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ABSTRACT
Software�prefetching�and�hardware-based�cache�allocation�
techniques�(CAT)�have�been�successfully�applied�in�main-
memory�database�engines�to�fetch�data�into�cache�before�it�
is�needed�and�to�partition�a�shared�last-level�cache�(LLC)�to�
prevent�concurrent�tasks�from�evicting�each�others’�data.�We�
investigate�the�interaction�of�these�techniques�and�demon-
strate�that�while�a�single�prefetching�strategy�is�su�cient,�
the�combination�of�both�techniques�is�only�e�ective�if�the�
cache�partitioning�strategy�adapts�the�partitioning�based�on�
the�types�of�tasks�currently�sharing�an�LLC.�We�present�a�
simple,�yet�e�ective,�scheme�that�uses�prefetching�and�adapts�
cache�partition�allocations�dynamically.
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1� INTRODUCTION
Memory�access�latency�and�memory�bandwidth�limits�are�
major�bottlenecks�for�in-memory�databases�that�use�(paral-
lel)�operator�implementations�that�may�consume�data�at�a�
rate�that�exceeds�the�bandwidth�of�the�memory�bus.�Smart�
caching�techniques�can�mitigate�these�bottlenecks�to�some�
degree.�However,�not�all�tasks�within�a�database�engine�ben-
e�t�equally�f rom�the�cache.�Operators�l ike�column�scans�
exhibit�no�temporal�locality�of�memory�access�(non-temporal�
tasks),�because�they�access�memory�locations�exactly�once�
while�scanning�through�their�input.�Similarly,�tasks�with�low-
degree�of�temporal�locality�of�memory�access�(low-degree�
temporal�tasks)�such�as�a�hash�aggregate�or�join�with�a�large
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hash table, access the same memory location repeatedly, but
the average duration between accesses is high. Non-temporal
and low temporal operators do bene�t from prefetching
(loading data into cache before it is accessed), but given
the limited size of the cache, an accessed memory location is
likely to be evicted from cache before it will be accessed again.
In contrast, operators with high temporal locality of memory
access (high-degree temporal tasks) such as a hash aggregate
with a small hash table (a small number of groups) frequently
access a relatively small number of memory locations. Thus,
such operators do bene�t from caching signi�cantly.

When concurrent tasks run on cpus that share a LLC, non-
temporal and low-degree temporal tasks will interfere and
pollute the cache for high-degree temporal tasks. Cache con-
tention and interference are common in in-memory databases [16,
21] and in other contexts [3, 11, 23, 29] such as datacenter
scheduling [9], HPC [10, 15], and mixed interactive/batch
workload scheduling [6].

To improve the cache utilization for a task, we should
try to ensure the data that the task will access in the near
future is (i) loaded into cache before the task accesses the
data and (ii) is still available when the task accesses the data.
Software prefetching[2, 4, 14, 18–20] gives us control over
(i) by allowing us to read data into cache preemptively at the
cost of increased bandwidth usage if wemispredict the access
pattern of a task or if the prefetched data has been evicted
from the cache before it has been used. Partitioning of a
shared LLC enables us to control (ii) since tasks in di�erent
partitions cannot evict each other’s data from the cache.
Software prefetching has long been supported by hard-

ware, usually via prefetch hint instructions. Compilers have
been able to automatically insert software prefetching hints
to improve indirect memory access latency [2, 18, 20]. In
the database community, di�erent prefetching techniques
such as Group Prefetching [4] and Asynchronous Memory
Access Chaining [14] were introduced to address the multi-
step dependent memory access pattern in database operators.
Combined with query compilation and vectorization these
techniques signi�cantly improve performance [19].

The use of LLC partitioning for reducing cache pollution
has also been studied in prior work. Intel’s Cache Allocation
Technology (CAT) [8] makes LLC partitioning straightfor-
ward. Before CAT was introduced, partitioning was achieved
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through way-partitioning [5, 22], set-partitioning [22, 26],
and through replacement policies [12, 25, 27, 28] which all
need di�erent levels of additional hardware support, with the
exception of one applicable (software-only) technique using
page coloring [17, 24]. Lee et al. [16] applied page-coloring in
PostgreSQL, along with query optimization and scheduling
to minimize cache con�icts. However, page coloring does
not provide �ne-grained control, and it requires OS support.
Noll et al. [21] discuss temporality of memory access for

database operators and experimentally study the impact of
CAT on concurrent execution of database queries. This study
has shown that per query LLC partitioning can be e�ective.
By restricting the LLC size of queries with non-temporal
access patterns (like column scans), the throughput of queries
with high degrees of temporal locality (like hash aggregate)
is increased by up to 50%. However, this strategy is static.
Each query is assigned an LLC partition based on a heuristic
evaluation whether it is cache sensitive or not, and that
partition is in e�ect until the query completes.
In summary, while cache partitioning and prefetching

have both been studied extensively in isolation, the combi-
nation of these techniques, perhaps surprisingly, has to the
best of our knowledge not been studied in the database con-
text. We explore this question empirically and demonstrate
that static LLC partitioning schemes are less bene�cial when
combined with prefetching. In fact, when multiple temporal
tasks are running on the same LLC it may be better to just
use prefetching alone! However, not all is lost. We propose
a dynamic partitioning and prefetching scheme that adapts
cache allocations based on what tasks are concurrently us-
ing the same LLC. This is feasible in the databases, because
the query processing engine has a priori information about
the access patterns of tasks. With dynamic partitioning, we
can achieve moderate improvements over prefetching and
prefetching combined with static partitioning.

2 COMPOSING CAT AND PREFETCHING
Using hash aggregate and scan as representative examples
of temporal and non-temporal tasks, we seek to answer the
following questions empirically:

• Does the composition of software prefetching and LLC
partitioning produce performance bene�ts for competing
tasks?

• Is a static LLC partitioning scheme su�cient?

As alluded to in the introduction, the access patterns of data-
base tasks can broadly be classi�ed into two categories based
on their memory access: (i) sequential access only, which is

non-temporal and bene�ts neither from software prefetch-
ing1 nor from having more LLC cache (we will use NT to
denote this class of tasks). This class of tasks includes se-
quential scans; (ii) random access (which we denote by T)
which is temporal. Examples of this type of task are hash ag-
gregation and the hash joins. As discussed earlier, the degree
of temporal locality may vary based on factors such as the
hashtable size of a hash aggregate. For our evaluation we
use microbenchmarks of concurrent T-NT (scan), and T-T
tasks (aggregate). However, the results generalize to other
operator implementations (or parts thereof) as long as they
fall into these categories.

2.1 Experimental Setup
Next we describe our task model, the database schema used
in the experiments, and our experimental testbed. All tables
in our experiments follow the schema shown below, using a
columnar storage model. Each table is divided into chunks
consisting of a number of rows.Within each chunk, all values
of a column are stored in a contiguous area of memory. All
attribute values are 32 bit integers.

Task 1: Column Scan. This task scans through a 50GB
single-column table X(A). this roughly corresponds to the
following SQL query: SELECT * FROM X; Due to the limited
physical memory in our testbed (48GB), this is performed by
scanning through a 1GB chunk 50 times. The column scan
exclusively performs sequential memory accesses and acts
as an LLC polluter and memory bandwidth hog.

Tasks 2 & 3: Hash Aggregate. These tasks perform the same
operation as the query: SELECT SUM(B) GROUP BY A FROM Y;

over a table Y(A,B). Here, Y has 228 =⇠ 268" rows, making
both columns 1GB in size. The di�erence is the number of
unique values of column A. In Task 2, values are randomly
chosen from 100⇤214 distinct values, while in Task 3 they are
chosen from 100 ⇤ 215 distinct values. With one hash entry
taking up 12 bytes and a 75% �ll ratio, Task 2 needs a 25MB
hash table and Task 3 needs 50MB. We use xxHash [1] as
the hash function with linear probing to handle collisions.
These two tasks perform random memory access to a small
and large region of memory, respectively. Like many data-
base operations, hash aggregate has indirect memory access
patterns and thus can bene�t from software prefetching.

Experimental Testbed. We evaluate our microbenchmarks
on a 10-core Intel Xeon E5-2630v4 (Broadwell) @ 2.4GHz
with 48GB DDR4 2133Mhz RAM. Broadwell incorporates an
on-die memory controller with a maximum bandwidth of

1Sequential access bene�ts signi�cantly from prefetching. However, because
of its predictable access pattern, hardware prefetching is quite e�ective and
no additional bene�ts are gained by software prefetching.
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Cache Size Associativity Shared? Policy

L1I 32KB 8-way SA No WB
L1D 32KB 8-way SA No WB
L2 2.5MB 8-way SA No WB
L3 25MB 20-way SA Yes WB

Table 1: Cache organization for our testbed machine

64GB/s. The cache organization is shown in Tab. 1. Hyper-
threading (SMT) and frequency scaling are disabled2. Our
testbed machine runs Fedora Server 31 with Linux kernel
v5.6.18. Huge page support is enabled, so all chunks are
backed by 1GB huge pages, limiting TLB pressure and miti-
gating caching contention from the hardware page walker.
Our code is compiled with gcc 9.3.1 and optimization level
-O3. For each experiment, tasks are instrumented for perfor-
mance measurements using the Linux perf API; we measure
task execution times using the cpu-clock count as reported
by perf. Execution times are normalized to a 0-1 range, with
1 being the highest value in the plot. Unless otherwise stated,
experimental results are reported as the arithmetic mean
of 20 repetitions with error bars depicting 95% con�dence
intervals. For experiments with software prefetching, we
use strided prefetching, where the stride is established by
prefetching entries that will be accessed in subsequent loop
iterations (prefetch hash entry for tuple = + : when process-
ing tuple = for stride :). We did ran experiments for many
di�erent strides. We observed that performance bene�ts sat-
urate at : = 64. Thus, we report a �xed stride of 64 in this
paper for brevity. In general, collisions in hash tables can
reduce the e�ectiveness of prefetching. However, note that
we use linear probing [13] and the smallest unit of data that
can be cached is 64 bytes. Thus, when the bucket for the next
key we are going to access in the hashtable is prefetched
then with high probability any bucket that we may access
during linear probing will belong to the same 64 byte chunk
and, thus, is already present in the cache.

Our three tasks represent di�erent LLC sensitivities given
the 25"⌫ LLC size of our testbed. Task 1 is LLC insensitive
since its memory access is sequential—so that it can bene�t
from the hardware prefetcher—and non-temporal—so that
leaving data in cache does not improve hit rate. Task 2 is
highly LLC sensitive since it can achieve up to a 100% hit rate
when its full hash table is cache resident. Task 3 is less LLC
sensitive since even when given the entire LLC it has a hit
rate of only 50% (because the result of hashing is essentially
random for a reasonable choice of hash function and data
that is not skewed).

2The BIOS is con�gured for the “maximum performance pro�le,” thus dis-
abling DVFS.

2.2 Static Partitioning Strategy
Before evaluating cache partitioning and prefetching, we
�rst develop a partitioning strategy that is optimal under
reasonable assumptions. As we shall see, a greedy approach
best maximizes LLC e�ciency. In developing our formalism,
we make the following simplifying assumptions:
(1) The workload begins with a hot cache (cold misses are

not considered).
(2) The cache references frequency of all tasks is the same

independent of their co-location with other tasks.
(3) We assume that given two distinct tasks CG and C~ ac-

cessing memory randomly, the cache lines they access
are distinct. That is, if '(C) is the set of all cache lines
accessed by task C , then '(CG ) \ '(C~) = ú.
Let = be the number of concurrently executing tasks3. Let

% = {?1, ?2, . . . , ?=} be a partitioning where ?8 is the size of
the LLC partition (in MB) for task C8 and let " be the total
LLC capacity of the system. Then assumption 2 allows us to
measure the cache e�ciency of a single task C8 as min(1, ?838 ).
Let 31,32, ...,3= be the data size in MB that task C8 performs
random access to, i.e. the ideal LLC partition size given a
su�ciently large cache. We assume 31  32  . . .  3=
WLOG. We de�ne 5 (%) : N= ! R, the total achieved cache
e�ciency given some partitioning % as

5 (%) =
=’
8=1

min(1, ?8
38
)

with
Õ=

8=1 38 > " (otherwise the optimal strategy is to set
?8 = 38 for all tasks). The optimization problem we want to
solve is to choose the partitioning % that maximizes 5 (%):

argmax
%

5 (%) subject to
=’
8=1

?8  "

This is a fractional knapsack problem, and the following
greedy algorithm has been proven to be optimal [7]:

1 for 8 = 1 to =
2 ?8 = min(",38 )
3 " = " � ?8

For our example we have = = 3, 31 = 0, 32 = 25, and
33 = 50. This means we always set ?1 = 0. When Task 2 is
concurrent with Task 3, we set ?2 = 25 and ?3 = 0.

LLC Partitioning with CAT. CAT provides multiple Classes
of Service (CLOS), each associatedwith a bitmask that de�nes
which parts of the cache are available to this CLOS. An
application’s LLC access is controlled by assigning it to a
CLOS. Intel’s CAT implementation does not presently allow
for zero-sized partitions; We thus reserve a minimal 10%
3Here we use concurrently to mean tasks running on distinct cores sharing
the same LLC at the same time.
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(a) Scan and hash aggregate (b) Two hash aggregates
Figure 1: Combining prefetching and LLC partitioning.

partition to be shared among all tasks that receive a partition
of size zero from the algorithm.

2.3 Sensitivity Analysis
We now study the performance impact of CAT and prefetch-
ing for various combinations of the tasks described above.

Concurrent Column Scan & Hash Aggregate. We �rst inves-
tigate a column scan (non-temporal access) running concur-
rently with a hash aggregate task (temporal access). Here,
prefetching is only applied for the hash aggregate. As men-
tioned before we �x the prefetch stride for the hash aggregate
to 64 entries. Since Task 1’s sequential access is amenable
to hardware prefetching and thus does not require LLC, in-
creasing its partition size results in unnecessary pollution.
We thus partition the LLC to restrict Task 1 to a partition
of 10% giving Task 2 free rein (100%). Fig. 1a shows that the
combination of prefetching and partitioning has a positive
impact on performance for this scenario. However, at the
presence of prefetching, the speedup of cache partitioning is
reduced from 26% to 17%.
Observation: Prefetching limits the impact of partitioning.

Concurrent Hash Aggregates (Task 2 & Task 3). For this
workload (two hash aggregates), we apply prefetching for
both tasks. We partition the LLC by prioritizing tasks with
higher LLC sensitivity (temporal access). Here, we limit Task
3 to 10% and allot 100% to Task 2. As Fig. 1b shows, with-
out software prefetching, LLC partitioning achieved a 26%
speedup for Task 2 while the slowdown of Task 3 is less than
10%; with software prefetching enabled, however, the e�ect
of LLC partitioning is signi�cantly reduced. The speedup of
Task 2 falls to 18%, and the slowdown of Task 3 increases to
13%; the absolute speedup of Task 2 is roughly on par with
the slowdown of Task 3. Software prefetching, however, al-
ways has a positive e�ect with or without LLC partitioning.
Observation: For concurrent temporal tasks, the bene�ts of
partitioning are further reduced when prefetching is used. Even
worse, partitioning ampli�es runtime di�erences between tasks.

2.4 Discussion
Based on these results, we conclude that, assuming an appro-
priate choice of stride, software prefetching is always ben-
e�cial with or without LLC partitioning. Conversely, static

(a) Workload from Fig. 1b
with dynamic partioning

(b) mixed T &NT task queries,
prefetching enabled

Figure 2: Static vs. dynamic partitioning

LLC partitioning does not always compose well with soft-
ware prefetching. The e�ect is in general limited and can
be negative. To cash in this limited positive e�ect, we need
a dynamic yet simple strategy, because the narrow margin
does not allow for a complex or expensive strategy.

3 DYNAMIC PARTITIONING
We now improve our greedy LLC partitioning strategy by
dynamically re-partitioning (over time) to adapt to changes
in the mix of tasks sharing an LLC. We begin by reexamining
Fig. 1b where the static partitioning strategy was ine�ective.
Note the gap between the execution time for the two tasks
after enabling LLC partitioning. Even after Task 2 �nishes,
Task 3 still runs with only 10% of the LLC for a signi�cant
period of time. An obvious improvement is to allow Task 3
to have the entire LLC as soon as Task 2 completes. A simple
dynamic partitioning strategy is to adjust the partitioning
whenever a task begins or �nishes using our greedy strategy.

We evaluate this algorithm using the microbenchmark
from Fig. 1b. The result is shown in Fig. 2a. Note the speed-
up for the hash aggregate with 50MB hash table (task 3).
While this speed-up is small, cache partitioning now has a
net positive impact. We also evaluated more complex queries.
For this experiment we use two queries: Query 1 that runs a
30GB column scan and then performs Task 2 (a 25MB hash
aggregate) and Query 2 executes the same tasks in reverse
order. As Fig. 2b shows, static partitioning with prefetching
(we tested 10% � 90%, 50% � 50% and 90% � 10% allocations)
does not bene�t over prefetching (OFF). However, dynamic
partitioning with prefetching improves performance for both
queries (11%), because both queries bene�t from having the
entire LLC for their temporal tasks.

4 CONCLUSION
CAT and software prefetching are e�ective techniques for im-
proving cache utilization in main-memory database systems.
However, static partitioning is not always bene�cial when
prefetching is applied. Thus, software prefetching and LLC
partitioningmust be composed carefully. We present a simple,
yet e�ective, dynamic partitioning strategy that pays o� for
mixed, task-based query processing workloads. In short, “If
you want to play fetch with CAT, you need a dynamic CAT.”
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