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Abstract—Osteosarcoma (OS) is the most common primary malignant bone tumor of both children and pet canines. Its characteristic
genomic instability and complexity coupled with the dearth of knowledge about its etiology has made improvement in the current
treatment difficult. We use the existing literature about the biological pathways active in OS and combine it with the current research
involving natural compounds to identify new targets and design more effective drug therapies. The key components of these pathways
are modeled as a Boolean network with multiple inputs and multiple outputs. The combinatorial circuit is employed to theoretically
predict the efficacies of various drugs in combination with Cryptotanshinone. We show that the action of the herbal drug,
Cryptotanshinone on OS cell lines induces apoptosis by increasing sensitivity to TNF-related apoptosis-inducing ligand (TRAIL)
through its multi-pronged action on STAT3, DRP1 and DR5. The Boolean framework is used to detect additional drug intervention
points in the pathway that could amplify the action of Cryptotanshinone.

Index Terms—Boolean Networks; Drug Targets; Simulation and Modeling; Cancer; Osteosarcoma; Cryptotanshinone
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1 INTRODUCTION

O STEOSARCOMA(OS) is the most common primary ma-
lignant bone tumor of both children and pet canines

[1]. Approximately 800 new cases of OS are diagnosed in
people each year and more than half of those are in children
or adolescents. The incidence is approximately 8-10 times
higher in pet dogs than in children [1]. Genetically, these
two diseases are the same in humans and canines [2], [3],
[4]. They share dysregulation of many of the same pathways
that lead to metastasis in over 80% of affected individuals
treated with surgery alone [2], [3], [4]. The bone tumor is
found in areas of rapid cell growth that are susceptible to
mitotic errors and oncogenic agents [5]. Alterations in the
p53 and Rb tumor suppressor pathway are common in OS
patients, however conventional drug therapies that target
these tumor suppressor pathways have had little success in
the late stages of the clinical trials [6]. There is a need to
identify key intervention points in the biological pathways
associated with OS that could help design effective drug
therapies and ensure robust cell death of cancer cells.

The complete etiology of OS is unclear and there is no
conclusive evidence to indicate which genetic mutations or
pathway alterations could be responsible for the develop-
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ment of the bone cancer [7]. There is a large set of potential
candidate genes which must be evaluated to characterize
molecular targets in order to develop new strategies [8], [9].
Our approach to narrow the search space is two-pronged;
one, we investigate the drugs that have been successful in
clinical trials and evaluate their targets as potential inter-
vention points and two, we study OS in dogs to identify
statistically significant mutations that could be associated
with the bone cancer. The higher incidence and more rapid
disease progression seen in pet dogs allows for faster and
more cost effective data collection making them an excellent
model for studying this disease to the mutual benefit of both
species [10].

Recent success in OS therapy has been through trials that
target the stemness pathways, namely Wnt/β-Catenin and
Hedgehog pathways through the use of natural compounds
[9]. Sulforaphane is one of the natural compounds being
used to treat OS cell lines; the drug increases the expres-
sion of death receptors and induces tumor necrosis factor
(TNF)–related apoptosis-inducing ligand (TRAIL) apopto-
sis [8], [11]. TRAIL therapy is a therapeutic strategy that
inhibits tumor growth and increases chances of survival in
preclinical studies for OS. Since TRAIL-induced cell death is
known to only kill cancer cells and not affect normal cells, it
is one of the popular emerging strategies in pediatric cancer
care and another pathway that warrants investigation [11],
[12]. In this work, we model the stemness pathways and
their interaction with the various pathways involved in
TRAIL sensitivity for OS.

The gene expression patterns of OS in humans and dogs
are very similar, making the dog a valid model for OS
research [2], [3], [4]. An evaluation of OS in dogs tells us
that the pathways involved in the glutathione and aspartate
metabolism may have an important part to play in the early
spread of this cancer [2]. We will incorporate the relevant
interconnections and cross talk with the metabolic pathways
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into our model.
In this work, we study the action of Cryptotanshinone

(CT), a derivative of the herb Salvia milthorrhiza Bunge
and its effect on OS pathways. CT is a known STAT3
inhibitor and has been used to eradicate tumor-initiating
cells in other cancers [13], [14], [15], [16]. Additionally, CT
is known to be effective in increasing TRAIL cytotoxicity by
upregulating death receptor 5 (DR5) and inducing cell death
in cancer cells [17], [18]. Through its action on dynamin-
related protein 1 (DRP1), CT controls mitochondrial func-
tion which could inhibit OS cell growth [19]. This makes CT
a promising candidate drug for treatment of OS.

2 MATERIALS AND METHODS

2.1 Boolean Network Modeling
We use a Boolean network model to capture the causal inter-
connections between the different genes from the different
biological pathways. In the paradigm of Boolean network
modeling, each gene is a node and its direct interaction with
another gene is represented as an edge. Gene expression
is binarily quantized: a gene, if expressed is considered to
be ON (State 1) and if not expressed, is considered to be
OFF (State 0). If two or more genes interact to activate or
inhibit a third gene, such relationships are modelled with
the use of logic gates. The genetic regulatory network can be
represented as a multi-input multi-output (MIMO) digital
logic circuit [20].

The static Boolean network considered in this work is
subject to a certain set of inputs whose effect on the network
can be evaluated through a set of outputs; the input and
output vectors are given in Eq. 1 and Eq. 2 below. The inputs
are a mix of growth factors, interleukins, interferons and
stress signals which activate the pathways relevant to the
pathogenesis of OS. The value of these inputs manipulate
cell growth and death by controlling the state of the nodes
downstream. The outputs are a set of genes that give in-
formation about cell death or apoptosis. The outputs can
be classified into two categories: pro-apoptotic and anti-
apoptotic, which promote and inhibit cell death respectively.
The Table. 1 shows this classification of outputs. The fate of
the cell depends on the value of these apoptotic factors.

Inputs = [IGF,TRAIL,CaLM,EGF,TNFα, (1)
IL6,TGFβ, IFN,Hh,WNT, cAMP,ROS]

Outputs = [BAKX,BAD,CASP8,CASP12,BID, (2)
BIM, STING,DRP1,BCL2,BCLxL,

MCL1,XIAP,XBP1, survivin,EPO,A1]

Genetic aberrations in cancer cells are responsible for
abnormal upregulation or downregulation of their down-
stream targets. These anomalies of tumor cells can be rep-
resented as stuck-at faults in the Boolean circuit [29]. When
a node in the circuit is permanently set to a fixed value
of either zero or one, a stuck-at fault is said to occur. An
overexpressed gene can be modeled as a stuck-at-1 fault. For
example, STAT3 is activated in many cancers and remains
phosphorylated even in the presence of inhibitors like PTP.

TABLE 1
Apoptotic Factors. Pro-apoptotic factors increase the chances of cell

death and anti-apoptotic factors increase the chances of survival.

Pro-apoptotic factors Anti-apoptotic factors
BAK/BAX [21], [22] BCL2 [21], [22]

BAD [21], [22] BCLxL [21], [22]
CASP8 [23] MCL1 [24]
CASP12 [25] XIAP [21], [22]

BID [23] XBP1 [25]
BIM [21], [22] survivin [26], [26], [27]

STING [28] EPO [26], [26], [27]
DRP1 [19] A1 [21], [22]

TABLE 2
Faults in the Boolean network. The type of fault indicates whether a

gene is overexpressed (Stuck at 1) or silenced (Stuck at 0).

Fault Type
CXCR4 Stuck at 1
SLC1A3 Stuck at 0

IL8 Stuck at 0
MDM2 Stuck at 1

p53 Stuck at 0
PTEN Stuck at 0
STAT3 Stuck at 1

This dysregulation of STAT3 can be modeled as a stuck-at-1
fault [20]. The effect of such a fault can be corrected by using
a drug as shown in the Fig. 1. A stuck-at-0 fault occurs when
the node or gene is permanently inactive independent of the
signals upstream. For instance, a mutated p53 gene remains
inactive despite being phosphorylated due to cellular DNA
damage. This situation can be corrected through the use of
drugs as can be seen in Fig. 2.

We consider a total of 7 faults in our network. PTEN,
p53, MDM2 and CXCR4 mutations are commonly found
in OS cell lines; PTEN and CXCR4 faults can lead to a
decrease in TRAIL sensitivity [6], [7], [9], [30], [31]. OS cell
survival and drug resistance can be attributed to STAT3
overexpression, which can be characterized as a stuck-at-1
fault [13]. Furthermore, the study of canine gene expression
identifies SLC1A3 and IL8 as the two mutations that could
be responsible for OS progression in humans and dogs [2].
The faults and their corresponding types are displayed in
Table 2 and the fault vector can be seen in Eq. 3. The compo-
nents in the fault vector are either one or zero depending on
whether a particular fault is present or not. A one in the fault
vector denotes a stuck-at-0 or stuck-at-1 fault, whichever is
applicable for that particular gene. For example, if the fault
vector is [0, 0, 0, 0, 0, 0, 1], this implies that the STAT3 gene
is mutated. Since it is a stuck-at-one type of fault, it means
that STAT3 is being constitutively expressed.

Faults = [CXCR4, SLC1A3, IL8,MDM2, p53,PTEN, STAT3]
(3)

The drugs with their respective intervention points are
shown in Table 3 and the components of the drug vector are
given in Eq. 4.
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Fig. 1. Boolean Representation of a Stuck-at-1 fault. The drug acts on
the target to compensate for the effect of the fault.
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Fig. 2. Boolean Representation of a Stuck-at-0 fault. The drug acts on
the target to compensate for the effect of the fault.

TABLE 3
Drugs and the corresponding targets.

Abbreviation Drug Target
Cry Cryptotanshinone STAT3, DR5 [17], DRP1 [19]
Ly LY294002 PI3K [29]

Lap Lapatinib EGFR [3]
NT NT157 PTP [32]
SH SH-4-54 STAT3 [33]

Tem Temsirolimus mTOR [34]
U0 U0126 MEK1 [29]
PX PX-478 HIF1α [35]

Drugs = [Cry,Ly,Lap,NT, SH,Temsirolimus,UO126,PX]
(4)

A one in the ith column of the drug vector indicates
that the ith drug is applied and vice versa. We evaluate
combinations of Cryptotanshinone with the other drugs,
since a major goal of this work is to evaluate CT’s action
on OS cells. Since there are seven other drugs in the vector,
a total of 27 drug combinations were tested. For instance,
the drug vector [1, 0, 0, 0, 0, 0, 0, 0] indicates that only Cryp-
totanshinone is applied.

2.2 Biological Pathways in osteosarcoma

In order to construct a Boolean network for TRAIL sen-
sitivity in OS, we must evaluate the pathways active
in most cancers and identify the subset of interconnec-
tions relevant to OS development. To narrow the scope
of the search, we focus on pathways commonly altered
in canine OS as well as pathways targeted by drugs in
successful clinical trials for OS. The candidate biologi-
cal pathways for OS, namely cell survival and growth
(PI3k/mTOR, MAPK/ERK), angiogenesis (JAK/STAT),
DNA Damage (p53), immune system (KEAP1/NRF2),

inflammation(NKκB), hypoxia (H1F1α), stemness (Wnt/β-
Catenin and Hedgehog) and the metabolic pathways, are
all well documented [20], [26], [27], [36]. We will model
the genetic interactions in the candidate pathways and
derive interconnections between the pathways based on our
interpretation of different research papers. For clarity of
exposition, the entire biological network has been divided
into six components depicted in Fig 3a through Fig 4c.

First, we consider the cell survival pathways [26], [27],
[29], [32], [34], [36], [37], [38] in Fig 3a; this figure shows
the activity points of many conventional drugs. Cancer cells
hijack the cell survival mechanism to evade cell death and to
promote the growth of the tumor. The PI3K-mTOR pathway
is mutated in certain OS cells and is implicated in drug
resistance as well as TRAIL resistance [30], [31].

The stemness pathways are modeled in Fig. 3b. Mes-
enchymal cells split to form osteoblasts (or young bone cells)
and could be responsible for osteosarcoma pathogenesis
[13]. The Wnt and Hedgehog pathways are considered in
our model since they regulate the stemness factors required
for a mesenchymal stem cell to become a bone cell. The
figure also shows the cytokine signalling pathway TGFβ
and how it promotes cell growth in osteoblasts [8], [39].
Additionally, natural compounds such as Reservetrol, Api-
genin and Cyclopamine that target the stemness pathways
have shown promising results in osteosarcoma clinical trials
[9].

Fig. 3c shows the interconnections between the endo-
plasmic reticulum stress-activated pathway and cellular
damage and their cumulative effect on the glutathione
metabolism. The hypoxic (low oxygen) conditions asso-
ciated with cancer cause endoplasmic reticulum stress to
initiate the unfolded protein response; the low oxygen con-
dition also initiates the switch to anaerobic metabolism [25].
JNK regulates p53 and IL8, both of which are mutated in
osteosarcoma [2], [40]. Cellular damage in cancer cells goes
unchecked, which can lead to further genetic instability in
the tumor cells. CHK1 and p53 are components of the cellu-
lar damage and repair mechanism [24]. The interconnection
of the p53 pathway with the glutathione (GSH) metabolism
can help us understand what role SLC1A3 plays in OS cells
[41], [42]. Both IL8 and SLC1A3 have been implicated in
genetic studies of canine OS [2].

Hypoxia and angiogenesis pathways are displayed in
Fig. 4a, the gene STAT3 and its influence on the immune
system, inflammation, angiogenesis as well as hypoxia can
be studied in this figure. We can also observe the cross-
talk of the mTOR pathway with the JAK/STAT pathway
[38] in the figure. Endoplasmic reticulum stress releases
PERK, which activates STAT3 [43]. STAT3, in turn, activates
anti-apoptotic factor MCL1 [24] as well as COX2 in the
inflammation pathway [23]. Inhibition of STAT3 could be
crucial to restoring TRAIL sensitivity [18], especially given
its interaction with CHOP, a promoter of extrinsic death
receptors [44]. HIF1α is expressed when hypoxic conditions
exist in cells [45]. Both hypoxia and endoplasmic reticu-
lum stress have an effect on the immune system pathway
KEAP/NRF2 [28], [46], [47].

Fig. 4b and Fig. 4c show the extrinsic and mitochondrial
apoptotic pathways respectively. The induction of TRAIL
apoptosis by CT can be seen in Fig. 4b. TRAIL sensitivity
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Fig. 3. (a) Boolean network for Cellular Survival Pathways in osteosarcoma. (b) Boolean network for Stemness Pathways in osteosarcoma.
(c) Boolean network for Endoplasmic Reticulum Stress-related Pathways and their interconnections with cellular damage and the Glutathione
metabolism.

depends on the expression of the death receptor, DR5 [17],
[48]. STAT3, PI3K and others can cause TRAIL resistance by
affecting the genes upstream of DR5. The interleukin IL8 is
expressed downstream in the TRAIL pathway and can cause
TRAIL resistance [2], [23], [40], [49]. The extrinsic apoptosis
factor CASP8 eventually leads to mitochondrial apoptosis.

The entire Boolean Network model is available in the
code associated with the project (refer to Appendix 1).

3 RESULTS AND DISCUSSION

In this section, we predict the cell death in OS cells for
various combinations of inputs, drugs and faults. Next, we
compare the predicted values of cell death with the results of
biological experiments on OS cells subject to different drug
combinations. Finally, we predict theoretical drug efficacies
for all possible combinations of drugs and faults considered
in this paper.

We ran simulations under different combinations of
drugs and faults to predict the theoretical drug efficacies of
drug combinations with Cryptotanshinone. The efficacy of a
cancer drug is proportional to its ability to stop cell prolifer-
ation and induce cell death in cancerous cells. To predict the

theoretical efficacy of a cancer drug, we measure its effect
on apoptotic factors to gauge the degree of apoptosis. The
metric used to calculate the degree of apoptosis is given in
Eq. 5.

Apoptosis Ratio =

∑
Pro-Apoptotic factors∑
Anti-Apoptotic factors

(5)

The apoptosis ratio measures the relative change in cell
death for each different set of inputs. The active faults
and drugs will also affect the apoptosis ratio. During every
simulation, a particular combination of drugs and faults will
be fed to the Boolean network, which in turn activates or
inhibits the corresponding apoptotic factors. We calculate
arithmetic means of the pro- and anti-apoptotic factors
and obtain the apoptosis ratio. The apoptosis ratio will be
treated as the predicted drug efficacy for a particular drug
combination.

3.1 Experimental Results

Cellular apoptosis is tracked using high-content fluorescent
protein reporter imaging with the previously immortalized
ABRAMS canine OS cell line to study how it reacts to
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Fig. 4. (a) Boolean network for Hypoxia and Angiogenesis pathways and their cross-talk with the immune system. (b) Boolean network for Extrinsic
Apoptosis in osteosarcoma. (c) Boolean network for Intrinsic Apoptosis in osteosarcoma.
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(a) (b)

Fig. 5. (a) The induction of cell death in ABRAMS cells by Cryptotanshinone is displayed in this plot. Each dotted curve represents a replicate and
the solid curve represents the final plot for average cellular apoptosis versus time. (b) The predicted values of apoptosis ratio when the Boolean
Network is subject to different inputs. For every input, we compare how the apoptosis ratio changes with the presence of faults and drugs.

different combinations and concentrations of drugs. A two-
part data processing technique is applied to extract the
cell dynamics from the images. First, morphological im-
age processing is performed on the fluorescent images to
recognize individual cells and quantify their transcription
activity levels. Second, an algorithm for data representation
summarizes the results into expression profiles in order
to facilitate further evaluation. The details of this method
have been outlined in a previous publication [50]. Each
experiment has nine replicates and the result is obtained
by finding the average of the replicates. The final result is
represented by a single plot of cellular apoptosis versus time
for a given drug combination. Fig 5a shows the average cel-
lular apoptosis with all nine replicates for Cryptotanshinone
acting on ABRAMS OS cells.

3.2 Fixing the parameters of the Boolean Network
The Boolean network can be manipulated by changing the
values of inputs, drugs and faults. We wish to fix the
parameters of the Boolean network such that it represents
a TRAIL resistant network of OS cells.

We record the values of apoptosis ratios for different
values of input to the Boolean network. Every input ac-
tivates its corresponding pathway. For instance, the input
Hh when set to one activates the Hedgehog pathway. In
Fig 5b, we have plotted the outputs of the Boolean network
for different inputs and different values of drugs and faults.

• ’NO FAULTS’ - When the cancer cell network has no
faults, it acts like the network of a normal bone cell.

• ’NO DRUGS’ - When the cancer cell network has no
drugs, it represents the untreated condition of the OS
cells. This serves as the control against which we can
compare the effect of the drugs.

• ’NO FAULTS WITH NO DRUGS’ - This represents
the highest value of apoptosis that the Boolean net-
work can achieve given a particular set of input
conditions.

• ’ALL FAULTS WITH NO DRUGS’ - This represents
the lowest level of apoptosis that the Boolean net-
work can achieve without drug intervention given a
particular set of input conditions..

• ’WITH CT’ - We are examining the effect of Cryp-
totanshinone or CT on OS cells.

• ’WITH SH-4-54’ - CT and SH-4-54 are both STAT3
inhibitors. We can compare the efficacy of the two
drugs to see if one is better than the other.

If we compare ’NO FAULTS NO DRUGS’ to ’ALL FAULTS
NO DRUGS’, we can see that the cancer cell has lower
apoptosis than the normal cell for all input combinations.
This implies that the genetic mutations decrease the amount
of apoptosis and allow cancer cells to survive. Then, for a
drug to be effective it has to be able to restore apoptosis to
its normal value or fault-free value. If we observe the ’ALL
FAULTS WITH SH-4-54’ bars, we can see that SH-4-54 is
able to increase the cell death despite the presence of faults,
but it is not able to achieve the level of fault-free apoptosis.
Similarly, from the ’ALL FAULTS WITH CT’ bars, we can
say that CT is more effective than SH-4-54.

In Fig 5b, we compare 8 different input conditions. The
’No Input’ condition is when none of the inputs to the OS
pathways are active. The apoptosis values of this condition
are almost similar to the ’TRAIL’ condition. This could be
attributed to TRAIL resistance in OS cells. TRAIL resistance
is observed in OS cells and is said to occur when an active
TRAIL input is unable to induce apoptosis in cancer cells
[51]. IGF activates the PI3K/mTOR pathway which has
been implicated in decreasing TRAIL cytotoxicity [31]. The
involvement of the IGF pathway in TRAIL resistance is not
evident from this figure and it warrants further investiga-
tion.

The other input conditions are shown to elucidate the
effectiveness of CT in the presence of different combina-
tions of interleukins, growth factors and other extracellular
signals.

• ’TNFa’ - One of the extrinsic apoptosis pathways,
TNFα causes a high amount of apoptosis in normal
cells.

• ’TNFa + IGF’ - The PI3K/mTOR pathway decreases
apoptosis as expected.

• ’Hh + WNT’ - This represents the apoptosis caused
by the stemness pathways.

• ’IL6 + TGFb + IFN’ - This represents the apoptosis
caused by the cytokines of the immune system.

• ’ALL’ - This represents the apoptosis caused by the
simulataneous activation of all the pathways in the
Boolean network.
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TABLE 4
Interpretation of the numerical values of theoretical drug efficacies for

the input condition ’TRAIL+IGF’.

Term Theoretical Drug Efficacy
Fault-free apoptosis ratio 2.23
Untreated apoptosis ratio 0.9
Low theoretical efficacy 1.0 to 2.0
High theoretical efficacy > 2.0

Not effective < 1.0

We fix the values of the inputs for all the simulations as
[1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , where the IGF and TRAIL
inputs are active, since TRAIL sensitivity is of us interest to
us. TRAIL sensitivity is the ability of a cancer cell to respond
to death signals. We wish to investigate the role the IGF
pathway plays in TRAIL resistance in OS cells.

While running the first four simulations, we assume that
all faults are active, i.e. the fault vector is [1, 1, 1, 1, 1, 1, 1].
All the faults considered in this paper are strongly associ-
ated with OS. The genetic signatures of canine and human
OS cells are similar and we have used the literature to
identify genetic mutations that have relevance for both
human and OS therapy.

Note that the value of fault free apoptosis for the input
condition ’TRAIL + IGF’ is 2.23 and the untreated condition
for this input combination in the presence of faults (’ALL
FAULTS WITH NO DRUGS’) is 0.9. For all the simulations
in this section, if the value of a drug combination is greater
than 1, then it successfully induces apoptosis in OS cells.
However, an effective drug combination should have a
theoretical efficacy close to 2.23 so as to correct for the
faults in the cancer cell networks. Table 4 provides a key
to understand the simulation results better.

3.3 CT is effective at restoring TRAIL sensitivity

First, we compare the action of Cryptotanshinone alone with
the action of the PI3K inhibitor LY294002. Fig. 6a shows
the simulated effect of the drugs CT and LY294002 on the
Boolean network. The ’Untreated’ condition is simulated
by passing a drug vector of zeros and can serve as a
control for the experiment. The Boolean network subject to
Cryptotanshinone outputs a greater apotosis ratio than the
one subject to LY294002.

The cellular apoptosis occurring in ABRAMS OS cells
with respect to time is displayed in Fig 6c. The Y-axis shows
the apoptotic fraction, which corresponds to the percentage
of apoptosis occurring in the cell line in the given time. The
curve in Fig. 6c shows the effect of CT and LY294002 on
OS cells. It is clear from the Fig. 6c that Cryptotanshinone
is more effective than LY294002 in inducing apotosis. The
area under the curve for each of the curves in Fig. 6c is
plotted in Fig. 6b as a bar graph for ease of comparison.
Upon comparison of Fig. 6a and Fig. 6b, it is evident that
the two graphs are similar. The simulation shows us that CT
can induce apoptosis on its own, whereas the inhibition of
PI3K alone is not sufficient to restore TRAIL cytotoxicity.

3.4 Inhibition of the PI3K/mTOR pathway boosts CT’s
action

Next, we test the combination of Cryptotanshinone with one
drug at a time. The output of the Boolean network gives
us the predicted apoptosis ratio for the drug combinations
and is shown in Fig 7a. From Fig 7a, we can see that
LY294002, the PI3K inhibitor in combination with CT is the
best performing combination. We can also see that all the
combinations lead to high values of the apoptosis ratio.

The cellular apoptosis occurring in ABRAMS OS cells
with these conditions is displayed in Fig 7c. We have five
drugs in different concentrations mixed with equal dosage
of Cryptotanshinone. The curve in Fig. 7c shows how all the
drug combinations successfully lead to apoptosis. Note that
since every combination has Cryptotanshinone as a compo-
nent, it could imply that Cryptotanshinone is responsible
for the effectiveness of the drug cocktail. We can see that the
combination of CT with Temsirolimus, the MTOR inhibitor
is the most effective. The area under the curve for each of the
curves in Fig. 7c is plotted in Fig. 7b as a bar graph for ease
of comparison. Both Fig. 7b and Fig. 7a seem to indicate that
the inhibition of PI3K/mTOR pathway amplifies the effect
of CT and helps overcome TRAIL resistance.

3.5 HIF1α is a key intervention point in OS pathways

The third experiment was performed with Cryptotanshi-
none with two drugs at a time. All the drug combinations
in this experiment have Cryptotanshinone and HO-3867 (a
STAT3 inhibitor) in the mix. Fig 8a shows the theoretical
efficacies of the drug combinations. The simulation results
predict that the combination of CT with PX-478 will be more
effective than CT alone. The drug combinations CT, CT +
HO-3867 and CT + HO-3867 + SH-4-54 all have the same
theoretical efficacy. This can be explained by the fact that
both the drugs, HO-3867 and SH-4-54, inhibit STAT3 and do
not have any other targets in the osteosarcoma pathways.

The cellular apoptosis occurring in ABRAMS OS cells
with respect to time is displayed in Fig 8c. As seen in Fig 8c,
all drug combinations successfully induce cell death in the
OS cells. The biological experiment shows that the action
of CT is slightly enhanced by PX-478. The best performing
combination is CT with HO-3867 and SH-4-54. The area
under the curve for each of the curves in Fig. 8c is plotted
in Fig. 8b as a bar graph for ease of comparison.

The results of this experiment show that inhibition of
HIF1α could enhance the activity of CT. The Boolean model
predicts that the combination of CT with PX-478 is the best
combination with two drugs at a time, which implies that
HIF1α is a significant intervention point in OS treatment.

3.6 Prediction of Drug Efficacies

The final simulation was performed to test the effect of all
possible combinations of faults and drugs with and without
Cryptotanshinone. Fig. 9a shows all the drug combinations
containing CT and Fig. 9b considers the possible combina-
tions of drugs without CT. The cells that are green indicate
high levels of apoptosis (6.5) and the red cells denote low
levels of apoptosis (0.3). The fault-free value of apoptosis is
2.23 and with all the faults present, apoptosis drops down
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(a) (b)

(c)

Fig. 6. (a) Simulation results comparing the theoretical efficacy of LY294002 with the theoretical efficacy of CT. The model predicts that CT
outperforms LY294002. (b) Area under the curve in Fig. 6c. (c) Experimental results comparing the cellular apoptosis induced by LY294002 and CT.
CT outperforms LY294002.

(a) (b)

(c)

Fig. 7. (a) Simulation results for the theoretical efficacy of each single drug in combination with Cryptotanshinone. CT+LY294002 is the best
performing drug combination. (b) Area under the curve in Fig. 7c. (c) Experimental results measuring the cellular apoptosis induced by each single
drug in combination with CT. All combinations with CT successfully kill ABRAMS OS cells.
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(a) (b)

(c)

Fig. 8. (a) Simulation results comparing the theoretical efficacy of PX478 in combination with CT and HO-3867 and of SH-4-54 in combination with
CT and HO-3867. The model predicts that the apoptosis ratios of CT, CT+HO and CT+HO+SH will be the same. The best performing combination
is CT+HO+PX. (b) Area under the curve in Fig. 8c. (c) Experimental results comparing the cellular apoptosis induced by PX478 in combination with
both CT and HO-3867 and by SH-4-54 in combination with both CT and HO-3867. All combinations successfully kill ABRAMS OS cells.

(a) (b)

Fig. 9. (a) Drug Combinations with Cryptotanshinone. (b) Drug combinations without Cryptotanshinone.
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to 0.9. Fig 9b has several red cells, implying that most of the
conventional drug combinations fail to induce apoptosis.
Without CT, 30% of the drug-fault combinations have a
low value of apoptosis (less than 1) and only 38% have a
value greater than 2. Fig. 9a has no red cells, which implies
that no combination with CT in mix has an apoptosis ratio
lower than 1. With Cryptotanshinone, 66% of the drug-fault
combinations have a high theoretical efficacy (greater than
2) and the remaining 34% manage to induce apoptosis in
osteosarcoma cells with low theoretical efficacy. Our model
predicts that every combination with CT should be able to
increase TRAIL sensitivity and induce robust cell death in
OS cells despite the presence of faults. For a detailed view
of the Figures 9a and 9b, refer to the supplementary files.

4 CONCLUSION

We modeled the induction of apoptosis by Cryptotanshi-
none in OS using a Boolean network. The effects of Cryp-
totanshinone in combination with other drugs were eval-
uated. The PI3K/mTOR pathway plays an important role
in decreasing TRAIL sensitivity in OS. The results of the
simulation indicate HIF1α as a key intervention point in in-
ducing apoptosis in OS cell lines. The theoretically predicted
efficacies seem to be in agreement with the experimental
results that the action of Cryptotanshinone is enhanced by
the drug combinations studied in this paper. Our work
shows that the herbal drug Cryptotanshinone is a strong
candidate for osteosarcoma treatment.

5 FUTURE WORK

Although we only studied the effect of CT on canine OS
cells, the Boolean network model can be used to predict the
efficacies of existing and new drugs for human osteosar-
coma treatment. New drug combinations can be explored
and tested using this model without the overhead of ex-
perimentation. Existing biological knowledge is reflected
in the Boolean network, and changes or additions to the
network can be made easily as and when new knowledge
is unearthed. One of the drawbacks of this Boolean network
model is it cannot differentiate between drugs with the same
genetic targets. However, the Boolean network can be used
to identify the genetic target as a key intervention point for
therapy.

After the promising results of the in silico modeling
are verified by the in vitro experiments on osteosarcoma
cell lines, the next step in the drug development process is
to prove the efficacy of the drug in a live animal model.
The best performing combinations with and without CT
can be tested on a mouse model. Further steps would be
to experimentally evaluate if the drug combinations are
successful when applied to tumor xenografts implanted in
mice. The results of the animal model, if successful, would
prove the efficacy of CT to induce death in vivo and could
serve as the platform based on which Cryptotanshinone
could potentially be taken to clinical trials on dogs and on
humans.

APPENDIX A
OSTEOSARCOMA BOOLEAN NETWORK MODEL

The simulations were implemented using Python 2.7. The
materials supporting the conclusion of this article can
be found in the CodeOcean repository https://codeocean.
com/capsule/4955422/tree.
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