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Abstract

In this paper, we consider the problem of unsupervised
domain adaptation in the semantic segmentation. There are
two primary issues in this field, i.e., what and how to transfer
domain knowledge across two domains. Existing methods
mainly focus on adapting domain-invariant features (what
to transfer) through adversarial learning (how to transfer).
Context dependency is essential for semantic segmentation,
however, its transferability is still not well understood. Fur-
thermore, how to transfer contextual information across two
domains remains unexplored. Motivated by this, we propose
a cross-attention mechanism based on self-attention to cap-
ture context dependencies between two domains and adapt
transferable context. To achieve this goal, we design two
cross-domain attention modules to adapt context dependen-
cies from both spatial and channel views. Specifically, the
spatial attention module captures local feature dependencies
between each position in the source and target image. The
channel attention module models semantic dependencies be-
tween each pair of cross-domain channel maps. To adapt
context dependencies, we further selectively aggregate the
context information from two domains. The superiority of
our method over existing state-of-the-art methods is empir-
ically proved on "GTAS5 to Cityscapes” and "SYNTHIA to
Cityscapes”.

1. Introduction

Semantic segmentation aims to predict pixel-level labels
for the given images [22, 3], which has been widely recog-
nized as one of the fundamental tasks in computer vision.
Unfortunately, the manual pixel-wise annotation for large-
scale segmentation datasets is extremely time-consuming
and requires massive amounts of labor efforts. As a tradeoff,
synthetic datasets [32, 33] with freely-available labels offer
a promising alternative by providing considerable data for
model training. However, the domain discrepancy between
synthetic (source) and real (target) images is still the central
challenge to effectively transfer knowledge across domains.
To overcome this limitation, the key idea of existing methods

Figure 1. An example of cross-domain context. The source and
target images share similar context information at the spatial and
semantic level. The red line, orange line, and blue line denote
vegetation, car, and sidewalk across two domains, respectively.

is to leverage knowledge from a source domain to enhance
the learning performance of a target domain. Such a strategy
is mainly inspired by the recent advances in unsupervised
domain adaptation for image classification [31].

Conventional domain adaptation methods in image classi-
fication attempt to learn domain-invariant feature represen-
tations by directly minimizing the representation distance
between two domains [39, 23, 24], encouraging a common
feature space through an adversarial objective [11, 38], or
automatically determining what and where to transfer via
meta-learning [48, 16]. Motivated by this, various domain
adaptation methods for semantic segmentation are proposed
recently. Among them, the most common practices are based
on feature alignment [14, 55], structure adaptation [37, 5],
adversarial learning [41, 17, 15, 36], curriculum adaptation
[51, 19], self training [56, 18, 46, 30], and image-to-image
translation [1, 52, 18, 6, 4, 46]. Despite remarkable perfor-
mance improvement achieved by these methods, they fail
to explicitly consider the contextual dependencies across
the source and target domains which is essential for scene
understanding [49, 53]. As illustrated in Figure 1, the source
and target images share a much similar semantic context
such as vegetation, car, and sidewalk, although their ap-
pearances (e.g., scale, texture, and illumination) are quite
different. However, how to adapt context information across
two domains remains unexplored.

Inspired by this, we propose a novel domain adap-
tation framework named cross-domain attention network
(CDANet), designed for urban-scene semantic segmentation.
The key idea of CDANet is to leverage cross-domain context
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Figure 2. An overview of the proposed framework. It applies a feature extractor (i.e., ResNet101 or VGG16) to learn source and target
features. Two cross-domain attention modules (i.e., CD-SAM and CD-CAM) are designed to adapt spatial and semantic context information
across source and target domains. A classifier G is used to predict segmentation output based on the features from CD-SAM and CD-CAM.
Our framework contains three discriminators (i.e., D1, D2, and D3) for output adaptation by enforcing the source output be indistinguishable

from the target output.

dependencies from both a local and global perspective. To
achieve this goal, we innovatively design a cross-attention
mechanism which contains two cross-domain attention mod-
ules to capture mutual context dependencies between source
and target domains. Given that same objects with different
appearances and scales often share similar features, we in-
troduce a cross-domain spatial attention module (CD-SAM)
to capture local feature dependencies between any two posi-
tions in a source image and a target image. The CD-SAM
involves two directions (i.e., ”source-to-target” and “target-
to-source”) to adaptively aggregate cross-domain features to
learn common context information. On the forward direc-
tion (or “’source-to-target”), CD-SAM updates the feature at
each position in the source image as the weighted sum of
features at all positions in the target image. The weights are
computed based on the similarity of source and target fea-
tures at each position. Similarly, the backward direction (or
“target-to-source”) updates the target feature at each position
based on the attention to features at all positions in the source
image. In consequence, spatial contexts from the source do-
main are encoded in the target domain, and vice versa. To
model the associations between different semantic responses
across two domains, we introduce a cross-domain channel
attention module (CD-CAM) which has the same bidirec-
tional structure as CD-SAM. The CD-CAM is designed for
contextual information aggregation through capturing the
channel feature dependencies between any two channel maps
in the source and target image. In such a way, common se-
mantic contexts are shared by both domains. CD-SAM and
CD-CAM play a complementary role for context adaptation
and their outputs are further merged to provide better feature
representations for scene understanding.

Our main contributions are summarized as follows: (i)
We propose a novel cross-attention mechanism that enables

(9]

to transfer of context dependencies across two domains. This
is the first-of-its-kind study that investigates the transferabil-
ity of context information in the domain adaptation; (ii) Two
cross-domain attention modules are proposed to capture and
adapt context dependencies at both spatial and channel levels.
This allows us to learn the common semantic context shared
by source and target domains; and (iii) Comprehensive em-
pirical studies demonstrate the superiority of our method
over the existing state of the art on two benchmark settings,
i.e., "GTAS to Cityscapes” and "SYNTHIA to Cityscapes”.

2. Related Work

Domain Adaptation for Semantic Segmentation In-
spired by the Generative Adversarial Network [12], Hoff-
man et al. [14] propose the first domain adaptation model
for semantic segmentation by learning domain-invariant
features through adversarial training. To rule out task-
independent factors during feature alignment, SIBAN [25]
purifies significance-aware features before the adversarial
adaptation to facilitate feature adaptation and stabilize the ad-
versarial training. However, these global adversarial methods
ignore to align the category-level joint distribution, which
may disturb well-aligned features. To alleviate this prob-
lem, Luo et al. propose a category-level adversarial network
to encourage local semantic consistency through reweight-
ing the adversarial loss for each feature [26]. Similarly,
[43] proposes a fine-grained adversarial learning strategy
for class-level feature alignment. Based on the hypothesis
that structure information plays an essential role in semantic
segmentation, Chang et al. adapt structure information by
learning domain-invariant structure [2]. This is achieved by
disentangling the domain-invariant structure of a given image
from its domain-specific texture information. AdaptSetNet
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Figure 3. Cross-domain spatial attention module.

moves forward by further considering structured output adap-
tation which is based on the observation that segmentation
outputs of the source and target domains share substantial
similarities [37]. Different from AdaptSetNet, we apply
three domain discriminators to perform output adaptation on
the segmentation outputs from CD-SAM, CD-CAM, and the
aggregation of these two modules.

Most recently, image-to-image translation [54] has proved
its effectiveness in domain adaptation [1, 45, 6]. The key
idea is to translate images from the source domain to the
target domain by using an image translation model and use
the translated images for adapting cross-domain knowledge
through a segmentation adaptation model. Rather than keep-
ing the image translation model unchanged after obtaining
translated images, BDL [18] applies a bidirectional learning
framework to alternatively optimize the image translation
model and the segmentation model. Similar to [56, 30], a
self-supervised learning strategy is also used in BDL to gen-
erate pseudo labels for target images and re-training the seg-
mentation model with these labels. Although BDL achieves
the new state of the art, it is limited in its ability to consider
the cross-domain context dependencies. To overcome this
limitation, we introduce two cross-domain attention mod-
ules to adapt context information between source and target
domains.

Context-Aware Embedding It has been long known that
context information plays an important role in perceptual
tasks such as semantic segmentation [29]. Zhang et al. [49]
propose a context encoding module to capture the semantic
context of scenes and selectively emphasize or de-emphasize
class-dependent feature maps. To aggregate image-adapted
context, MSCI [20] further considers multi-scale context
embedding and spatial relationships among super-pixels in a
given image. Following the success of attention mechanism
[40] in image generation [50] and sentence embedding [21],
recent studies have highlighted the potential of self-attention
in capturing context dependencies [10, 53]. Specifically,
Zhao et al. [53] introduce a point-wise spatial attention net-
work to aggregate long-range contextual information. Their
model mainly draws its strength from the self-adaptively pre-
dicted attention maps which can take full advantage of both
nearby and distant information of each pixel. DANet [10]
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Figure 4. Cross-domain channel attention module.

adaptively integrates local features with their global depen-
dencies through a position attention module and a channel
attention module. These two modules are considered to be
able to capture spatial and semantic interdependencies, and
in turn, facilitate scene understanding. Similarly, CBAM
[44] sequentially infers attention maps along the channel
and spatial dimensions in order to adaptively refine the in-
termediate features. As opposed to capturing contextual
information within a single domain as previously reported,
we design an innovative cross-attention mechanism to model
context dependencies between two different domains, which
is essential for context adaptation.

3. Methodology

In this section, we begin by briefing the key idea of our
framework. We then detail the proposed cross-attention
mechanism which contains two cross-domain attention mod-
ules for adapting context dependencies between a source and
a target domain.

3.1. Overview

Given a set of source-domain images X with pixel-wise
labels Y and a set of target-domain images A; without any
annotation. Our goal is to train a segmentation model that
can provide accurate prediction to X;. To achieve this, X is
first translated from the source domain to the target domain
using CycleGAN [54]. The translated images X’ S, = F(Xs)
(where F denotes the image translation model) share the
same semantic labels with X5 but with common visual ap-
pearance as X;. Motivated by the self-training strategy, we
follow the same idea in [18, 30] to generate pseudo labels
Y5t for X; with high prediction confidence. Coordinated
with these translated images and pseudo labels, we introduce
a cross-attention mechanism for domain adaptation of se-
mantic segmentation by leveraging cross-domain contextual
information (Figure 2). First, a feature extractor F is applied
to get source feature F(X,) and target feature E(X;) which
are 1/8 of the corresponding input image size. Then a lin-
ear interpolation is applied to E(X,) and E(X,) to match
their spatial size. After that, two parallel convolution layers
are applied to E(X,) and E(X,) to generate feature pairs
{As,A;} and {B;, B}, respectively. {A;, A;} is then fed
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Table 1. The performance comparison by adapting from GTAS to Cityscapes. Two base architectures (i.e., VGG16 and ResNet101) are used
in our study. The comparison is performed on 19 common classes between source and target domains. We use per-class IoU and mean IoU
(mloU) for the performance measurement. The best result in each column is highlighted in bold.

GTAS to Cityscapes

8 = = =} Q

2 = & & 8 g =

R R R
FCNs wild [14] 704 324 62.1 149 54 109 142 27 792 21.3 64.6 44.1 42 704 80 73 00 35 00 |27.1
CDA [51] 749 220 714 60 119 84 163 11.1 757 13.3 66.5 38.0 9.3 552 18.8 189 0.0 16.8 14.6|28.9
AdaptSegNet [37] 87.3 29.8 78.6 21.1 18.2 22.5 21.5 11.0 79.7 29.6 71.3 46.8 6.5 80.1 23.0 269 0.0 10.6 0.3 |350
CyCADA [1] 852 372 76.5 21.8 15.0 23.8 229 21.5 80.5 31.3 60.7 50.5 9.0 769 17.1 282 45 98 0.0 |354
LSD [34] ©188.0 30.5 78.6 252 235 16.7 235 11.6 78.7 272 719 513 19.5 804 19.8 183 09 20.8 18.437.1
PyCDA [19] 8 86.7 24.8 80.9 21.4 27.3 30.2 26.6 21.1 86.6 289 58.8 532 179 804 188 224 4.1 9.7 6.2 |372
CrDoCo [6] >189.1 332 80.1 269 25.0 183 234 12.8 77.0 29.1 72.4 55.1 20.2 79.9 223 195 1.0 20.1 18.7|38.1
BDL [18] 89.2 409 81.2 29.1 19.2 142 29.0 19.6 83.7 359 80.7 54.7 23.3 827 25.8 28.0 23 25.7 199|413
FDA [47] 86.1 35.1 80.6 30.8 20.4 27.5 30.0 26.0 82.1 30.3 73.6 52.5 21.7 81.7 24.0 30.5 29.9 14.6 24.0|42.2
FADA [43] 92.3 51.1 83.7 33.1 29.1 285 28.0 21.0 82.6 32.6 85.3 552 28.8 83.5 244 374 0.0 21.1 152|438
Ours 90.1 46.7 82.7 34.2 253 21.3 33.0 22.0 84.4 414 789 555 258 83.1 249 314 20.6 252 27.8|44.9
AdaptSegNet [37] 86.5 36.0 79.9 234 233 239 352 14.8 83.4 333 756 58.5 27.6 73.7 32.5 354 39 30.1 28.1|424
CLAN [26] 87.0 27.1 79.6 27.3 23.3 28.3 35.5 242 83.6 274 742 58.6 28.0 76.2 33.1 36.7 6.7 319 314|432
IntraDA [30] =190.6 37.1 82.6 30.1 19.1 29.5 324 20.6 857 40.5 79.7 58.7 31.1 86.3 31.5 483 0.0 30.2 358|463
MaxSquare [28] g 89.4 43.0 82.1 30.5 21.3 30.3 34.7 24.0 853 394 782 63.0 229 84.6 364 43.0 55 347 335|464
BDL [18] Z[91.0 44.7 842 34.6 27.6 302 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 353 49.7 3.3 28.8 35.6(48.5
FADA [43] ~|925 475 851 37.6 32.8 334 338 184 853 37.7 83.5 63.2 39.7 87.5 329 478 1.6 349 39.5[492
FDA [47] 92.5 53.3 824 265 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 344 849 34.1 53.1 169 27.7 464 |50.4
Ours 91.3 46.0 84.5 344 29.7 32.6 35.8 36.4 84.5 432 83.0 60.0 322 83.2 35.0 46.7 0.0 33.7 42.2|49.2

into CD-SAM to adapt spatial-level context, while CD-CAM
adapts channel-level context based on {Bg, B;}.

For each module, two directions, i.e., forward direc-
tion (”source-to-target”) and backward direction (’target-to-
source”) are involved. Take the CD-SAM as an example, an
energy map is first obtained based on {A;, A;}. This energy
map is further divided into two attention matrices denoted by
I's_; and I'y_,,. During the forward direction, we perform
a matrix multiplication between target features and I'g_,;.
The result is then summed with the original source features
in an element-wise manner. For the backward direction, a
matrix multiplication is conducted between source features
and I';_, ;. After that, an element-wise summation between
the obtained results and original target features is carried out.
The CD-CAM follows the same setting above except that the
energy map is calculated in the channel dimension. The final
source feature and target feature are obtained by aggregating
the outputs from these two attention modules, which are then
fed into a classifier G for semantic segmentation.

3.2. Cross-Domain Spatial Attention Module

The goal of CD-SAM is to adapt spatial contextual infor-
mation across two domains. To achieve this, we introduce the
forward direction (’source-to-target”) to augment source fea-
tures by selectively aggregating target features based on their
similarities. We further introduce the backward direction
(“target-to-source”) to update target features by aggregating
source features in the same way.

The architecture of CD-SAM is illustrated in Figure 3.
Given A, € REXHXW and A, € REXHXW (' denotes
the channel number and H x W indicates the spatial size),
two parallel convolution layers are applied to generate Q €
REXHXW and K € RE*HXW respectively. A, and A,
are also fed into another convolution layer to obtain V €
REXHXW and V, € REXHXW we reshape Q, Vg, K, and
V;to C' x N, where N = H x W. To determine spatial
context relationships between each position in A and A,
an energy map ® € RY*Y is formulated as & = QK,
where ®(%7) measure the similarity between it" position
in A, and j*" position in A;. To augment A, with spatial
context information from A; and vice versa, a bidirectional
feature adaptation is defined as follows.

During the forward direction, we first define the source-
to-target” spatial attention map as,

exp(®H))
S eap(0)]
where Fgljg indicates the impact of i position in A, to

jth position in A;. To capture spatial context in the target
domain, we update A, as,

lid)

s—=t T

)]

A=A, + AV, IT 2)

where A, leverages the importance of target-domain context
and original source features. In this regime, each position in
A, has a global context view of target features.



Table 2. The performance comparison by adapting from SYNTHIA to Cityscapes. Two base architectures (i.e., VGG16 and ResNet101) are
used in our study. The comparison is performed on 16 common classes for VGG16 and 13 common classes for ResNet101.

SYNTHIA to Cityscapes

g ~ = g £ g

Sls 3 2 2 8 0 2 F £ g g s B 3R

28 25 § 2% 5 g £ Z 2 2 58 2 % 2|3

£ = < B C IS & & “ g = © S E E
DCAN [45] 79.9 304 70.8 1.6 0.6 223 6.7 23.0 76.9 73.9 419 16.7 61.7 11.5 10.3 38.6|354
PyCDA [19] 80.6 26.6 74.5 2.0 0.1 18.1 13.7 14.2 80.8 71.0 48.0 19.0 72.3 22.5 12.1 18.1|35.9
DADA [42)] 71.1 29.8 714 3.7 0.3 332 64 156 81.2 789 52.7 13.1 759 25.5 10.0 20.5|36.8
GIO-Ada [4] ©|78.3 29.2 769 11.4 0.3 26.5 10.8 17.2 81.7 81.9 458 154 68.0 159 7.5 30.4|37.3
TGCF-DA [7] 8 90.1 48.6 80.7 22 0.2 272 3.2 143 82.1 784 544 164 82.5 12.3 1.7 21.8|38.5
BDL [18] >[72.0 30.3 745 0.1 0.3 24.6 10.2 25.2 80.5 80.0 54.7 23.2 72.7 240 7.5 44.9(39.0
FADA [43] 80.4 359 809 2.5 0.3 304 7.9 223 81.8 83.6 489 16.8 77.7 31.1 13.5 17.9|39.5
FDA [47] 84.2 35.1 780 6.1 0.4 27.0 85 22.1 772 79.6 55.5 19.9 74.8 24.9 14.3 40.7|40.5
Ours 73.0 31.1 77.1 0.2 0.5 27.0 11.3 27.4 81.2 81.0 59.0 25.6 75.0 26.3 10.1 47.4|40.8
SIBAN [25] 825 240 794 X X X 165 127 79.2 82.8 58.3 18.0 79.3 253 17.6 25.9|46.3
CLAN [26] 81.3 37.0 80.1 X X X 16.1 13.7 782 81.5 53.4 21.2 73.0 32.9 22.6 30.7|47.8
MaxSquare [28]| _[82.9 40.7 80.3 X X X 12.8 182 82.5 82.2 53.1 18.0 79.0 31.4 10.4 356|482
IntraDA [30] S(843 377 795 X X X 92 84 80.0 84.1 57.2 23.0 78.0 38.1 20.3 36.5|48.9
DADA [42] 25 89.2 448 814 X X X 8.6 11.1 81.8 84.0 54.7 19.3 79.7 40.7 14.0 38.8|49.8
BDL [18] $186.0 46.7 80.3 X X X 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 453|514
FDA [47] M1793 350 732 X X X 199 24.0 61.7 82.6 61.4 31.1 839 40.8 38.4 51.1|52.5
FADA [43] 845 40.1 831 X X X 20.1 27.2 84.8 84.0 53.5 22.6 85.4 43.7 26.8 27.8|52.5
Ours 825 422 813 X X X 183 159 80.6 83.5 614 33.2 729 39.3 26.6 43.9|52.4

For the backward direction, the “’target-to-source” spatial
attention map is formulated as,

exp(®H9))
Diy eap(@C)’
(2,9)

where I,/ indicates to what extent the 5" position in A;
attends to the i*" position in A,. Similarly, A, is updated by,

“)

where \; leverages the importance of source-domain context
and original target features. As a consequence, each posi-
tion in A; and A; is a combination of their original feature
and the weighed sum of features from the opposite domain.

g _

t—s T

3)

A; =A; + MV s,

Therefore, A, and A, allow us to encode the spatial context
of both source and target domains.

3.3. Cross-Domain Channel Attention Module

Given B, € RE*HXW and B, € RE*H*W the CD-
CAM is designed to adapt semantic context between source
and target domains (Figure 4) by following the same bidi-
rectional structure as CD-SAM. Different from CD-SAM
that applies convolution layers to obtain Q, K, V,, and V;
before measuring spatial relationships. Here, B and B,
are directly used to capture their semantical context rela-
tionships, which allows us to maintain interdependencies
between channel maps [10]. Specifically, we reshape both
B, and B; to C x N, where N = H x W. The energy map
is defined as © = BtBST € RE*C where ©(53) denotes the
similarity between ‘" channel in B, and 5% channel in B;.

For the forward direction, the ”source-to-target” attention
map is given by,

exp(©))

@)
Zle exp(©6:9)

s—t T

®)

where ¥"7) measures the impact of i*" channel in B, to j*"
channel in B;. To model the cross-domain semantic context
dependencies, B, is updated by,

B, =B, + &V, B, (6)

where £ leverages the associations between target-domain
semantic information and original source features. As a
consequence, each channel in B; is augmented by selectively
aggregating semantic information from B;.

During the backward direction, the target-to-source” at-
tention map is,

exp(©))
Dily exp(©0:)

To take semantic context in B, into consideration, we have

P9 _

t—s T

)

B, = B, + & V], B, @®)
where &; leverages the associations between original target
features and semantic contexts from the source domain. It
is noteworthy that by considering cross-domain semantic
context, our framework is able to further reduce domain
discrepancy from the context perspective.



Table 3. Ablation study on "GTAS to Cityscapes”.

GTAS to Cityscapes
Base | CD-SAM | CD-CAM | mloU
413
v 437
VGale v 436
v v 44.9
485
v 49.0
ResNet101 v 488
v v 49.2

3.4. Aggregation of Spatial and Channel Context

To take full advantage of spatial and channel context
information, we aggregate the outputs from these two cross-
domain attention modules. Specifically, Als and B; are con-
catenated and then fed into a convolution layer to generate
the enhanced source feature Z, € RC*H#>*W  Obviously,
Z, is enriched by spatial and semantic context dependencies
from both source and target domains. The same operation is
also performed on A, and B, to obtain Z, € RCXH W

3.5. Training Objective

Our framework contains a segmentation loss L., and
an adversarial loss £,4,. We first feed Z, and Z; into the
classifier G to predict their segmentation outputs G(Z) and
G(Z;). The segmentation loss of G(Zy) is defined as:

HxW L

Z Z ’J)G (w )

where L is the number of label classes. Lgeq(G(Z¢), YY) is
defined in a similar way. To adapt structured output space
[37], a discriminator D; is applied to G(Z;) and G(Z;) to
make them be indistinguishable from each other. To achieve
this, an adversarial loss L4, (G(Zs), G(Z;)) is formulated
as,

Liseqg(G(Zs), Ys

Laav(G(Zs),G(Zy), D1) = EllogD1(G(Zs))]+

Ellog(1 — D1(G(Z+)))]
o, ) (10)
To encourage A, A,, B, and B, to encode useful infor-
mation for semantic segmentation, they are also fed into
the classifier G to predict their segmentation outputs. The
overall segmentation loss is given by,

Eseg = 'Cseg (G(ZS )’
Lacg(G(AY),

’

Lseq(G(By),

Y;) + Acseg (G(Zt)7 Yi‘/St)—i—
Y2) 4 Loeg(G(A), Y+ (11)
Y.) + Loeg(G(BY), Vi)

We also encourage G(A;) and G(A;) to have similar struc-

tured layout, and enforce G(B,) to be indistinguishable from

Table 4. Ablation study on "SYNTHIA to Cityscapes”.
SYNTHIA to Cityscapes

Base | CD-SAM | CD-CAM | mloU
39.0

v 40.2

Vaale v 40.0
v v 40.8
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v 51.8

ResNet101 v 5.0
v v 524

G(B;). Therefore, the overall adversarial loss can be written
as,
Ladv = Ladv (G(Zs)v G(Zt)a 1)1)+

/

Laao(G(A,),G(A,), Do)+ (12)
Laar(G(B),G(B,), D),
where D5 and D3 are two discriminators Speciﬁca]ly, Do

) and G(A ) while Ds

attempts to distinguish between G/(B ) and G(B )
Taken them together, the training objective of our frame-
work is:

aims to discriminate between G(A

L AL 13
%HCI} Dlr,nDa;,{Dg seg T adv (13)

where A controls the importance of L., and Lq,.

4. Experiments

In this section, we evaluate our method on synthetic-
to-real domain adaptation for urban scene understanding
problem. Extensive empirical experiments and ablation stud-
ies are performed to demonstrate out method’s superiority
over existing state-of-the-art models. We also visualize the
cross-domain attention maps to reveal context dependencies
between source and target domains.

4.1. Datasets

Two synthetic datasets, i.e., GTAS [32] and SYNTHIA-
RAND-CITYSCAPES [33] are used as the source domain
in our study, while the Cityscapes [8] is served as the target
domain. Specifically, the GTAS is collected from a photoreal-
istic open-world game known as Grand Theft Auto V, which
contains 24,966 images with pixel-accurate semantic labels.
The resolution of each image is 1914 x 1052. SYNTHIA-
RAND-CITYSCAPES contains 9,400 images (1280 x 760)
with precise pixel-level semantic annotations, which are gen-
erated from a virtual city. Cityscapes is a large-scale street
scene datasets collected from 50 cities, including 5,000 im-
ages with high-quality pixel-level annotations. These images
are split into training (2,975 images), validation (500 im-
ages), and test (1,525 images) set, each of which with the
resolution of 2048 x 1024. Following the same setting as
previous studies, only the training set from Cityscapes is
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Figure 5. Qualitative comparison between our method and the baseline model BDL [18]. For each given image (A), we present its
segmentation output from (B) BDL, (C) our method incorporating CD-SAM only, (D) our method incorporating CD-CAM only, (E) our

(A)

method considering both CD-SAM and CD-CAM, and the ground truth (F).

used as the target domain, and the validation set is used for
performance evaluation.

4.2. Implementation Details

Network Architecture The same CycleGAN architecture
[54] as reported in BDL [18] is used to translate images
from the source domain to the target domain. DeepLab-
VGG16 and DeepLab-ResNet101, which are pre-trained
on ImageNet [9], are used as our segmentation network
by following the same setting in [37]. Both of them use
DeepLab-v2 [3] as classifier, while DeepLab-VGG16 uses
VGG16 [35] and DeepLab-ResNet101 uses ResNet101 [13]
as the feature extractor. The three discriminators used for
structured output adaptation have the identical architecture,
each of which has 5 convolution layers with kernel 4 x4 and
stride of 2. The channel number of each layer is {64, 128,
256, 512, 1}. Each layer is followed by a leaky ReLU [27]
parameterized by 0.2 except the last one. The CD-SAM
contains 3 convolution layers with kernel 1x 1 and stride of 1
to obtain the query and key-value pairs. The channel number
of these convolution layers are {128, 128, 1024} and {256,
256, 2048} for DeepLab-VGG16 and DeepLab-ResNet101,
respectively.

Network Training To train the CycleGAN network, we
follow the same setting in BDL [18]. DeepLab-VGG16 is
trained using Adam optimizer with initial learning rate le-
5 and momentum (0.9, 0.99). We apply step decay to the
learning rate with step size 50000 and drop factor 0.1. Both
DeepLab-ResNet101 and CD-SAM use Stochastic Gradient
Descent (SGD) optimizer with momentum 0.9 and weight
decay Se-4. The initial learning rate for DeepLab-ResNet101
and CD-SAM are 2.5e-4 and le-4, respectively, and are de-
creased by the same polynomial policy with power 0.9. For
the discriminator, we use an Adam optimizer with momen-
tum (0.9, 0.99). Its initial learning rate is set to le-6 for
DeepLab-VGG16 and 1e-4 for DeepLab-ResNet101, respec-
tively. We set A to 0.0001 and 0.001 for DeepLab-VGG16
and DeepLab-ResNet101, respectively.

4.3. Performance Comparison

GTAS to Cityscapes Our method is first evaluated by us-
ing GTAS as the source domain and Cityscapes as the tar-
get domain. The performance is assessed on 19 common
classes between these two datasets by following the same
evaluation criterion in previous studies [18, 6]. Our method
is compared with existing state-of-the-art models by using
VGG16 and ResNet101 as the base architectures. As shown
in Table 1, our method competes favorably against other
models. Specifically, we surpass the mean intersection-over-
union (mloU) of feature alignment-based [14, 34, 26] and
curriculum-based methods [51] by a large margin. This ob-
servation indicates that simply aligning feature space and
label distribution cannot fully transfer domain knowledge in
semantic segmentation. Compared to the models [1, 6, 18]
that are based on image-to-image translation, our method
gains up to 9.5% improvement by using VGG16, reveal-
ing that domain discrepancy can be further reduced by con-
sidering context adaptation. Similar to [37, 18], we also
adapt structured output space in our model, but our method
achieves significant performance improvement. This ob-
servation reveals the important role of context adaptation
in knowledge transfer. It is noteworthy that the prediction
of the “train” class is extremely challenging, owing to the
limited ”train” samples in the source domain. Our method
enables to alleviate this limitation by adapting cross-domain
context information. Compared to the CyCADA [1], we
achieve 16.1% improvement on the “train” class.

SYNTHIA to Cityscapes The superiority of our method
is further proved on "SYNTHIA to Cityscapes”. It is note-
worthy that domain adaptation on "SYNTHIA to Cityscapes”
is more challenging than "GTAS to Cityscapes”, owing to
the large domain gap between these two domains. Following
[18], we consider the 16 and 13 common classes for VGG16
and ResNet101-based models, respectively. As summarized
in Table 2, we achieve a performance improvement of 1.8%
and 1.0% over BDL [18] with VGG16 and ResNet101 base
architectures. One of the most significant difference between
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Figure 6. An example of the spatial attention map. Given a source
image (A) and a target image (D), we present the source-to-target
attention maps (B) and (C) for the blue and red point in (A), respec-
tively. Similarly, we present the target-to-source attention maps (E)
and (F) of the blue and red point in (D), respectively.

these two domains is that SYNTHIA has much more ’person’
instances than Cityscapes, which makes it hard to transfer
common knowledge of the class ’person’ by simply align-
ing marginal distribution or structured output space [18]. In
contrast, by considering context information explicitly, we
bring 7.3% improvement compared to BDL on this class with
ResNet101-based model. This result demonstrates the bene-
fit of explicitly adapting cross-domain context dependencies
in semantic segmentation, especially for two domains with
significant differences.

4.4. Ablation Study

GTAS to Cityscapes By incorporating CD-SAM and CD-
CAM individually, we get 2.4% and 2.3% performance boost
over the VGG16-based baseline (Table 3). Taken them to-
gether, the mloU is further improved to 44.9 mloU. Simi-
larly, 0.5% and 0.3% improvement is also observed in the
ResNet101-based model by considering CD-SAM and CD-
CAM. We achieve 49.2 mloU by integrating both attention
modules. To qualitatively demonstrate the superiority of our
method, we showcase the examples of its segmentation out-
puts at different stages in Figure 5. As shown in the figure,
our method enables to predict more consistent segmentation
outputs than the baseline model and becomes increasingly
accurate by incorporating two cross-domain attention mod-
ules.

SYNTHIA to Cityscapes For VGG16-based model, CD-
SAM and CD-CAM contribute to 1.2% and 1.0% improve-
ment compared to the baseline (Table 4). Our method gains
1.8% improvement by combining them. By applying CD-
SAM and CD-CAM to ResNetl101, we achieve 51.8 and
52.0 mloU with 0.4% and 0.6% improvement over the base-
line, respectively. It is further boosted to 52.4 mloU when
both of them are considered. Our results reveal that the pro-
posed cross-attention mechanism significantly contributes
to domain adaptation in semantic segmentation by adapting
context dependencies. Furthermore, the two cross-domain
attention modules play a complementary role in capturing
context information.

W
N

Table 5. Ablation study of As, A¢, &5, and &;.
As/At/Es /&t 0.1 1
mloU 437 44.9

10
40.6

Visualization of the Cross Attention To fully understand
the cross-attention mechanism in our model, we visualize the
spatial attention maps in this section. As shown in Figure 6,
two images are randomly selected from the source and target
domain. Recall that each position in the source feature has
a spatial attention map corresponding to all positions in the
target feature, and vice versa. We, therefore, select two
positions in the source image and visualize their ”source-to-
target” attention map. For the blue point that is marked on a
building in the source image (Figure 6 A), its spatial attention
map (Figure 6 B) mainly corresponds to the building in the
target image (Figure 6 D). For the red point that is marked
on a truck in Figure 6 A, its spatial attention map (Figure 6
C) highlights the cars in Figure 6 D. Similarly, we select
another two positions in the target image and conduct the
visualization of the target-to-source” attention map. For the
blue point in the target image (Figure 6 D), its attention map
(Figure 6 E) focuses on the vegetation in the source image
(Figure 6 A). These visualizations demonstrate the power
of our method in capturing cross-domain spatial context
information.

Parameter Sensitivity Analysis In this section, we per-
form a sensitivity analysis of Ag, A, &5, and & as shown in
Table 5. We investigate three different choices, i.e., 0.1, 1,
and 10, indicating how much attention should pay for the
context information from the opposite domain. Our results
reveal that \; = A\; = & = & = 1 performs best. The rea-
son is that a small value fails to capture cross-domain context
dependencies, while a large value may disturb the original
feature. In addition, by setting A\s = Ay = 0.1, &, =& =1,
we have mloU 43.2. We also evaluate the scenario where A,
At, €, and &; are learnable hyperparameters, which gives
rise to mIoU 44.0.

5. Conclusion

In this paper, we propose an innovative cross-attention
mechanism for domain adaptation by adapting the seman-
tic context. Specifically, we introduce two cross-domain
attention modules to capture spatial and channel context be-
tween source and target domains. The obtained contextual
dependencies, which are shared across two domains, are
further adapted to decrease the domain discrepancy. Empir-
ical studies demonstrate that our method achieves the new
state-of-the-art performance on "GTAS5-to-Cityscapes” and
”SYNTHIA-to-Cityscapes”.
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