¢ and edge set E(T'1)UE(T2). A Robin vertex condition with parameter
a1 + ao is imposed at the joined vertices gui = gua, and all other vertex conditions are inherited
from 'y and T'y. If the Robin parameter at the joined vertexr vi = vo is changed to o, the resulting
graph is denoted by T'1 (v v2)s 2.

Lemma 5. Let I'y and T's be d-periodic quantum graphs with vy € V(I'1) and vy € V(I'2). Then
the dispersion function for I'1(vi,v)T's is

[T1(v1,v2)l2] =[] [T9?] + [T7] [T, (2.15)



and the dispersion function for I'i(vive)y T is
[T1(viv2)aTo] = [M1] [I5°] + [L7] 2] 4 (@ = a1 — a) [T [57] . (2.16)

Proof. Let A1 and As be the operators associated with the quantum graphs I'y and I's, and let
A1(z,A) and Ay(z,\) be the spectral matrices of these operators. Let A9(z,\) and AY(z, E) be
the spectral matrices of the operators associated with I'{* and I'y>. By ordering the vertices of a
fundamental domain of I'y such that v; is listed last, and ordering the vertices of a fundamental
domain of I'y such that wvs is listed first, one obtains the block decomposition

~ AO al ~ aO CL*
A= |1 , Ay =1 72 "2 |, 2.17
! a; al ] 2 ay A3 (2.17)

in which a1 and as are column vectors and a(l] and ag are scalars.
The matrix A of the operator associated with I'; (v] vy)T'y is

A(l] al 0
A= |a al+d) a |. (2.18)
0 a9 Ag

Notice that the entry af +aJ incorporates the Robin parameter a + a. The first statement of the
theorem is just the following statement about determinants:

det(A) = det(A;)det(AY) + det(AY) det(As).

The matrix Floquet transform for I'i(v; v2), I'2 is obtained by adding o — a; — a2 to the term
al + aJ in (2.18), and the second statement of the theorem follows. O

2.5 Separable periodic graphs

The class of multi-layer graphs we call type 1 is built on separable layers. Each layer has the
property that, when severed periodically at a certain vertex, it falls apart into a d-dimensional
array of identical finite graphs, as illustrated in Fig. 2. This is made precise as follows.

Definition 6 (separable periodic graph). A d-periodic graph T' is separable at v € V(') if TV
is the union of the Z% translates of a finite graph, or, equivalently, if T’V has compact connected
components.

2.6 Flat bands

We include a remark about “flat bands” of periodic graph operators. A flat band is a component of
the dispersion relation of the form A=)y, where Aq is a fixed energy. Such a band arises when the
dispersion function has a z-independent meromorphic factor m(\), say D(z, \)=m(\)D(z, A). The
values of \g are the roots of m(A). This means that there is a Floquet mode at energy A\ for each
2 € (C*)%, or equivalently for each quasimomentum (ki, ..., kq). When considering components of
the Fermi surface ®, at a given energy A, we are concerned with reducibility of D(z; A) into two
or more Laurent polynomials in z that are not constant functions of z, and therefore we will not
concern ourselves with flat bands in subsequent sections.

10
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Figure 2: A 2-periodic graph that is separable at a vertex v; and the corresponding separated graph I'V.

T

The energy of a flat band is an eigenvalue of infinite multiplicity for the periodic operator,
meaning that it has an eigenspace in L?(T") of infinite dimension [23, 38]. In the case of single-
layer graphene with the same potential on each edge, the flat bands occur exactly at the Dirichlet
eigenvalues associated with an edge, and each eigenfunction is a linear combination of “loop states”
supported on a hexagon [38]. These loop states vanish at all vertices. Because of this, all these
eigenfunctions, and therefore the flat bands, persist when several layers are stacked according the
two constructions described in this work. More generally, flat bands of any single layer persist
in a multi-layer graph whenever eigenfunctions of the layer vanish on the vertices involved in the
coupling to other layers. The eigenfunctions of flat bands of periodic quantum graphs can in general
be nonzero at vertices.

3 Type 1: Multi-layer graphs with separable layers

This section develops a class of multi-layer graphs whose individual layers are separable and whose
Fermi surface is reducible, with several components. A 1-periodic illustration is in Fig. 1(left). An
example is AB-stacked graphene, which is discussed in Section 5.4.

3.1 Type-1 multi-layer graphs

First, we define the layers (black in Fig. 1(left)) and the connector graph (blue in Fig. 1(left)). Let
¢(z,A\) be a Laurent polynomial in z = (z1,...,24) with coefficients that are meromorphic in .
The j-th layer (j = 1,...,n) is a d-periodic quantum graph (A;, A;), with a distinguished vertex
v; and such that the dispersion function d;(z, ) of (A;, A;) and the dispersion function cij (z,A) of
(A;j , A;.)j ) are polynomial functions of ((z, ) with coefficients that are meromorphic in A,

dj(2,A) = pj(C(2,A), ), (3.19)

°

dj(zv/\) = ﬁj (C(Z,)\),)\) (3'20)

Of course, we have in mind specifically the situation in which each layer A; is separable at v;. This
is because, in this case, A;j is a disjoint union of compact graphs, and thus its dispersion function
is a meromorphic function f;(\) and therefore a degree-0 polyomial in (z, ),

di(z,)) = f;(N). (3.21)

It will be useful to allow p; to be a more general polynomial in applications such as ABC-stacked
graphene in Section 5. The connector graph is a finite quantum graph (X, B), together with a list
of distinct vertices w; € V(X) (j =1,...,n).
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From these ingredients, an n-layer quantum graph (I", A) of type 1, as illustrated on the left of
Fig.1, is formed as follows. The vertex v; is merged, or identified, with w;. In like manner, for
each g € Z¢, the translated vertices guv1, ..., gv, are coupled by another copy of 3, called ¢%. The
resulting periodic graph I' is what we call a type-1 multi-layer graph. Its edge set consists of the
edges of each layer A; and the edges of each translate g3 of ¥. By denoting the identification of
merged vertices by the equivalence relation =, the vertex and edge sets of I" are

v = [Jvwy) v JveD) | /= (3.22)
j=1

geZd

M = Jewy) u | EwD). (3.23)
j=1

geZ

The Schrodinger operator A on I' has the same differential-operator expression as the operators
Aj and B on the elemental graphs A; and ¥, and the Robin parameter of an equivalence class of
merged vertices (now a single vertex of I') is assigned the sum of the Robin parameters of all the
vertices that were merged.

Observe that it is possible to allow several of the vertices w; to be equal. In this case, one might
as well merge all the layers that are attached to that vertex into a single layer according to the
single-vertex join in Definition 4, applied several times. According to the calculus of Lemma 5, the
degree of the polynomial p; for this new layer is the maximum of the degrees of the polynomials of
the joined components.

Theorem 7. Let (I'; A) be an n-layer d-periodic quantum graph of type 1. Its dispersion function
D(z,\) is a polynomial in ((z, \) with coefficients that are meromorphic functions of A,

D(z,\) = P(C(2,\),\), (3.24)

and the degree of P as a polynomial in ¢ is
deg P = Zdegpj. (3.25)
j=1

The proof applies Lemma 5 iteratively as successive layers are connected through the connector
graph.

Proof. When the number of layers is zero, (I', A) is the union U, ¢z4g> of disconnected finite com-
ponents with the operator B acting on each component. The dispersion function is a meromorphic
function of A, independent of z, and is thus trivially a polynomial in ((z,A) of degree 0, with
coefficients that are meromorphic in A. As the induction hypothesis, let the theorem hold with n
replaced by n—1, with n > 1.

Let (I', A) be the type-1 n-layer quantum graph supposed in the theorem, with layers (A;, A;)
separable at v; (1 < j < n) and connector graph (¥, B) with distinct joining vertices {w;}7_;. If
any of the polynomials p; has degree 0, then A; is a disjoint union of 74 translates of a finite graph,
and this finite graph might as well be joined with the connector graph . Therefore, we assume
that each degp; > 1 forall j: 1 < j < n.

Denote by (', A) the type-1 (n—1)-layer quantum graph built from the layers {(A;, A;) ;‘:—11
and the connector objects (X, B) and {wj}?:_ll. Note that (I'“», A%n) is the type-1 (n—1)-layer
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quantum graph built from the layers {(A;, A;) 7_11 and the connector objects (X%, B*") and

{w; ;L:_ll Denote by D(z,A) and D°(z,\) the dispersion functions of (I', A) and (I'*», A%»). By
the induction hypothesis, they are polynomials in ((z, A) with coefficients that are meromorphic
in A, and both are of degree Z?z_ll degp;.

The graph (', A) is the single-vertex join of (T, A) and A,,,
I = T(wn,vn)An (3.26)
and the calculus of Lemma 5 yields
0] = [TJ[AR] + [T [Ax]. (3.27)

Since A, is separable at v, [AY"] is independent of z, so the degree of the first term on the right-
hand side of (3.27), as a polynomial in ¢, is m = Z;‘:—ll degp;. The degree of the second term as a
polynomial in ¢ is m + degp,. This completes the induction. O

A special case of this theorem occurs when there is only one layer. The connector graph X is
then viewed as a periodic “decoration” of Aj. The result is the following corollary. Much more is
known about decorated periodic graphs, particularly with regard to opening spectral gaps [57].

Corollary 8 (Decorated graphs). Let (I', A) be a d-periodic quantum graph that is separable at
vertex v, and let (3, B) be a finite decorator graph with distinguished vertex w € V(X). Let £(X)
denote the spectral function of (I'V, AY), and let h()\) and h°(\) denote the spectral functions of
(%, B) and (£, B®).

Denote by (T, A) the “decorated graph” obtained by the single-vertex join of (I',A) and A =
Ugezag® at the vertices v and w. If the Fermi surface of (I', A) at energy X is given by

D(z,\) = 0, (3.28)
then the Fermi surface of (T, A) at X is given by
L(N)h(X
Do) = 10001 a0

Proof. Actually, this is a bit more than just a corollary to the theorem. The theorem says that
[[] is a function of D(), 2) that is linear in D(z,\) (take ((z,\) = D(z,\)). But we can find the
coefficients from Lemma 5, which says [[] = [['][A%] + [['V][A], or

[T] = D(z, \)h°(\) + £(A\)h(N). (3.30)
The Fermi surface of (T, A) is [['] = 0, from which follows the result. O

The polynomial P(¢, A) in Theorem 7 factors into m = Z?Zl degp; linear factors as a function
of ¢, and each factor corresponds to a component of the Fermi surface of (I, A). Thus the following
theorem is an immediate consequence of Theorem 7, and parses the result in terms of components
of the Fermi surface.

Theorem 9. The Fermi surface of a type-1 n-layer d-periodic quantum graph is reducible into
m = Z?Zl degp; components (with possible multiplicities). Each component is of the form

() = uh). (3.31)
For each A, the m (not necessarily distinct) values of () are the roots of P(C, \).
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3.2 Coupling several type-1 multi-layer graphs

Multi-layer graphs themselves can be used as the layers of more complex multi-layer graphs. This
ideas will be used for ABC-stacked graphene in section 5.5. Observe that single-layer graphene is
separable at each of the two vertices of a fundamental domain.

Let (I';, A;) be d-periodic type-1 multi-layer graphs based on separable layers described in the
previous section, with a common composite Floquet variable ((z,A). Suppose that each (I';, A;)
has a distinguished layer (A;, B;) such that A; is separable at a vertex v; other than the one used in
constructing (I'j, A;). The dispersion function of (A}’, B;”) is therefore independent of z and can
be used as a layer in a type-1 multi-layer graph. By replacing the layer (A;, B;) in the construction
of (T'j, A;) by the layer (A;J-j : B;.)j), one obtains (F;-)j ,A77). The point here is that, by Theorem 7,
both (T'j, A;) and (T}, A;j ) have dispersion function that is a polynomial in ((z,A). The theorem
is then applied again with (I';, A;) as the layers, which are coupled by an arbitrary finite connector
graph (X, C) by joining the vertices v; with given vertices w; of X.

4 Type 2: Multi-layer graphs with bipartite layers

This section generalizes the construction in [60, §6] from bi-layer to n-layer quantum graphs and
from single-edge coupling to coupling by general graphs, as illustrated on the right in Fig. 1. Each
layer has the same underlying graph, which is bipartite with exactly one “red” and one “green”
vertex in a fundamental domain. The layers are connected by one graph connecting the n red ver-
tices in a fundamental domain and another graph connecting the n green vertices in a fundamental
domain. A topical example is AA-stacked graphene, which is discussed in Section 5.3.

4.1 Coupling by arbitrary finite graphs

Given that the quantum graph (A, A), for a given layer, has underlying graph A which is bipartite
with one red and one green vertex per period, the Floquet transform of its discrete reduction is a

2 X2 matrix
g . bl ()‘) 'UJ(Z, A)
A(Z, A) - [w(z_l’)\) bQ()\) ] ’ (432)

in which b;(\) are meromorphic functions of A and w(z, A) is a Laurent polynomial in z = (21, ..., zq)
with coefficients that are meromorphic in A. (See section 5.1 for the case of graphene.) Specifically,
w(z,\) is a sum over some finite subset Z C Z,

L

w(z,A) = Zﬂ (4.33)

= 5N

in which sy()) is the s-function for the potential ¢(z) on the edge connecting a green vertex in a
given fundamental domain with a red vertex in the domain shifted by ¢ € Z%, and 2 = 2 ... zt»
and g is the weight for that edge.

The requirement for the multi-layer graphs in the theorem below is that w(z, A) be identical
over all the layers; but the functions by (\) and b2(\) are allowed to vary from layer to layer. This
means that each layer must have the same underlying graph A, and that for any given edge of A,
the potential at each layer must have the same s(\)-function, or, equivalently, the potentials must
have the same Dirichlet spectrum. Indeed, the Dirichlet spectrum of —d?/dz? 4 ¢(z) on an interval
and the function s(\) determine each other; see [52, Ch. 2 Theorem 5], for example.
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Several such graphs (A, Ag), k = 1,...,n, with the same w(z, A), are coupled to form an n-
layer quantum graph (I', A) as depicted on the right in Fig.1. Start with the disjoint union of
the n graphs (A, Ax). Then replace the n red vertices in a fundamental domain with a finite
quantum graph (X, By) whose vertex set includes those n red vertices plus (possibly) additional
ones. Another finite graph (Xg, B2) connects the green vertices together. These two coupling
graphs are repeated periodically. The simplest case is when two successive single layers (A, Ay) and
(A, Agy1) are connected with a single edge between corresponding red vertices and a single edge
between corresponding green vertices. The spectral matrix for (I', A) is

Al = [ b)) w(z,M)Q | n Bi(A) 0
’ Lw(zTH QT ba(N) 0 B(Y) (4.34)
[ B (% 2)Q | |
I w(z=H QT BZ()\) 7

in which @ is the mj X mg matrix with the n x n identity matrix in its upper left, all other entries
being zero; by () (resp. ba(A)) is a square diagonal matrix of size n+m; (resp. n+ma),

[ bi(A) ]

bi(Y) = diag H(N) @0, = K ; (4.35)
j=1l..n
0

Bj()) is the my x my spectral matrix of the~ coupling graph for the red vertices and the mgy x mo
matrix Ba(A) is for the green vertices; and Bj(A)=b;(\) + B;(A).
The dispersion function of (I', A) is

D(z,A) = det A(z, ) = det (By())) det (BQ(A) —w(z, w0\ QTél(A)‘1Q> (4.36)
= P(w(z, Nw(z71, ), A), (4.37)

in which P(-, \) is a polynomial of degree n with coefficients that are meromorphic functions of A.
For a single layer, this polynomial is just a linear function of the composite Floquet variable

Clz,N) == w(z, Nw(z71,N). (4.38)
We have proved the following theorem.

Theorem 10 (bipartite layers). Let (I', A) be a multi-layer periodic quantum graph obtained by
coupling n quantum graphs (A, Ax), k = 1,...,n, in which the underlying graph A is bipartite
with exactly one vertex of each “color” in a fundamental domain; and on corresponding edges, the
weights are identical and the potentials defining the operators Ay have the same Dirichlet spectrum;
and the coupling is effectuated by finite graphs of each color, as described for a type-2 multi-layer
graph. The Robin parameters may be different across layers.

For each energy A\, the Fermi surface of (I'; A) has n components (which may have multiplicity
greater than 1). The components are of the form

((z,A) = p(N), (4.39)
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in which p(\) is a root of the polynomial (4.36). The multiplicity of a component is equal to the
multiplicity of the corresponding root.

The isospectral sets of L? potentials g(x) on an interval are well understood; each isospectral
set is parameterized by the set of sequences of certain spectral data, as described in [52].

4.2 Stacking by edges

When n successive layers are connected by edges (or decorated edges), the matrix ) in expression
(4.36) becomes the nxn identity matrix I,,, and the dispersion function simplifies to

D(z,\) = det (Bi(A\)B2(A) — ((2, M) 1), (4.40)
and therefore the components of the Fermi surface are

C(z,A) = pi(N), j=1,...,n, (4.41)

where p; are the eigenvalues of the matrix By(\)Ba()).
As the connector graphs are linear graphs, their spectral matrices B;(\) are tridiagonal, with
DtN matrices for the connector edges along the principal 2x 2 submatrices.

Remark on decorated edges. For the sake of completeness, we mention that the edges in
any of the quantum graphs we consider may as well be “decorated edges”, as illustrated in Fig.3
for a single-layer graphene structure. A decorated edge is a finite graph that has two distinguished
terminal vertices that act as the two vertices of the decorated edge. Particularly, in a type-2 multi-
layer graph, the single layers, even when decorated, can essentially still be considered as being
bipartite. Allowing decorations on an edge can be thought of loosely as allowing a broader class
of potentials on the edge. A decorated edge admits a Dirichlet-to-Neumann map that straightfor-
wardly generalizes that of an edge. When forming the spectral matrix /l(z, A), this DtN map is
used, as described in section 2.2, and only the two terminal endpoints of the decorated edge enter
into the vertex set that indexes the matrix.

Figure 3: Quantum-graph graphene model with decorated edges.

5 Multi-layer graphene

We apply the theory developed in this work to quantum-graph models of multi-layer graphene
structures. Very general stacking of graphene, where the layers are shifted or rotated, results
in a reducible Fermi surface. We also discuss the conical singularities at wavevectors (k1,k2) =
+(27/3, —2m/3) for single-layer graphene and how stacking multiple layers destroys them.
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5.1 The single layer

A graph model of graphene is hexagonal and bipartite, having two vertices and three edges of
length 1 per fundamental domain. Being bipartite, it is also separable at any vertex (see, for
example, [38]).

The most general quantum-graph model (A, A) for which the differential operator on the edges
is of the form —d?/dx? + q(x) features three potentials, one for each edge in a period, and two
Robin parameters «;, one for each vertex v; (i = 1,2) in a period. The potentials will be denoted
by ¢;(x) (i =0,1,2) as in Fig. 4 and the corresponding transfer matrices by

] (i=0,1,2). (5.42)

Pl

Figure 4: Single-layer graphene I' and its fundamental domain. The arrows on the edges indicate the
direction of the z-interval [0,1] in the parameterization of the edges. The vectors & and & generate the
periodic shifts.

Let & and &9, as illustrated in Fig.4, be generators of the periodicity in the sense that the
action of (ni,ns) € Z? on I shifts the graph along the vector n1&; + n2és in the plane so that
it falls exactly into itself. The components of the vector (z1,z2), the Floquet multipliers, are the
eigenvalues of the shifts by £; and &, corresponding to a Floquet mode. The spectral matrix (4.34)
of this quantum graph at energy A is

. bi(A)  w(z,A)
A(Zl, ZQ,)\) = N (5.43)
w(z7H ) ba(N)

bi(\) = _a®) _a®) el by(N) = _zggii - 2/18; - 28 — o, (5.44)

= o0 4 oy, + 200 (5.45)

This is the function w(z,A) in (4.33). Notice that w(z, A) depends only on the potentials ¢;(x)
through their Dirichlet spectrum since only the functions s;(A) appear in the definition of w(z, A).
The dispersion function for (I', 4) is

D(z1,20,0) = det A(z1,20,A) = bi(\ba(A) — (2, \), (5.46)

in which
C(z,N) = w(z,Nw(z"1 ). (5.47)
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Observe that the dispersion functions of two different single-layer sheets of graphene have the same
((z,A) exactly when corresponding edges are isospectral, because knowing the Dirichlet spectrum
of a potential is equivalent to knowing its s(A) function [52, Ch.2 Theorem 5].

All three edges in a period of a single layer are isospectral exactly when so(A) = s1(\) = s2(A),
and in this case ((z, \) separates as

((2,2) = s0(A)2G(21, 22), (5.48)
in which
G(z1,22) = (1+21+22)(1+ 271 +250). (5.49)

The Fermi surface of a single layer at energy A is given by D(z1, 22, A) = 0, which reduces to
AN = so(N)2bi(MNb2(\) = G(21,22). (5.50)

We call A()\) the “characteristic function” for this single-layer graphene model.

For (21, z2) = (e'*1,¢2) on the torus T2,
Gk, ko) == G(e™,e*2) = |14t 4 eh
ko —ki ki ko (5.51)

COS — CoS —,

2 2

‘ 2

= 14 8cos

and this has range [0, 9] as a function of real k1 and k2, with its minima occuring at +(27/3, —27/3) [38,
Lemma 3.3]. Thus the bands of this graphene model are the real A-intervals over which A(A) lies
in [0, 9].

Single-layer quantum-graph graphene sheets and tubes, with a common symmetric potential
go(z) on all edges, are treated in detail in [38]. In this case, by (A) = ba(A) and the spectrum of the
sheet is identical to that of the periodic Hill operator with potential go(x) on a period. In contrast
to the Hill operator, the dispersion relation exhibits conical singularities, one for each energy A
where A(X)=0. Fig.6 shows a graph of A()). Conical singularities are discussed in section 5.7.

Notice that A()) is a non-negative function of real A that has a minimum value of 0 (Fig.6).
The quadratic nature of the function at the minima is responsible for the Dirac cones, as explained
in [38]. There is a close connection between the dispersion functions of discrete (tight-binding)
models and quantum-graph models [38, Remark 3.2]. In the discrete graph model of single-layer
graphene with a common interaction strength between atoms, the characteristic function reduces
to A(A) =92, and thus there is a Dirac cone at A =0. For multi-layer graphene in the discrete
and quantum versions, A(\) becomes a more complicated function of A\. Our analysis treats very
general potentials on the three edges of a fundamental domain, and this leads to a more general
dispersion function that is not separable into A-dependent and z-dependent terms because the edges
no longer in general possess a common s(\) function (see (5.46) and (5.48)).

5.2 Shifting and rotating

We adopt terminology on shifted layers of graphene that is used in the literature. The hexagonal
graphene structure is invariant under translation by the sum &; + & of the two elementary shift
vectors, as illustrated in Fig. 5. The shift by ({1 +&2)/3 (dashed blue) places vertex v onto vertex v;
and places vertex v; onto the center of the hexagon; this will be called the B-shift. The shift by
2(&14+&2)/3 (or —(&14E&2)/3, dotted orange) places v1 onto vy and ve onto the center of the hexagon;
this will be called the C-shift. The unshifted graph is called the A-shift.
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By rotating the graphene structure by 7 about the center of an edge, the potentials reverse
direction. This is illustrated on the right of Fig. 5, in which rotation is about the edge labeled 0.
Each labeled oriented edge corresponds to a potential ¢;(x), with the parameter x increasing in the
direction of the arrow. The labels 0, 1, 2 are preserved under rotation, but their orientations are
reversed. Equivalently, rotation effects the change ¢;(x) — ¢;(1 —x) of the potentials. The rotation
also switches the Robin conditions on the two vertices of a period.

Denote a single layer by (A, A) and its 180° rotation by (A, A;). The potentials ¢;(z) and
¢i(1 — x) have the same Dirichlet spectrum, which coincides with the roots of the function s;(\).
Therefore the function w(z, A) in (5.45) is the same for both quantum graphs and their dispersion
functions are polynomials in the same composite Floquet variable ((z,\) = w(z, Nw(z~1, \).

Figure 5: Left: A- B- and C-shifts of graphene are illustrated in solid black, dashed blue, and dotted orange,
as described in the text. Right: Rotating graphene by 180° reverses the orientation of the potentials but

preserves their Dirichlet spectra.
\/ 40\60/80 100 A

Figure 6: Graph of the characteristic function A(\) of single-layer graphene, showing the first three spectral
bands and the first three gaps. The bands are the A-intervals for which A(X) € [0, 9], which is the range
of the function G(k1, k). The points where A(\) = 0 correspond to conical singularities of the dispersion
relation D(e?1, e?*2  \) = 0, which occur inside the bands, as discussed in section 5.7 and [38]

0

5.3 AA-stacking and rotation

In AA-stacked graphene, each layer is stacked directly over the previous and each pair of vertically
successive vertices is connected by an edge, as in Fig. 7. As a type-2 n-layer graph, the red vertices
in a given period, together with the n—1 edges connecting them, form the connector graph (31, By),
and the green vertices and the edges connecting them form (X9, B2). The hypotheses of Theorem 10
allow the potentials g(x) on any pair of vertically aligned edges on two different layers to differ as
long as the operators —d?/dx? + q.(x) possess the same Dirichlet spectrum. The theorem then
guarantees that the Fermi surface of the layered structure is reducible with n components.
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A particular instance of AA-stacked graphene satisfying the hypotheses of the theorem is con-
structed from copies of a given single layer and its rotations about the center of an edge. Let a
single layer (A, Ap) with arbitrary potentials on the three edges of a period and arbitrary Robin
parameters on the two vertices be given. Rotation of this graph by 180° about the center of an
edge, as described in the previous section and illustrated in Figs. 5,7 (right), results in a new layer
of graphene (A, A;) with the same underlying graph A but with the potentials oriented in the
opposite direction and the Robin parameters at the two vertices switched.

Thus Theorem 10 applies to an n-layer stack, with each layer being either (A, A) or (A, A;), in
any order, stacked in the AA sense. The Fermi surface of this n-layer graphene has n components.
According to section 4.2, equation (4.40), the relation D(z, A) = 0 reduces to n components

wi(A) = G(z1, 22) i=1,...,n, (5.52)
in which u; are the eigenvalues of the “characteristic matrix”
AN) = s0(A)? Bi(A)Ba(N), (5.53)

which generalizes the characteristic function (5.50) by the same name for the single layer.

Ao

N T
>
0

1

Figure 7: AA-stacked graphene in three layers and a fundamental domain thereof. If the potentials on
corresponding edges on different layers have the same Dirichlet spectrum, then the Fermi surface for the
multi-layer graph is reducible. This occurs, in particular, when a layer is rotated by 7w about the center of
an edge.

Examples. (Fig. 8 and 9) Let the layers be identical with identical potential go(z) on all three
edges of a period. We take go(x) to be symmetric about z = 1/2 so that the DtN map for the edge
is independent of the direction. We choose

qo(z) = —16X[1/32/3(2) (5.54)

(Xy () is the characteristic function of the set Y C R) so that the DtN map is explicitly computable
and so that the spectrum of the single layer does have gaps (because go(x) is not constant; see [38]).
On all of the connector edges, which are all of length 1, we take the potential g.(z) to be either

0 or go(x) or
ge(z) = —10X[1/2,1)(2), (5.55)

which is not symmetric about the center. Fig. 8 and 9 show graphs of p;(u) for bi-layer and tri-
layer graphene. Each eigenvalue contributes a sequence of bands and gaps to the spectrum of the
multi-layer graph—the bands for the i*" sequence are the A-intervals for which j;(\) € [0,9]. When
the Dirichlet spectral function s(\) on the connecting edges is different from that of the layers, new
thin bands are introduced. Conical singularities, or Dirac cones, are discussed below. These are
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characteristic features of single-layer graphene, and in special cases of AA-stacking, they persist,
according to Proposition 11. The recent article [21] also observes by computation that a finite
number of AA-stacked graphene layers with the same symmetric potential on all edges within each
layer and with symmetric connecting potentials, always exhibits Dirac cones. These Dirac cones
can also be deduced from the full hexagonal symmetry group, as proved in [10].
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Figure 8: For double-layer A A-stacked graphene, the two eigenvalues p;(A) (i = 1,2) of the characteristic
matrix A(\) give two sets of spectral bands and gaps. The bands are the A-intervals for which p;(\) € [0, 9].
The dispersion relation for the shaded A-intervals are shown in Fig.14. a. The connecting edges have the
same potential as those of the layers (5.54). b. The potentials (5.55) of the two connecting edges are equal
to each other but different from that of the layers (5.54). This creates additional thin bands (within each
of the sets of spectral bands), which have conical singularities of their own. c. The potentials of the two
connecting edges are different from each other (g(x) = 0 and 5.54). This destroys conical singularities and
introduces additional thin gaps in their place. Additionally, new thin bands are introduced just below the
vertical asymptotes. d. The potentials of the two connecting edges are different from each other (¢(z) =0
and 5.55).
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5.4 AB-stacking

In AB-stacked graphene, also called Bernal stacking, the layers are in the A-shift or the B-shift and
are coupled by a single edge per period. We allow any number of layers with the A- and B-shifts
arranged in arbitrary order (such as ABABA, ABBA, etc.). Fig. 10 illustrates three layers with
alternating shifts.

In each layer, we allow both (A, A) and (A, A;) or any potentials ¢;(z) (i = 1,2,3) as long as,
for each 4, the Dirichlet spectra are invariant across layers. As noted above, this guarantees that the
function ((z, A) is independent of the layer since it depends only on the Dirichlet spectral functions
s;(A), which are equivalent to the Dirichlet spectra of the potentials ¢;(x). Note that isospectrality
(which is explicitly required for type 2) arises for graphene in type-1 stacking. Thus the dispersion
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Figure 9: The three eigenvalues p;(A) (i = 1,2, 3) of the characteristic matrix A(X) for triple-layer AAA-
stacked graphene, giving three sets of spectral bands and gaps. The bands are the A-intervals for which
ui(A\) € 10,9]. a. The connecting edges have the same potential as those of the layers. b. The connecting
edges have potential (5.54) at vertex v; and potential (5.55) at vertex wvo; this creates additional thin gaps
and destroys Dirac cones (the minima are slightly below 0).

function of each layer is of the form (5.46) with different b;(\) but the same ((z,\). In any period
of this layered structure, n vertices, one per layer, are aligned along a vertical line, and these are
connected by edges. These vertices serve as vertices of separation of the individual layers. Thus
Theorem 7 on type-1 multi-layer graphs applies.

Computations of AB-stacking in [20], with a common symmetric potential on all edges of each
layer, show that three layers result in a Dirac cone (linear point), whereas two layers result in two
bands touching quadratically (parabolic point). This raises the question as to whether the parity
of the number of layers determines whether the touching point is linear or parabolic and whether
symmetry arguments can be used to illuminate this question.

—<
—

Figure 10: AB-stacked graphene in three layers (ABA) and a fundamental domain thereof.

Examples. (Fig.11) As in the previous subsection, let the layers be identical with identical
symmetric potential go(x) on all edges. Fig. 11 shows the graphs of the roots p;(A) of the polynomial
P(¢, \)—see Theorems 7 and 9. Conical singularities of the dispersion relation are discussed below
in Section 5.7.

5.5 ABC-stacking

In ABC-stacked graphene, all three shifts are stacked, as illustrated in Fig.12. The number of
components of the Fermi surface of the ABC-stacked structure is equal to the number of layers.
We leave the details of how to use Theorems 7 and 10 to prove this to the reader. The arguments
are similar to those described for the more general mixed stacking below.
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Figure 11: For double-layer AB-stacked graphene, these are graphs of s(A)%u;(A) (i = 1,2), where pu;(\)
are the two roots of P({(z,A),\), as in Theorem 10. Each root gives a set of spectral bands and gaps. The
bands are the A-intervals for which p;(A) € [0,9]. a. The connecting edge has the same potential as those of
the layers. b. A close view near A = 20 shows that the graphs of p;(\) cross the horizontal axis, and thus

Dirac cones are not present.
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Figure 12: ABC-stacked graphene in four layers and a fundamental domain thereof.

5.6 Mixed stacking

Several graphene sheets can be stacked with arbitrary shifts (A,B,C) to obtain a mixed-stacking
multi-layer sheet of graphene with reducible Fermi surface, as long as all the individual layers
have dispersion function that is a polynomial in the same composite Floquet variable ((z,\). As
discussed above, this occurs when all vertically aligned edges are Dirichlet-isospectral. Fig.13
depicts five layers stacked with mixed shifts. The dispersion function is a polynomial in ((z, \)
whose degree is the number of single sheets of graphene in the stack. The proof of this uses iterated
application of the theorems on type-1 and type-2 multi-layer constructions and section 3.2, as
described next.

Let ¥; and X3 be n-layer and m-layer AA-stacked graphene quantum graphs (type 2). Let the
individual layers of both have dispersion functions that are polynomials in a common ((z,\). Let
uj and wu, be corresponding (vertically aligned) vertices in the first and n-th layers of ¥, and let
v1 and vy, be corresponding vertices in the first and m-th layers of 3.

Observe that X{" has dispersion function that is also a function of the same ((z,A). This
is because a single graphene layer is separable at any vertex, and thus 3" can be viewed as a
type-2 (n—1)-layer graph with connectors that consist of the edges between the n—1 layers plus
decorations. The same is true of X5°. Therefore X1 and X can be coupled by an edge between u,,
and vg according to a two-layer type-1 construction, resulting in a quantum graph I' with dispersion
function that is a polynomial in ((z, A).

This construction could just as well be carried out using ¥9™ in place of ¥, resulting in I,
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whose dispersion function is a polynomial in ((z,A). Now yet another AA-stacked multi-layer
graphene construction X3 with the same ((z, A) can be attached to I'; and so on. These arguments
need to modified somewhat if any of the AA-stacked sections ¥; consists of only one layer, as in
ABC-stacked graphene.

—

Figure 13: Five layers of graphene in mixed stacking, and a fundamental domain thereof.

5.7 Conical singularities

Single-layer graphene is famous for the “Dirac cone” feature of its dispersion relation D(e**1, ¢z \) =
0. The Dirac cone is a conical singularity in (a branch of) the dispersion relation D(k,\) = 0
(k = (k1, ko)), where it has the approximate form

(A= 20)? ~ c|k—ko|? (5.56)
(¢ > 0) to leading order for (k,\) near (ko,\g). There is a large amount of literature on this, for
example [1, 16, 15, 47, 49, 51]. For Schrodinger operators in R? with very general honeycomb-
type potentials, the existence of circular Dirac cones and their stability is proved by perturbation
methods in [30]. In [10], the authors provide a treatment for more general operators with hexagonal
periodicity that is highlights the representations of various symmetry groups.

For single-layer graphene with equal and symmetric potentials on all edges, conical singular-
ities occur at energies A for which A(A) = 0 [38]. This is because the dispersion relation is
A(N) = G(ky, k2) and both A(X) and G(k1, k2) have 0 as nondegenerate minima (here, G(k1, ko) :=
G(e™1, e*2)). The quasimomenta at these points are +(27/3, —27/3).

When n layers are stacked in the AA sense, the n branches of the dispersion relation are p;(\) =
G(k1, ko) (5.52). When the connecting graph (sequence of connecting edges in this case) for the
red vertices is the same as that for the green vertices, then By(\) = Bs(\). The symmetry of
the potentials about the centers of the edges implies ¢(\) = s'()\); this, together with equal Robin
parameters for each layer results in bi(A\) = by(\). Thus Bi(A\) = Ba(\), and the p;(\) are
eigenvalues of the positive matrix A(A) (5.53). Therefore, in each spectral band, pu;(\) reaches its
minimal value of 0, and a conical singularity occurs (as long as the minima are nondegenerate), as
shown in Fig. 8(a,b) and Fig. 9(a)—this is stated in the next proposition.

24



Proposition 11 (Condition for conical singularities). For an AA-stacked multi-layer graphene
structure: if (1) the potentials on all the edges of all layers (black edges in Fig. 7) are identical
and symmetric about the center of the edge; (2) in each layer, the two Robin parameters are equal;
and (8) the potentials connecting the green vertices (green edges in Fig. 7) are the same as those
connecting the red vertices (red edges in Fig. 7), then the dispersion relation has a conical singularity
at each energy \ for which an eigenvalue p(X) of A(X) is equal to zero and the second derivative of
w(\) is nonzero.

This proposition can also be obtained from [10, Theorem 2.4], as the conditions imply symmetry
under rotation by 7 /3, inversion, and reflection, in the plane of the layers.

Incidentally, condition (1) in Proposition 11 apparently cannot be relaxed. The proof relies
on two conditions on the potentials of the layers: They must all be isospectral and they must be
symmetric. It is known (see [52]) that the Dirichlet spectrum completely determines the potential
q(x) within the class of symmetric potentials. Therefore all potentials on all the layers must be
equal.

When the green and red vertices are connected differently, B;(A\)Bz()) is not necessarily a
positive matrix, and indeed the p;(A) cross 0 linearly, at which points there are nondegenerate
band edges. This is illustrated in Fig. 8(c,d) and Fig. 9(b). Dispersion relations in (k1, k2, \)-space
are shown in Fig. 14.

For AB-stacked graphene, the numerical computation in Fig. 11(a,b) shows p;(\) crossing 0 lin-
early at each point where it vanishes, and thus each of these points corresponds to a nondegenerate
band edge (and not a conical singularity).
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Figure 14: The dispersion relations for AA-stacked graphene from examples (a) and (c) in Fig. 8, shown
for energies A within the shaded intervals in Fig. 8(a,c). The two sets of bands coming from the eigenvalues
1i(A\) (i = 1,2) are in blue and yellow. a. The two connecting edges have the same potential. Each of the
energies A where the p;() hit zero in Fig. 8(a) exhibits a conical singularity at two different quasimomenta
(k1,k2). c. The two connecting edges have different potentials. All of the conical points open into gaps. In
the upper interval, an additional thin band appears.

6 Some irreducible Fermi surfaces

We give two examples of multi-layer quantum graphs that are not of type 1 or type 2 and whose
Fermi surface is not reducible for some open set of energies.

The first example is a bi-layer graph with identical tripartite layers; the single layer is shown in
Fig. 15. Each edge of the single layer has the same symmetric potential. Two copies of this layer
are connected by two edges per period, one edge between green vertices and one between red, and
these two edges have potentials from different asymmetry classes as defined in [60] (otherwise the
Fermi surface would be reducible by [60, Theorem4]). With the vertices ordered green-red-blue,
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the spectral matrix for this graph is

[ —3¢(A\) 0 1+ 2 0 1 0 ]
0 —3c(\) 0 1+ 2 0 1
A=) = EEREE" 0 —2¢(\) — 25'(\) 0 1+ 2 0
’ () 0 14257 0 —2¢()\) — 25’ (\) 0 142
0 1427t 0 —35'(\) 0
0 0 1427t 0 —3s'(\)
] (6.57)
[ —c1(\)s1 (M) 71 sp(A) 71 0 0 0 0]
sp(\) 71 sh(A)s1(\) 71 0 0 0 0
0 0 —ca(N)sg(N) 7t s9(A)7t 0 0
+ 0 0 25(2()A)2£1) —5'2(3()5)2(»—1 0o (659
0 0 0 0 0 0
i 0 0 0 0 0 0|

Figure 15: A tripartite periodic graph. Two layers of this graph coupled at the green and red vertices with
appropriate potentials yields an irreducible Fermi surface for some energies.

We prove, with the help of a computer, that the determinant of this matrix is not factorable
as a product of non-monomial Laurent polynomials in z; and z5. Lemma 12 below guarantees
that, given A € R and three real numbers «, 8 and v, with a8 # 0, there exists a continuous real
potential ¢(z) whose spectral functions satisfy c¢(\) = a, s(\) = 3, and s'(\) =~. Thus, we can
choose the values of ¢()), s(A), s'(N), c1(A), s1(N), s7(N), ca(N), s2(A) and s5()\) independently, and
the determinant becomes a Laurent polynomial in z; and zo with real coefficients. Nonfactorability
occurs, for example, for c=s =3 =1 = 5] =1 = 59 = s, =1 and ¢o = 2, and therefore also for
an open set of energies around A for the same potentials.

The second example is crossed bi-layer graphene. The layers are identical, and, within one
period, the red vertex of each layer is connected to the green vertex of the other layer. With
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w=14 27"+ 2" and w’ = 1 + 21 + 2 the spectral matrix for this graph is

—3¢(\) 0 w 0
Az, 3) = 8(1)\) 3/ —330\) 33()\) 1(;1 (6.59)
0 w' 0 =35
e I
+ 8 Cﬁ()j;(?) —sat(ﬁlml : B
)l 0 0 (Vs (V)

The choice c=s=5" =351 =5 =c1 =s2=55,=1 and co =2 renders the determinant not factorable.
Incidentally, when the connecting edges have the same potential, the determinant factors, but the
factors are not functions of ww’ or any other function of z; and zs.

7 Embedded eigenvalues

In this section, we show how the reducibility of the Fermi surface can be exploited to create a
local defect of a periodic quantum graph operator that engenders a bound (L?) state at an energy
within the continuous spectrum, and such that this state has unbounded support. Such an energy
is an embedded eigenvalue of the operator. The condition of unbounded support distinguishes these
eigenvalues from the energies of the flat bands, discussed in Section 2.6, which are peculiar to graph
operators, both discrete and quantum. See more discussion of this interesting issue in [40].

We discussed in the Introduction that irreducibility of the Fermi surface is an obstruction to
the existence of embedded eigenvalues with unbounded support. The proof of this in [40] gives
guidance on how to construct embedded eigenvalues when one does have reducibility. The key
is in the Floquet transform, where the dispersion function D(z,\) = Di(z,A\)D2(z,\) appears in
the denominator. The strategy is to choose an energy A such that exactly one of the factors, say
D1(z,A) but not Dy(z,\), vanishes at some z values on the torus T2 C C2. This means that A lies
in the set of spectral bands contributed by D;(z, A) but outside the bands contributed by Da(z, ).
Then one arranges a defect so that only the factor Dj(z, ) is cancelled in the solution. We carry
this out here for bilayer graphene in AA- and AB- stacking.

Let the potentials on all of the edges be ¢.(x) = 0. The spectral matrix for the single layer is

, 1 [30()\) w(z) (7.61)

A5 = L) —se(

s(A)

in which s(\) =sinv A and ¢(\) = cos VA and w(z) = 1+ 21 + z2. The spectral matrix (4.34)
for AA-stacked graphene I'44 becomes

°

~ 1 [s(NA(2,A) = (M) 2 ) P
A=) = s(A) I s(VA(z,A) — (AN | (762
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in which I is the 2x2 identity matrix. The dispersion function D(z, ) is the determinant of this

matrix, and since we will consider A that is not a root of s(\), we may work with
D(z,\) = det (s(\)A(2,\)) = D1(2,\)Da(2,\) (7.63)
= (16c(N)? = 8¢(N) + 1 —¢(2)) (16¢(N\)* +8c(\) + 1 — ((2)), (7.64)

in which ((z) = w(2)w(z!). The dispersion relations for the two components of the Fermi surface,
as displayed in (5.52), therefore turn out to be

C(z1,22) = pe(N) 1= 16¢(N)* £ 8c(\) + 1. (7.65)

These two components contribute different sets of bands, say 04 (A), to the spectrum of the AA-
stacked graphene model (o_ corresponds to the factor Dy(z, ), and o, to the factor Dy(z, A).).
As described in Section 5.3, since the range of ((e*1, ¢?2) is the interval [0, 9], the bands are the
inverse images of this interval by the functions py(\), whose graphs are shown in Fig. 16(left).
Precisely, o+ (A) = {\: 16¢(A)? £ 8¢(\) +1 € [0,9]}.

15 4 15 4 1
——16c(A\)? 4+ 8c(N) +1 ——12¢(N\)? + 3¢(N)
—16¢(N)? — 8c()\) + 1 —12¢(\)? — 3¢(N)

10 | / 10 |

0 L+ 0 +————=+— —
012345678910 012345678910

Figure 16: Two sets of spectral bands for bi-layer graphene (AA left; AB right), coming from the two
components of the Fermi surface, are the inverse images of the interval [0, 9] under the two graphed dispersion
functions. On the left, the vertical line shows that, for AA-stacking, the energy A=1 lies within a band of
the relation G(k1,k2) = p—(\) but in a gap of the relation G(k1,k2) = p4(A). Similarly, on the right, the
energy A=6 lies in exactly one of the sets of bands for AB-stacking.

Notice that A =1, for example, lies in 0_(A)\o4(A4). We will show how to construct a local
defect in I'4 4 and an embedded eigenvalue for the defective graph at any A € o0_(A)\o+(A). At such
a value of A, we will first consider the following auxiliary problem for the discrete-graph reduction
(sec. 2.2, p.7) of the full quantum-graph operator on I'4 4,

ANy = ¢, (7.66)

where ¢ is a forcing function defined on the vertices of I'44 that is nonzero at only finitely many
vertices. Its Floquet transform ¢(z) is therefore a Laurent polynomial in z = (z1,z2), and its
coefficients can be considered to be vectors in C* since a fundamental domain W of T'44 contains
four vertices. The solution w is the response (also defined on the vertices of T'y4) to the forcing
function ¢ at energy A. Its Floquet transform u(z) is obtained algebraically by

~ ~

Adj(A(z, M) ¢(2)

i() = Az )7 = SRS,

(7.67)
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in which Adj(A(z, \)) is the adjunct of A(z,\).
Let us now fix A such that s(A) # 0, say A=1 to be concrete, and choose the forcing function
in the Fourier domain to be

¢(z) = Di(z,1)¢ = (16¢(1)® — 8¢(1) + 1 — ((21, 22)) €. (7.68)

Since ¢(z) is a Laurent polynomial in z = (21, 23), the forcing function ¢ on I'y4 has compact
support. Then we obtain X

Adj(A(z,1)) ¢
16¢(1)2 +8c(1) +1 —¢(2)°
The response u has a value at each of the four vertices in each shift of W by any element of g € Z¢,

and so u can be considered to be a function of g € Z¢ with values in C*. It is obtained by Fourier
inversion,

u(z) =

(7.69)

u(g) = (2717)2/1r2 29 0(z) dz, (7.70)

in which T? = {z € C? : |21|=|22| =1} is the two-dimensional torus in C2.

Since A =1 is not in 02(A), the denominator does not vanish on the two-dimensional torus
T? = {z € C? : |2]| = |22| = 1} in C?. Therefore 4(z) is analytic on T?, and it follows that
u € L?>(V(Taa)) (u is in fact exponentially decaying). As long as the denominator Dy(z,1) is not
cancelled identically by any of the four components of the vector in the numerator, 4(z) will not
be a Laurent polynomial in z. This means that v has unbounded support, that is, it is nonzero
on infinitely many vertices. One can compute the values at the four vertices of each shift of W
explicitly; for example, when &= [1,0,0, 0],

_s() [, —64c(1)® +4e(1)¢(2)

ui(g) = (2m)2 /1r2 z 16¢(1)2 + 8¢(1) + 1 — C(z)d

uz(g) = (1) / oL+ 21+ 29)(16e(1)* — 1 — ((2))
2 272 o 16¢(1)2 + 8¢(1) + 1 — ((2)

0

dz

[\

Cos() [, 1-((z) — 16¢(1)?

uz(g) = (27)2 /11,2 z 16¢(1)%2 +8c(1) + 1 — ¢(2) o

wlg) = S [ o Savm)
n= (2m)2 Jp2© 16¢(1)2 +8c(1) +1—((2)

and confirm that the denominator is not simultaneously a factor of all four of the numerators.

We now show how the solution u to 2(\)u=¢ can be extended to an L? eigenstate of a local
perturbation of the quantum graph A. For simplicity, let ¢ within a fundamental domain of I'4 4 be
possibly nonzero only on the two vertices of a single edge e{v, w}. We will construct a perturbation
of A obtained by replacing the potential ¢.(z) on the edge e by a different potential V' (z). This
yields a perturbation (I'44, Ay) of the periodic quantum graph (I'44, A). Our task is to determine
V(x) so that the equation Ayu = Au for some extension of u to the edges of I'44 is equivalent to
A(N)u=¢. The procedure that follows can be repeated to account for forcing on multiple edges.

Let 2y (A)u = 0 be the discrete reduction of the eigenvalue problem Ayu = Au (sec.2.2, p.7).
Then our task is reduced to finding V' (x) so that

ANu=¢ <<= Ay(Nu=0. (7.71)
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To do this, we must look at how the matrices 21(\) and 24y (\) are constructed. They are indexed
by V(I'4a4). The 2x2 submatrix of 2(\) corresponding to the vertices {v, w} of e has a contribution
from the DtN map (2.8) with ¢g=0 and s.(\) = s(\) (similarly for ¢ and s’); and the corresponding
2x 2 submatrix of 2y (\) has a similar contribution, but with s.(A)=sy(\) (similarly for ¢ and s’)
coming from the spectral functions for the operator —d?/dz? + V(z). Otherwise, 2A()\) and Ay ()
are identical.

Given that A(A)u = ¢, the task is to find V(z) such that Ay (A\)u=A(N\)u — ¢. By the fore-
going discussion and the fact that ¢ vanishes except at the vertices v and w, this equation holds
automatically at all other vertices. Thus this equation reduces to

1 [—CV()\) 1 ] [u(v)] _ [Ul(v) _¢(U)] ‘ (7.72)

sv(A) 1 —sh, (N | |u(w) u'(w) — p(w)

That there is a potential V(x) that satisfies these equations for, say, A=1, is settled by the lemma
below.
In the case of AB-stacked graphene,

A(27 )\) _ S(l)\) S()\)A(Z, )\) — C()\)Egg FEyo

, 7.7
FEy s(AN)A(z, )T — c¢(\)Ex (7.73)

in which E99 is the 2x2 matrix with 1 in the (2, 2)-entry and zero everywhere else. The dispersion
relations for the two components of the Fermi surface turn out to be

C(z1,22) = pe(N) = 12¢(V)? % 3¢(N). (7.74)

The graphs of the functions p4 (\) are shown in Fig. 16(right), and A=6 is seen to lie in the spectrum
coming from g4 ()\) and not in the spectrum coming from p_(\). Again for & = [1,0,0,0]%, one
computes the values of u at the vertices,

w0 = G [ e e 1
i) = o2 [ UL QO (),
w0 = G L e e

i) = 20 [ O )

and confirms that the denominator is not canceled in all four expressions simultaneously. The rest
of the construction of an embedded eigenvalue is essentially identical to the case of AA-stacking.
Lemma 12. Given real numbers «, B, v, and A with af #0, there exists a real-valued potential
q(x) on [0,1] for which c(A\)=a, s(A\)=p, and s'(\)=".
Proof. Let ¢(z; A) be the solution to —u” + g(z)u = Au such that ¢(0;A\)=1 and ¢/(0; \) =0; and
let s(z; \) be the solution such that s(0; \)=0 and s'(0; A\) =1. Then, by definition, ¢(\)=c(1;\),
s(A)=s(1; ), and s'(A)=s'(1; \), with the prime referring to d/dz. The ODE implies
d"(z; \)
—A= -, 7.75
q() e (7.75)

We prescribe additionally that ¢(z; \) is an analytic function of = such that
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L. e¢(l;\) =aand d(1;\) = Mﬁil’

2. ¢(x; M) has finitely many roots in (0,1), and at each root the first derivative is nonzero and
the second derivative is zero,

3. fol c(z;\)"2dx = g

Let us show that the potential ¢(x) obtained from this function c(x; A) is well defined and has the
three desired properties.

Because of the second property, ¢’ (x; A)/c(x; A) is analytic at each zero of ¢(z; \). By construc-
tion ¢(1; A) = . From the Wronskian identity c(z; X)s'(z; \) — s(z; \)(x; A) = 1, one obtains

s(x; A) = ce(x; ) /Ow c(as;l)\)de’ (7.76)

which, together with properties (1) and (3), yields s(1; \)=/. The Wronskian identity also gives

as' — (O"Yﬁ_ 1) B=1, (7.77)

from which we obtain s'(1;\) = ~. O

8 Appendix: Moving the poles of the dispersion function

This appendix proves Proposition 1 in section 2.1. The proof is based on the dotted-graph tech-
nique [41]. First consider the simple case of a quantum graph where the underlying graph E consists
of two vertices and the edge e{v1,v2} between them, identified with the z-interval [0, L]. With the
operator —d?/dx? — g(x) and Robin parameters o at v1(x = 0) and ag at vo(x = L), we obtain
a quantum graph (E, Q). Let E be the graph obtained by placing an additional vertex v at the
point of e corresponding to z = £ € ]0, L[; thus E consists of three vertices and two edges ej{vy, v}
and ex{v, vy}, with e; identified with [0, ¢] and eg identified with [¢, L].

Restricting the potential ¢ to e; and es and imposing the Neumann condition at v yields a
quantum graph (E,Q) The Neumann condition guarantees continuity of value and derivative
across v, and therefore (E, Q) and (E, Q) are essentially identical quantum graphs.

Denote the transfer matrices for —d?/dz? + g(x) on [0, L], on [0,], and on [¢, L] by

(8.78)

¢}
o~
>
V)
o~
—~
>

Considering (E, Q) as one period of a d-periodic disconnected graph, its dispersion function is a
meromorphic function of A\ alone, as its discrete reduction Q(z, A) is independent of z. When Robin
conditions are imposed at both endpoints, denote this function by hRR()\) = det Q(z, A),

(M) 1
S~ M ey 0
. RR _ 1 sh (A) ca(A) 1
PR =det | 5SS T s s (8.79)
1 s5(N)
0 =200 a0 92 |
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When the homogeneous Dirichlet condition is imposed at either end (not both ends) of [0, L], with
a Robin condition at the other end, one obtains

_s1 ) ) 1 _cl(i) —ay 1/\
hDR()\) — det s1(A) 52(A) /52()‘) ’ hRD()\) — det s1(A) ) 51(A) 7
s, 1 _ 1) ()
s2(N) s2(N) 2 51(A) si(A)  s2(})
(8.80)
and hDD(A) = —283 — 2283 when the Dirichlet condition is imposed at both ends. Using the
relation T" = T»T}, one computes that
iRR _ s’ +agc+ ozlags7 i DR _ s+ ozgs7 i RD _ c+a15, pipp_ S (8.81)
5182 5182 5182 5182

For the un-dotted quantum graph (F,(Q), one obtains these same expressions except with the
denominator s1(\)sa(A) replaced by s(A),

/ / /
BRR _ c + o118 + age + 0410428, DR _ s + 04257 BRD _ c+ 0618’ ,DD _ —f. (8.82)
S S S S

Observe that, given Ao, one can guarantee that si(A\g)s2(Ag) # 0 by choosing the point £ not to be
a root of any Dirichlet eigenfunction of —d?/dx? + q(z) for \g on [0, L].

These calculations show that the numerators in the expressions above contain the essential
spectral information. In fact this is true of periodic quantum graphs in general. To go from the
dispersion function for a quantum graph (I', A) to the dispersion function for a dotted version
(', A), one simply multiplies by a factor of the form s()\)/(s1(\)s2()\)) for each dotted edge.

Proof of Proposition 1. If v; and vy are not in the same Z? orbit, we can assume that they both
are in the vertex set Vy of the fundamental domain chosen for constructing A(z, ), since D(z, \)

is independent of that choice. Denote by A(z, A) and A(z, \) the discrete reductions at energy \ of
the quantum graphs (I', A) and (I, A). Index the rows and columns of A(z, A) so that the first two
correspond to vy and vg; then augment it with a 0" column and a 0t row consisting of a 1 in the
leading entry and zeroes elsewhere. Call this matrix A(z, \).

The matrix A(z, \) has the block form

>+A|B ’ (8.83)
C D
in which
1 0 0
¥=]0 —es! st , (8.84)
0 st —sst

A and B have all zeroes in the first row, and A and C' have all zeroes in the first column. The
variable z does not appear in ¥ because v and w are both in the chosen fundamental domain. The
matrix A(z, \) is obtained by replacing ¥ by a matrix 3, where 3 is obtained from AR¥()) (eq. 8.79)
with a3 = ag =0 by switching the first two rows and the first two columns (that is, switching the
order of the vertices from (v, v,vs) to (v,v1,v2)), to obtain

—-1_-1 -1 -1
¥ = STt —cy87 " 0 , (8.85)
-1 /1
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where the relation s = sy + s]s2 is used in the upper left entry.
The 3x3 matrix K = A— BD~!C has all zeroes in its first row and first column. A computation
using the relation T' = 15T yields the key relation

s1(\)sa(A) det(X + K) = s(\) det(X + K), (8.86)

which holds for any matrix K whose first column and and first row vanish. Using this together
with R _ .
det A = det D det(X + K), det A = det A = det D det(X + K) (8.87)

yields the statement of the theorem.
If vy = gu; for some g € Z¢, the process above remains the same, except that

111 0
p
s|0 —c—s+29+279

—s 89 + 2981 (8.88)

)

So+ 27981 —c182 — shsy

and K is a 2x2 matrix with its only nonzero entry being the lower right. In this case, one obtains
(8.86) with an extra minus sign on one side. O
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