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a b s t r a c t 

Upon sustained loading, colloidal gels tend to feature delayed viscoplastic creep deformations. How- 

ever, the relationship, if any, between the structure and creep dynamics of gels remains elusive. Here, 

based on accelerated molecular dynamics simulations and the recently developed softness approach (i.e., 

classification-based machine learning), we reveal that the propensity of a gel to exhibit long-time creep 

is encoded in its static, unloaded structure. By taking the example of a calcium–silicate–hydrate gel (the 

binding phase of concrete), we extract a local, non-intuitive structural descriptor (a revised version of the 

“softness” metric proposed by the pioneering work from Cubuk et al .) that is strongly correlated with the 

dynamics of the particles. Notably, the macroscopic creep rate exhibits an exponential dependence on the 

average softness. We find that creep results in a decrease in softness in the gel structure, which, in turn, 

explains the gradual decay of the creep rate over time. Finally, we demonstrate that the softness metric 

is strongly correlated with the average energy barrier that is accessible to the particles. 

© 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

When subjected to a sustained load, disordered solids (e.g., 

lasses, granular materials, or gels) tend to exhibit delayed, time- 

ependent creep deformations [1–3] . Although creep can occur in 

any types of materials (e.g., metals or ceramics, primarily at high 

emperature [ 4 , 5 ]), it is especially pronounced in soft matter, e.g.,

olloidal gels [ 3 , 6 , 7 ]. In that regard, the viscoplastic deformation

f calcium–silicate–hydrate gels (C–S–H, the binding phase of con- 

rete) under constant load plays a key role in the built environ- 

ent since it is responsible for concrete’s creep [7–10] . 

Despite the important, often detrimental role of creep in col- 

oidal gels, its nanoscale origin, driving force, and mechanism re- 

ain debated [ 3 , 6 , 8 ]. In particular, it remains unclear whether the

ropensity of a disordered solid to creep could in some way be en- 

oded in its static, unloaded structure [11] . This question is a mani- 
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estation of a more general gap in our understanding of how struc- 

ure controls dynamics in disordered phases [ 6 , 11 , 12 ]. Indeed, due

o the complex, disordered structure of glasses or gels [ 13 , 14 ], pin-

ointing which structural features govern dynamics is essentially 

 “needle-in-a-haystack” problem [15–17] , since intuitive structural 

etrics (e.g., local packing or coordination number) are often only 

eakly correlated with dynamics [ 18 , 19 ]. 

Owing to its ability to discover relevant patterns in complex, 

ultidimensional data, machine learning (ML) offers a new op- 

ortunity to revisit the nature of the linkages between structure 

nd dynamics in disordered phases—without the need for any pre- 

equisite intuition regarding which structural feature(s) could be 

nfluential [ 20 , 21 ]. In particular, Cubuk et al . recently extracted 

y ML a non-intuitive structural fingerprint (named “softness”), 

hich is strongly correlated with the probability of a particle to 

xhibit some rearrangement upon loading or spontaneous relax- 

tion [ 12 , 15 , 22–26 ]. However, although softness has been shown to

e correlated with near-future particle rearrangements, it has thus 

ar been unable to offer insights into the long-time dynamics of 

https://doi.org/10.1016/j.actamat.2021.116817
http://www.ScienceDirect.com
http://www.elsevier.com/locate/actamat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actamat.2021.116817&domain=pdf
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isordered phases [11] . This has prevented the use of this approach 

o study creep, which can extend over several years [9] . 

Here, inspired by this softness approach, we introduce a slightly 

evised definition for softness (relying on a linear logistic regres- 

ion model and radial features) and use this machine-learned 

tructural fingerprint to interrogate the existence of a causal link 

etween structure and long-time creep. This approach reveals that 

he propensity of a colloidal gel to creep is encoded in its instanta- 

eous, static structure. Importantly, we find that the softness met- 

ic captures the effective average energy barrier that the particles 

eed to overcome to rearrange during creep—which suggests that 

he softness metric offers a structural fingerprint of the topography 

f the energy landscape. Finally, the use of linear logistic regres- 

ion allows us to offer a structural interpretation of this machine- 

earned predictor. 

. Methods 

.1. Archetypical gel model 

To establish our conclusions, we simulate an archetypical 

esoscale model of a colloidal C–S–H gel [ 10 , 27 , 28 ]. The model

el is comprised of an ensemble of monodisperse spherical parti- 

les of 5 nm. The interaction between particles is described by a 

eneralized Lennard-Jones potential with a minimum at distance 

= 

14 
√ 

2 × 5 nm , which corresponds to the effective particle diam- 

ter. In detail, the potential is descried as [27] : 

 i j 

(
r i j 

)
= 4 ε 

[ (
σ0 

r i j 

)2 α

−
(

σ0 

r i j 

)α
] 

(1) 

here σ0 is the particle diameter (5 nm here), α a parameter that 

ontrols the narrowness of the potential well (here, α = 14), r i j 
he distance between the centers of a pair of particles i and j, 

nd ε the depth of the potential energy well and ε = A 0 σ0 
3 , where 

 0 = kE is a prefactor that is proportional to the Young’s modu- 

us E of a bulk C–S–H grain (here, E = 63 . 6 GPa and k = 0 . 002324 ).

he potential defined in Eq. (1) exhibits a minimum at r m = 

α
√ 

2 σ0 

o that the effective diameter of a particle i is here defined as 

= 

α
√ 

2 σ0 . This model has been extensively studied and has been 

hown to offer a realistic description of the structure and mechan- 

cal properties of C–S–H gels [ 8 , 10 , 27–31 ]. 

.2. Preparation of the gel configurations 

The gel configurations are generated by grand canonical Monte 

arlo (GCMC) simulations, wherein particles are iteratively inserted 

ntil saturation into an initially empty cubic box of 600 Å length 

ith periodic boundary. Each GCMC step comprises of 5 attempts 

f particle insertions or deletions, followed by 500 attempts of 

andom displacement of an existing particle. The temperature is 

xed at T = 300 K and the excess chemical potential, control- 

ing the probability of acceptance of the insertion attempts, is set 

o –2 k B T . In detail, the probability of acceptance of the attempt 

s given by min { 1 , exp [ −( �U − μδ) / k B T ] } , where k B is the Boltz- 

ann constant, T the temperature, �U the variation in potential 

nergy caused by the trial move, μ the chemical potential (fixed 

t –2 k B T based on Refs. [ 8 , 10 , 27–31 ], which ensures the forma-

ion of a realistic packed final structure within a reasonable sim- 

lation time), and δ the variation in the number of C–S–H grains 

 8 , 28 , 29 ]. The saturated configurations are then relaxed by molec-

lar dynamics (MD) simulations with a timestep of 50 fs in the 

sothermal-isobaric ( NPT ) ensemble at 300 K and zero stress for 

0 ns to release the macroscopic tensile pressure formed during 

he GCMC simulation. Finally, the configurations are subjected to 

n energy minimization to reach their inherent structure. Note that 
2 
he GCMC ensemble adopted herein aims to mimic the precipita- 

ion process of colloidal C–S–H gels and has been shown to of- 

er a realistic description of the structure and packing density of 

isordered C–S–H gels [ 8 , 10 , 27–31 ]. Based on the system size con-

idered herein, we typically get a number of particles n p ≈ 1700 

t saturation, which corresponds to a packing density ϕ ≈ 0.63. 

sing this methodology, we simulate 10 independent configura- 

ions for statistical averaging. All simulations are performed by us- 

ng the Large-scale Atomic/Molecular Massively Parallel Simulator 

LAMMPS) code [32] . 

.3. Accelerated creep simulations 

Since a direct MD simulation of the creep of colloidal gels is out 

f reach considering its extended timescale, we adopt herein a re- 

ently introduced accelerated simulation technique [ 33 , 34 ], which 

as been shown to successfully model the creep of disordered 

hases [ 2 , 8 ]. This accelerated method relies on the application 

f small stress perturbations to accelerate relaxation [ 2 , 33 , 34 ]. In

etail, we first apply a constant, sustained shear stress τ0 (here 

0 = 100 MPa) to induce a creep response within the gel. The 

reep response of the gel is simply a linear function of τ0 , as long
s τ0 remains lower than the yield stress of the gel [8] . Small, 

yclic shear stress perturbations ±�τ (here �τ = 30 MPa) are 

hen applied to accelerate the creep dynamics [8] . At each stress 

ycle, a constant-stress minimization of the energy is performed, 

herein the system can adjust its shape and volume in order to 

each the target stress. Effectively, this method mimics the acceler- 

ted relaxation exhibited by granular materials when subjected to 

ibrations [35] . The resulting acceleration of the dynamics arises 

rom the fact that each stress perturbation slightly deforms the lo- 

al energy landscape, which, in turn, can reduce the height of some 

nergy barriers that are locally accessible to the particles. This al- 

ows the system to jump over these barriers, thereby reaching a 

ew energy basin within the landscape in an accelerated fashion 

 2 , 33 , 36 ]. Such particle reorganizations make it possible for the gel

o exhibit some macroscopic viscoplastic deformation (i.e., creep) 

n order to accommodate the external sustained shear stress. Note 

hat the average stress τ0 of 100 MPa used herein is notably lower 

han the yield stress of the system (~600 MPa), so that no macro- 

copic flow of particles is observed. In addition, the stress pertur- 

ation amplitude �τ ( ± 30 MPa) is chosen to be large enough to 

ccelerate the creep simulation, but low enough to avoid any reju- 

enation [8] . The resulting creep modulus was shown to be inde- 

endent of the specific value of this stress perturbation amplitude 

τ [8] . It is worth pointing out that, in practice, our accelerated 

imulation technique mimics a dynamical fatigue test—wherein a 

eries of oscillatory stresses are repeatedly applied to the simu- 

ated sample. Nevertheless, when the applied stress is low as com- 

ared to the yield stress, the resulting logarithmic strain deforma- 

ion of the simulated sample is effectively equivalent to the one 

hat is experimentally observed upon non-oscillatory static load- 

ng test (i.e., creep) [ 37 , 38 ]. Since the particle rearrangements in-

uced by the stress perturbations are limited, the modeled gel re- 

ains in the primary creep stage (i.e., wherein the creep rate de- 

ays over time) without entering into the secondary steady-state 

tage (i.e., constant creep rate) or the final avalanche stage (i.e., ac- 

eleration of creep rate) [ 39 , 40 ]. It should also be noted that the

onodisperse colloidal gel considered herein is out-of-equilibrium 

nd tends to easily crystalize at finite temperature. Nevertheless, 

o crystallization is observed during the creep simulations. All 

imulations are performed by using the LAMMPS code [32] . 

.4. Non-affine squared displacement of the particles 

We calculate, for each particle i , the normalized non-affine 

quared displacement D 
2 / σ 2 at the N th stress perturbation 
min 
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ycle (here, N = 10 6 ) with respect to the initial reference config- 

ration (here, N ref = 1) using Eq. (2) [ 22 , 41 ]: 

 
2 
min / σ

2 ( i, N, N ref ) = 

min 
	i 

{ 

1 
n i 

∑ 

j 

[
R i j ( N ) − 	i R i j ( N ref ) 

]2 } 

σ 2 
(2) 

here R ij is the distance between particle i and j , particle j repre-

ents the neighbor of particle i within a cutoff distance R c (here, 

 c = 2 σ [41] ), and n i is the total number of neighbor particles

ithin the range of R c for each particle i . The quantity is mini-

ized over choices of the local strain tensor 	i of particle i . Note 

hat the quantity 	i R i j ( N ref ) represents the distance between par- 

icles i and j after an affine deformation resulting from the applica- 

ion of a local strain 	i to the initial interparticle distance R i j ( N ref ) . 

his consists in computing the L 2 -norm of the matrix multiplica- 

ion between the local strain tensor 	i and the distance vector 

 i j ( N ref ) between particles i and j at the N ref th cycle: 

i R i j ( N ref ) = 

[ 

λxx λxy λxz 

λyx λyy λyz 

λzx λzy λzz 

] [
r x r y r z 

]T 
2 

(3) 

here λxy is the strain component of 	i in the xy -axis plane and 

 x is the projection of the distance vector R i j ( N ref ) along the x -axis. 

he calculation of non-affine squared displacement D 
2 
min is imple- 

ented by using the OVITO software [42] . 

.5. Average energy barrier of the particles 

To explore the topography of the potential energy landscape 

PEL) of the initial static gel configuration (before any stress is 

pplied), we adopt the activation-relaxation technique nouveau 

ARTn) method [43] . Starting from a local minimum of PEL, the 

RTn algorithm systematically searches for the saddle points and 

ransition pathways that are accessible from this minimum. This 

llows us to compute the distribution of the energy barriers (i.e., 

ifference of ener gy between the saddle point and the original lo- 

al minimum) that are locally accessible to each particle. In de- 

ail, starting from the initial gel configuration (located in a local 

inimum of the PEL), the target particle and the first-coordination 

eighbors thereof are first activated with a random displacement 

o as to identify a direction of negative curvature that denotes the 

resence of a nearby saddle point within the energy landscape. The 

ctivated system is then relaxed toward the saddle point by follow- 

ng the direction of the negative energy curvature until the force is 
ig. 1. (a) Shear strain γ as a function of the number of stress perturbation cycles of a

ogarithmic fit following Eq. (4) . (b) Distribution of the normalized non-affine squared di

he distribution, i.e., its deviation from a Gaussian distribution (in gray). The inset shows t

 
2 
min / σ

2 value. The green dash line indicates the threshold ( D 2 min,0 / σ
2 ) that is used her

articles. (For interpretation of the references to color in this figure legend, the reader is 

3 
maller than a given threshold (here, 0.04 ε/ σ ). The Lanczos algo- 

ithm is adopted to search for the saddle points. The step size dur- 

ng activation and relaxation are set as 0.02 σ and 0.0 0 04 σ , respec- 

ively, and the curvature threshold to start relaxation is fixed at 

1.0 ε/ σ 2 [43] . Finally, we compute the energy barrier associated 

ith the target particle’s rearrangement by subtracting the en- 

rgy of the saddle point with the initial minimum energy. As such, 

he ARTn method restricts its search of particle rearrangements to 

hose going through well-defined saddle points and, hence, focuses 

n the tiny fraction of the configurational space that is physically 

ccessible to the system. To estimate the local distribution of en- 

rgy barriers that are accessible to each particle, we conduct 20 in- 

ependent saddle point searches for each particle— which is here 

ound to be large enough to ensure the convergence of the energy 

arrier distribution [44] . Based on this analysis, we then compute 

he average value E ave of the energy barriers that are accessible to 

ach particle [45] . 

. Results 

.1. Long-time creep dynamics 

We adopt an accelerated simulation technique based on stress 

erturbations to simulate the long-time creep behavior of colloidal 

els subjected to a sustained shear stress τ0 [ 33 , 34 ]. Details regard- 
ng the creep simulation can be found in the Methods section and 

n Ref. [8] . Fig. 1 a shows an example of shear strain γ evolution as

 function of the number of stress perturbation cycles N . In agree- 

ent with previous works [ 8 , 9 ], our simulation predicts a logarith-

ic creep, which follows: 

( N ) = ( τ0 /C ) log ( 1 + N/ N 0 ) (4) 

here C , the creep modulus, is a material constant [8] and N 0 is a

tting parameter that is analog to a typical relaxation time [ 2 , 8 ].

mportantly, the creep modulus obtained from this method was 

hown to match experimental data obtained on C–S–H gels—which 

onfirms that the creep deformation induced by our accelerated 

ethod is similar to the one that would spontaneously occur over 

ime [8] . 

Since the present simulation successfully reproduces the macro- 

copic creep of C–S–H gels, we now further analyze the simulated 

rajectories to explore the particle-scale mechanism of creep—

hich is typically hidden from conventional experiments [ 8 , 9 ]. 
 colloidal C–S–H gel subjected to a constant shear stress τ 0 . The dashed line is a 

splacement D 2 min / σ
2 for a shear strain γ = 1%. The red area highlights the tail of 

he corresponding gel configuration, wherein the color of the particles denotes their 

ein to discriminate immobile (low displacement) from mobile (high displacement) 

referred to the web version of this article.) 
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o this end, we compute the normalized non-affine squared dis- 

lacement D 
2 
min / σ

2 of each particle [ 22 , 41 ]—a metric that has

een widely used to identify particle reorganizations under stress 

 12 , 46 , 47 ]. Details regarding the calculation of D 
2 
min / σ

2 can be

ound in the Methods section. Fig. 1 b shows the distribution of 

he D 
2 
min / σ

2 values for a shear strain γ = 1%. We observe that 

he distribution is centered around a low displacement value (i.e., 

 
2 
min / σ

2 = 0.005), which corresponds to the population of par- 

icles that do not exhibit significant reorganizations upon creep. 

owever, we note that the distribution also exhibits a long tail to- 

ard large displacement values, suggesting that a few select par- 

icles feature some significant reorganizations. In the following, 

e use a threshold normalized non-affine squared displacement of 

 
2 
min,0 / σ

2 = 0.014 (corresponding to a displacement of about 12% 

f σ ) to classify particles as immobile (low displacement) or mo- 

ile (high displacement). Based on this threshold, about 7% of the 

articles are classified as mobile during the creep process. Note, 

owever, that the following analysis does not significantly depend 

n the arbitrary choice of this threshold displacement (see Supple- 

entary Materials). 

.2. Particle mobility classification by machine learning 

We now investigate whether the propensity of a particle to be 

obile or immobile (i.e., a dynamic property) could in some ways 

e encoded in its static initial structure (before loading). To this 

nd, following the example of the softness approach [ 12 , 22 ], we

onstruct by machine learning a structural quantity that is corre- 

ated to the propensity of a particle to exhibit a local rearrange- 

ent upon creep deformation. Each step of the machine learn- 

ng pipeline is explained in detail in the Supplementary Materi- 

ls. Briefly, we first construct a dataset composed of ~17,0 0 0 par- 

icles obtained from 10 independent creep simulations (with 10 

istinct initial configurations). Each system exhibits a similar dis- 

ribution of D 
2 
min / σ

2 at the end of creep simulation. From this 

ataset, 7 configurations serve as training set, while the remain- 

ng 3 configurations are used as test set. Each particle is classi- 

ed as mobile ( D 
2 
min / σ

2 ≥ D 
2 
min,0 / σ

2 ) or immobile ( D 
2 
min / σ

2 <

 
2 
min,0 / σ

2 ) based on its final normalized non-affine squared dis- 

lacement (at the end of the creep simulation). We then calculate 

 series of structural features for each particle based on the initial 

tatic structure (before any stress is applied). In detail, we calcu- 

ate for each particle i a series of N r radial order parameters G ( i; r )

ssociated with different distances r : 

 ( i ; r ) = 

∑ 

j 

e −( R i j −r ) 
2 
/ L 2 (5) 

here j refers to the neighbor particles of i within a cutoff dis- 

ance R G (here, R G = 6 σ [22] ), R ij is the distance between the par-

icles i and j , and L is the standard deviation of the Gaussian func-

ions centered around r (here, L = 0.04 σ [22] ). In short, this met-

ic is related to the local density of neighbors at a distance r from 

he central particle i , as averaged over a shell with a typical thick- 

ess L . We calculate for each particle i these N r order parameters 

or varying r distances (ranging from 0.6 σ to 3 σ with an incre- 

ent of 0.04 σ [22] ). All these features are standardized prior to 

ny training [48] . Altogether, the ensemble of these metrics offers 

n unbiased fingerprint of the local radial order around each in- 

ividual particle. We then train a classifier to identify the optimal 

yperplane separating mobile from immobile particles within the 

 r -dimensional space associated with the values of the N r radial 

rder parameters. 

In contrast to the original softness approach that uses both 

adial and angular order parameters as input features [ 12 , 22 ], 

e solely focus on features capturing radial 2-body correlations 

round each particle. This is key to ensure that the new softness 
4 
etric remains highly interpretable (see Section 4.1 ). Note that, 

ince the particles are monodisperse and do not exhibit any bond 

irectionality, the incorporation of angular 3-body order parame- 

ers does not notably increase the accuracy of the classification 

odel (see Supplementary Materials for details). In that regard, 

imiting the number of input features also allows us to ensure that 

he model does not become overfitted. Moreover, unlike the origi- 

al softness approach based on the Support Vector Machine (SVM) 

lassifier [ 12 , 22 ], we adopt logistic regression to build the classi-

er [48] . This classifying technique offers great model simplicity, 

ccuracy, and interpretability (see Supplementary Materials for de- 

ails). Indeed, logistic regression directly provides the probability 

f a given particle to be mobile or immobile. In addition, it em- 

eds regularization to limit the risk of overfitting. Importantly, the 

lassification hyperplane determined by logistic regression is linear, 

hich makes it possible to easily assess the importance of each 

eature. We also expect that the linear nature of the hyperplane is 

ey to enhance the extrapolability of the classification model. 

Fig. 2 a illustrates the outcome of the classification, where we 

elect as horizonal and vertical axis the two most influential fea- 

ures of the classification model (see Section 4.1 ) in order to il- 

ustrate a two-dimensional projection of the positions of the par- 

icles in the N r -dimensional feature space. Each particle is then 

olored based on its relative non-affine squared displacement. Fi- 

ally, Fig. 2 a shows the hyperplane identified by logistic regres- 

ion, which effectively discriminates mobile from immobile parti- 

les. Notably, we find that, based on the knowledge of the struc- 

ural features, this classifier properly classifies particles as mobile 

r immobile with an accuracy of 75% and 70% for the training and 

est sets, respectively (see Supplementary Materials for details). In- 

erestingly, this signals that the propensity for particles to dynam- 

cally rearrange during the long-time creep of the gel is largely en- 

oded in its initial static structure (before any stress is applied). 

.3. Machine-learned structural metric governing particles’ dynamics 

The softness S of each particle is then defined as the orthogonal 

istance from the hyperplane to its position in the N r -dimensional 

eature space, wherein mobile (soft) and immobile (hard) parti- 

les are associated with positive and negative values of S , re- 

pectively. Fig. 2 b shows the distribution density of the particles’ 

ormalized non-affine squared displacement D 
2 
min / σ

2 (at the end 

f the creep simulation) and their initial softness S (at the be- 

inning of the simulation, before any stress is applied). We find 

hat, based on the softness sign ( S > 0 or S < 0), the mobile

articles ( D 
2 
min / σ

2 ≥ D 
2 
min,0 / σ

2 ) can be well discriminated from 

he immobile particle ( D 
2 
min / σ

2 < D 
2 
min,0 / σ

2 ). Further, Fig. 2 c

hows the final average normalized non-affine squared displace- 

ent 〈 D 
2 
min / σ

2 〉 of the particles as a function of their softness 
 , both for the training and test sets. We find that the normal- 

zed non-affine squared displacement of the particles features a 

ower-law dependence on softness. Namely, in addition of prop- 

rly discriminating mobile from immobile particles, the softness 

etric also offers some information on the magnitude of the 

isplacement—that is, the particles that exhibit the largest reorga- 

ization upon creep are associated with the largest softness values, 

nd vice versa. This power-law correlation is likely to be rooted in 

he fact the particle dynamics is encoded in the topography of en- 

rgy landscape of the initial static gel structure (see Section 4.3 ). 

Notably, the degree of correlation between softness and parti- 

le dynamics during creep remains high for particles belonging to 

he test set. Fig. 3 a offers a snapshot of the predicted softness of 

n initial static gel configuration in the test set. The distribution of 

oftness (both for all particles and for mobile particles in the gel) 

s provided in Fig. 3 b. We find that the classification accuracy is 

atisfactory as ~76% of the mobile particles indeed exhibit a posi- 



H. Liu, S. Xiao, L. Tang et al. Acta Materialia 210 (2021) 116817 

Fig. 2. (a) Illustration of the classifier model, wherein the position of each particle is determined from the values of the two most influential structural features used for 

the classification, i.e., the order parameters G ( i; r ) calculated at r 0 = 1.00 σ and r 1 = 1.14 σ . The color of each particle denotes its relative non-affine squared displacement 

( D 2 min / σ
2 ). The black line represents the projection of the hyperplane identified by logistic regression in this 2-dimensional space. (b) Distribution density of the particles’ 

normalized non-affine square displacement ( D 2 min / σ
2 ) (at the end of the creep simulation) and initial softness ( S ), wherein the softness of each particle is defined as the 

orthogonal distance from the hyperplane to its position in the N r -dimensional feature space (see panel a). The dataset consists of 10 creep simulations (~1700 particles 

and ~7% mobile particles per configuration), wherein 7 final configurations serve as training set and the rest 3 configurations are test set. The green dash line indicates 

the threshold ( D 2 min,0 / σ
2 ) of particle rearrangement. For illustration purposes, the density of mobile particles is rescaled to ensure balance with the number of immobile 

particles. (c) Final average normalized non-affine squared displacement 〈 D 2 min / σ
2 〉 of the particles of the training and test sets (at the end of the creep simulation) as a 

function of their initial softness. The blue line is a power fit to guide the eye. (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 3. (a) Snapshot of the predicted particles’ softness of an initial static gel (shear strain γ = 0) in the test set. (b) Distribution of the softness of all particles (black) 

and mobile particles (red) in the gel. The orange area represents the fraction of properly predicted soft particles ( S > 0) within the mobile particles. (c) Logarithm of 

the probability of a particle to rearrange upon creep ( D 2 min / σ
2 ≥ D 2 min,0 / σ

2 ) log( P R ( S )) as a function of its initial softness S in the initial gel structure. The red line is an 

exponential fit following Eq. (6) . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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ive softness ( S > 0). We then calculate the probability of a particle

o rearrange P R ( S ) as a function of its initial softness S in the gel

see Fig. 3 c). Interestingly, we find that P R ( S ) exhibits an exponen-

ial dependance on the softness metric S , wherein the larger the 

oftness is, the more likely the particle is to rearrange. This rela- 

ionship can be formulated in terms of the behavior of an activated 

rocess in Eq. (6) [49] : 

 R ( S ) = P 0 exp ( βS ) (6) 

here P 0 and β are some fitting parameters. This exponential re- 

ationship between P R ( S ) and S suggests that the structural quan- 

ity S is closely related to (and might be indicative of) the en- 

rgy barrier associated with particle rearrangements [ 23 , 26 ] (see 

ection 4.4 ). Note that softness is calculated based on the sole 

nowledge of the initial structure, whereas the normalized non- 

ffine squared displacement is computed at the end of the simu- 

ation (i.e., after the gel has creeped to exhibit a shear strain of 

bout 1%). The high degree of correlation between initial softness 

nd final normalized non-affine squared displacement clearly illus- 

rates the intimate link between the initial static structure of the 

el and its long-time creep dynamics. 
5 
. Discussion 

.1. Structural interpretation of “particle softness”

We now discuss the structural interpretation of the machine- 

earned softness metric. As a key advantage of our approach, using 

he radial order parameters G ( i; r ) as sole features of the classi-

er and adopting logistic regression make the softness metric that 

s constructed herein highly interpretable. Indeed, the hyperplane 

reated by logistic regression can be expressed as a linear equation 

f each of the features as (see Fig. 2 a): 
 

r 

w ( r ) G ( i ; r ) = b (7) 

herein w ( r ) and b are the coefficients and the bias of the logistic

egression model, respectively. Since the features G ( i; r ) are stan- 

ardized, the coefficients are directly indicative of the relative im- 

ortance of each feature in the classification. Namely, a large ab- 

olute value for w ( r ) denotes that the hyperplane is fairly orthogo- 

al to the axis associated with the corresponding feature G ( i; r ). In

ddition, the sign of the coefficients is informative, since positive 

nd negative values for w ( r ) indicate that increasing values of the 
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Fig. 4. (a) Weight coefficient w ( r ) of classification hyperplane (see Fig. 2 (a)) at different normalized distances r / σ . The red line is to guide the eyes. The pair distribution 

function g ( r ) of the gel is added in the top panel as reference. The distances r 0 = 1.00 σ and r 1 = 1.14 σ are associated with the most influential input features of the classifier, 

i.e., the w ( r ) coefficients showing maximum absolute value. The inset illustrates the local environments around (i) “hard” particles (blue), wherein the neighbors are located 

at r 0 = 1.00 σ and (ii) “soft” particles (red), wherein the neighbors are located at r 1 = 1.14 σ . (b) Particle softness S as a function of their normalized particle Voronoi volume 

V / σ 3 and coordination number CN. The color coding is based on a linear interpolation between the datapoints in the particle dataset. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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eature G ( i; r ) tend to result in increased and decreased softness

alues, respectively. 

Fig. 4 a shows the coefficients w ( r ) of the logistic regression

lassifier as a function of the distance r , wherein the absolute value 

f w ( r ) denotes how influential the feature G ( i; r ) is. We find that

he two most influential features are associated with the distances 

 0 = σ and r 1 = 1.14 σ . A visual inspection of the pair distribution

unction of the gel (see the upper panel of Fig. 4 a) reveals that

 0 represents the average interparticle bond distance (i.e., equilib- 

ium position of particle interaction energy), while r 1 represents a 

istance between the 1st and the 2nd coordination shells. This in- 

icates that the local density of neighbors centered around these 

istances plays a critical role in discriminating mobile from im- 

obile particles. On the one hand, the local density of atoms at 

 = r 0 is related to the coordination number (CN) of the central 

article when the neighbors are in contact with the central parti- 

le (see blue particle in Fig. 4 a). The fact that w ( r 0 ) < 0 indicates

hat large CNs tend to result in lower softness values. On the other 

and, we interpret the distance r 1 as that wherein neighbors are 

ocated when there is coordination mismatch around the central 

article (e.g., an excess of neighbors, see red particle in Fig. 4 a). 

he fact that w ( r 1 ) > 0 indicates that the presence of such coor-

ination mismatch tends to result in higher softness values. These 

esults are consistent with free volume theory (FVT) [ 8 , 9 ]. Indeed,

losed-packed structures with a large number of atoms at r = r 0 
re associated with low local free volume, wherein the atoms ex- 

ibit very limited mobility. In contrast, more disordered structures 

xhibiting notable coordination mismatch tend to show larger local 

ree volume (see red particle in Fig. 4 a), which facilitates particle 

obility. 

The absolute values of the coefficients w ( r ) associated with 

ther distances are notably lower and, hence, the local density of 

eighbors at such distance has a smaller influence on the outcome 

f the classification. The features associated with these other dis- 

ances are nevertheless important for the accuracy of the classi- 

er. Indeed, we find that, even though our results suggest that the 

ocal free volume plays an important role in creep dynamics, the 

lassification model trained based on the sole knowledge of the 

article Voronoi volume offers a limited accuracy of ~60% as com- 

ared to that offered by the softness metric (~75% accuracy, see 

upplementary Materials for details). Fig. 4 b illustrates the depen- 

ence of softness on the particles’ coordination number CN and 

oronoi volume V . Overall, larger CN and smaller V values tend 
6 
o favor smaller softness. However, we nevertheless observe that 

oftness is a complex, nonmonotonic function of CN and V . We 

ote that training a classifier based on the sole knowledge of the 

articles’ CN only yields an accuracy of ~55%, wherein both low 

nd high-coordination particles are very likely to be classified as 

oft particles (see Supplementary Materials for details), so that the 

oft vs. hard nature of particles cannot simply be inferred based 

n Maxwell criterion on stability [ 50 , 51 ]. Similarly, only using G ( i;

 0 ) and G ( i; r 1 ) as input features yields a very limited accuracy of

50%. This exemplifies the benefit of using an unbiased machine 

earning approach to build the set of input features, since intuitive 

tructural features show only limited correlation with dynamical 

roperties. 

.2. Linking particle dynamics to macroscopic deformation 

We now look into the nature of the relationship between 

article-level softness (see Fig. 3 c) and the macroscopic creep of 

he gel (see Fig. 1 a). To this end, we consider the average softness 

 S 〉 of the system—i.e., as averaged over all the particles—and as- 

ess how this quantity is evolving as the gel gradually undergoes 

reep (see the inset of Fig. 5 ). We find that 〈 S 〉 exhibits a logarith-
ic decay upon creep, which echoes the logarithmic increase of 

he macroscopic strain of the gel upon creep (see Fig. 1 a). In fact,

s shown in Fig. 5 , we observe that the macroscopic creep rate ˙ γ
f the gel exhibits an exponential dependence on 〈 S 〉 as: 
˙ = ˙ γ0 exp ( α〈 S〉 ) (8) 

here ˙ γ0 and α are some fitting parameters. Note that this ex- 

onential relationship is not affected by the system size (see Sup- 

lementary Materials for details). This indicates that the dynamics 

f creep at the macroscopic scale is closely related to the varia- 

ion in softness at the particle level. This can be understood as 

ollows. The gradual decay of softness indicates that, upon creep, 

articles reorganize from “soft” (i.e., high S ) to “harder” (i.e., lower 

 ) local environments (see the schematics in Fig. 4 a). In turn, as

he softness of a particle decreases, so does its propensity to ex- 

ibit any further reorganization. This process explains why the 

reep rate gradually slows down—since the particles gradually be- 

ome harder and harder and, hence, less prone to reorganizations. 

t is worthwhile to point out that, although our softness results 

llustrate a strong correlation between the initial static structure 

nd the early-stage creep dynamics, it remains unclear whether 
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Fig. 5. Macroscopic creep rate ˙ γ of the gel as a function of the average softness 〈 S 〉 
of the particles. The red line is an exponential fit following Eq. (8) . The inset shows 

the evolution of 〈 S 〉 in the gel upon creep. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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he softness approach presented herein could describe longer-term 

ffects (e.g., final avalanche) based on the static initial structure 

ince the system tends to lose the memory of its initial configura- 

ion after experiencing significant deformations [ 11 , 39 , 40 , 52 ]. Here,

he exponential dependence of the creep rate on the average soft- 

ess is a macroscopic manifestation of the particle-level exponen- 

ial dependence of particle dynamics on its softness in Eq. (6) (see 

ig. 3 c), which suggests that 〈 S 〉 (or, more accurately, the oppo-

ite thereof) captures an effective average energy barrier for creep 

 2 , 8 ]—wherein lo w 〈 S 〉 values (i.e., “hard” structures) are indicative

f high energy barriers for particle rearrangements, and vice versa 

see below) [ 23 , 26 ]. 

.3. The energy landscape governs the particle dynamics during creep 

Since the results shown in Fig. 5 suggest that softness may 

e capturing the effective energy barrier that is accessible to the 

articles during creep, we now further investigate the linkage be- 

ween creep dynamics and potential energy landscape (PEL) to- 

ography [49] . Fig. 6 a offers a schematic of the local PEL that

s accessible to an initial static gel (before any stress is applied). 

he initial configuration is located at a local minimum of the PEL. 

tarting from this initial position, the ARTn algorithm searches 

or saddle points around the local minimum, which are associ- 

ted with physically-meaningful rearrangements for a target par- 

icle [43] . This allows us to compute the distribution of the en- 

rgy barriers that are locally accessible to each particle (i.e., the 

nergy difference between the identified saddle point and initial 

inimum, see Section 2.5 ). Based on this analysis, we then calcu- 

ate, for each particle, the average value E ave of the energy barriers 

hat are accessible to this particle. 

Fig. 6 b shows the distribution of the normalized average energy 

arrier E ave / ε of the particles in the initial static gel. We find that 

he distribution decreases with increasing energy barrier value and 

xhibits a long tail toward high energy barriers. Fig. 6 c shows the 

istribution density of the particles’ normalized non-affine squared 

isplacement D 
2 
min / σ

2 (at the end of the creep simulation) and 

nitial normalized average energy barrier E ave / ε. We observe the 

xistence of an anticorrelation between displacement and average 

nergy barrier—which is a natural consequence of the fact that par- 

icles that are surrounded only by large energy barriers (i.e., rough 

ocal energy landscape) are trapped around their local minimum 

nd unable to reorganize [49] . However, for low E ave / ε values, we 

nd that only a small fraction of the particles tends to exhibit a 
7 
arge displacement (i.e., to be mobile). This can be explained based 

n the spatial heterogeneity of the D 
2 
min / σ

2 and E ave / ε fields in 

he gel (see discussion on the point in Section 4.4 ). 

Fig. 6 d shows the final average normalized non-affine squared 

isplacement 〈 D 
2 
min / σ

2 〉 of the particles in the gel (at the end of
he creep simulation) as a function of their normalized average en- 

rgy barrier E ave / ε (in the initial configuration, before any stress is 

pplied). Interestingly, we find the existence of a power-law rela- 

ionship between 〈 D 
2 
min / σ

2 〉 and E ave / ε, wherein larger E ave / ε tend

o result in smaller D 
2 
min / σ

2 values, and vice versa (see Fig. 6 d).

his result echoes the power-law relationship between 〈 D 
2 
min / σ

2 〉 
nd softness S previously highlighted in Fig. 2 c. The harmony be- 

ween these trends suggests the existence of a potential causal re- 

ationship between softness S and average energy barrier E ave (see 

ection 4.4 ). In addition, these results also echo findings from a 

ecent study, which reported the existence of a power-law rela- 

ionship between particle dynamics and energy barrier in metallic 

lasses [ 44 , 45 ]. This suggests that this power-law relationship be- 

ween particle dynamics and energy barrier (or particle softness) 

ight be a generic feature of disordered systems, independently of 

hether the particle reorganizations are caused by creep or not. 

Finally, we evaluate the probability of a particle to rearrange 

 R ( E ave ) as a function of its initial average energy barrier E ave (see

ig. 6 e). We find P R ( E ave ) follows an exponential dependence on 

 ave that echoes that of an activated process [49] : 

 R ( E ave ) = P E exp ( −βE E ave ) (9) 

here P E and βE are some fitting parameters. Namely, the larger 

he average energy barrier is, the less likely the particle is to re- 

rganize. Overall, these results indicate that the dynamics of a gel 

pon creep is largely encoded in the topography of its initial en- 

rgy landscape, before any load is applied. The harmony between 

qs. (6) and (9) —which can both be described in terms of an acti- 

ated process—suggests a strong correlation between the softness 

 and average energy barrier E ave fields (see below). 

.4. Mapping “particle softness” to energy barrier 

Finally, we interrogate the existence of a causal correlation be- 

ween softness S and average energy barrier E ave . Fig. 7 a illustrates 

he spatial correlation between the fields of interest herein: (i) the 

nal non-affine squared displacement ( D 
2 
min ), (ii) the initial soft- 

ess ( S ), and (iii) the initial average energy barrier ( E ave ). We find

hat the three fields—i.e., the dynamics field ( D 
2 
min ), the structural 

eld ( S ), and the local potential energy landscape field ( E ave )—all

how a strong degree of spatial heterogeneity, but are fairly corre- 

ated to each other. Namely, the regions associated with low mobil- 

ty tend to match with those presenting high energy barriers and 

ow softness, and vice versa. 

Fig. 7 b shows the distribution density of the particles’ initial 

ormalized average energy barrier ( E ave / ε) and initial softness ( S ). 
verall, we observe that the particles associated high softness val- 

es (i.e., “soft” mobile particles, S > 0) tend to exhibit fairly low 

verage energy barriers. However, we note that the correlation be- 

ween softness and average energy barriers is not as strong as that 

bserved between softness and displacement, or energy barriers 

nd displacement (see Figs. 2 b and 6 c). Nevertheless, a stronger 

orrelation between softness and energy landscape emerges when 

veraging these fields over groups of particles featuring fairly sim- 

lar softness. To this end, Fig. 7 c shows the initial average normal- 

zed energy barrier 〈 E ave / ε〉 of the particles in the gel (before any
tress is applied) as a function of their initial softness S . Interest- 

ngly, we find that 〈 E ave / ε〉 is linearly related to the opposite of
oftness (–S , or “hardness” H ) as: 

 ave ( H ) = kH + b (10) 
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Fig. 6. (a) Schematic illustrating the local potential energy landscape (PEL) of an initial static gel. The gel is initially located at a local minimum of the PEL. Starting from this 

minimum position, the activation-relaxation nouveau (ARTn) algorithm searches the saddle points that are locally accessible to target particles [43] (see Methods section for 

details). E ave is the average value of the energy barriers that are accessible to a given particle. (b) Distribution of the normalized average energy barrier E ave / ε of the particles 

in the initial static gel (before any stress is applied). The inset shows the associated gel configuration, wherein the color of the particles denotes E ave / ε. (c) Distribution 

density of the particles’ normalized non-affine square displacement ( D 2 min / σ
2 ) (at the end of the creep simulation) and initial normalized average energy barrier ( E ave / ε). (d) 

Final average normalized non-affine squared displacement 〈 D 2 min / σ
2 〉 of the particles in the gel (at the end of the creep simulation) as a function of their initial normalized 

average energy barrier ( E ave / ε). The red line is a power-law fit. (e) Logarithm of the probability of a particle to rearrange upon creep ( D 2 min / σ
2 ≥ D 2 min,0 / σ

2 ) log( P R ( E ave )) as 

a function of its initial normalized average energy barrier E ave / ε in the gel. The red line is an exponential fit following Eq. (9) . (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 

w

p

t

a

f

a

i

[  

c

t

t

t

b

d

t

“

t

b

e

[  

e

r

s

e

d

g

t

s

t

f  

n

(  

c

e

t

fi

〈
w

fi

ξ
t

b

fi

o

w

a

t

o

t

here k and b are some fitting parameters. This shows that the to- 

ography of the energy landscape is largely encoded in the struc- 

ure of the gel. Importantly, these results demonstrate that, when 

veraged over groups of particles, the average softness indeed of- 

ers a purely structural metric that successfully captures the aver- 

ge height of the energy barriers that are locally accessible, which, 

n turn, controls the particles’ propensity to reorganize upon creep 

 23 , 26 ]. It is notable that the softness metric is able to successfully

apture a structural fingerprint for the topography of the poten- 

ial energy landscape since this machine-learned quantity is not 

rained for that purpose (that is, the model is never exposed to 

he energy barriers during its training). As such, the correlation 

etween softness and average energy barrier offers an indepen- 

ent validation of the soundness of this approach—and suggests 

hat the softness metric that is extracted herein indeed shows a 

real” physical meaning. 

Note that, in this analogy between softness and energy barriers, 

he energy barriers that are captured by softness are not overcome 

y thermal effects, but by the applied stress—which provides an 

lastic energy that enables particles to jump over these barriers 

 2 , 8 ]. An interesting atomic picture behind the link between en-

rgy landscape topography, applied external stress (or strain), and 

esulting particle hoping is offered by the trap model—which de- 

cribes the energy landscape as a landscape of “traps,” wherein an 

xternal stress can facilitate particle hopping from trap to trap by 

eforming the local landscape [49] . In that regard, our results sug- 
8 
est that softness might serve as a proxy for the average height of 

he energy barriers that separate the traps within the energy land- 

cape. 

To further explore the degree of spatial heterogeneity in the 

hree fields considered herein, we compute the spatial correlation 

unction 〈 C(0)C( r ) 〉 for each field (see Fig. 7 d), where C( r ) is the

ormalized fluctuation in the field, i.e., the standardized field value 

 D 
2 
min , S , and E ave ) of a particle at distance r from a central parti-

le. The spatial correlation function 〈 C(0)C(r) 〉 is computed by av- 

raging over all particles separated by a distance r . We then infer 

he characteristic correlation length ξ associated with each field by 

tting the spatial correlation function as [24] : 

 C ( 0 ) C ( r ) 〉 = C 0 exp ( −r/ξ ) (11) 

here C 0 is a fitting coefficient. We find that both the softness 

eld and the energy barrier field show a similar correlation length 

that is close to 1 (i.e., the typical radius of the first coordina- 

ion shell). This harmony further supports the close relationship 

etween softness and energy barriers. In contrast, the dynamics 

eld shows a correlation length of ξ ≈ 0.5 (i.e., the typical radius 

f a particle). This indicates that the typical lengthscale associated 

ith particle displacements is notably lower as compared to that 

ssociated with the softness/energy barriers fields. The fact that 

he lengthscale associated with displacements is lower than that 

f the energy barrier field likely explains why only a small frac- 

ion of the particles showing low E ave / ε values also feature large 
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Fig. 7. (a) Illustration of the spatial correlation between the fields of the final non-affine squared displacement ( D 2 min ), the initial softness ( S ), and the initial average energy 

barrier ( E ave ). The particles are colored based on their standardized value in the corresponding field. (b) Distribution density of the particles’ initial normalized average 

energy barrier ( E ave / ε) and initial softness ( S ). (c) Initial average normalized energy barrier ( 〈 E ave / ε〉 ) of the particles in the gel (before any stress is applied) as a function of 
their initial hardness ( H = –S ). The red line is a linear fit following Eq. (10) . (d) Spatial correlation function 〈 C(0)C( r ) 〉 of the displacement field ( D 2 min , black), the softness 

field ( S , red), and the energy barrier field ( E ave , blue) in the gel. Note that the field value C (i.e., D 
2 
min , S, E ave ) is standardized for the calculation. The lines are exponential 

fits following exp(- r / ξ ), where ξ is the characteristic correlation length. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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isplacements (see Fig. 6 c). This partial decorrelation between the 

patial distributions of displacement and energy barriers (or soft- 

ess) may be a consequence of the fact that, here, displacement 

s induced by stress rather than being fully spontaneous. Conse- 

uently, “soft” particles that have access to low energy barriers 

ay nevertheless not exhibit any notable displacement if the di- 

ection of the imposed stress does not match with any of the ac- 

essible low-energy saddle point pathways. 

onclusions 

Overall, these results highlight the close correlation between (i) 

tatic structure (as captured by softness), (ii) static potential en- 

rgy landscape topography (as captured by the average height of 

he energy barriers that are accessible to the particles), (iii) par- 

icle dynamics (as captured by the non-affine squared displace- 

ent), and (iv) macroscopic deformation (as captured by the creep 

ate). It is notable that our approach allows us to predict the long- 

ime dynamics of the particles upon long-term creep deformations 

hile solely relying on the knowledge of the initial static struc- 

ure before any stress is applied. The accessible interpretation of 

he softness metric defined herein (see Fig. 4 a) suggests that the 

egree of structural disorder—and especially the existence of coor- 

ination mismatches—plays a key role in governing the creep dy- 

amics of gels. This indicates that order-disorder engineering of gel 

tructures offers a potential path to develop new gel formulations 

ith tailored creep response under sustained load. 
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