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Abstract

Today’s data science pipelines often rely on user-defined functions
(UDFs) written in Python. But interpreted Python code is slow, and
Python UDFs cannot be compiled to machine code easily.

We present Tuplex, a new data analytics framework that just-
in-time compiles developers’ natural Python UDFs into efficient,
end-to-end optimized native code. Tuplex introduces a novel dual-
mode execution model that compiles an optimized fast path for the
common case, and falls back on slower exception code paths for data
that fail to match the fast path’s assumptions. Dual-mode execution
is crucial to making end-to-end optimizing compilation tractable:
by focusing on the common case, Tuplex keeps the code simple
enough to apply aggressive optimizations. Thanks to dual-mode ex-
ecution, Tuplex pipelines always complete even if exceptions occur,
and Tuplex’s post-facto exception handling simplifies debugging.

We evaluate Tuplex with data science pipelines over real-world
datasets. Compared to Spark and Dask, Tuplex improves end-to-end
pipeline runtime by 5-91X and comes within 1.1-1.7X of a hand-
optimized C++ baseline. Tuplex outperforms other Python compilers
by 6x and competes with prior, more limited query compilers. Op-
timizations enabled by dual-mode processing improve runtime by
up to 3%, and Tuplex performs well in a distributed setting.
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1 Introduction

Data scientists today predominantly write code in Python, as the
language is easy to learn and convenient to use. But the features that
make Python convenient for programming—dynamic typing, auto-
matic memory management, and a huge module ecosystem—come
at the cost of low performance compared to hand-optimized code
and an often frustrating debugging experience.

Python code executes in a bytecode interpreter, which interprets
instructions, tracks object types, manages memory, and handles ex-
ceptions. This infrastructure imposes a heavy overhead, particularly
if Python user-defined functions (UDFs) are inlined in a larger parallel
computation, such as a Spark [71] job. For example, a PySpark job
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over flight data [63] might convert a flight’s length from kilometers
to miles via a UDF after joining with a carrier table:

carriers = spark.read.load('carriers.csv')

fun = udf(lambda m: m * 1.609, DoubleType())

spark.read.load('flights.csv')
.join(carriers, 'code', 'inner'")
.withColumn('distance', fun('distance'))
.write.csv('output.csv')

This code will load data and execute the join using Spark’s compiled
Scala operators, but must execute the Python UDF passed to the
withColumn operator in a Python interpreter. This requires passing
data between the Python interpreter and the JVM [41], and prevents
generating end-to-end optimized code across the UDFs. For exam-
ple, an optimized pipeline might apply the UDF to distance while
loading data from flights.csv, which avoids an extra iteration. But
the lack of end-to-end code generation prevents this optimization.
Could we instead generate native code (e.g., C++ code or LLVM
IR) from the Python UDF and optimize it end-to-end with the rest
of the pipeline? Unfortunately, this is not feasible today. Generating,
compiling, and optimizing code ahead-of-time that handles all possi-
ble code paths through a Python program is not tractable because of
the complexity of Python’s dynamic typing. Dynamic typing (“duck
typing”) requires that code always be prepared to handle any type:
while the above UDF expects a numeric value for m, it may actually
receive an integer, a float, a string, a null value, or even a list. The
interpreter has to handle these possibilities through extra checks
and exception handlers, but the sheer number of cases to deal with
makes it difficult to compile optimized code even for this simple UDF.
Tuplex is a new analytics framework that generates optimized
end-to-end native code for pipelines with Python UDFs. Its key in-
sight is that targeting the common case simplifies code generation.
Developers write Tuplex pipelines using a LINQ-style API similar to
PySpark’s and use Python UDFs without type annotations. Tuplex
compiles these pipelines into efficient native code with a new dual
mode execution model. Dual-mode execution separates the common
case, for which code generation offers the greatest benefit, from
exceptional cases, which complicate code generation and inhibit op-
timization but have minimal performance impact. Separating these
cases and leveraging the regular structure of LINQ-style pipelines
makes Python UDF compilation tractable, as Tuplex faces a simpler
and more constrained problem than a general Python compiler.
Making dual-mode processing work required us to overcome
several challenges. First, Tuplex must establish what the common
case is. Tuplex’s key idea is to sample the input, derive the common
case from this sample, and infer types and expected cases across the
pipeline. Second, the behavior of Tuplex’s generated native code
must match a semantically-correct Python execution in the inter-
preter. To guarantee this, Tuplex separates the input data into two
row classes: those for which the native code’s behavior is identical to
Python’s, and those for which it isn’t and which must be processed
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in the interpreter. Third, Tuplex’s generated code must offer a fast
bail-out mechanism if exceptions occur within UDFs (e.g., a division
by zero), and resolve these in line with Python semantics. Tuplex
achieves this by adding lightweight checks to generated code, and
leverages the fact that UDFs are stateless to re-process the offending
rows for resolution. Fourth, Tuplex must generate code with high
optimization potential but also achieve fast JIT compilation, which
it does using tuned LLVM compilation.

Dual mode processing enables compilation, but has another big
advantage: it can help developers write more robust pipelines that
never fail at runtime due to dirty data or unhandled exceptions. Tu-
plex detects exception cases, resolves them via slow-path execution
if possible, and presents a summary of the unresolved cases to the
user. This helps prototype data wrangling pipelines, but also helps
make production pipelines more robust to data glitches.

The focus of this paper is primarily on multi-threaded processing
on a single server, but Tuplex is a distributed system, and we show
results for a preliminary backend based on AWS lambda functions.
In summary, we make the following principal contributions:

(1) We combine ideas from query compilation with speculative
compilation techniques in the dual-mode processing model
for data analytics: an optimized common-case code path pro-
cesses the bulk of the data, and a slower fallback path handles
rare, non-conforming data without inhibiting optimization.

(2) We observe that data analytics pipelines with Python UDFs—
unlike general Python programs—have sufficient structure
to make compilation without type annotations feasible.

(3) We build and evaluate Tuplex, the first data analytics system
to embed a Python UDF compiler with a query compiler.

We evaluated our Tuplex prototype over real-world datasets, in-
cluding Zillow real estate adverts, a decade of U.S. flight data [63],
and web server logs from a large university. Tuplex outperforms
single-threaded Python and Pandas by 5.8-18.7%, and parallel Spark
and Dask by 5.1-91x (§6.1). Tuplex outperforms general-purpose
Python compilers by 6-24X%, and its generated code comes within
2% of the performance of Weld [50] and Hyper [25] for pure query
execution time, while achieving 2-7x faster end-to-end runtime in a
realistic data analytics setting (§6.3). Tuplex’s dual-mode processing
facilitates end-to-end optimizations that improve runtime by up to
3% over simple UDF compilation (§6.4). Finally, Tuplex performs
well on a single server and distributedly across a cluster of AWS
Lambda functions (§6.5); and anecdotal evidence suggests that it
simplifies the development and debugging of data science pipelines
(§7). Tuplex is open-source at https://tuplex.cs.brown.edu.

2 Background and Related Work

Many prior attempts to speed up data science via compilation or to
compile Python to native code exist, but they fall short of the ideal
of compiling end-to-end optimized native code from UDFs written
in natural Python. We discuss key approaches and systems in the
following; Table 1 summarizes the key points.

Python compilers. Building compilers for arbitrary Python pro-
grams, which lack the static types required for optimizing compila-
tion, is challenging. PyPy [55] reimplements the Python interpreter
in a compilable subset of Python, which it JIT-compiles via LLVM
(i.e. it creates a self-compiling interpreter). GraalPython [48] uses

the Truffle [23] language interpreter to implement a similar approach
while generating JVM bytecode for JIT compilation. Numba [30]
JIT-compiles Python bytecode for annotated functions on which
it can perform type inference; it supports a subset of Python and
targets array-structured data from numeric libraries like NumPy [2].

All of these compilers either myopically focus on optimizing
hotspots without attention to high-level program structure, or are
limited to a small subset of the Python language (e.g., numeric code
only, no strings or exceptions). Pyston [39] sought to create a full
Python compiler using LLVM, but faced memory management and
complexity challenges [38], and offers only a 20% performance gain
over the interpreter in practice [40].

Python transpilers. Other approaches seek to cross-compile
Python into other languages for which optimizing compilers exist.
Cython [4] unrolls the CPython interpreter and a Python module
into C code, which interfaces with standard Python code. Nuitka [16]
cross-compiles Python to C++ and also unrolls the interpreter when
cross-compilation is not possible. The unrolled code represents a spe-
cific execution of the interpreter, which the compiler may optimize,
but still runs the interpreter code, which compromises performance
and inhibits end-to-end optimization.

Data-parallel IRs. Special-purpose native code in libraries like
NumPy can speed up some UDFs [22], but such pre-compiled code
precludes end-to-end optimization. Data-parallel intermediate rep-
resentations (IRs) such as Weld [50] and MLIR [31] seek to address
this problem. Weld, for example, allows cross-library optimization
and generates code that targets a common runtime and data repre-
sentation, but requires libraries to be rewritten in Weld IR. Rather
than requiring library rewrites, Mozart [51] optimizes cross-function
data movement for lightly-annotated library code. All of these lack a
general Python UDF frontend, assume static types, and lack support
for exceptions and data type mismatches.

Query compilers. Query compilers turn SQL into native code [1,
27,58, 60, 72], and some integrate with frameworks like Spark [12].
The primary concern of these compilers is to iterate efficiently over
preorganized data [26, 59], and all lack UDF support, or merely pro-
vide interfaces to call precompiled UDFs written e.g. in C/C++.

Simple UDF compilers. UDF compilation differs from tradi-
tional query compilation, as SQL queries are declarative expressions.
With UDFs, which contain imperative control flow, standard tech-
niques like vectorization cannot apply. While work on peeking inside
imperative UDFs for optimization exists [18], these strategies fail
on Python code. Tupleware [6] provides a UDF-aware compiler that
can apply some optimizations to black-box UDFs, but its Python
integration relies on static type inference via PYLLVM [17], and it
lacks support for common features like optional (None-valued) inputs,
strings, and exceptions in UDFs. Tuplex supports all of these.

Exception handling. Inputs to data analytics pipelines often
include “dirty” data that fails to conform to the input schema. This
data complicates optimizing compilation because it requires checks
to detect anomalies and exception handling logic. Load reject files [8,
37, 54] help remove ill-formed inputs, but they solve only part of
the problem, as UDFs might themselves encounter exceptions when
processing well-typed inputs (e.g., a division by zero, or None values).
Graal speculatively optimizes for exceptions [11] via polymorphic
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System Class Examples

Limitations

Tracing JIT Compilers PyPy [55], Pyston [39]

Special Purpose JIT Compilers

Glow [56
Python Transpilers Cython [4], Nuitka [16]
Data-parallel IRs Weld [50], MLIR [31]
SQL Query Compilers Flare [12], Hyper [45]
Simple UDF Compiler Tupleware [6]

Require tracing to detect hotspots, cannot reason about high-level program structure,
generated code must cover full Python semantics (slow).

Numba [30], XLA [32], | Only compile well-formed, statically typed code, enter interpreter otherwise; use
1 their own semantics, which often deviate from Python’s.

Unrolled interpreter code is slow and uses expensive Python object representation.
No compilation from Python; static typing and lack exception support.
No Python UDF support.

Only supports UDFs for which types can be inferred statically, only numerical types,
no exception support, no polymorphic types (e.g., NULL values).

Table 1: Classes of existing systems that compile data analytics pipelines or Python code. All have shortcomings that either
prevent full support for Python UDFs, or prevent end-to-end optimization or full native-code performance.

inline caches—an idea also used in the V8 JavaScript engine—but
the required checks and guards impose around a 30% overhead [10].
Finally, various dedicated systems track the impact of errors on mod-
els [28] or provide techniques to compute queries over dirty data [66,
68], but they do not integrate well with compiled code.

Speculative processing. Programming language research on
speculative compilation pioneered native code performance for
dynam-ically-typed languages. Early approaches, like SELF [5], com-
piled multiple, type-specialized copies of each control flow unit (e.g.,
procedure) of a program. This requires variable-level speculation
on types, and results in a large amount of generated code. State-of-
the-art tracing JITs apply a dynamic variant of this speculation and
focus on small-scale “hot” parts of the code only (e.g., loops).

A simpler approach than trying to compile general Python is to
have Python merely act as a frontend that calls into a more efficient
backend. Janus [19, 20] applies this idea to TensorFlow, and Snek [9]
takes it one step further by providing a general mechanism to trans-
late imperative Python statements of any framework into calls to a
framework’s backend. While these frameworks allow for imperative
programming, the execution can only be efficient for Python code
that maps to the operators offered by the backend. To account for
Python’s dynamic types, such systems may have to speculate on
which backend operators to call. In addition, the backend’s APIs
may impose in-memory materialization points for temporary data,
which reduce performance as they add data copies.

In big data applications, efficient data movement is just as impor-
tant as generating good code: better data movement can be sufficient
to outperform existing JIT compilers [51]. Gerenuk [44] and Sky-
way [46] therefore focus on improving data movement by special-
izing serialization code better within the HotSpot JVM.

Tuplex. In Tuplex, UDFs are first-class citizens and are compiled
just-in-time when a query executes. Tuplex solves a more specialized
compilation problem than general Python compilers, as it focuses on
UDFs with mostly well-typed, predictable inputs. Tuplex compiles a
fast path for the common-case types (determined from the data) and
expected control flow, and defers rows not suitable for this fast path
to slower processing (e.g., in the interpreter). This simplifies the task
sufficiently to make optimizing compilation tractable.

Tuplex supports natural Python code rather than specific libraries
(unlike Weld or Numba), and optimizes the full end-to-end pipeline,
including UDFs, as a single program. Tuplex generates at most three
different code paths to bound the cost of specialization (unlike SELF);

and it speculates on a per-row basis, compared to a per-variable basis
in SELF and whole-program speculation in Janus. Tuplex uses the
fact that UDFs are embedded in a LINQ-style program to provide
high-level context for data movement patterns and to make compila-
tion tractable. Finally, Tuplex makes exceptions explicit, and handles
them without compromising the performance of compiled code:
it collects exception-triggering rows and batches their processing,
rather than calling the interpreter from the fast path.

3 Tuplex Overview

Tuplex is a data analytics framework with a similar user experience
to e.g., PySpark, Dask, or DryadLINQ [70]. A data scientist writes a
processing pipeline using a sequence of high-level, LINQ-style oper-
ators such as map, filter, or join, and passes UDFs as parameters to
these operators (e.g., a function over a row to map). E.g., the PySpark
pipeline shown in §1 corresponds to the Tuplex code:

c = tuplex.Context()

carriers = c.csv('carriers.csv')
c.csv('flights.csv')

.join(carriers, 'code', 'code')
.mapColumn('distance', lambda m: m * 1.609)
.tocsv('output.csv')

Like other systems, Tuplex partitions the input data (here, the CSV
files) and processes the partitions in a data-parallel way across mul-
tiple executors. Unlike other frameworks, however, Tuplex compiles
the pipeline into end-to-end optimized native code before execu-
tion starts. To make this possible, Tuplex relies on a dual-mode
processing model structured around two distinct execution modes:

(1) an optimized, normal-case execution; and

(2) an exception-case execution.
To establish what constitutes the normal case, Tuplex samples the in-
put data and, based on the sample, determines the expected types and
control flow of the normal-case execution. Tuplex then uses these
assumptions to generate and optimize code to classify a row into
normal or exception cases, and specialized code for the normal-case
execution. It lowers both to optimized machine code via LLVM.

Tuplex then executes the pipeline. The generated classifier code
performs a single, cheap initial check on each row to determine if
it can proceed with normal-case execution. Any rows that fail this
check are placed in an exception pool for later processing, while the
majority of rows proceed to optimized normal-case execution. If any
exceptions occur during normal-case execution, Tuplex moves the
offending row to the exception pool and continues with the next row.
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Finally, after normal-case processing completes, Tuplex attempts to
resolve the exception-case rows. Tuplex automatically resolves some
exceptions using general, but slower code or using the Python in-
terpreter, while for other exceptions it uses (optional) user-provided
resolvers. If resolution succeeds, Tuplex merges the result row with
the normal-case results; if resolution fails, it adds the row to a pool
of failed rows to report to the user.

In our example UDF, a malformed flight row that has a non-
numeric string in the distance column will be rejected and moved to
the exception pool by the classifier. By contrast, a row with distance
set to None, enters normal-case execution if the sample contained a
mix of non-None and None values. However, the normal-case execu-
tion encounters an exception when processing the row and moves
it to the exception pool. To tell Tuplex how to resolve this particular
exception, the pipeline developer can provide a resolver:

# ...
.join(carriers, 'code', 'code')
.mapColumn('distance', lambda m: m x 1.609)
.resolve(TypeError, lambda m: 0.0)

# ...

Tuplex then merges the resolved rows into the results. If no resolver
is provided, Tuplex reports the failed rows separately.

4 Design

Tuplex’s design is derived from two key insights. First, Tuplex can
afford slow processing for exception-case rows with negligible im-
pact on overall performance if such rows are rare, which is the case
if the sample is representative. Second, specializing the normal-case
execution to common-case assumptions simplifies the generated
logic by deferring complexity to the exception case, which makes
JIT compilation tractable and allows for aggressive optimization.

4.1 Abstraction and Assumptions

Tuplex’s UDFs contain natural Python code, and Tuplex must ensure
that their execution behaves exactly as it would have in a Python
interpreter. We make only two exceptions to this abstraction. First,
Tuplex never crashes due to unhandled top-level exceptions, but

instead emulates an implicit catch-all exception handler that records
unresolved (“failed”) rows. Second, Tuplex assumes that UDFs are
pure and stateless, meaning that their repeated execution (on the
normal and exception paths) has no observable side-effects.

The top-level goal of matching Python semantics influences Tu-
plex’s design and implementation in several important ways, guiding
its code generation, execution strategy, and optimizations.

4.2 Establishing the Normal Case

The most important guidance for Tuplex to decide what code to gen-
erate for normal-case execution comes from the observed structure of
a sample of the input data. Tuplex takes a sample of configurable size
every time a pipeline executes, and records statistics about structure
and data types in the sample, as follows.

Row Structure. Input data may be dirty and contain different
column counts and column orders. Tuplex counts the columns in
each sample row, builds a histogram and picks the prevalent column
structure as the normal case.

Type Deduction. For each sample row, Tuplex deducts each col-
umn type based on a histogram of types in the sample. If the input
consists of typed Python objects, compiling the histogram is simple.
If the input is text (e.g., CSV files), Tuplex applies heuristics. For
example, numeric strings that contain periods are floats, integers
that are always zero or one and the strings “true” and “false” are
booleans, strings containing JSON are dictionaries, and empty values
or explicit “NULL” strings are None values. If Tuplex cannot deduce
a type, it assumes a string. Tuplex then uses the most common type
in the histogram as the normal-case type for each column (except
for null values, described below).

This data-driven type deduction contrasts with classic, static type
inference, which seeks to infer types from program code. Tuplex
uses data-driven typing because Python UDFs often lack sufficient
information for static type inference without ambiguity, and because
the actual type in the input data may be different from the devel-
oper’s assumptions. In our earlier example (§3), for instance, the
common-case type of mmay be int rather than float.

For UDFs with control flow that Tuplex cannot annotate with
sample-provided input types, Tuplex uses the AST of the UDF to
trace the input sample through the UDF and annotates individual
nodes with type information. Then, Tuplex determines the common
cases within the UDF and prunes rarely visited branches. For exam-
ple, Python’s power operator () can yield integer or float results,
and Tuplex picks the common case from the sample trace execution.

Option types (None). Optional column values (i.e, “nullable”) are
common in real-world data, but induce potentially expensive logic
in the normal case. Null-valued data corresponds to Python’s None
type, and a UDF must be prepared for any input variable (or nested
data, e.g., in a list-typed row) to potentially be None. To avoid having
to check for None in cases where null values are rare, Tuplex uses the
sample to guide specialization of the normal case. If the frequency
of null values exceeds a threshold §, Tuplex assumes that None is the
normal case; and if the frequency of null values is below 1—38, Tuplex
assumes that null values are an exceptional case. For frequencies in
(1-46,6), Tuplex uses a polymorphic optional type and generates
code for the necessary checks.



4.3 Code Generation

Having established the normal case types and row structure using
the sample, Tuplex generates code for compilation. At a high level,
this involves parsing the Python UDF code in the pipeline, typing
the abstract syntax tree (AST) with the normal-case types, and gen-
erating LLVM IR for each UDF. The type annotation step is crucial
to making UDF compilation tractable, as it reduces the complexity
of the generated code: instead of being prepared to process any type,
the generated code can assume a single static type assignment.

In addition, Tuplex relies on properties of the data analytics set-
ting and the LINQ-style pipeline API to simplify code generation
compared to general, arbitrary Python programs:

(1) UDFs are “closed” at the time the high-level API operator (e.g.,
map or filter) is invoked, i.e., they have no side-effects on
the interpreter (e.g., changing global variables or redefining
opcodes).

(2) The lifetime of any object constructed or used when a UDF
processes a row expires at the end of the UDF, i.e., there is no
state across rows (except as maintained by the framework).

(3) The pipeline structures control flow: while UDFs may con-
tain arbitrary control flow, they always return to the calling
operator and cannot recurse.

Tuplex’s generated code contains a row classifier, which processes
all rows, and two code paths: the optimized normal-case code path,
and a general-case code path with fewer assumptions and optimiza-
tions. The general-case path is part of exception-case execution, and
Tuplex uses it to efficiently resolve some exception rows.

Row Classifier. Tuplex must classify all input rows according to
whether they fit the normal case. Tuplex generates code for this clas-
sification: it checks if each column in a row matches the normal-case
structure and types, and directly continues processing the row on
the normal-case path if so. If the row does not match, the generated
classifier code copies it out to the exception row pool for later pro-
cessing. This design ensures that normal-case processing is focused
on the core UDF logic, rather including exception resolution code
that adds complexity and disrupts control flow.

Code Paths. All of Tuplex’s generated code must obey the top-
level invariant that execution must match Python semantics. Tuplex
traverses the Python AST for each UDF and generates matching
LLVM IR for the language constructs it encounters. Where types
are required, Tuplex instantiates them using the types derived from
the sample, but applies different strategies in the normal-case and
general-case code. In the normal-case code, Tuplex assumes the
common-case types from the sample always hold and emits no logic
to check types (except for the option types used with inconclusive
null value statistics, which require checks). The normal-case path
still includes code to detect cases that trigger exceptions in Python:
e.g., it checks for a zero divisor before any division.

By contrast, the general-case path always assumes the most gen-
eral type possible for each column. For example, it includes option
type checks for all columns, as exception rows may contain nulls
in any column. In addition, the general-case path embeds code for
any user-provided resolvers whose implementation is a compilable
UDF. But it cannot handle all exceptions, and must defer rows from
the exception pool that it cannot process. The general-case path
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Figure 2: Tuplex’s exception case consists of a compiled
general path and a fallback path that invokes the Python
interpreter. Exceptions (red) move rows between code paths.

therefore includes logic that detects these cases, converts the data
to Python object format, and invokes the Python interpreter inline.

Tuplex compiles the pipeline of high-level operators (e.g., map,
filter) into stages, similar to Neumann [45], but generates up to
three (fast, slow, and interpreter) code paths. Tuplex generates LLVM
IR code for each stage’s high-level operators, which call the LLVM
IR code previously emitted for each UDF. At the end of each stage,
Tuplex merges the rows produced by all code paths.

Memory Management. Because UDFs are stateless functions,
only their output lives beyond the end of the UDF. Tuplex therefore
uses a simple slab allocator to provision memory from a thread-local,
pre-allocated region for new variables within the UDF, and frees the
entire region after the UDF returns and Tuplex has copied the result.

Exception handling. To simulate a Python interpreter execu-
tion, the code Tuplex generates and executes for a row must have no
observable effects that deviate from complete execution in a Python
interpreter. While individual code paths do not always meet this in-
variant, their combination does. Tuplex achieves this via exceptions,
which it may generate in three places: when classifying rows, on the
normal-case path, and on the general-case code path. Figure 2 shows
how exceptions propagate rows between the different code paths.

Rows that fail the row classifier and those that generate exceptions
on the normal-case code path accumulate in the exception row pool.
When Tuplex processes the exception row pool, it directs each row
either to the general-case code path (if the row is suitable for it) or
calls out to the Python interpreter. Any rows that cause exceptions
on the general-case path also result in a call into the interpreter.
An interpreter invocation constitutes Tuplex’s third code path, the
fallback code path. It starts the UDF over, running the entire UDF
code over a Python object version of the row. Finally, if the pipeline
developer provided any resolvers, compilable resolvers execute on
the general-case code path, and all resolvers execute on the fallback
path. If the fallback path still fails, Tuplex marks the row as failed.

Consequently, Tuplex may process a row a maximum of three
times: once on the normal-case path, once on the general-case path,
and once on the fallback path. In practice, only a small fraction of
rows are processed more than once.

4.4 Execution

Tuplex executes pipelines similar to a typical data analytics frame-
work, although customized to handle end-to-end UDF compilation.



Tuplex has a logical planner, which applies logical optimizations
(e.g., operator reordering and filter pushdown); a physical planner,
which splits the pipeline execution into distinct stages; and a UDF
compiler, which handles the actual code generation. However, the
typing requirements of Tuplex’s dual-mode processing model per-
meate all these components. For example, the logical planner also
types the UDFs according to the normal-case types deduced from
the sample in order to allow for type-aware logical optimizations.

Stages. A stageis a sequence of operators, including UDFs, that
is bounded on either side by an operator that consumes materialized
data from memory or requires generating it. Examples of such op-
erators include inputs, joins, aggregations, and outputs. Stages are
also the unit of code generation: Tuplex generates and executes a
normal-case and an exception-case code path for each stage. The ma-
terialized output of a stage may initially consist only of normal-case
result rows, though some operators require immediate production
and materialization of resolved exception-case rows too (see §4.5).

Tuplex delineates stages similarly to HyPer [45]. Tuplex makes
stages as long as possible to facilitate compiler optimizations, and
so that rows are processed through many UDFs while in CPU cache.
Ideally, most input rows proceed through a single, highly-optimized
stage that ends with the pipeline’s materialized output.

4.5 Joins

Tuplex uses a hash join, which materializes records on one side of
the join (the “build” side) and streams rows on the other side to look
up into the hash table. Tuplex chooses the smaller side as the build
side and terminates a stage at the materialized join input.

This standard design, however, requires adaptation for dual-mode
processing. A classic data-parallel join works because the data on
both sides of the join is partitioned by the same key. For join A»<B
between relations A and B, it suffices to join each A; > B;. But in
dual-mode execution, each partition of A is itself split into normal-
case rows NC(A;) and exception-case rows EC(A;), and likewise for
B. For correct results, Tuplex must compute each pairwise join:

NC(A;)»=NC(B;) U NC(A;)»<EC(B;) U
EC(A;)»NC(B;) U EC(A;)»EC(B;)

To compute the joins between normal-case and exception-case rows,
Tuplex would have to execute all three code paths for both join in-
puts and materialize the input rows in memory. This conflicts with
the goal of long stages that keep caches hot on the normal path
and avoid unnecessary materialization. Instead, Tuplex executes all
code paths for the build side of the join and resolves its exception
rows before executing any code path of the other side. If the build
side is B and the result of resolving exception rows of B; is R(B;)=
NC(B;) U resolve(EC(B;)), Tuplex then executes NC(A;)><R(B;) as
part of a longer stage and without materializing NC(A;).

4.6 Aggregates

Dual-mode processing works for aggregations as long as the aggre-
gation function is associative. Tuplex separately aggregates normal-
case rows and, subsequently, exception-case rows via the general
and fallback code paths; in a final merge step, it combines the partial
aggregates into a final result. This merging of partial aggregates
happens at the end of the stage after resolving exception rows.

Aggregations are compatible with Tuplex’s assumption that UDFs
are stateless, as the framework tracks the accumulated state across
rows. To make this work, the aggregation operator needs to take a
UDF with a row argument and an accumulator argument, and return
an updated accumulator. For example, . aggregate’s UDF signature
is lambda acc, r: acc + r['col'], where acc is an accumulator (e.g.,
an integer, a list or a more complicated object like a nested tuple
or dictionary). Tuplex’s runtime is responsible for managing the
memory of acc, and the UDF remains stateless.

4.7 Optimizations
Tuplex applies several optimizations to the normal-case path.

Logical optimizations. Pushing selective operators (e.g., filters,
projections) to the start of the pipeline is a classic database optimiza-
tion. Yet, systems that treat Python UDFs as black box operators
cannot apply this optimization across UDFs. Tuplex’s logical planner
analyzes UDFs’ Python ASTs to determine which input objects are
preserved, dropped, and modified by each UDF. Based on this knowl-
edge, Tuplex then reorders operators to preserve columns only as
long as needed. Another, more complex optimization pushes UDFs
that modify a column past any operators and UDFs that do not read
it. This helps e.g., push UDFs that rewrite non-key columns below
joins, which is a good choice if the join is selective. Crucially, this
optimization is possible because Tuplex analyzes the Python UDFs.

UDF-specific optimizations. Tuplex applies standard compiler
optimizations like constant folding to Python UDFs. In addition, Tu-
plex applies optimizations specific to UDFs as part of a LINQ-style
pipeline. For example, Tuplex rewrites dictionaries with string keys
known at compile time into tuples (avoiding string operations); Tu-
plex flattens nested tuples to avoid pointer indirection; and Tuplex
optimizes for the common case in nullable values, i.e., column types
can get specialized to NULL, Option[T] or T.

Code generation optimizations. On the normal-case path, Tu-
plex removes any code related to types that it classified as excep-
tions. Consider, for example, lambda m: m x 1.609 if m else 0.0: with
an input sample of mostly non-null floats, Tuplex removes code for
integer-to-float conversion, null checks, and the else branch from
the normal-case path. This reduces the generated code from 17 LLVM
IR instructions (5 basic blocks) to 9 IR instructions (1 basic block). If
the common-case input is null, Tuplex simplifies the normal-case
path to 3 IR instructions that return zero.

Compiler optimizations. Once Tuplex has generated LLVM IR
for the normal-case path, it applies several LLVM optimizer passes to
the code. In particular, we use the Clang 9.0 pass pipeline equivalent
to -03 which are applied for all UDFs and operators inside a stage.

However, since Tuplex’s generated code must match Python se-
mantics, not all compiler optimizations are valid. For example, some
optimizations to speed up floating point math (equivalent to the
-ffast-math C compiler flag) change the handling of NaN values in
ways that fail to match Python. Tuplex avoids these optimizations.

5 Implementation

We implemented a prototype of Tuplex in about 65k lines of C++.
Our prototype uses LLVM 9’s ORC-JIT to compile the generated
LLVMIR code at runtime. It is implemented as a C-extension (shared
library) which users import as a Python module or from a Jupyter



Dataset Size Rows Columns Files

Zillow 100GB  48.7M 10 1

. 50CB  140M 10 2
Flights 304GB  69.0M 10 120
Logs 756GB_ 715.0M 1 3797
311 12GB  197.6M 1 1
TPC-H(SF=10) 15GB  59.9M 4 1

Table 2: Dataset overview (smaller join tables excluded).

Notebook. Tuplex provides a shell in CPython interactive mode and
a web Ul with a history server, which developers can use to inspect
their pipelines’ execution and any failed rows generated.

Multithreaded Execution. On a single server, our prototype
runs executors in a thread pool. Executors process input data parti-
tions in individual tasks, which run identical code. Each thread has its
own bitmap-managed block manager for memory allocation. When
invoking the fallback path, Tuplex acquires the global interpreter
lock (GIL) of the parent Python process.

Distributed Execution. Tuplex’s techniques apply both on a
single server and in a distributed setting, where many servers pro-
cess parts of the input data in parallel. For datasets that require this
scale-out data parallelism, our prototype supports executing indi-
vidual processing tasks in serverless AWS Lambda functions over
data stored in S3. Tuplex divides each stage into many data-parallel
tasks and runs each task in a Lambda function, which reads its input
from S3 and writes its output back to S3. The driver machine gener-
ates LLVM IR, initiates, and supervises the Lambdas. Each Lambda
receives the LLVM IR code of its task from the driver, lowers the IR
to machine code, and executes the machine code over its input data.

Exceptionhandling. Tupleximplements exception controlflow
on the normal-case and general-case paths via special return codes.
We found that this is 30% faster than the “zero-cost” Itanium ABI
exception handling [34], and allows more optimization than
setjmp/longjmp (SJLJ) intrinsics [35].

Limitations. Our prototype supports compiling optimized code
for many, but not all Python language features. The prototype cur-
rently supports compiling integer, float, string, and tuple operations,
as well as essential dictionary and list operations. UDFs can be passed
either as lambda functions or regular functions and may contain
optional type annotations. The prototype supports variables, simple
list comprehensions, control flow, random number generation, and
regular expressions. It does not yet support while loops, generator ex-
pression, try-except, sets, async expressions, classes, objects, nested
functions and external modules. For unsupported language features,
Tuplex falls back on running the UDF in the Python interpreter. We
believe that support for all missing core Python features could be
added to our prototype with additional engineering effort.

Our prototype also does not focus on external modules, which
could be compiled but often already come with their own native-
code backends. Linking Tuplex’s generated LLVM IR with the LLVM
IR code produced by library-oriented compilers such as Weld [50],
Numba [30] or Bohrium [29] should be feasible in future work.

6 Evaluation

We evaluate Tuplex with three representative pipelines and with
microbenchmarks of specific design features. Our experiments seek
to answer the following questions:

(1) What performance does Tuplex achieve for end-to-end data
science pipelines, compared to both single-threaded baselines
and widely-used parallel data processing frameworks? (§6.1)

(2) What is the cost of Tuplex’s code paths, and of exception
handling? (§6.2)

(3) How does Tuplex’s performance compare to off-the-shelf
Python compilers, such as PyPy, Cython, and Nuitka; and
to state-of-the-art query compilers, such as Weld [50] and
Hyper [25]? (§6.3)

(4) What factors affect Tuplex’s performance, and what is the
impact of optimizations enabled by Tuplex’s dual-mode pro-
cessing model? (§6.4)

(5) How does Tuplex perform when operating distributedly across
many servers? (§6.5)

Setup. In most experiments, Tuplex and other systems run on an
r5d.8xlarge Amazon EC2 instance (16-core Xeon Platinum 8259CL,
2.50 GHz; hyperthreads disabled) with 256 GB RAM, and 2 NVMe
SSDs. The input data is CSV-formatted UTF-8 text. We compare Tu-
plex against Dask (2021.03) and Spark (PySpark, v2.4.7) on Ubuntu
20.04. All systems use 16-way parallelism. All numbers are averages
of at least five runs with warmed-up OS caches.

Our focus is Tuplex’s performance on a multi-core server, a com-
mon medium-scale analytics setup [12]. But the systems we compare
against support scale-out across servers, so we also compare Tuplex’s
prototype AWS Lambda backend to Spark (§6.5).

6.1 End-to-End Performance

We measure Tuplex’s end-to-end performance using three data sci-
ence pipelines, and with the datasets shown in Table 2.

Zillow. Zillow is a real estate directory website whose listings
are uploaded by individual brokers. We scraped 38,570 Boston area
listings [57], scaled the data to 10 GB, and cleaned it for performance
experiments to avoid failures in Spark and Dask. The two queries
extract information like the number of bedrooms, bathrooms, and
the price from textual data and filter for all houses (Z1) or condos cur-
rently for sale (Z2). Each version involves eleven Python UDFs, which
perform value conversions, multiple substring extractions, and sev-
eral simple lookups, as well as filtering out implausible records. The
UDF’s operators can execute as a single, large pipelined stage.

Flights. We modeled this workload after a Trifacta tutorial [15]
and extended it by joining with additional airport and airline data
from other sources (743 KB [52] and 82 KB [62]). The pipeline has one
inner and two left joins, as well as UDFs to reconstruct values from
multiple columns which can’t be easily expressed in a SQL query.
We ran this pipeline on ten years (2009-2019) of CSV data [63].

Weblogs. Based on a Spark use case [7], this pipeline extracts
information from twelve years of Apache web server logs obtained
from a U.S. university. It converts the Apache log format into a rela-
tional representation, and retains records for potentially malicious
requests. We extended the original query by an inner join with a list
of bad IPs [43] and anonymize any personally-identifiable URLs by
replacing usernames (e.g., “~alice”) with random strings.

311and TPC-H. We use the Pandas cookbook [13] data cleaning
query for 311 service requests, which yields a set of unique ZIP codes,
to compare to Weld [50]. Finally, we also run microbenchmarks with
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Figure 3: Tuplex outperforms single-threaded and parallel
alternatives by 5.8xX-18.7x when running the Zillow pipeline
over 10G of input data, and comes close to hand-tuned C++.

TPC-H Q6 and Q19 to measure Tuplex’s performance compared to
Hyper [25], a state-of-the-art SQL query compiler.

6.1.1 Zillow: String-heavy UDFs. In this experiment, we com-
pare Tuplex to other frameworks using the Zillow pipeline. This
pipeline contains eleven UDFs, which use Python idioms for sub-
string search (e.g., "bd" in s, ors.find("bd")), string splitting, nor-
malization (s. lower()), and type conversions (int, float).

We consider two row representations: (i) as Python tuples, and (ii)
as Python dictionaries (hashmaps). The dictionary representation
simplifies code by using column names, but typically comes with
a performance overhead. Tuplex allows either representation and
compiles both representations into identical native code.

Single-threaded execution. We compare standard CPython
(v3.6.9), Pandas (v1.1.5), and hand-optimized C++ (via gec v10.2) and
Scala (v2.12.10) baselines to Tuplex configured with a single executor.
Tuplex’s end-to-end optimized code might offer an advantage over
CPython and Pandas, which call into individual native-code func-
tions (e.g., libc string functions) but cannot optimize end-to-end.
Tuplex should ideally come close to the hand-optimized C++.

Figure 3 shows our results. As expected, the CPython implemen-
tation with rows represented as dictionaries is substantially slower
(about 2x) than the tuple-based implementation. Pandas, perhaps
surprisingly, is about 5.5% slower than tuple-based CPython in Z1,
and 65% slower than tuple-based CPython in Z2. While Pandas ben-
efits from a faster CSV parser, an efficient data representation (numpy
arrays), and specialized native-code operators for numeric compu-
tation, its performance suffers because UDFs require converting
between numpy and Python data representations. Z2 filters fewer
rows early than Z1, which exacerbates this UDF-related cost. Fi-
nally, Tuplex completes processing in 33-43 seconds, a speedup of
5.8X-18.7x over the CPython and Pandas implementations. This
is 1.9% faster than a single-threaded baseline written in pure Scala,
and 1.3-1.7X slower than the hand-optimized C++ implementation.
However, this overstates Tuplex’s overhead: in Tuplex, the compute
part of Z1 (i.e., excluding I/O) takes 11.2s, 29% slower than the C++
implementation (8.7s); Z2 sees a 0.5% slowdown (19.8s vs. 19.7s).
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Figure 4: Tuplex achieves speedups of 7.6-24.6x over
PySparkSQL and Dask on the flights pipeline.

Data-parallel execution. Next, we benchmark Tuplex against
widely-used frameworks for parallel processing of large inputs: PyS-
park (v2.4.7) and Dask (2021.03). We configure each system for 16-
way parallelism: PySpark uses 16 JVM threads and 16 Python pro-
cesses for UDFs; Dask uses 16 worker processes; and Tuplex uses 16
executor threads. We benchmark PySpark both with RDDs [71] and
with the more efficient SparkSQL operators [3]. Neither PySpark nor
Dask compile UDFs to native code or optimize across UDFs, which
indicates that Tuplex should outperform them.

Figure 3 confirms that this is the case: Tuplex outperforms the
fastest PySpark setup by 15.5x and Dask by 7.5x in Z1. For Z2, Tuplex
is 14.5x faster, as the compiled UDFs process more rows. Compared
to the single-threaded execution, Tuplex achieves a speedup of 12.2x
when using 16 threads (for Z1). We also ran the pipeline in SparkSQL
with Scala UDFs rather than Python UDFs, which keeps computation
within the JVM and avoids overheads of calling into Python. Tuplex’s
end-to-end optimized code is still 5.8-7.1x faster.

These results confirm that Tuplex’s code generation and end-to-
end optimization offer performance gains for UDF-heavy pipelines.
In §6.3.1, we compare Tuplex to other Python compilers, and §6.4
drills down into the factors contributing to Tuplex’s performance.

6.1.2 Flights: Joins and Null Values. We repeat the compari-
son between Tuplex, Spark, and Dask for the flights pipeline. This
pipeline contains three joins, and the dataset has “sparse” columns,
i.e., columns that mostly contain null values, while others have oc-
casional null values complemented by extra columns (e.g., diverted
flights landing at a different airport). Tuplex infers the normal-case
null value status for each column from its sample, and defers the
more complicated logic needed to resolve exception rows to the
general-case code path. 2.6% of input rows violate the normal-case
and get handled by the general-case code path in Tuplex. Spark and
Dask handle null values inline in UDF execution, and we use PyS-
parkSQL, which compiles the query plan (though not the UDFs) into
JVM bytecode. Figure 4 shows the results for two years’ worth of
data (5.9 GB) and ten years (30.4 GB).

PySparkSQL outperforms Dask by 2.3-2.7X because of its com-
piled query plan and more efficient join operator. Tuplex, despite its
unoptimized join operator, still achieves a 7.6-9x speedup over PyS-
parkSQL (17.4-24.6x over Dask) because it compiles and merges the
UDFs, and processes the bulk of the data through a single, end-to-end
optimized stage (we break this down in §6.4.2).

6.1.3 LogProcessing:Regexand Randomness. We use the we-
blogs pipeline to investigate how Tuplex’s compiled code compares
to special-purpose operators designed to accelerate common UDF
functionality in existing frameworks. The pipeline splits an input
log line into columns, and then rewrites one of those columns with
arandom string if it matches a username pattern:
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Figure 5: Tuplex outperforms Spark and Dask by 5.1-91x on
the weblogs pipeline; all Tuplex variants perform similarly.
PySparkSQL only supports per-column regexes.

def randomize_udf(x):
r = [random_choice(LETTERS) for t in range(10)]
return re_sub('*/~[*/]+", '/~" + "' join(r), x)
We consider three settings for the log line splitting operation:

(1) natural Python using string operations (strip/split);

(2) per-column regular expressions; and

(3) asingle regular expression.

Natural Python requires UDFs in all systems, but we also wrote
an equivalent query using SparkSQL’s native string functions (i.e.,
the query executes entirely within the JVM). PySparkSQL also has
a native operator for regular expressions (regexp_extract). It only
supports per-column regular expressions (second setting), but the
operator applies the regular expression in the JVM, rather than in
Python. Finally, all systems currently require UDFs when using a
single regular expression.Tuplex supports all three approaches.

We would expect Python UDFs (both strip/split and regex-
based) in Spark and Dask to be slowest. PySparkSQL’s native regex
operator and the split-like SQL query should outperform them. A
good result for Tuplex would show performance improvements in
all three setups, as Tuplex end-to-end compiles and optimizes each
setting for this pipeline. The input in our experiment is 75.6 GB of
logs (715M rows). For Dask, we excluded 31.7M rows (4.5%, 4 GB) of
the data because they triggered a known bug in the inner join [64].

Figure 5 reports the results organized by setting. The PySpark
pipelines with two UDFs are slowest at about 80 minutes, while
Dask UDFs are roughly 4x faster (18 min). Dask is more efficient
because it executes the entire pipeline in Python, avoiding costly
back-and-forth serialization between the JVM and Python workers.
However, when PySparkSQL keeps the log line splitting in the JVM—
either using string functions (PySparkSQL (split)) or via per-column
regexes—runtime reduces to about 12 minutes. This happens because
SparkSQL can generate JVM bytecode for most of the pipeline (except
the randomization UDF) via its whole-stage code generation [69].
Tuplex, on the other hand, completes the pipeline in one minute both
using natural Python and with a regular expression. Per-column
regular expressions slow Tuplex down by a factor of two, but it still
outperforms PySparkSQL by 5.1x; likewise, Tuplex’s split-based
pipeline is 10.6X faster than PySparkSQL’s equivalent native SQL
query. This difference comes, in part, because Tuplex compiles both
UDFs to native code, while PySpark can only use compiled code for
line-splitting. When we subtract the anonymization UDF runtime in
both systems, Tuplex is still about 8x faster than PySparkSQL. The
remaining speedup comes from Tuplex’s end-to-end optimization,
and from using PCREZ regular expressions: in our microbenchmarks,
PCRE2 is 8.85X faster than java.util.regex, which Spark uses.

Tuplex’s fastest pipelines (single regex, strip) outperform the
best PySpark and Dask setups by 13x and 19.7x. Tuplex supports
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Figure 6: Tuplex’s exception resolution adds little overhead
(0.3%) with compiled resolvers for Z2 on “dirty” data (25% of
rows malformed). The interpreter (*) baris alower bound that
assumes ideal 16X speedup over single-threaded interpreter.

logical optimizations unavailable to Dask and Spark that improve
performance further, which we discuss in §6.4.1.

6.2 Exception Handling

Tuplex speeds up processing of common-case rows by deferring
exception-case rows to slower code paths. Exception rows arise
either because of malformed (“dirty”) input data, or because they
don’t match the common case in Tuplex’s sample (e.g., due to type
mismatches). We now measure the cost of exception row handling.

We run Z2 on the original, uncleaned Zillow dataset (scaled to 10
GB). 25% of the 56M input rows are exception rows with malformed
data. We compare three setups: (i) ignoring and discarding all excep-
tion rows; (ii) the developer manually resolving exceptions in UDFs;
(iii) using Tuplex’s resolvers (§3), both with compiled resolvers (on
the general path) and resolution in the interpreter (fallback path).
Our prototype runs a single-threaded Python interpreter for the fall-
back path, but this could be parallelized, so we assume a hypothetical,
ideal 16X speedup to obtain a lower bound on fallback path runtime.
Ignoring exception rows should be the fastest, while a good result
for Tuplex would show manual and automatic resolution achieve
similar performance, and a low overhead for handling exception
rows. Figure 6 shows a breakdown of Tuplex’s execution time in
each case. Ignoring all exceptions is fastest, since it merely skips
the rows. Manual resolution adds an 8% overhead, but requires labo-
rious changes and makes the UDFs much more complex. Tuplex’s
compiled resolvers come within 0.3% of the hand-crafted resolution,
with the overhead owed to increased LLVM compilation time. When
we force all resolution onto the fallback path, however, it adds a 13x
overhead, as 25% of rows are now processed in the Python interpreter.
This shows that Tuplex’s compiled general-case path is crucial for
good performance on exception-heavy workloads.

Processing a single row on the normal path takes 0.8us. The com-
piled general path takes 0.28s per row on average, as most exception
rows are discarded early. To measure the full cost, we replaced all
exception rows with synthetic data that proceeds all the way through
the pipeline; in this case, the compiled general path takes 1.3ps (vs.
299us/row in the interpreter).

6.3 Comparison To Other Systems

We now compare Tuplex to systems that generate and (JIT-)compile
efficient native code for Z1. Z2 yields similar results (omitted).

6.3.1 Python Compilers. We first compare Tuplex to general
Python compilers, which compile arbitrary Python programs.
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Figure 7: The PyPy3 general-purpose JIT fails to accelerate

the Z1 query, and degrades performance by up to 3x. Dark
bars use PyPy, light bars use the CPython interpreter (Fig. 3).

System Runtime Compile time

CPython (interpreter) 233.1s -
Python Cyt%lon 195.3s 6.5s
compilers Nuitka 1925s 9.4s

Tuplex 323s 0.2s
Hand-optimized C++ 19.2s 7.5s

Table 3: Tuplex runs the Z1 query 6X faster than Cython and
Nuitka, and compiles 32-47x faster than alternatives.

PyPy. PyPy [55] is a tracing JIT compiler that can serve as a drop-
in replacement for the CPython interpreter. It detects hot code paths
(usually loops), JIT-compiles a specialized interpreter and caches the
hot paths’ native code. We configured Pandas, PySpark and Dask to
use PyPy (v7.3.3 in JIT mode) instead of CPython to measure how
well PyPy performs on UDFs, and run the Zillow pipeline in the
same setups as before. Even though PyPy is still bound to Python’s
object representation and has limited scope for end-to-end optimiza-
tion, the hope is that JIT-compiling the hot code paths will improve
performance.

Figure 7 shows that this is actually not the case. PyPy is slower
than interpreted Python in all settings, by between 3% and 3.18x;
only with PySparkSQL it comes close to interpreted Python. Pro-
filing with cProfile [14] suggests that PyPy has a variable impact
on UDF performance: of twelve UDFs, seven are faster (13%-11.6X)
with PyPy, and five are 26%—2.8X slower. The one UDF that benefits
substantially (11.6X) merely forms a tuple; for others, even super-
ficially similar string-processing UDFs exhibit varying performance.
We attribute this to PyPy JIT-compiling and caching only some code
paths, but not others. The 3 slowdown for Pandas and Dask is due to
PyPy3’s poor performance when invoking C extension modules [61].
Tuplex is 14-24X faster.

Cython and Nuitka. Nuitka and Cython emit C/C++ files that
contain unrolled calls to C functions which power the CPython in-
terpreter. Compiling this file into a shared library object produces a
drop-in replacement for a Python module. We used Nuitka (v0.6.13)
and Cython (v0.29.22) to transpile the Python module to C for Z1 and
compile it with gec 10.2. This eliminates the cost of Python byte code
translation and allows the C compiler to optimize the whole pipeline.
We run the resulting module over 10 GB of input data, and compare
single-threaded runtime to interpreted CPython and Tuplex.

Table 3 shows runtimes and compile times. Nuitka and Cython’s
compiled code runs 17% faster than interpreted Python, but is still
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Figure 8: For the 311 data cleaning pipeline, single-threaded
Tuplex comes within 2x of Weld and outperforms all parallel
systems. Tuplex outperforms Weld by 2Xx end-to-end because
Tuplex inlines the aggregation in its generated parser.

over 6X slower than Tuplex. Tuplex outperforms Nuitka and Cython
because it replaces C-API calls with native code, eliminates dispens-
able checks and uses a more efficient object representation than
Cython and Nuitka, which use CPython’s representation. Cython
and Nuitka also have 32-47x higher compile times than Tuplex. They
take about a second to generate code, with the rest of the compile
time taken up by the C compiler (gcc 10.2). Tuplex generates LLVM
IR, which is faster to compile than higher-level C/C++, and also
compiles 37x faster than gce compiles the C++ baseline.

6.3.2 Data-parallel IR: Weld [50]. Weld is a data-parallel IR
that admits optimizations like vectorization or loop fusion across
libraries [50]. Weld serves as a backend to ported existing libraries
suchasPandas [36], while Tuplex is a complete data analytics system,
but both execute compiled native code. We compare Tuplex’s perfor-
mance to Weld’s on the 311 data cleaning workload [13] and TPC-H
Q6 and Q19. Q6 and Q19 perform simple filters and aggregations
and are a challenging workload for Tuplex, which shines at string-
heavy workloads with row-level UDFs and does not yet support
vectorized (SIMD) compilation of UDFs. We compare to Weld v0.4.0;
since Weld’s multithreaded runtime was removed in v0.3.0 [49], we
compare single-threaded performance. In addition, we preprocessed
the inputs to contain only the required columns and converted all
dates tointegers. In the single-threaded case all string-typed columns
in Q6 and Q19 were transformed to integers, because Weld lacks
automatic projection pushdown and has limited string processing
capabilities. Because Weld does not have a native CSV parser, we
preload the Q6/Q19 data into its columnar in-memory format with
a single-threaded C++ CSV parser [67]. For the 311 workload, we
use Weld’s benchmark code, which uses Pandas to load the data. We
measure pure compute time, which measures how good Tuplex’s
generated code is, and end-to-end runtime, which measures a real-
istic data analytics experience. A good result for Tuplex would show
competitive compute time and an improved end-to-end runtime.
Figure 8 shows that Tuplex’s compute time (including compilation
and sampling) for the 311 data cleaning workload is within 2x of
Weld’s, and that end-to-end (total runtime to load the data, compile
the query, and execute it), Tuplex runs the workload 2 faster than
Pandas+Weld. On TPC-H Q6, Tuplex’s runtime is within 2Xx of Weld’s
for Q6, despite Tuplex’s lack of vectorization and its row-structured
data layout in memory (Figure 9a), and Tuplex again outperforms
Weld by 1.86x end-to-end (Figure 9b). Tuplex’s end-to-end perfor-
mance gains come from an optimization available when compiling
full pipelines: instead of loading the data first and then running the
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Figure 9: For TPC-H Q6/19, Tuplex’s generated code (without
vectorization or indexes) is competitive with Weld’s vector-
ized code and within 3-8x of Hyper’s index-based execution.
End-to-end, Tuplex outperforms Weld by 2X (due to its gener-
ated parser) and Hyper by 5-7x (by avoiding index creation).

aggregation, Tuplex generates a CSV parser and inlines the aggre-
gation code into it. Weld, by contrast, first loads the data via Pandas
to a columnar in-memory representation and then aggregates it via
fast SIMD instructions. The results for Q19 are similar: due to vec-
torization, Weld outperforms Tuplex (without logical optimizations,
10.9s) by 2x. However, Tuplex can apply logical optimizations and
push down filters as Tuplex’s optimizer is aware of both UDFs and
the overall query structure. This awareness leads to a 3x speedup
over Weld, even though Tuplex lacks vectorization.

6.3.3 SQL query compiler: Hyper [25]. Tuplex is designed for
analytics over large, non-indexed data sets. In classic SQL databases,
query compilation is well-established. While Tuplex seeks to support
a broader use case (Python UDFs) than SQL queries, we compare to
the Hyper query compiler [25, 45] to establish a baseline for Tuplex’s
performance on classic SQL queries. We use Tableau’s latest Hyper-
API [33] (0.0.12366) to run TPC-H Q6 with 16 threads. Hyper relies
on indexes for performance [42]: we expect Q6 to run an order of
magnitude faster when indexes are used, as they allow to skip most
of the data compared to a pure scan-based version. This comes at
the upfront cost of creating the indexes, however.

Tuplex’s scan-based query execution is indeed 3-8 slower than
Hyper’s index-based execution (Figure 9a). Tuplex’s Python code
is also more expensive to compile (120ms) than directly parsing a
simple, well-structured SQL query like Q6, as Tuplex must perform
additional steps like type inference and tracing. Finally, Figure 9b
shows that Tuplex outperforms Hyper by 5-7x on end-to-end run-
time, since Tuplex avoids upfront index creation and interleaves the
aggregation with data loading through its generated parser.

6.3.4 Discussion. Tuplex by design cannot use some optimiza-
tions available to Weld or Hyper, because Tuplex adheres strictly to
Python semantics and must forego optimizations that would violate
these semantics (e.g., via -ffast-math). Furhter, Tuplex generates
code that still contains instructions to check for exceptions, while
Weld and Hyper only work on perfectly clean data.

6.4 Tuplex Performance Breakdown

The largest contributor to Tuplex’s speedup over Spark and Dask is
compiling Python UDFs to native code, but specific design choices
improve Tuplex’s performance by up to 3x.

We measure the impact of specific design choices and optimiza-
tions with the flights pipeline, using 4-way concurrency and with
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Figure 10: Factor analysis for the flights pipeline: Tuplex op-
timization and LLVM optimizers together realize speedups.

Tuplex configured to avoid swapping. Figure 10 summarizes the im-
pact of each factor on flights (5.9 GB input data) with and without
LLVM optimizers enabled, plotting times only for the compute part
of the pipeline (i.e., excluding I/O). There are two high-level take-
aways: first, logical optimizations and stage fusion are important;
and second, our optimizations give additional purchase to the LLVM
optimizers. We mention results for other pipelines where relevant;
these are end-to-end numbers including I/O.

6.4.1 Logical Optimizations. Tuplex compiles Python UDFswith
full knowledge of their ASTs. This allows Tuplex to apply standard
optimizations like filter and projection pushdowns and operator
reorderings through UDFs—in contrast to Spark or Dask, which treat
UDFs as black-boxes. We illustrate the impact such logical optimiza-
tions have with the weblogs and flight pipelines; the Zillow pipeline
has few logical optimization opportunities.

In the flights pipeline, projection pushdown helps drop many of
the 110 input columns early. Tuplex achieves a 2Xx speedup thanks to
this logical optimization when we disable LLVM optimizers, but the
benefit grows to 3x with LLVM optimizers enabled. This is caused
by LLVM eliminating code that processes data eventually dropped
and its ability to reorder basic blocks for inlined functions.

The weblogs pipeline contains a join with a list of malicious
IPs and a mapColumn operator that anonymizes some records. Ap-
plying mapColumn to output rows of the (selective, i.e., filtering) join
requires anonymizing fewer rows. But Spark or Dask cannot move
a UDF-applying mapColumn through a join, while Tuplex can, thanks
to its understanding of columns read and modified in the UDF. With
this optimization, Tuplex takes 27 seconds (2x faster than the unre-
ordered result we reported in Figure 5). If we manually reorder the
operators in PySparkSQL, it also runs 2.5x faster (305 seconds), but
remains 11.3X slower than Tuplex.

6.4.2 Stage Fusion. Systems that treat UDFs as black-box oper-
ators are unable to end-to-end optimize across them. In Spark and
Dask, a UDF operator is an optimization barrier, while Tuplex makes
stages—the unit of optimized compilation—as large as possible. To
measure the impact of this design, we manually insert optimization
barriersin the flights pipeline, forcing Tuplex to use additional stages.
We consider Tuplex with optimization barriers that mimic Spark’s
optimization constraints; and Tuplex with stage fusion (i.e., only
the build side of a join is a barrier, cf. §4.5). For each, we disable and
enable LLVM optimizers to measure any cross-UDF optimization en-
abled. Without LLVM optimizers, Tuplex takes 27.2 seconds without
stage fusion and 21.1 seconds with stage fusion (22% improvement);
with LLVM optimizers, runtimes drop to 17.1 and 9.9 seconds (42%
improvement). Stage fusion thus enables optimization potential that
improves runtime by an extra 20%.



Setup Spark (64 executors) Tuplex (64 Lambdas)
100 GB 209.03 sec (o =10.53) 31.5 sec (0 =8.25)

1TB 1791.51 sec (o =4.38) 351.1 sec (o0 =22.10)

Table 4: In a distributed scale-out experiment, Tuplex’s
Lambda backend outperforms a Spark cluster by 5.1-6.6%.

6.4.3 Optional Types off the Normal Path. Dual mode process-
ing allows Tuplex to optimize the normal-case path by deferring
complexity to the exception-case path. We measure the impact of
shifting rare null values to the general-case code path (§4.7). In
flights, this optimization reduces the pipeline’s compute time by
14-19%, albeit at the cost of increasing compile time by 2 seconds,
which reduces end-to-end benefit. (Larger datasets would realize
more of the benefit, as compile time is a constant.)

6.5 Distributed, Scale-Out Execution

While our focus has been on the single-machine performance of our
Tuplex prototype, some systems we compare to (PySpark and Dask)
support distributed execution. To verify that Tuplex’s performance
gains are not merely a consequence of avoiding overheads associated
with distributed operation, we compare these systems with Tuplex’s
experimental distributed execution over AWS Lambda functions.

We compare our prototype’s Lambda backend with a maximum
concurrency of 64 simultaneously running requests to a Spark clus-
ter with 64 executors. We use Lambdas with 1.5 GB of memory. The
Spark cluster runs on 32 m5. large instances that each run two ex-
ecutors with 1 core and 2 GB of memory per executor. This gives
Spark an advantage, as it has more memory and the cluster runs
continuously, while Tuplex provisions a Lambda container for each
task. In addition, while Tuplex’s Lambda backend writes to S3, Spark
merely collects results on its driver node, as writing to S3 requires
extra infrastructure [21, 65]. We run the Zillow pipeline over scaled
datasets of 100 GB and 1 TB, with data stored in 256 MB chunks in
AWS S3. To verify that the compute speed of m5.1large VMs is com-
parable to 1.5 GB Lambda functions, we ran a microbenchmark over
one 256MB chunk. It takes 3.99 seconds on an m5. large VM, while
our code within a Lambda function takes 4.00 seconds on average,
with some variance (min: 3.68 sec, max 9.99 sec).

Table 4 shows the results. For Spark, we show numbers for the
tuple-based pipeline; the dictionary and SparkSQL versions are 10—
20% slower. Tuplex completes the pipeline in 31.5 and 351 seconds
for 100 GB and 1 TB, 5.1X and 6.6 faster, respectively, than the
fastest Spark setup. This difference comes from Tuplex’s compute
speed, which outweighs the overheads associated with Lambdas
(HTTP request, queueing, container provisioning, etc.). In terms of
direct monetary cost, Tuplex is competitive at 4¢ for 100 GB (Spark:
3.7¢) and 55¢ for 1 TB (Spark: 32¢), while also avoiding the setup and
provisioning time costs, idle costs, and EBS storage costs that Spark
incurs on top of the EC2 VM costs. This suggests that Tuplex can be
competitive both on a single server and in scale-out settings.

7 Discussion and Experience

Tuplex’s primary objective is high performance for pipelines that
include Python UDFs. But the dual-mode execution model may also
help Tuplex users avoid some long-standing challenges of pipeline
development and debugging [24, 53]. Key to this is Tuplex’s guaran-
tee that pipelines never fail because of malformed input rows: instead,

Tuplex does its best to complete the pipeline on valid, normal-case
rows and reports statistics about failed rows to the user. It is difficult
to quantify the impact of failure-free pipelines on developer produc-
tivity. However, in our anecdotal experience implementing pipelines
we found Tuplex preferable for several reasons:

(1) Although our evaluation data sets are fairly “clean”, they con-
tain a small number of anomalous rows, which often caused
hard-to-debug failures in Spark and Dask.

(2) Representing rows as tuples instead of dictionaries improves
PySpark performance, but the numerical indexing took painstak-
ing work to get right. Tuplex avoids the speed-usability tradeoffs
and has the same performance for tuples and dictionaries.

(3) Making null values work with Dask/Pandas required using spe-
cial datatypes (e.g., np.int64), rather native Python types, as
Pandas fails on None values.

(4) The semantics of special-purpose operators designed to help
developers avoid UDFs differ from Python code. For example,
SparkSQL’s regex_extract returns an empty string when there
is no match, rather than NULL as a Python user might expect
(Python’s re returns None in this case). The weblog dataset has
two anomalous rows, which cause SparkSQL to silently return
incorrect results, while Tuplex correctly reported them.

(5) We compared to Weld using the Pandas cookbook’s sub-sampled
311 dataset [13] (99k rows) scaled 2,000 in §6.3.2, but Tuplex
works out-of-the-box on the full NYC 311 dataset [47] (22.4M
rows), while Weld, PySpark, PySparkSQL, and Dask all fail and
require changes to the UDF code for the realistic dataset.

We spent substantial time tracking down edge cases in framework

documentation for other systems, while Tuplex’s Python UDFs be-

haved as expected. We also found that Tuplex’s reporting of excep-
tions and failed rows helped us track down bugs in our pipelines.
Tuplex’s dual mode processing requires a representative sample.

Like with any sampling approach, an unrepresentative sample can

lead Tuplex to deduce an incorrect common case. If the sample itself

produces only exceptions, Tuplex warns the user either to revise the
pipeline or increase the sample size.

8 Conclusion

Tuplex is a new data analytics system that compiles Python UDFs
to optimized, native code. Tuplex’s key idea is dual-mode process-
ing, which makes optimizing UDF compilation tractable. Tuplex is
available as open-source software at https://tuplex.cs.brown.edu.
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