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ABSTRACT

Upon sustained loading, colloidal gels tend to feature delayed viscoplastic creep deformations. How-
ever, the relationship, if any, between the structure and creep dynamics of gels remains elusive. Here,
based on accelerated molecular dynamics simulations and the recently developed softness approach (i.e.,
classification-based machine learning), we reveal that the propensity of a gel to exhibit long-time creep
is encoded in its static, unloaded structure. By taking the example of a calcium-silicate-hydrate gel (the
binding phase of concrete), we extract a local, non-intuitive structural descriptor (a revised version of the
“softness” metric proposed by the pioneering work from Cubuk et al.) that is strongly correlated with the
dynamics of the particles. Notably, the macroscopic creep rate exhibits an exponential dependence on the
average softness. We find that creep results in a decrease in softness in the gel structure, which, in turn,
explains the gradual decay of the creep rate over time. Finally, we demonstrate that the softness metric

is strongly correlated with the average energy barrier that is accessible to the particles.

© 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

When subjected to a sustained load, disordered solids (e.g.,
glasses, granular materials, or gels) tend to exhibit delayed, time-
dependent creep deformations [1-3]. Although creep can occur in
many types of materials (e.g., metals or ceramics, primarily at high
temperature [4,5]), it is especially pronounced in soft matter, e.g.,
colloidal gels [3,6,7]. In that regard, the viscoplastic deformation
of calcium-silicate-hydrate gels (C-S-H, the binding phase of con-
crete) under constant load plays a key role in the built environ-
ment since it is responsible for concrete’s creep [7-10].

Despite the important, often detrimental role of creep in col-
loidal gels, its nanoscale origin, driving force, and mechanism re-
main debated [3,6,8]. In particular, it remains unclear whether the
propensity of a disordered solid to creep could in some way be en-
coded in its static, unloaded structure [11]. This question is a mani-

* Corresponding author.
E-mail address: bauchy@ucla.edu (M. Bauchy).

https://doi.org/10.1016/j.actamat.2021.116817

1359-6454/© 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

festation of a more general gap in our understanding of how struc-
ture controls dynamics in disordered phases [6,11,12]. Indeed, due
to the complex, disordered structure of glasses or gels [13,14], pin-
pointing which structural features govern dynamics is essentially
a “needle-in-a-haystack” problem [15-17], since intuitive structural
metrics (e.g., local packing or coordination number) are often only
weakly correlated with dynamics [18,19].

Owing to its ability to discover relevant patterns in complex,
multidimensional data, machine learning (ML) offers a new op-
portunity to revisit the nature of the linkages between structure
and dynamics in disordered phases—without the need for any pre-
requisite intuition regarding which structural feature(s) could be
influential [20,21]. In particular, Cubuk et al. recently extracted
by ML a non-intuitive structural fingerprint (named “softness”),
which is strongly correlated with the probability of a particle to
exhibit some rearrangement upon loading or spontaneous relax-
ation [12,15,22-26]. However, although softness has been shown to
be correlated with near-future particle rearrangements, it has thus
far been unable to offer insights into the long-time dynamics of
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disordered phases [11]. This has prevented the use of this approach
to study creep, which can extend over several years [9].

Here, inspired by this softness approach, we introduce a slightly
revised definition for softness (relying on a linear logistic regres-
sion model and radial features) and use this machine-learned
structural fingerprint to interrogate the existence of a causal link
between structure and long-time creep. This approach reveals that
the propensity of a colloidal gel to creep is encoded in its instanta-
neous, static structure. Importantly, we find that the softness met-
ric captures the effective average energy barrier that the particles
need to overcome to rearrange during creep—which suggests that
the softness metric offers a structural fingerprint of the topography
of the energy landscape. Finally, the use of linear logistic regres-
sion allows us to offer a structural interpretation of this machine-
learned predictor.

2. Methods
2.1. Archetypical gel model

To establish our conclusions, we simulate an archetypical
mesoscale model of a colloidal C-S-H gel [10,27,28]. The model
gel is comprised of an ensemble of monodisperse spherical parti-
cles of 5 nm. The interaction between particles is described by a
generalized Lennard-Jones potential with a minimum at distance
o = /2 x 5nm, which corresponds to the effective particle diam-
eter. In detail, the potential is descried as [27]:

2a a
U,-j(r,-j) =4¢ <?:> — <z‘j)> (1)

where oy is the particle diameter (5 nm here), @ a parameter that
controls the narrowness of the potential well (here, « = 14), ry;
the distance between the centers of a pair of particles i and j,
and ¢ the depth of the potential energy well and ¢ = Ayoy>, where
Ao = kE is a prefactor that is proportional to the Young’'s modu-
lus E of a bulk C-S-H grain (here, E = 63.6 GPa and k = 0.002324).
The potential defined in Eq. (1) exhibits a minimum at r,, = Y20y
so that the effective diameter of a particle i is here defined as
o = ¥/20y. This model has been extensively studied and has been
shown to offer a realistic description of the structure and mechan-
ical properties of C-S-H gels [8,10,27-31].

2.2. Preparation of the gel configurations

The gel configurations are generated by grand canonical Monte
Carlo (GCMC) simulations, wherein particles are iteratively inserted
until saturation into an initially empty cubic box of 600 A length
with periodic boundary. Each GCMC step comprises of 5 attempts
of particle insertions or deletions, followed by 500 attempts of
random displacement of an existing particle. The temperature is
fixed at T = 300 K and the excess chemical potential, control-
ling the probability of acceptance of the insertion attempts, is set
to -2kgT. In detail, the probability of acceptance of the attempt
is given by min{1, exp[—(AU — 8)/kgT]}, where kg is the Boltz-
mann constant, T the temperature, AU the variation in potential
energy caused by the trial move, py the chemical potential (fixed
at -2kgT based on Refs. [8,10,27-31], which ensures the forma-
tion of a realistic packed final structure within a reasonable sim-
ulation time), and § the variation in the number of C-S-H grains
[8,28,29]. The saturated configurations are then relaxed by molec-
ular dynamics (MD) simulations with a timestep of 50 fs in the
isothermal-isobaric (NPT) ensemble at 300 K and zero stress for
50 ns to release the macroscopic tensile pressure formed during
the GCMC simulation. Finally, the configurations are subjected to
an energy minimization to reach their inherent structure. Note that
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the GCMC ensemble adopted herein aims to mimic the precipita-
tion process of colloidal C-S-H gels and has been shown to of-
fer a realistic description of the structure and packing density of
disordered C-S-H gels [8,10,27-31]. Based on the system size con-
sidered herein, we typically get a number of particles n, ~ 1700
at saturation, which corresponds to a packing density ¢ ~ 0.63.
Using this methodology, we simulate 10 independent configura-
tions for statistical averaging. All simulations are performed by us-
ing the Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) code [32].

2.3. Accelerated creep simulations

Since a direct MD simulation of the creep of colloidal gels is out
of reach considering its extended timescale, we adopt herein a re-
cently introduced accelerated simulation technique [33,34], which
has been shown to successfully model the creep of disordered
phases [2,8]. This accelerated method relies on the application
of small stress perturbations to accelerate relaxation [2,33,34]. In
detail, we first apply a constant, sustained shear stress ty (here
To = 100 MPa) to induce a creep response within the gel. The
creep response of the gel is simply a linear function of ty, as long
as 7o remains lower than the yield stress of the gel [8]. Small,
cyclic shear stress perturbations At (here At = 30 MPa) are
then applied to accelerate the creep dynamics [8]. At each stress
cycle, a constant-stress minimization of the energy is performed,
wherein the system can adjust its shape and volume in order to
reach the target stress. Effectively, this method mimics the acceler-
ated relaxation exhibited by granular materials when subjected to
vibrations [35]. The resulting acceleration of the dynamics arises
from the fact that each stress perturbation slightly deforms the lo-
cal energy landscape, which, in turn, can reduce the height of some
energy barriers that are locally accessible to the particles. This al-
lows the system to jump over these barriers, thereby reaching a
new energy basin within the landscape in an accelerated fashion
[2,33,36]. Such particle reorganizations make it possible for the gel
to exhibit some macroscopic viscoplastic deformation (i.e., creep)
in order to accommodate the external sustained shear stress. Note
that the average stress 7y of 100 MPa used herein is notably lower
than the yield stress of the system (~600 MPa), so that no macro-
scopic flow of particles is observed. In addition, the stress pertur-
bation amplitude At (& 30 MPa) is chosen to be large enough to
accelerate the creep simulation, but low enough to avoid any reju-
venation [8]. The resulting creep modulus was shown to be inde-
pendent of the specific value of this stress perturbation amplitude
At [8]. It is worth pointing out that, in practice, our accelerated
simulation technique mimics a dynamical fatigue test—wherein a
series of oscillatory stresses are repeatedly applied to the simu-
lated sample. Nevertheless, when the applied stress is low as com-
pared to the yield stress, the resulting logarithmic strain deforma-
tion of the simulated sample is effectively equivalent to the one
that is experimentally observed upon non-oscillatory static load-
ing test (i.e., creep) [37,38]. Since the particle rearrangements in-
duced by the stress perturbations are limited, the modeled gel re-
mains in the primary creep stage (i.e., wherein the creep rate de-
cays over time) without entering into the secondary steady-state
stage (i.e., constant creep rate) or the final avalanche stage (i.e., ac-
celeration of creep rate) [39,40]. It should also be noted that the
monodisperse colloidal gel considered herein is out-of-equilibrium
and tends to easily crystalize at finite temperature. Nevertheless,
no crystallization is observed during the creep simulations. All
simulations are performed by using the LAMMPS code [32].

2.4. Non-affine squared displacement of the particles

We calculate, for each particle i, the normalized non-affine
squared displacement D2,,;,/0c2 at the Nth stress perturbation
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cycle (here, N = 106) with respect to the initial reference config-
uration (here, Nof = 1) using Eq. (2) [22,41]:

n}\ivn {nl’ i [Ri(N) - AiRij(Nref)]Z}
i p= (2)

where R;; is the distance between particle i and j, particle j repre-
sents the neighbor of particle i within a cutoff distance R (here,
Rc = 20 [41]), and n; is the total number of neighbor particles
within the range of R. for each particle i. The quantity is mini-
mized over choices of the local strain tensor A; of particle i. Note
that the quantity A;R;;j(Ner) represents the distance between par-
ticles i and j after an affine deformation resulting from the applica-
tion of a local strain A; to the initial interparticle distance R;j(Nrer)-
This consists in computing the [?-norm of the matrix multiplica-
tion between the local strain tensor A; and the distance vector
Rij(Nef) between particles i and j at the Npth cycle:

Axx )"xy Axz T
AiRjj(Neep) = [ Ayx Ay Mz |[ 6 1y 12 ]2 (3)
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where Ayy is the strain component of A; in the xy-axis plane and
ry is the projection of the distance vector R;;j(Nrf) along the x-axis.
The calculation of non-affine squared displacement D? ;, is imple-
mented by using the OVITO software [42].

2.5. Average energy barrier of the particles

To explore the topography of the potential energy landscape
(PEL) of the initial static gel configuration (before any stress is
applied), we adopt the activation-relaxation technique nouveau
(ARTn) method [43]. Starting from a local minimum of PEL, the
ARTn algorithm systematically searches for the saddle points and
transition pathways that are accessible from this minimum. This
allows us to compute the distribution of the energy barriers (i.e.,
difference of energy between the saddle point and the original lo-
cal minimum) that are locally accessible to each particle. In de-
tail, starting from the initial gel configuration (located in a local
minimum of the PEL), the target particle and the first-coordination
neighbors thereof are first activated with a random displacement
so as to identify a direction of negative curvature that denotes the
presence of a nearby saddle point within the energy landscape. The
activated system is then relaxed toward the saddle point by follow-
ing the direction of the negative energy curvature until the force is
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smaller than a given threshold (here, 0.04 /o). The Lanczos algo-
rithm is adopted to search for the saddle points. The step size dur-
ing activation and relaxation are set as 0.020 and 0.00040, respec-
tively, and the curvature threshold to start relaxation is fixed at
—1.0 /o2 [43]. Finally, we compute the energy barrier associated
with the target particle’s rearrangement by subtracting the en-
ergy of the saddle point with the initial minimum energy. As such,
the ARTn method restricts its search of particle rearrangements to
those going through well-defined saddle points and, hence, focuses
on the tiny fraction of the configurational space that is physically
accessible to the system. To estimate the local distribution of en-
ergy barriers that are accessible to each particle, we conduct 20 in-
dependent saddle point searches for each particle— which is here
found to be large enough to ensure the convergence of the energy
barrier distribution [44]. Based on this analysis, we then compute
the average value E,ye of the energy barriers that are accessible to
each particle [45].

3. Results
3.1. Long-time creep dynamics

We adopt an accelerated simulation technique based on stress
perturbations to simulate the long-time creep behavior of colloidal
gels subjected to a sustained shear stress 7y [33,34]. Details regard-
ing the creep simulation can be found in the Methods section and
in Ref. [8]. Fig. 1a shows an example of shear strain y evolution as
a function of the number of stress perturbation cycles N. In agree-
ment with previous works [8,9], our simulation predicts a logarith-
mic creep, which follows:

Y (N) = (70/C)log(1 + N/No) (4)

where C, the creep modulus, is a material constant [8] and Ny is a
fitting parameter that is analog to a typical relaxation time [2,8].
Importantly, the creep modulus obtained from this method was
shown to match experimental data obtained on C-S-H gels—which
confirms that the creep deformation induced by our accelerated
method is similar to the one that would spontaneously occur over
time [8].

Since the present simulation successfully reproduces the macro-
scopic creep of C-S-H gels, we now further analyze the simulated
trajectories to explore the particle-scale mechanism of creep—
which is typically hidden from conventional experiments [8,9].
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Fig. 1. (a) Shear strain y as a function of the number of stress perturbation cycles of a colloidal C-S-H gel subjected to a constant shear stress to. The dashed line is a
logarithmic fit following Eq. (4). (b) Distribution of the normalized non-affine squared displacement D? ;,/c for a shear strain ¥ = 1%. The red area highlights the tail of
the distribution, i.e., its deviation from a Gaussian distribution (in gray). The inset shows the corresponding gel configuration, wherein the color of the particles denotes their
D?in/o? value. The green dash line indicates the threshold (D?,0/02) that is used herein to discriminate immobile (low displacement) from mobile (high displacement)
particles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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To this end, we compute the normalized non-affine squared dis-
placement D2 /02 of each particle [22,41]—a metric that has
been widely used to identify particle reorganizations under stress
[12,46,47]. Details regarding the calculation of D?,;,/0c% can be
found in the Methods section. Fig. 1b shows the distribution of
the D?;,/o? values for a shear strain y = 1%. We observe that
the distribution is centered around a low displacement value (i.e.,
D? inlo? = 0.005), which corresponds to the population of par-
ticles that do not exhibit significant reorganizations upon creep.
However, we note that the distribution also exhibits a long tail to-
ward large displacement values, suggesting that a few select par-
ticles feature some significant reorganizations. In the following,
we use a threshold normalized non-affine squared displacement of
D? hinolo? = 0.014 (corresponding to a displacement of about 12%
of o) to classify particles as immobile (low displacement) or mo-
bile (high displacement). Based on this threshold, about 7% of the
particles are classified as mobile during the creep process. Note,
however, that the following analysis does not significantly depend
on the arbitrary choice of this threshold displacement (see Supple-
mentary Materials).

3.2. Particle mobility classification by machine learning

We now investigate whether the propensity of a particle to be
mobile or immobile (i.e.,, a dynamic property) could in some ways
be encoded in its static initial structure (before loading). To this
end, following the example of the softness approach [12,22], we
construct by machine learning a structural quantity that is corre-
lated to the propensity of a particle to exhibit a local rearrange-
ment upon creep deformation. Each step of the machine learn-
ing pipeline is explained in detail in the Supplementary Materi-
als. Briefly, we first construct a dataset composed of ~17,000 par-
ticles obtained from 10 independent creep simulations (with 10
distinct initial configurations). Each system exhibits a similar dis-
tribution of D?,;,/0% at the end of creep simulation. From this
dataset, 7 configurations serve as training set, while the remain-
ing 3 configurations are used as test set. Each particle is classi-
fied as mobile (D?;,/02 > D?ino/02) or immobile (D? /02 <
D? 1ino/o?) based on its final normalized non-affine squared dis-
placement (at the end of the creep simulation). We then calculate
a series of structural features for each particle based on the initial
static structure (before any stress is applied). In detail, we calcu-
late for each particle i a series of N; radial order parameters G(i; )
associated with different distances r:

G(l, r) — Ze—(Rij—r)z/Lz (5)
J

where j refers to the neighbor particles of i within a cutoff dis-
tance R (here, Rg = 60 [22]), R;; is the distance between the par-
ticles i and j, and L is the standard deviation of the Gaussian func-
tions centered around r (here, L = 0.040 [22]). In short, this met-
ric is related to the local density of neighbors at a distance r from
the central particle i, as averaged over a shell with a typical thick-
ness L. We calculate for each particle i these N; order parameters
for varying r distances (ranging from 0.60 to 30 with an incre-
ment of 0.04c [22]). All these features are standardized prior to
any training [48]. Altogether, the ensemble of these metrics offers
an unbiased fingerprint of the local radial order around each in-
dividual particle. We then train a classifier to identify the optimal
hyperplane separating mobile from immobile particles within the
Nr-dimensional space associated with the values of the N, radial
order parameters.

In contrast to the original softness approach that uses both
radial and angular order parameters as input features [12,22],
we solely focus on features capturing radial 2-body correlations
around each particle. This is key to ensure that the new softness
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metric remains highly interpretable (see Section 4.1). Note that,
since the particles are monodisperse and do not exhibit any bond
directionality, the incorporation of angular 3-body order parame-
ters does not notably increase the accuracy of the classification
model (see Supplementary Materials for details). In that regard,
limiting the number of input features also allows us to ensure that
the model does not become overfitted. Moreover, unlike the origi-
nal softness approach based on the Support Vector Machine (SVM)
classifier [12,22], we adopt logistic regression to build the classi-
fier [48]. This classifying technique offers great model simplicity,
accuracy, and interpretability (see Supplementary Materials for de-
tails). Indeed, logistic regression directly provides the probability
of a given particle to be mobile or immobile. In addition, it em-
beds regularization to limit the risk of overfitting. Importantly, the
classification hyperplane determined by logistic regression is linear,
which makes it possible to easily assess the importance of each
feature. We also expect that the linear nature of the hyperplane is
key to enhance the extrapolability of the classification model.

Fig. 2a illustrates the outcome of the classification, where we
select as horizonal and vertical axis the two most influential fea-
tures of the classification model (see Section 4.1) in order to il-
lustrate a two-dimensional projection of the positions of the par-
ticles in the N,-dimensional feature space. Each particle is then
colored based on its relative non-affine squared displacement. Fi-
nally, Fig. 2a shows the hyperplane identified by logistic regres-
sion, which effectively discriminates mobile from immobile parti-
cles. Notably, we find that, based on the knowledge of the struc-
tural features, this classifier properly classifies particles as mobile
or immobile with an accuracy of 75% and 70% for the training and
test sets, respectively (see Supplementary Materials for details). In-
terestingly, this signals that the propensity for particles to dynam-
ically rearrange during the long-time creep of the gel is largely en-
coded in its initial static structure (before any stress is applied).

3.3. Machine-learned structural metric governing particles’ dynamics

The softness S of each particle is then defined as the orthogonal
distance from the hyperplane to its position in the N.-dimensional
feature space, wherein mobile (soft) and immobile (hard) parti-
cles are associated with positive and negative values of S, re-
spectively. Fig. 2b shows the distribution density of the particles’
normalized non-affine squared displacement D?;,/0? (at the end
of the creep simulation) and their initial softness S (at the be-
ginning of the simulation, before any stress is applied). We find
that, based on the softness sign (S > 0 or S < 0), the mobile
particles (D?,/02 > D?ino/o?) can be well discriminated from
the immobile particle (D?,;,/02 < D?yn0/02). Further, Fig. 2c
shows the final average normalized non-affine squared displace-
ment (D?.;,/02) of the particles as a function of their softness
S, both for the training and test sets. We find that the normal-
ized non-affine squared displacement of the particles features a
power-law dependence on softness. Namely, in addition of prop-
erly discriminating mobile from immobile particles, the softness
metric also offers some information on the magnitude of the
displacement—that is, the particles that exhibit the largest reorga-
nization upon creep are associated with the largest softness values,
and vice versa. This power-law correlation is likely to be rooted in
the fact the particle dynamics is encoded in the topography of en-
ergy landscape of the initial static gel structure (see Section 4.3).

Notably, the degree of correlation between softness and parti-
cle dynamics during creep remains high for particles belonging to
the test set. Fig. 3a offers a snapshot of the predicted softness of
an initial static gel configuration in the test set. The distribution of
softness (both for all particles and for mobile particles in the gel)
is provided in Fig. 3b. We find that the classification accuracy is
satisfactory as ~76% of the mobile particles indeed exhibit a posi-
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Fig. 2. (a) Illustration of the classifier model, wherein the position of each particle is determined from the values of the two most influential structural features used for
the classification, i.e., the order parameters G(i; r) calculated at rp = 1.000 and r; = 1.140. The color of each particle denotes its relative non-affine squared displacement
(D?min/o?). The black line represents the projection of the hyperplane identified by logistic regression in this 2-dimensional space. (b) Distribution density of the particles’
normalized non-affine square displacement (D?;,/02) (at the end of the creep simulation) and initial softness (S), wherein the softness of each particle is defined as the
orthogonal distance from the hyperplane to its position in the N;-dimensional feature space (see panel a). The dataset consists of 10 creep simulations (~1700 particles
and ~7% mobile particles per configuration), wherein 7 final configurations serve as training set and the rest 3 configurations are test set. The green dash line indicates
the threshold (D? i, 0/02) of particle rearrangement. For illustration purposes, the density of mobile particles is rescaled to ensure balance with the number of immobile
particles. (c) Final average normalized non-affine squared displacement (D?;,/02) of the particles of the training and test sets (at the end of the creep simulation) as a
function of their initial softness. The blue line is a power fit to guide the eye. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 3. (a) Snapshot of the predicted particles’ softness of an initial static gel (shear strain y = 0) in the test set. (b) Distribution of the softness of all particles (black)
and mobile particles (red) in the gel. The orange area represents the fraction of properly predicted soft particles (S > 0) within the mobile particles. (c) Logarithm of
the probability of a particle to rearrange upon creep (D? /02 > D?ino/o?) log(Pr(S)) as a function of its initial softness S in the initial gel structure. The red line is an
exponential fit following Eq. (6). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

tive softness (S > 0). We then calculate the probability of a particle
to rearrange Pg(S) as a function of its initial softness S in the gel
(see Fig. 3c). Interestingly, we find that Pg(S) exhibits an exponen-
tial dependance on the softness metric S, wherein the larger the
softness is, the more likely the particle is to rearrange. This rela-
tionship can be formulated in terms of the behavior of an activated
process in Eq. (6) [49]:

Pr(S) = Poexp(BS) (6)

where By and 8 are some fitting parameters. This exponential re-
lationship between Pg(S) and S suggests that the structural quan-
tity S is closely related to (and might be indicative of) the en-
ergy barrier associated with particle rearrangements [23,26] (see
Section 4.4). Note that softness is calculated based on the sole
knowledge of the initial structure, whereas the normalized non-
affine squared displacement is computed at the end of the simu-
lation (i.e., after the gel has creeped to exhibit a shear strain of
about 1%). The high degree of correlation between initial softness
and final normalized non-affine squared displacement clearly illus-
trates the intimate link between the initial static structure of the
gel and its long-time creep dynamics.

4. Discussion
4.1. Structural interpretation of “particle softness”

We now discuss the structural interpretation of the machine-
learned softness metric. As a key advantage of our approach, using
the radial order parameters G(i; r) as sole features of the classi-
fier and adopting logistic regression make the softness metric that
is constructed herein highly interpretable. Indeed, the hyperplane
created by logistic regression can be expressed as a linear equation
of each of the features as (see Fig. 2a):

> w(r)G(isr)y =b (7)

wherein w(r) and b are the coefficients and the bias of the logistic
regression model, respectively. Since the features G(i; r) are stan-
dardized, the coefficients are directly indicative of the relative im-
portance of each feature in the classification. Namely, a large ab-
solute value for w(r) denotes that the hyperplane is fairly orthogo-
nal to the axis associated with the corresponding feature G(i; r). In
addition, the sign of the coefficients is informative, since positive
and negative values for w(r) indicate that increasing values of the
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V|o3 and coordination number CN. The color coding is based on a linear interpolation between the datapoints in the particle dataset. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

feature G(i; r) tend to result in increased and decreased softness
values, respectively.

Fig. 4a shows the coefficients w(r) of the logistic regression
classifier as a function of the distance r, wherein the absolute value
of w(r) denotes how influential the feature G(i; r) is. We find that
the two most influential features are associated with the distances
1o = 0 and r; = 1.140. A visual inspection of the pair distribution
function of the gel (see the upper panel of Fig. 4a) reveals that
o represents the average interparticle bond distance (i.e., equilib-
rium position of particle interaction energy), while r; represents a
distance between the 1st and the 2nd coordination shells. This in-
dicates that the local density of neighbors centered around these
distances plays a critical role in discriminating mobile from im-
mobile particles. On the one hand, the local density of atoms at
r = rg is related to the coordination number (CN) of the central
particle when the neighbors are in contact with the central parti-
cle (see blue particle in Fig. 4a). The fact that w(ry) < O indicates
that large CNs tend to result in lower softness values. On the other
hand, we interpret the distance ry as that wherein neighbors are
located when there is coordination mismatch around the central
particle (e.g., an excess of neighbors, see red particle in Fig. 4a).
The fact that w(r;) > 0 indicates that the presence of such coor-
dination mismatch tends to result in higher softness values. These
results are consistent with free volume theory (FVT) [8,9]. Indeed,
closed-packed structures with a large number of atoms at r = rg
are associated with low local free volume, wherein the atoms ex-
hibit very limited mobility. In contrast, more disordered structures
exhibiting notable coordination mismatch tend to show larger local
free volume (see red particle in Fig. 4a), which facilitates particle
mobility.

The absolute values of the coefficients w(r) associated with
other distances are notably lower and, hence, the local density of
neighbors at such distance has a smaller influence on the outcome
of the classification. The features associated with these other dis-
tances are nevertheless important for the accuracy of the classi-
fier. Indeed, we find that, even though our results suggest that the
local free volume plays an important role in creep dynamics, the
classification model trained based on the sole knowledge of the
particle Voronoi volume offers a limited accuracy of ~60% as com-
pared to that offered by the softness metric (~75% accuracy, see
Supplementary Materials for details). Fig. 4b illustrates the depen-
dence of softness on the particles’ coordination number CN and
Voronoi volume V. Overall, larger CN and smaller V values tend

to favor smaller softness. However, we nevertheless observe that
softness is a complex, nonmonotonic function of CN and V. We
note that training a classifier based on the sole knowledge of the
particles’ CN only yields an accuracy of ~55%, wherein both low
and high-coordination particles are very likely to be classified as
soft particles (see Supplementary Materials for details), so that the
soft vs. hard nature of particles cannot simply be inferred based
on Maxwell criterion on stability [50,51]. Similarly, only using G(i;
o) and G(i; r;) as input features yields a very limited accuracy of
~50%. This exemplifies the benefit of using an unbiased machine
learning approach to build the set of input features, since intuitive
structural features show only limited correlation with dynamical
properties.

4.2. Linking particle dynamics to macroscopic deformation

We now look into the nature of the relationship between
particle-level softness (see Fig. 3c) and the macroscopic creep of
the gel (see Fig. 1a). To this end, we consider the average softness
(S) of the system—i.e., as averaged over all the particles—and as-
sess how this quantity is evolving as the gel gradually undergoes
creep (see the inset of Fig. 5). We find that (S) exhibits a logarith-
mic decay upon creep, which echoes the logarithmic increase of
the macroscopic strain of the gel upon creep (see Fig. 1a). In fact,
as shown in Fig. 5, we observe that the macroscopic creep rate y
of the gel exhibits an exponential dependence on (S) as:

Y = yoexp(a(S)) (8)

where yy and o are some fitting parameters. Note that this ex-
ponential relationship is not affected by the system size (see Sup-
plementary Materials for details). This indicates that the dynamics
of creep at the macroscopic scale is closely related to the varia-
tion in softness at the particle level. This can be understood as
follows. The gradual decay of softness indicates that, upon creep,
particles reorganize from “soft” (i.e., high S) to “harder” (i.e., lower
S) local environments (see the schematics in Fig. 4a). In turn, as
the softness of a particle decreases, so does its propensity to ex-
hibit any further reorganization. This process explains why the
creep rate gradually slows down—since the particles gradually be-
come harder and harder and, hence, less prone to reorganizations.
It is worthwhile to point out that, although our softness results
illustrate a strong correlation between the initial static structure
and the early-stage creep dynamics, it remains unclear whether
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the softness approach presented herein could describe longer-term
effects (e.g., final avalanche) based on the static initial structure
since the system tends to lose the memory of its initial configura-
tion after experiencing significant deformations [11,39,40,52]. Here,
the exponential dependence of the creep rate on the average soft-
ness is a macroscopic manifestation of the particle-level exponen-
tial dependence of particle dynamics on its softness in Eq. (6) (see
Fig. 3c), which suggests that (S) (or, more accurately, the oppo-
site thereof) captures an effective average energy barrier for creep
[2,8]—wherein low (S) values (i.e., “hard” structures) are indicative
of high energy barriers for particle rearrangements, and vice versa
(see below) [23,26].

4.3. The energy landscape governs the particle dynamics during creep

Since the results shown in Fig. 5 suggest that softness may
be capturing the effective energy barrier that is accessible to the
particles during creep, we now further investigate the linkage be-
tween creep dynamics and potential energy landscape (PEL) to-
pography [49]. Fig. 6a offers a schematic of the local PEL that
is accessible to an initial static gel (before any stress is applied).
The initial configuration is located at a local minimum of the PEL.
Starting from this initial position, the ARTn algorithm searches
for saddle points around the local minimum, which are associ-
ated with physically-meaningful rearrangements for a target par-
ticle [43]. This allows us to compute the distribution of the en-
ergy barriers that are locally accessible to each particle (i.e., the
energy difference between the identified saddle point and initial
minimum, see Section 2.5). Based on this analysis, we then calcu-
late, for each particle, the average value E,ve of the energy barriers
that are accessible to this particle.

Fig. 6b shows the distribution of the normalized average energy
barrier Eave/e of the particles in the initial static gel. We find that
the distribution decreases with increasing energy barrier value and
exhibits a long tail toward high energy barriers. Fig. 6¢c shows the
distribution density of the particles’ normalized non-affine squared
displacement D?;,/o? (at the end of the creep simulation) and
initial normalized average energy barrier Ejve/e. We observe the
existence of an anticorrelation between displacement and average
energy barrier—which is a natural consequence of the fact that par-
ticles that are surrounded only by large energy barriers (i.e., rough
local energy landscape) are trapped around their local minimum
and unable to reorganize [49]. However, for low Eawe/e values, we
find that only a small fraction of the particles tends to exhibit a
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large displacement (i.e., to be mobile). This can be explained based
on the spatial heterogeneity of the D2 /02 and Eae/e fields in
the gel (see discussion on the point in Section 4.4).

Fig. 6d shows the final average normalized non-affine squared
displacement (D?;,/0%) of the particles in the gel (at the end of
the creep simulation) as a function of their normalized average en-
ergy barrier Ezve/e (in the initial configuration, before any stress is
applied). Interestingly, we find the existence of a power-law rela-
tionship between (D2 ;,/02) and Eave/e, wherein larger Eye/e tend
to result in smaller D?;,/o? values, and vice versa (see Fig. 6d).
This result echoes the power-law relationship between (D2, /o2)
and softness S previously highlighted in Fig. 2c. The harmony be-
tween these trends suggests the existence of a potential causal re-
lationship between softness S and average energy barrier Eave (See
Section 4.4). In addition, these results also echo findings from a
recent study, which reported the existence of a power-law rela-
tionship between particle dynamics and energy barrier in metallic
glasses [44,45]. This suggests that this power-law relationship be-
tween particle dynamics and energy barrier (or particle softness)
might be a generic feature of disordered systems, independently of
whether the particle reorganizations are caused by creep or not.

Finally, we evaluate the probability of a particle to rearrange
Pr(Eave) as a function of its initial average energy barrier Eave (See
Fig. 6e). We find Pg(Eave) follows an exponential dependence on
Eave that echoes that of an activated process [49]:

Pr(Eave) = Pz exp (—BeEave) 9)

where P; and B are some fitting parameters. Namely, the larger
the average energy barrier is, the less likely the particle is to re-
organize. Overall, these results indicate that the dynamics of a gel
upon creep is largely encoded in the topography of its initial en-
ergy landscape, before any load is applied. The harmony between
Egs. (6) and (9)—which can both be described in terms of an acti-
vated process—suggests a strong correlation between the softness
S and average energy barrier Eye fields (see below).

4.4. Mapping “particle softness” to energy barrier

Finally, we interrogate the existence of a causal correlation be-
tween softness S and average energy barrier Eaye. Fig. 7a illustrates
the spatial correlation between the fields of interest herein: (i) the
final non-affine squared displacement (D2 ;,), (ii) the initial soft-
ness (S), and (iii) the initial average energy barrier (Esve). We find
that the three fields—i.e., the dynamics field (D? ;). the structural
field (S), and the local potential energy landscape field (Eye)—all
show a strong degree of spatial heterogeneity, but are fairly corre-
lated to each other. Namely, the regions associated with low mobil-
ity tend to match with those presenting high energy barriers and
low softness, and vice versa.

Fig. 7b shows the distribution density of the particles’ initial
normalized average energy barrier (Eave/€) and initial softness (S).
Overall, we observe that the particles associated high softness val-
ues (i.e., “soft” mobile particles, S > 0) tend to exhibit fairly low
average energy barriers. However, we note that the correlation be-
tween softness and average energy barriers is not as strong as that
observed between softness and displacement, or energy barriers
and displacement (see Figs. 2b and 6c¢). Nevertheless, a stronger
correlation between softness and energy landscape emerges when
averaging these fields over groups of particles featuring fairly sim-
ilar softness. To this end, Fig. 7c shows the initial average normal-
ized energy barrier (Ejve/¢) of the particles in the gel (before any
stress is applied) as a function of their initial softness S. Interest-
ingly, we find that (Ew/¢) is linearly related to the opposite of
softness (-S, or “hardness” H) as:

Ewe(H)=kH+b (10)
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where k and b are some fitting parameters. This shows that the to-
pography of the energy landscape is largely encoded in the struc-
ture of the gel. Importantly, these results demonstrate that, when
averaged over groups of particles, the average softness indeed of-
fers a purely structural metric that successfully captures the aver-
age height of the energy barriers that are locally accessible, which,
in turn, controls the particles’ propensity to reorganize upon creep
[23,26]. It is notable that the softness metric is able to successfully
capture a structural fingerprint for the topography of the poten-
tial energy landscape since this machine-learned quantity is not
trained for that purpose (that is, the model is never exposed to
the energy barriers during its training). As such, the correlation
between softness and average energy barrier offers an indepen-
dent validation of the soundness of this approach—and suggests
that the softness metric that is extracted herein indeed shows a
“real” physical meaning.

Note that, in this analogy between softness and energy barriers,
the energy barriers that are captured by softness are not overcome
by thermal effects, but by the applied stress—which provides an
elastic energy that enables particles to jump over these barriers
[2,8]. An interesting atomic picture behind the link between en-
ergy landscape topography, applied external stress (or strain), and
resulting particle hoping is offered by the trap model—which de-
scribes the energy landscape as a landscape of “traps,” wherein an
external stress can facilitate particle hopping from trap to trap by
deforming the local landscape [49]. In that regard, our results sug-

gest that softness might serve as a proxy for the average height of
the energy barriers that separate the traps within the energy land-
scape.

To further explore the degree of spatial heterogeneity in the
three fields considered herein, we compute the spatial correlation
function (C(0)C(r)) for each field (see Fig. 7d), where C(r) is the
normalized fluctuation in the field, i.e., the standardized field value
(D? min» S, and Eaye) of a particle at distance r from a central parti-
cle. The spatial correlation function (C(0)C(r)) is computed by av-
eraging over all particles separated by a distance r. We then infer
the characteristic correlation length £ associated with each field by
fitting the spatial correlation function as [24]:

(C(0)C(r)) = Coexp(-T/§) (11)

where Cj is a fitting coefficient. We find that both the softness
field and the energy barrier field show a similar correlation length
& that is close to 1 (i.e., the typical radius of the first coordina-
tion shell). This harmony further supports the close relationship
between softness and energy barriers. In contrast, the dynamics
field shows a correlation length of & ~ 0.5 (i.e., the typical radius
of a particle). This indicates that the typical lengthscale associated
with particle displacements is notably lower as compared to that
associated with the softness/energy barriers fields. The fact that
the lengthscale associated with displacements is lower than that
of the energy barrier field likely explains why only a small frac-
tion of the particles showing low Eae/¢ values also feature large
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displacements (see Fig. 6¢). This partial decorrelation between the
spatial distributions of displacement and energy barriers (or soft-
ness) may be a consequence of the fact that, here, displacement
is induced by stress rather than being fully spontaneous. Conse-
quently, “soft” particles that have access to low energy barriers
may nevertheless not exhibit any notable displacement if the di-
rection of the imposed stress does not match with any of the ac-
cessible low-energy saddle point pathways.

Conclusions

Overall, these results highlight the close correlation between (i)
static structure (as captured by softness), (ii) static potential en-
ergy landscape topography (as captured by the average height of
the energy barriers that are accessible to the particles), (iii) par-
ticle dynamics (as captured by the non-affine squared displace-
ment), and (iv) macroscopic deformation (as captured by the creep
rate). It is notable that our approach allows us to predict the long-
time dynamics of the particles upon long-term creep deformations
while solely relying on the knowledge of the initial static struc-
ture before any stress is applied. The accessible interpretation of
the softness metric defined herein (see Fig. 4a) suggests that the
degree of structural disorder—and especially the existence of coor-
dination mismatches—plays a key role in governing the creep dy-
namics of gels. This indicates that order-disorder engineering of gel
structures offers a potential path to develop new gel formulations
with tailored creep response under sustained load.
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