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ABSTRACT: Drug-induced liver injury (DILI) is a crucial factor in determining the qualification of potential drugs. However, the
DILI property is excessively difficult to obtain due to the complex testing process. Consequently, an in silico screening in the early
stage of drug discovery would help to reduce the total development cost by filtering those drug candidates with a high risk to cause
DILL To serve the screening goal, we apply several computational techniques to predict the DILI property, including traditional
machine learning methods and graph-based deep learning techniques. While deep learning models require large training data to tune
huge model parameters, the DILI data set only contains a few hundred annotated molecules. To alleviate the data scarcity problem,
we propose a property augmentation strategy to include massive training data with other property information. Extensive experi-
ments demonstrate that our proposed method significantly outperforms all existing baselines on the DILI data set by obtaining a
81.4% accuracy using cross-validation with random splitting, 78.7% using leave-one-out cross-validation, and 76.5% using cross-
validation with scaffold splitting.

B INTRODUCTION the DILI label for certain drugs to provide predictive models
with labeled data. Sakatis et al. is based on the Physician’s Desk

Drug discovery has been a critical research area for years. The ) e 10 :
Reference, while others are from case reports and literature.

development process of new drugs is extremely time-consuming

and resource costly since it usually requires a series of com- Although labeled DILI data sets are available to the public, such
plicated in vitro and in vivo experiments.l_3 One major chal- data sets only contain 100 or 200 drugs, and what is worse, the
lenge is to identify the safety of the potential drug candidates, labeling standards are inconsistent. To tackle this problem, the
for example, filtering the drugs that may cause human toxicity. Food and Drug Administration (FDA) has developed an anno-
Drug-induced liver injury (DILI) is one of the most fundamental tation scheme to label the DILI risk of 1036 FDA-approved
toxicity concerns that is undesirable and unpredictable. Research drugs and announced the DILIrank'? data set in 2016. The
indicates that traditional hepatotoxicity testings on animal previous version of DILIrank annotates the drugs with Most-
models may have distinct outcomes from humans.*™ Since DILI concern, Less-DILI concern, and No-DILI concern, based

animal or human model testings are usually conducted in the

late stage of drug development, the withdrawal or termination

of such disqualified drug candidates would sacrifice lots of

previous efforts. Therefore, a precise and accurate model to

better predict DILI in the early stages would be a promising

approach to facilitate the development progress. Received: August 1, 2020
Human toxicity data are extremely hard to collect, since Published: December 21, 2020

in vivo and in vitro toxicological studies cannot provide adequate

assessment when the dru§ candidates are applied on humans.*~’

Several labeling schemes® "' have been developed to annotate

on regulatory professionals assessment."> The new scheme
establishes a more detailed verification process dividing the
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drugs into four categories: Most-DILI concern, Less-DILI con-
cer, No-DILI concern, and Ambiguous DILI concern.'”
DILIrank is the most widely used data sets to develop predictive
models of DILI and has been used in various studies."*~"” Lately,
the FDA further augments DILIrank to DILIst* with another
four literature data sets by applying concordance analysis across
these five datsets. To date, DILIst is the largest data set with
DILI classification, which contains 1279 drugs. These efforts™**
provide an invaluable resource for predicting DILI risk.

DILI prediction can be considered as the application of
molecular property prediction, which is one of the oldest chem-
informatics tasks. Many in silico methods have been applied to
solve the molecular property prediction problem.'®*™*" These
approaches generally convert the molecule into a vector repre-
sentation via different procedures and then through different
machine learning models to predict the label information. The
vector representation of a molecule is called fingerprints. Tradi-
tionally, fingerprints are either manually constructed by experts
(hand-crafted biologist-guided fingerprints) or calculated by a
fixed hash function (hash-based fingerprints). The former one
is designed by specialists based on biological experiments and
chemical knowledge. Specific substructures of the compounds
are considered as functional groups, and their corresponding
local features are determined based on their properties revealed
during experiments or different states."®'* For example, CC(OH)-
CC appears to have a solubility relevant characteristic, thus it has
been isolated as local features to produce fingerprints on solubility-
related tasks. Hash-based fingerprints such as circular fingerprints
employ a fixed hash function to extract each layer’s feature of a
molecule based on the concatenated features of the neighbor-
hood in the previous layer.”® This type of the fingerprint is
non-invertible, so there is no way to check back and modify the
quality of the fingerprints if the hash function cannot capture
enough information, which might lead to poor performance in
turther predictive tasks. To tackle this problem, Le et al. recently
proposed a reverse-engineering method to reconstruct the mole-
cular structure from hash-based fingerprints such as ECFP.*

With the rapid increase of deep learning techniques, recent
studies tend to address molecular property prediction with
such novel models. One promising research interest is consid-
ering a molecule as a graph, since the atoms of the molecules
can be referred as the vertexes, and the bonds between atoms
as the edges. Neural fingerprints™' are the first attempt to learn
molecular vector representation based on its graph structure.
The difference between neural fingerprints and hash-based
fingerprints is the replacement of the hash function. Neural
fingerprints apply a nonlinear activated densely connected layer
to generate the fingerprints. Many other graph-based deep
learning models can also be applied to represent a molecule by
embedding the graph features to a continuous vector.”>** Within
them, the Message Passing Neural Networks (MPNN)>**® have
achieved notable prediction performance. MPNN models
recursively update the atom or bond features by aggregating
message/information from its adjacent atoms or bonds, then
employ a readout function to pool all updated features of
atoms to deliver the global representation of the molecule.
However, these methods only focus on one single view of the
graph topology, either atom central or bond central. Taking
Figure 1 as an example, the left graph is the atom-oriented
structure of caffeine, and the right one is its bond-oriented
representation. It is observed that both atom and bond features
should be taken into account when embedding a molecule
graph, e.g, the double bond within the benzene N=C is
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Figure 1. Atom-oriented graph vs bond-oriented graph.

distinct from bond C=0, atoms N and C are notably differ-
ent. Inspired by this insight, we propose a fresh perspective of
viewing the graph from two aspects in our recent work MV-
GNN°* 27 which involves both atom messages and bond
messages. The MV-GNN“** model takes the molecular
SMILES as input and uses RDKit*® to extract the graph
structure and the local features associated with each atom and
bond. A graph encoder network then learns and converts such
information into a vector representation of the input molecular
SMILES. After that, the vector representation is fed into a
prediction network to predict the property label. Our method
outperforms current state-of-the-art methods on 11 commonly
used moleclar property prediction tasks. Therefore, we employed
our graph-based deep learning model on the DILIrank data set to
classify the DILI label and achieved superior prediction perfor-
mance compared with other models including both graph-
based deep learning models and traditional fingerprints-based
models.

Available labeled DILI drugs are still quite limited for data-
hungry deep learning models. In order to get better and more
stable prediction performance, research has been done from
different aspects. Thakkar et al. developed a new annotation
scheme to augment the drug list with DILI risk. Minerali et al.
employed different machine learning models on different human
toxicity data sets to investigate the corresponding prediction
performance. Ancuceanu et al. and Mora et al. propose to
obtain better prediction results with ensemble computational
models and various molecular descriptors. These attempts have
earned certain achievements, but may still be restricted by the
available labeled DILI data. To tackle this bottleneck and
reinforce the expressive power of deep learning models, we
propose a property augmentation strategy to utilize MV-
GNN“* models along with more data by taking advantage of
other property information. In particular, we create a larger
training data set by combining more drugs with other toxic
properties, such as phospholipidosis (PLD)>’ which measures
the organism-level toxicity of compounds. Since a graph neural
network is able to learn molecular vector representation only
based on its graph structure and the underlying atom/bond
level features, more input data would help generate a more
accurate molecular representation. Moreover, for those proper-
ties with more available data, deep learning techniques are more
likely to obtain better performance. Thus, the correct prediction
would help promote the entire training including those prop-
erties with only a few samples, such as DILL. In this fashion, we
are able to increase the accuracy of DILI to 81.4% using cross-
validation with random splitting, 78.7% using leave-one-out
cross-validation, and 76.5% using cross-validation with scaffold
splitting, which is regarded as a remarkable boost considering
the challenges on DILI risk prediction. Detailed methodologies
and experimental procedures are described in later sections.

B METHODOLOGIES
We take our recent work with the MV-GNN“** model as the
backbone to implement proposed property augmentation

https://dx.doi.org/10.1021/acs.chemrestox.0c00322
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Figure 2. Overview of MV-GNN“** models.
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methods, since MV-GNN“* outperforms other baseline models
on DILI data sets in extensive experiments. As shown in Figure 2,
MV-GNN“* contains two principal parts, the encoder net-
work and the prediction network. The encoder network trans-
forms the input molecular SMILES into a vector representa-
tion based on its graph structure, and the prediction network is
responsible for classifying the binary label of certain properties,
such as DILL We also employ deep multilabel learning to establish
proposed methods while involving more properties information
along with DILL

Molecular Graph Preliminaries. A molecule can be
naturally represented as a graph based on its chemical struc-
ture, in particular, by taking the atoms as the nodes and the
bonds between atoms as the edges. Thus, the molecular graph
is denoted as G,, = (A, B), where A is a set of the atoms, and
B is a set of the bonds. Based on such a graph structure, the
initial features of atoms and bonds are extracted as the learning
information, and referred as x, and y,. Figure 3 takes ethion-
amide as an example to illustrate how a molecule converts to
its corresponding computational graph.

The initial features selected for each atom and bond follow
the same protocol of Yang et al., as shown in Tables 1 and 2.%°
All of the features are one-hot encodin§s except the atomic
mass and are extracted using the RDKit.”

Encoder Network. Molecules can be observed from two
perspectives: One is taking the atoms as the centers and the

Atom
features

——————————— >

Bond

G, NH2

Figure 3. Graph definition of ethionamide. G,, represents the entire
graph structure, and x, and y, refer to the atom and bond features that
associate with each atom and bond, respectively.
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Table 1. Atom Features Selection
features size descriptions
atom type 100  type of atom (e.g, C, N, O), in the order of atomic
number
formal charge S integer electronic charge assigned to atom
number of 6 number of bonds the atom is connected
bonds
chirality 4 unspecified, tetrahedral CW/CCW, or other.
number of Hs S number of bonded hydrogen atoms
atomic mass 1 mass of the atom, divided by 100
aromaticity 1 whether this atom is part of an aromatic system
hybridization S sp, sp’ sp sp°d, or sp’d?

Table 2. Bond Features Selection

features size descriptions
bond type 4 single, double, triple, or aromatic
stereo 6 E/Z, cis/trans, any, or none
in ring 1 whether the bond is part of a ring
conjugated 1 whether the bond is conjugated

bonds as the connections,” while the other one is to consider
bonds as the centers and atoms as connections.”® Inspired by
multiview learning,*® MV-GNN* takes advantage of the two
perspectives and designs a multiview framework to generate
more informative molecular representation. Specifically, the
encoder network is constructed by two streams, atom-oriented
and bond-oriented, where each contains one graph neural
network (GNN). Next, a self-attentive readout mechanism is
employed to convert the learned molecular feature matrix to a
vector representation.

Atom-Oriented GNN and Bond-Oriented GNN. The atom-
oriented GNN learns the molecular representation by aggre-
gating neighbor atoms recursively for several steps, while bond-
oriented GNN establishes a similar procedure via a bond-central
fashion. The generalized GNN can be defined as

wa

h? H34 m

concat [1 + -‘}— 11

aggregate[ '|1 + J_. ’-‘

mg+l e

Figure 4. Message passing aggregation phase. Taking atom 4 as an example, atoms 3 and S are its neighbors. In the passing process, the message of
atoms 3 and S from previous passing steps will be aggregated to atom 4. For the message construction, we take atom 3 as an example. The message
m$ of atom 3 is concatenated by the initial atom features h} of atom 3 as well as the initial bond features i, of the connected bond 34.
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Figure S. Property augmentation procedure. Original DILI data set is augmented to the Tox-DILI data set. Tox-DILI is then fed into the MV-
GNN“** model for prediction. During the training period of the prediction network, a mask scheme is applied to handle the back-propagation of
missing labels, and an average loss across all properties is used to restrain the entire training.
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1, A; and U, represent the neighbor aggregation
function and state update function, respectively. m?*! and hi*!
are the aggregated message and states vector for entity o at d + 1
step, respectively. Entity o can be either atoms or bonds. N(o) is
the neighborhood entity set of entity o, and fi,qeq is the
attached features of entity o during aggregation. In atom-oriented
GNN, entity o represents the atoms, and fi,y,.q denotes the
features for the connected bonds. Figure 4 illustrates the mes-
sage passing phase in atom-oriented GNN. The bond-oriented
GNN is formed with a similar implementation by considering
the bonds as passing centers and atom features as attached.
In particular, the entity o represents the bonds, and the corre-
sponding bond messages m¢*! are constructed by bond states
vector h%! and attached atom features ., peq-

Self-Attentive Readout. The outputs of the two GNN
models are the learned feature matrices by regarding the molec-
ular graph as atom-oriented and bond-oriented. As demonstrated
in Figure 2, in order to obtain the fixed length of molecular
vector representation, a readout transformation is needed to
eliminate the obstacle of size variance and permutation variance.
Other than commonly used mean-pooling or max-pooling, a
self-attentive readout is employed here to generate molecular
representation associated with different attention weights.*"**
Formally, take an output of atom-oriented GNN H, as an
example, the self-attention over atoms is defined as

&, = (SH;)

In eq

S = softmax(W, tanh(W,H,)), (2)
where 7 is the number of atoms in the molecule, and W, and
W, are learnable matrices, which are shared between the two
streams to enable message circulation during the multiview
training process. Thus, two molecular vectors are generated in
a multiview manner.

Prediction Network. In MV-GNN“°*, we have generated
two vectors from the two submodules: atom-oriented GNN
and bond-oriented GNN. These two vectors are fed into two
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prediction networks to make the predictions. Since the two
vectors generated via atom-oriented GNN and bond-oriented
GNN come from the same input SMILES, the predictions
should be the same. Thus, we employ mean squared error loss
to restrain the training, called disagreement loss. Formally, we
formulate this molecular property prediction loss as follows:

Lﬁnal = Lpred + /1‘£dis (3)

where L, is the supervised loss for each prediction, and Ly

is the disagreement loss between two classifiers.

Property Augmentation Learning. The DILI data set
only contains a few hundred drugs, which is extremely small
for deep learning. In order to take advantage of the expressive
power of deep graph learning models such as MV-GNN“°¥, we
demand more information to boost the training. Since DILI is
a property of human toxicity, we compare it with four other
available human toxicity data sets: herg,33’34 PLD,* ames,>>>°
and mmp.””** We notice there are overlapping molecules
between DILI and these four toxicity data sets. We assume that
such correlation may help the training of DILI. Hence, we
propose to utilize this additional toxicity information to pro-
mote the prediction performance of DILL

Multilabel Training. As shown in Figure S, the original DILI
data set contains only 479 SMILES. We take it with four other
toxicity properties (herg, PLD, ames, and mmp) which are
provided by the National Institutes of Health (NIH), to form a
larger data set. Specifically, we combine these five data sets
based on the SMILES representation of the drugs. Thus, a
large matrix containing 15,669 data samples is generated, where
each row stands for one SMILES, and the five columns are the
corresponding property labels. Each SMILES could have one
or more property labels, and those properties which are not
observed for each SMILES are marked as missing values and
are represented as NaN. The constructed Tox-DILI then goes
through the MV-GNN“** model to classify the labels. We
employ a multilabel training approach to establish the property
augmentation learning process. During the training process, all
property predictions share the same encoder network and
make predictions for each property label individually. Then,
the average of all the prediction loss is used to update the

pred
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neural network parameters. We treat each property as equally
important and ignore the prediction for those NaN properties
to avoid deviation.

Missing Labels Handling. In order to eliminate the effects
of the missing labels during the training period, we need to
identify such labels for each SMILES and ignore them during
the back-propagation. In our experiments, a mask scheme is
implemented as the filter. The mask is a matrix with the exact
same size of the input, which is applied in the prediction
network. While the prediction is made by the prediction
network and the loss is calculated for each data sample, the
mask is then multiplied with the loss values. The mask matrix is
filled by Os and 1s, as the corresponding positions with missing
labels are recorded as 0 and others as 1. Thus, any weights
associated with those missing labels would have no influence
on further computation.

Since each SMILES may have multiple binary property
labels at the same time, such a task could be regarded as a
multiple binary classification problem. Hence, we employ the
binary cross entropy (BCE) loss as the prediction loss function
and compute the average loss across each property. Suppose

the data set contains molecules M = {M,},, we formulate the
final loss processed by the mask as follows:

_r

N
g 2 2 (L0 1) X mask + L,0; 7,,%)

n=1 M;eM

‘Cpred =

(4)

where 7, and 7,5, are the output predictions produced by the

X mask)

two prediction networks, £, and L, are the corresponding
computed loss, y; is the ground truth label, and N is the total
number of properties, which is S in our experiments here.

Evaluation Criteria. Since our task is to predict the binary
label of DILI by considering Most-DILI-Concern as the
positive label and No-DILI-Concern as the negative label, we
thoroughly evaluate the performance of each method by calcu-
lating the accuracy, sensitivity, specificity, F1-score, Matthews
correlation coefficient (MCC), and receiver operating character-
istic-area under the curve (ROC-AUC). The accuracy score is
the total percentage of the correct predictions of DILI label.
Sensitivity is also called a true positive rate, which measures the
percentage that drugs with positive DILI labels are truly
predicted as positive. Specificity is the true negative rate, which
represents the rate that drugs without DILI risks are correctly
predicted as negative labels. The Fl-score is the weighted
average of precision and recall, where precision is the ratio of
the correct positive predictions to all positive predictions, and
recall is the ratio of the correct positive predictions to all
ground truth positive labels. MCC leverages the performance
of all four confusion matrix categories (true positives, false
negatives, true negatives, and false positives). ROC-AUC mea-
sures the separability of the model to correctly predict positive
labels as positive and negative labels as negative. In addition,
we evaluate statistical significance using a one-sided Wilcoxon
signed-rank test.

B EXPERIMENTS

We have conducted extensive experiments using circular
fingerprints (Circular-fp),20 neural fingerprints (Neural-fp),21
message passing neural network (MPNN),* directed message
passing neural network (DMPNN),”® and MV-GNN**7
on DILI to validate the performance. We took MV-GNN“*
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as the backbone and employed our proposed property augmen-
tation approach to involve more data, in order to further boost the
prediction performance of DILL. Moreover, we conducted addi-
tional experiments using MPNN and DMPNN on augmented
Tox-DILI data set to prove the effectiveness of our method.

Data Set Description. Two data sets are used during the
experiments, DILI and Tox-DILI (see Supporting Information).
DILI is the DILI data set provided by NIH, which contains
479 molecules with DILI label. The original DILI data set
comes from the DILIrank'* data set, which contains 197 molec-
ules with Most-DILI-Concern, 282 molecules with No-DILI-
Concern, and 464 molecules with Less-DILI-Concern. We
consider Most-DILI-Concern as label 1 and No-DILI-concern
as label O to solve the classification problem. Thus, 479 molec-
ules in total are selected to constitute the DILI data set. The
Tox-DILI is formed by DILI and four other data sets with
toxicity relevant properties: herg,**** PLD,”” ames,*>*® and
mmp.””** The description of each property is stated in Table 3,
and the label distribution is shown in Table 4.

Table 3. Description of Four Toxicity Properties Used for
Augmentation

category property description
herg®***  measures cardiotoxic effects of compounds
PLD* stands for phospholipidosis, which measures
organism-level toxicity of compounds
toxicity ames™*®  measures mutagenicity, one of the most important
end points of toxicity
mmp>”**  the mitochondrial membrane potential (MMP) is a

key parameter for evaluating mitochondrial
function

Table 4. Datasets Statstics

data set no. of no. of no. of

data set size property  molecules label 0 label 1
DILI 479 DILI 479 282 197
15,675 herg 3024 2541 483

PLD 4159 3777 382

Tox-DILI ames 7940 3406 4534
mmp 5970 5070 900

DILI 479 282 197

Comparison Experiments. Circular-fp. Circular finger-
prints (Circular-fp) is one of the traditional ways to generate
so-called fingerprints to represent the molecule. It is a vector
representation generated by a hand-crafted hash-based algo-
rithm to define the local features. Circular-fp employs a fixed
hash function to extract each layer’s features of a molecule and
concatenate them together. The generated vector representa-
tions usually go through machine learning models to gerform
further predictions, and we applied the GradientBoost™ model
here in the experiments.

Neural-fp. Neural fingerprints (Neural-fp) is constructed on
a supervised deep graph convolutional neural network.”'
It applies convolutional neural networks on graphs directly. The
difference between Neural-fp and Circular-fp is the replacement
of the hash function. Neural-fp applies a nonlinear activated
densely connected layer to generate the fingerprints.

MPNN. Another promising graph-based deep learning
technique is the MPNN.” Tt recursively updates the atom
features by aggregating the feature information from its
neighbors and adjacent bonds and then pools all of the
updated features of the atoms to deliver the global representation

https://dx.doi.org/10.1021/acs.chemrestox.0c00322
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Table S. Performance of DILI Models Using Cross-Validation with Random Splitting®

circular-fp neural-fp MPNN
accuracy 0.688 + 0.051 0.704 + 0.091 0.738 + 0.094
sensitivity 0.364 + 0.125 0.647 + 0.091 0.727 + 0.133
specificity 0.879 + 0.086 0.740 + 0.087 0.752 + 0.129
Fl-score 0.485 + 0.091 0.61S5 + 0.106 0.666 + 0.124
MCC 0.289 + 0.130 0.381 + 0.191 0.473 + 0.202
ROC-AUC 0.738 + 0.056 0.753 + 0.093 0.833 + 0.07§

“Higher is better. Best scores are marked as bold.

DMPNN MV-GNN“** property augmentation with Tox-DILI
0.750 + 0.098 0.788 + 0.077 0.814 + 0.047
0.728 + 0.13S 0.762 + 0.105 0.768 + 0.100
0.764 + 0.172 0.809 + 0.092 0.849 + 0.097
0.681 + 0.095 0.721 + 0.10S 0.753 + 0.063
0.499 + 0.179 0.562 + 0.178 0.621 + 0.114
0.832 + 0.068 0.866 + 0.055 0.882 + 0.031

0.92
Accuracy comparison of different methods
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Figure 6. Performance comparison on the accuracy of different
methods using cross-validation with random splitting (higher is
better). Light green color indicates our proposed method. P indicates
the p-value calculated from the Wilcoxon test between our proposed
method and other baselines.

of each molecule via a readout function. The generated repre-
sentation is then fed into the downstream molecular property
prediction network.

DMPNN. Inspired by MPNN,” DMPNN* converts the
passing process to bond-wise instead of atom-wise. Instead of
aggregating the neighbor atoms’ messages, DMPNN proposes
a directed message passing scheme to avoid unnecessary loops.
It aggregates the information on neighbor bonds with the same
direction and takes the starter atom features as attached features
to implement message passing. The following network is used to
predict the property label as well.

MV-GNNT*, MV-GNN“** model extracts the atom mes-
sages and bond messages simultaneously. It considers atom
message passing and bond message passing as two parallel
streams and allows the atom/bond messages to communicate
during the passing phase. A self-attention readout mechanism
and a disagreement loss are employed to restrain the model
training.

MV-GNN°* with Property Augmentation. The results of
different models on the DILI data set empirically demonstrate
that MV-GNN“°* has achieved the highest prediction

Table 6. Performance Comparison between without Property Augmentation (DILI) and with Property Augmentation

(Tox-DILI) Using Cross-Validation with Random Splitting”

MPNN (DILI)  MPNN (Tox-DILI)

DMPNN (DILI)

DMPNN (Tox-DILI)

MV-GNN“** (DILI) ~ MV-GNN“* (Tox-DILI)

accuracy 0.738 + 0.094 0.788 + 0.044 0.750 + 0.098 0.785 + 0.024 0.788 + 0.077 0.814 + 0.047
sensitivity 0.727 + 0.133 0.761 =+ 0.072 0.728 + 0.13§ 0.748 + 0.091 0.762 + 0.105 0.768 + 0.100
specificity 0.752 + 0.129 0.807 + 0.070 0.764 + 0.172 0.812 + 0.045 0.809 + 0.092 0.849 + 0.097
Fl-score 0.666 + 0.124 0.728 =+ 0.045 0.764 + 0.172 0.718 + 0.045 0.721 + 0.105 0.753 + 0.063
MCC 0.473 + 0.202 0.562 =+ 0.082 0.499 + 0.179 0.553 + 0.060 0.562 + 0.178 0.621 + 0.114

“Higher scores within each pair-wise comparison are marked as bold.

Table 7. Performance of DILI Models Using Leave-one-out Cross-Validation®

circular-fp neural-fp MPNN DMPNN MV-GNN*% property augmentation with Tox-DILI

accuracy 0.668 + 0.085  0.683 + 0063 0706 + 0057 0715+ 0059 0728 + 0.047 0.787 + 0.070
sensitivity 0.351 + 0.171 0.595 + 0.089 0.590 + 0.141 0.617 + 0.140 0.651 + 0.121 0.721 + 0.106
specificity 0.899 + 0.063 0.757 + 0.081 0.798 + 0.115 0.803 + 0.107 0.791 + 0.087 0.837 + 0.062
Fl-score 0.447 + 0.175 0.604 + 0.064 0.614 + 0.078 0.631 + 0.086 0.655 + 0.076 0.731 + 0.076
MCC 0.294 + 0.120 0.353 + 0.118 0.406 + 0.114 0.432 + 0.113 0.448 + 0.099 0.558 + 0.131
ROC-AUC 0.775 + 0.069 0.734 + 0.035 0.789 + 0.072 0.792 + 0.051 0.797 + 0.039 0.840 + 0.064

“Higher is better. Best scores are marked as bold.

Table 8. Performance Comparison between without Property Augmentation (DILI) and with Property Augmentation

(Tox-DILI) Using Leave-one-out Cross-Validation”

MPNN (DILI)  MPNN (Tox-DILI)

accuracy 0.706 + 0.057 0.736 + 0.074 0.715 £ 0.059
sensitivity 0.590 + 0.141 0.625 + 0.104 0.617 + 0.140
specificity 0.798 £ 0.115 0.820 + 0.117 0.803 + 0.107
Fl-score 0.614 + 0.078 0.655 + 0.090 0.631 + 0.086
MCC 0.406 + 0.114 0.456 + 0.148 0432 £ 0.113
ROC-AUC 0.789 + 0.072 0.813 + 0.070 0.792 + 0.051

“Higher scores within each pair-wise comparison are marked as bold.

DMPNN (DILI)
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DMPNN (Tox-DILI)  MV-GNN“°* (DILI)  MV-GNN®°* (Tox-DILI)

0.748 + 0.064 0.728 + 0.047 0.787 + 0.070
0.632 + 0.099 0.651 + 0.121 0.721 + 0.106
0.817 + 0.079 0.791 + 0.087 0.837 + 0.062
0.657 + 0.095 0.655 + 0.076 0.731 + 0.076
0.454 + 0.135 0.448 + 0.099 0.558 + 0.131
0.806 + 0.067 0.797 £ 0.039 0.840 + 0.064
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Accuracy comparison: DILIvs. Tox-DILI
CV with random splitting
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Figure 7. Cross-validation with random splitting. Visualization from
Table 6. DILI indicates baseline, and Tox-DILI demonstrates the
performance of utilizing property augmentation. The p-value is
calculated between the two prediction results for each model.

Accuracy comparison: DILI vs. Tox-DILI
Leave-one-out CV
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Figure 8. Leave-one-out cross-validation. Visualization from Table 8.
DILI indicates baseline, and Tox-DILI demonstrates the performance
of utilizing property augmentation. The p-value is calculated between
the two prediction results for each model.

accuracy. Considering the extremely limited availability of DILI
data, we propose to involve more data in a property augmen-
tation fashion to facilitate training the molecular representa-
tion. In this regard, we combine DILI with four more data sets
with other toxicity labels to form Tox-DILI data set and apply
MV-GNN“** model on it.

Additional Experiments with Property Augmentation.
In order to further prove the effectiveness of proposed method,
we conducted additional experiments on the Tox-DILI data set
to compare the performance improvement from using DILI
only. Since MPNN and DMPNN outperform circular-fp and
neural-fp on the DILI data set and both of them are graph-based

message passing models, we then utilize them to assess the
prediction performance of the proposed property augmenta-
tion strategy.

Experimental Procedure. In order to thoroughly verify
the superiority of the proposed method and eliminate the
randomness, we conducted extensive experiments using three
evaluation methods: S-fold cross-validation with random split-
ting, 10-fold leave-one-out cross-validation, and 5-fold cross-
validation with scaffold splitting. To make a fair comparison,
we used the same data set splits over DILI and Tox-DILI for all
the models, repectively. For each cross-validation (CV) method,
we first ran all the models on the DILI data set and then applied
property augmentation using MV-GNN“** on the Tox-DILI
data set to further boost the performance. Moreover, we took
MPNN and DMPNN as backbones to implement property
augmentation to confirm the effectiveness of our method. The
pairwise comparison between experiments without and with
property augmentation is visualized with a p-value calculated
through the Wilcoxon test.

Cross-Validation with Random Splitting. We first applied
the 5-fold cross-validation with random seeds to evaluate the
performance of each model. In each fold, the input data set was
randomly split into 8:1:1, while 80% was used for training, 10%
is used for validation, and the last 10% was used for testing. For
Tox-DILI, we ensured each data split contained balanced data
for each property. We calculated the mean and standard devi-
ation of the results from all folds as the final results.

Leave-one-out Cross-Validation. Considering the random-
ness of data set splits in the first evaluation method, we then
applied the 10-fold leave-one-out cross-validation to evaluate
the performance again. The input data set was split into 10 folds
equally, and each fold has been used as the testing data set in
sequence. Within the remaining nine folds, one fold is used as the
validation data set, and the rest are used for training. We took the
average of the results from all folds as the final results.

Cross-Validation with Scaffold Splitting. Other than the
two commonly used evaluation methods, we also conducted
experiments with scaffold splitting, which is more practical and
challenging than random splitting. Scaffold splitting splits the
molecules with distinct two-dimensional structural frameworks

Table 9. Performance of DILI Models Using Cross-Validation with Scaffold Splitting®

circular-fp neural-fp MPNN
accuracy 0.657 + 0.037 0.665 + 0.048 0.706 + 0.010
sensitivity 0.485 + 0.074 0.642 =+ 0.066 0.695 + 0.098
specificity 0.784 + 0.073 0.688 =+ 0.082 0.708 + 0.066
Fl-score 0.533 + 0.049 0.609 =+ 0.062 0.653 + 0.052
MCC 0.284 + 0.086 0.328 =+ 0.103 0.402 + 0.027
ROC-AUC 0.719 + 0.028 0.744 =+ 0.051 0.758 + 0.025

“Higher is better. Best scores are marked as bold.

DMPNN MV-GNN“* property augmentation with Tox-DILI
0.714 + 0.043 0.735 + 0.045 0.765 + 0.047
0.693 + 0.082 0.684 + 0.094 0.765 + 0.090
0.724 + 0.062 0.765 + 0.099 0.774 + 0.046
0.660 + 0.070 0.674 + 0.060 0.740 + 0.036
0.41S5 + 0.090 0.458 + 0.087 0.534 + 0.089
0.782 + 0.040 0.774 + 0.042 0.834 + 0.022

Table 10. Performance Comparison between without Property Augmentation (DILI) and with Property Augmentation

(Tox-DILI) Using Cross-Validation with Scaffold Splitting”

MPNN (DILI)  MPNN (Tox-DILI)

accuracy 0.706 + 0.010 0.727 + 0.030 0.714 + 0.043
sensitivity 0.695 + 0.098 0.727 + 0.102 0.693 + 0.082
specificity 0.708 + 0.066 0.716 + 0.108 0.724 + 0.062
Fl-score 0.653 + 0.052 0.717 + 0.049 0.660 + 0.070
MCC 0.402 + 0.027 0.452 + 0.064 0.415 + 0.090
ROC-AUC 0.758 + 0.025 0.796 + 0.052 0.782 + 0.040

“Higher scores within each pair-wise comparison are marked as bold.

DMPNN (DILI)
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DMPNN (Tox-DILI) ~ MV-GNN“** (DILI)  MV-GNN®°* (Tox-DILI)

0.741 + 0.040 0.735 + 0.045 0.765 + 0.047
0.801 + 0.073 0.684 + 0.094 0.765 + 0.090
0.669 + 0.110 0.765 + 0.099 0.774 + 0.046
0.748 + 0.052 0.674 + 0.060 0.740 + 0.036
0.482 + 0.082 0.458 + 0.087 0.534 + 0.089
0.814 + 0.072 0.774 + 0.042 0.834 + 0.022
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Accuracy comparison: DILIvs. Tox-DILI
CV with scaffold splitting
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Figure 9. Cross-validation with scaffold splitting. Visualization from
Table 10. DILI indicates baseline, and Tox-DILI demonstrates the
performance of utilizing property augmentation. The p-value is
calculated between the two prediction results for each model.

into different subsets,*® which can be considered as a clustering
process based on the molecular structure prior to the training

process. We followed the process introduced in Yang et al.*®

The molecules in the data set are categorized into bins based
on their Murcko scaffold, which are calculated by RDKit.**
The bins are then randomly put into train, validation, and test
data sets. We applied a five-fold cross-validation here with
8:1:1 train/validation/test splits too and calculated the mean
and standard deviation as the final results.

B RESULTS AND DISCUSSION

Other than the prediction accuracy, we also analyze the pre-
dicted labels with the ground truth labels in detail by computing
the sensitivity, specificity, F-1 score, MCC, and ROC-AUC. All
of these evaluation criteria are important since we expect to
find a model that can filter the drugs with potential DILI
concern as well as pick out the drugs without DILI risks, thus
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Figure 10. Cross-validation with random splitting. ROC curve comparison (larger AUC is better) between without property augmentation (DILI)
and with property augmentation (Tox-DILI). The lighter lines demonstrate the performance of each fold, and the blue line represents the mean

AUC for each method.
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Figure 11. Leave-one-out cross-validation. ROC curve comparison (larger AUC is better) between without property augmentation (DILI) and
with property augmentation (Tox-DILI). The lighter lines demonstrate the performance of each fold, and the blue line represents the mean AUC

for each method.

further experiments can be conducted on these approved drug
candidates.

Cross-Validation with Random Splitting. The predic-
tion performance of cross-validation with random splitting are
shown in Table S and visualized in Figure 6. As observed,
graph-based message passing models generally perform better
than other baselines on the DILI data set. Meanwhile, the MV-
GNN“* model outperforms other message passing methods
as well as is equiped with smaller variance. The augmentation
strategy that combines more data with other properties pre-
cisely improves the performance of DILI to 81.4%, which empir-
ically proves that involving more property data to co-train the
model indeed brings more information. In this fashion, the
MV-GNN“** model gains an accuracy boost by 2.6% com-
pared with the vanilla MV-GNN“°*, The p-values obtained
from the Wilcoxon test may not be sufficiently small for some

503

baselines considering the difficulty and challenge for the DILI
prediction problem, yet we believe our proposed method has
accomplished remarkable improvement.

As our goal is to identify drugs that might cause DILI and
sort out drugs without DILI, a model with high scores of all the
evaluation metrics as well as a balanced sensitivity/specificity
would be more helpful. As shown in Table S, circular-fp has a
very high specificity but extremely low sensitivity, so it is more
likely to identify drugs without DILI as positive. The lowest
MCC verifies that it cannot achieve a balanced prediction over
positive and negative labels. All the criteria values of neural-fp
are not significant. MPNN and DMPNN have almost equal
sensitivity and specificity scores, but the in terms of the overall
accuracy, Fl-score and MCC are not notably high. The
accuracy, sensitivity, F1-score, and MCC of MV-GNN“°* are
higher than other baselines on the DILI data set. The

https://dx.doi.org/10.1021/acs.chemrestox.0c00322
Chem. Res. Toxicol. 2021, 34, 495—-506


https://pubs.acs.org/doi/10.1021/acs.chemrestox.0c00322?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrestox.0c00322?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrestox.0c00322?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrestox.0c00322?fig=fig11&ref=pdf
pubs.acs.org/crt?ref=pdf
https://dx.doi.org/10.1021/acs.chemrestox.0c00322?ref=pdf

Chemical Research in Toxicology

pubs.acs.org/crt

ROC Curve: MPNN: DILI

1.0
0.8
-1
]
< 06
@
z
Z
3
&
g 04 ROC fold 0 (AUC = 0.78)
= ot ROC fold 1 (AUC = 0.77)
JRe ROC fold 2 (AUC = 0.76)
0.2 /' ROC fold 3 (AUC = 0.77)
e ROC fold 4 (AUC = 0.71)
. — =~ Chance
0.0 —— Mean ROC (AUC = 0.7580 + 0.0248)
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
(a) MPNN on DILIL
ROC Curve: DMPNN: DILI
1.0
(X
1
]
< 06
o
z
G
3
&
g 04 ROC fold 0 (AUC = 0.82)
E et ROC fold 1 (AUC = 0.81)
JRe ROC fold 2 (AUC = 0.75)
0.2 /’ ROC fold 3 (AUC = 0.81)
"a ROC fold 4 (AUC = 0.72)
id == Chance
0.0 < —— Mean ROC (AUC = 0.7820 + 0.0397)
0.0 0.2 0.4 0.6 0.8 10
False Positive Rate
(c) DMPNN on DILI.
ROC Curve: MV-GNNcross: DILI
1.0
0.8
L
]
< 06
v
H
G
3
&
g 0.4 ROC fold 0 (AUC = 0.72)
S ot ROC fold 1 (AUC = 0.83)
JRe ROC fold 2 (AUC = 0.79)
0.2 s ROC fold 3 (AUC = 0.8)
L ROC fold 4 (AUC = 0.73)
== Chance
0.0 —— Mean ROC (AUC = 0.7740 + 0.0422)
0.0 0.2 0.4 0.6 0.8 10

False Positive Rate

(€) MV-GNN®"°5s on DILI.

ROC Curve: MPNN: Tox-DILI

1.0
0.8
-1
]
< 0.6
v
2
ﬁ
&
g 04 ROC fold 0 (AUC = 0.83)
E ot ROC fold 1 (AUC = 0.7)
e ROC fold 2 (AUC = 0.81)
0.2 /’ ROC fold 3 (AUC = 0.79)
,/ ROC fold 4 (AUC = 0.85)
4 — =~ Chance
0.0 —— Mean ROC (AUC = 0.7960 * 0.0520)
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
(b) MPNN on Tox-DILI
ROC Curve: DMPNN: Tox-DILI
1.0
0.8
1
]
< 0.6
v
2
]
I4 -
g 0.4 ROC fold 0 (AUC = 0.88)
= /’ ROC fold 1 (AUC = 0.69)
e ROC fold 2 (AUC = 0.84)
0.2 // ROC fold 3 (AUC = 0.78)
R4 ROC fold 4 (AUC = 0.88)
R4 == Chance
0.0 —— Mean ROC (AUC = 0.8140 * 0.0720)
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
(d) DMPNN on Tox-DILI.
ROC Curve: MV-GNNcross: Tox-DILI
L0
0.8
i1
]
« 06
v
2
=
&
g 0.4 ROC fold 0 (AUC = 0.84)
£ ad ROC fold 1 (AUC = 0.86)
Pid ROC fold 2 (AUC = 0.82)
0.2 e ROC fold 3 (AUC = 0.85)
s ROC fold 4 (AUC = 0.8)
i == Chance
0.0 —— Mean ROC (AUC = 0.8340 = 0.0215)
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

(f) MV-GNN°®"955 on Tox-DILI.

Figure 12. Cross-validation with scaffold splitting. ROC curve comparison (larger AUC is better) between without property augmentation (DILI)
and with property augmentation (Tox-DILI). The lighter lines demonstrate the performance of each fold, and the blue line represents the mean

AUC for each method.

specificity score is slightly lower than circular-fp, but is still
competitive. MV-GNN“* utilizing a property augmentation
strategy obtained the highest accuracy score, which is 81.4%.
The specificity score is fairly high at 0.849, and a sensitivity
score of 0.768 is also the highest compared with other base-
lines. The comparisons of Fl-score and MCC confirm that
our MV-GNN“** model with property augmentation signifi-
cantly performs better than other models on the DILI predic-
tion task.

We also conducted additional experiments with our method
utilizing MPNN and DMPNN, where the performance is com-
pared in Table 6 in a pairwise manner (DILI vs Tox-DILI).
The accuracy improvement is visualized in Figure 7, and the
ROC-AUC is plot in Figure 10. We can observe that models
with a proposed property augmentation almost outperform the
other one over all evaluation criteria.
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We can observe the performance comparison between each
model based on Figure 10. Figure 10 visualizes the ROC-AUC
for each model. As we know, the larger AUC represents better
model performance. When the inflection point is close to the
left top corner, the AUC is approximate to 1. Figure 10f illus-
trates that MV-GNN“* on Tox-DILI outperforms other models.

Leave-one-out Cross-Validation. To eliminate the
randomness of splitting method, we use a 10-fold leave-one-
out cross-validation to rerun all the experiments. The
performance is shown in Tables 7 and 8. The results follow
the similar trend as obtained using cross-validation with random
splitting. MV-GNN“** with property augmentation learning
performs best over all evaluation criteria except for specificity,
where circular-fp obtains highest value. However, the other
performance results such as sensitivityy, MCC, and Fl-score
indicate that the prediction results of circular-fp are extremely
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unbalanced. The accuracy and ROC-AUC visualization
between without and with property augmentation on
MPNN, DMPNN and MV-GNN“**) which are shown in
Figures 8 and 11, further prove the superiority of proposed
method. As shown in Figure 8, the p-value calculated from
MV-GNN“** without and with property augmentation is
<0.01, which can be considered as statistically significant. The
prediction results with leave-one-out cross-validation confirm
that our method is capable of improving the prediction
performance of DILL

Cross-Validation with Scaffold Splitting. Last, we
challenge the most difficult but practical scenario by con-
ducting experiments using scaffold splitting. The results are
recorded in Tables 9 and 10, while the accuracy and ROC-
AUC are visualized in Figures 9 and 12. The accuracy scores
dropped compared with random splitting, which is reasonable
considering the strict splitting. However, other criteria such as
F1-score and MCC do not vary much, and the general trending
is still similar to the performance obtained from the other two
evaluation methods. MV-GNN“** with property augmentation
learning outperforms all other methods, including MPNN and
DMPNN with property augmentation, which effectively
illustrates the superiority of proposed method.

In addition to extensive experiments, several studies have
investigated different methods to tackle the DILI prediction
problem in years. Two recent works from Ancuceanu et al. and
Minerali et al. also seek appropriate approaches to enhance the
prediction performance of DILIrank. Minerali et al. utilizes a
Bayesian model to obtain an ROC-AUC of 0.814, a sensitivity
of 0.741, a specificity of 0.755, and an accuracy of 0.746. The
sensitivity/specificity is nearly perfectly balanced which
denotes the model holds stabilized expressive power, but the
ROC-AUC and accuracy are not remarkable compared with
deep graph-based models. Ancuceanu et al. explores different
teatures of selection and various machine learning algorithms
to build meta-models. Some models have achieved up to 95%
sensitivity but have low specificity around 50%, and some
models have reletively balanced sensitivity/specificity (e.g.,
76%/73.2%), yet the accuracy is <0.75%. Ergo, the superiority
of our deep graph-based model is empirically demonstrated
along with a property augmentation strategy.

B CONCLUSIONS

Enhancing the prediction performance of DILI is crucial for
drug development. Current studies generally focus on either
bringing in more features, stacking multiple models, or
enlarging the data set. These attempts have attained impressive
achievements. In spite of this, we notice that certain properties
of the drugs might contain hidden correlations between each
other. Hence, we propose to establish a property augmentation
approach to include more information to boost the training.
Extensive experiments on Tox-DILI confirm the superiority of
our method by improving the accuracy to 81.4% using cross-
validation with random splitting, 78.7% using leave-one-out
cross-validation, and 76.5% with cross-validation with scaffold
splitting. The proposed method not only brings in more input
data for the encoder network to learn better molecular vector
representation but also utilizes the correlations between
different property labels during the prediction network. We
believe it is a promising perspective to improve the prediction
performance of DILI as well as other properties with limited
available data.
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Data format, the SMILES representation of the molecule along
with the corresponding property label; labels not observed are
displayed as missing values. The Supporting Information is
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