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ABSTRACT

Visual recognition of biological motion recruits form and motion processes supported by both dorsal and ventral
pathways. This neural architecture inspired the two-stream convolutional neural network (CNN) model, which
includes a spatial CNN to process appearance information in a sequence of image frames, a temporal CNN to
process optical flow information, and a fusion network to integrate the features extracted by the two CNNs and
make final decisions about action recognition. In five simulations, we compared the CNN model's performance
with classical findings in biological motion perception. The CNNs trained with raw RGB action videos showed
weak performance in recognizing point-light actions. Additional transfer training with actions shown in other
display formats (e.g., skeletal) was necessary for CNNs to recognize point-light actions. The CNN models ex-
hibited largely viewpoint-dependent recognition of actions, with a limited ability to generalize to viewpoints
close to the training views. The CNNs predicted the inversion effect in the presence of global body configuration,
but failed to predict the inversion effect driven solely by local motion signals. The CNNs provided a qualitative
account of some behavioral results observed in human biological motion perception for fine discrimination tasks
with noisy inputs, such as point-light actions with disrupted local motion signals, and walking actions with
temporally misaligned motion cues. However, these successes are limited by the CNNs’ lack of adaptive in-
tegration for form and motion processes, and failure to incorporate specialized mechanisms (e.g., a life detector)
as well as top-down influences on biological motion perception.

1. Introduction

One of the most sophisticated abilities supported by the human
visual system is the recognition of human body movements. In daily
life, humans can readily recognize actions despite changes in body
forms and appearance (e.g., different costumes and clothing texture,
viewpoints, and occlusions). Even for highly impoverished and rarely
observed stimuli such as point-light displays (Johansson, 1973), in
which a few disconnected dots depict joint movements, the human vi-
sual system can still recognize actions despite visual noise (Neri,
Morrone, & Burr, 1998; Lu, 2010). In addition to action recognition,
humans can identify other characteristics of point-light actors, in-
cluding gender (Kozlowski & Cutting, 1977; Pollick, Kay, Heim, &
Stringer, 2005), identity (Cutting & Kozlowski, 1977; Pavlova, 2011),
personalities (e.g., Brownlow, Dixon, Egbert, & Radcliffe, 1997), emo-
tions (Dittrich, Troscianko, Lea, & Morgan, 1996), social interactions
(Thurman & Lu, 2014), and causal intention (Peng, Thurman, & Lu,
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2017).

Over several decades, psychophysical and neuroscience research has
advanced our understanding of the underlying processes and mechan-
isms supporting the robust perception of biological motion. Early work
hypothesized that point-light actions are analyzed primarily in the
dorsal (motion) pathway, with recognition achieved by spatiotemporal
integration of motion information specific to body movements (Mather,
Radford, & West, 1992). However, this view was challenged by neu-
ropsychological studies showing that patients with lesions in the dorsal
pathway (i.e., V5/MT) maintain the ability to recognize actions in
point-light displays (Vaina, Lemay, Bienfang, Choi, & Nakayama,
1990). Psychophysical studies provided further evidence that human
observers have no trouble recognizing point-light actions with degraded
or perturbed local motion (Beintema & Lappe, 2002; van Boxtel & Lu,
2015), or when point-light actions are embedded within a cloud of
noise dots with the same joint motion trajectories (e.g., Cutting, Moore,
& Morrison, 1988).
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These findings suggest that biological motion perception does not
entirely rely on the dorsal pathway, or motion processing alone. In fact,
bodily form and appearance information have been found to also play
important roles in the perception of biological motion (Lange, Georg, &
Lappe, 2006). For example, Pinto and Shiffrar (1999), showed that
violation of the hierarchical structure of body form can significantly
disrupt the detection of biological motion. Lu (2010) showed that when
body structural information was eliminated but local motion informa-
tion was intact in the stimuli, human observers failed to discriminate
walking directions in biological movement, suggesting the necessity of
structural information for refined discrimination in biological motion.
Theusner, de Lussanet, and Lappe (2011) found that adaptation to
biological motion elicits both form aftereffects and motion aftereffects,
suggesting the co-existence of form processes and motion processes in
analyzing biological motion information. In addition, fMRI experiments
have shown that biological motion is processed by both ventral and
dorsal pathways in the brain. Point-light displays not only activate the
dorsal stream involving the motion selective regions such as MT/MST,
but also the ventral stream with a projection from primary visual cortex
to inferotemporal cortex that processes object appearance information
(Grossman & Blake, 2002). Finally, numerous studies have established
that a region selective for biological motion, posterior superior tem-
poral sulcus (STSp), integrates motion processing and appearance
processing carried out by two separate pathways (Grossman et al.,
2000; Vaina, Solomon, Chowdhury, Sinha, & Belliveau, 2001; Bonda,
Petrides, Ostry, & Evans, 1996; Thurman, van Boxtel, Monti, Chiang, &
Lu, 2016).

Inspired by the two-stream processing of biological motion per-
ception in the brain, Giese and Poggio (2003) developed a computa-
tional model with two parallel processing streams: a ventral pathway
and a dorsal pathway. The ventral pathway is specialized for the ana-
lysis of body forms in static image frames. The dorsal pathway is spe-
cialized for processing optic-flow/motion information. Both pathways
comprise a hierarchy of feature detectors with increasing receptive
fields and increasing complexity in encoding form or motion patterns.
In the computational model, the ventral pathway starts from the first
layer, which consists of local orientation detectors with small receptive
fields that approximate neurons in the primary visual cortex (Dow,
Snyder, Vautin, & Bauer, 1981). The second layer contains position- and
scale-invariant bar detectors, corresponding to position-invariant cells
in visual areas V1, V2, and V4 (Hegdé & Van Essen, 2000; Gallant,
Braun, & Van Essen, 1993). The third layer consists of snapshot neurons
selective to body shapes for form processing, simulating neurons in
inferotemporal cortex (area IT) that are selective for complex shapes
(Logothetis, Pauls, & Poggio, 1995). In the dorsal pathway, the first
layer consists of local motion detectors that correspond to direction-
selective neurons in V1 and MT (Rodman & Albright, 1989). The second
layer simulates neurons in MT (Smith & Snowden, 1994) with larger
receptive fields that are sensitive to optical flow information based on
spatial integration of local motions. The third layer contains optical
flow pattern neurons that are selective for complex movement patterns,
simulating neurons in STS (Oram & Perrett, 1994).

The computational model described by Giese and Poggio (2003)
provided a parsimonious framework for biological motion perception.
The model, developed to incorporate experimental and biological
constraints, can account for many empirical findings in psychophysical
experiments using point-light displays and remains one of the most
influential computational models in the field. It should be noted that
many filter parameters used in the model are either adapted from
neurophysiological measures or manually tuned. Although these para-
meters provide a connection between modeling and neural activities, it
remains unclear whether these parameters in the network can be
learned from natural statistics with a large number of action videos.

In recent years, with the rise of deep learning models, large-scale
networks can be trained with millions of videos to recognize human
actions in natural scenes. The significant advances began with a two-
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stream model developed by Simonyan and Zisserman (2014). The two-
stream model extends deep convolutional neural networks (CNNs)
(LeCun, Bottou, Bengio, & Haffner, 1998; Krizhevsky, Sutskever, &
Hinton, 2012) for action recognition to include two CNNs: a spatial
CNN that takes pixel-level intensity as the input, and a temporal CNN
that takes optical flow as the input. Thus, a spatial CNN processes ap-
pearance information and is trained to perform action recognition from
a sequence of static image frames, and a temporal CNN processes op-
tical flow between image frames and is trained to recognize actions
from motion information. Each stream in the model adopts a CNN ar-
chitecture, and the features extracted from the two streams are com-
bined via a late fusion network to obtain the final recognition decision.
The two-stream model performed well on action classification for two
challenging datasets: UCF-101, which includes 13,320 videos covering
101 action types (Soomro, Zamir, & Shah, 2012), and HMDB-51, which
includes 6766 videos covering 51 action types (Kuehne, Jhuang,
Garrote, Poggio, & Serre, 2011). The two-stream CNNs achieved accu-
racy levels of 88% for the UCF101 dataset (compared to the chance
level performance of 1%), and 59.4% for the HMDB-51 dataset (com-
pared to the chance level of 2%). An improved version of the two-
stream model further increased its accuracy to 92.5% for UCF101 and
65.4% for HMDB51 (Feichtenhofer, Pinz, & Zisserman, 2016).

Given that the two-stream CNN model exhibits close-to-human
performance in recognizing actions from raw videos, and uses an ar-
chitecture similar to the brain pathways involved in biological motion
perception, this model provides an opportunity to examine how well a
deep learning model trained with big data can account for human
performance in classic psychophysical experiments on biological mo-
tion perception, and to gauge how different processing pathways con-
tribute to the final decisions for various action recognition tasks. The
present paper reports a series of such tests. In Simulation 1 we tested
whether the two-stream CNN can recognize point-light actions after
training with natural RGB videos. We also explored whether additional
transfer training with skeletal displays can enable the model to re-
cognize actions from point-light displays. In Simulation 2 we examined
whether the two-stream CNN model exhibits some degree of viewpoint-
invariant recognition for biological motion. Simulation 3 investigated
whether the model exhibits inversion effects as are observed for hu-
mans in biological motion perception across a range of experimental
conditions (Troje & Westhoff, 2006). Simulation 4 tested whether the
two-stream CNN model can recognize actions in noisy displays, such as
sequential position point-light displays (Beintema & Lappe, 2002). Si-
mulation 5 examined the performance of the two-stream CNN model in
refined discrimination for different types of walking stimuli, including
intact forward walking, backward walking, moonwalk, and in-place
walking. Additionally, we tested whether the two-stream CNN model
can be trained to discriminate between action with and without motion
congruency and whether the model shows sensitivity to causal relations
underlying motion congruency.

2. Model structure and training for action recognition
2.1. Model architectures of CNNs

The two-stream CNN model relies on processing two types of in-
formation to classify a video into alternative action categories. One
source of information is the pixel-level appearance of moving body in a
sequence of static images, and the other is motion (usually represented
by optical flow fields, i.e., the spatial displacement of each pixel be-
tween adjacent frames; Horn & Schunck, 1981). This two-stream ar-
chitecture is consistent with neurophysiological evidence that action
processing involves both ventral and dorsal pathways in the brain, and
integrates the information at action sensitive regions in the temporal
lobe. The two-stream architecture is also consistent with the compu-
tational framework proposed in the biological motion literature (Giese
& Poggio, 2003).
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Fig. 1. The architectures of the spatial CNN (top), the temporal CNN (middle), and the two-stream CNN (bottom) using the VGG16 networks. Conv: convolutional
layer; FC: fully connected layer. The spatial and temporal CNNs each have 5 convolutional layers and 3 fully connected layers. The convolutional 5 layers were fed

into the fusion network with one convolutional layer and 3 fully connected layers.

Fig. 1 (top and middle) shows two single-stream CNN models using
the architecture including five convolutional layers for feature extrac-
tion, followed by two fully-connected (FC) layers to process either ap-
pearance information or optical flow information for action recogni-
tion. The spatial CNN for processing the appearance information takes
the input of the three channels of an RGB image. The temporal CNN for
processing the motion information takes a stack of optical flow vector
fields spanning a few consecutive frames (we use 10 frames for all si-
mulations) as the input. In the present paper, we use the spatial CNN
and the temporal CNN to model recognition performance from each
distinctive stream, corresponding to the spatial pathway and the motion
pathway, respectively.

As shown in Fig. 1 bottom panel, a two-stream CNN model combines
the spatial process and the motion process to achieve fusion of deci-
sions. The basic approach to construct a two-stream CNN is to take the
outputs of one layer in the spatial CNN and the outputs of one layer in
the temporal CNN, and concatenate the activities as the joint inputs to
an additional fusion network (usually a few FC layers) that perform
final action recognition. Simulation work (Feichtenhofer et al., 2016)
suggests that fusion of the activities in the final convolutional layers
(i.e., “conv5”) of both streams consistently yields the best recognition
accuracy across different datasets. Accordingly, the present paper
adopted this fusion architecture shown in Fig. 1 (bottom) for the two-
stream CNN model. Specifically, the two-stream CNN model uses the
fusion layer to first stack the outputs from the “conv5” layers of spatial
CNN and temporal CNN. The stacked activities from 7 X 7 X 1024
tensors provide inputs to a convolutional layer consisting of 512 filters,
followed by three FC layers including a softmax decision layer.

2.2. Model training with natural action videos

The present paper used the Human 3.6 M dataset (lonescu, Li, &
Sminchisescu, 2011; Ionescu, Papava, Olaru, & Sminchisescu, 2014) to
train the CNN models with raw RGB videos. The Human 3.6 M dataset
(http://vision.imar.ro/human3.6m/description.php) includes a total of
15 categories of actions: giving directions, discussing something with
someone, eating, greeting someone, phoning, posing, purchasing (i.e.,
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hauling up), sitting, sitting down, smoking, taking photos, waiting,
walking, walking dog, and walking together. Each action was per-
formed twice by each of the seven actors. This dataset provides both
raw RGB videos and motion capture data including joint 3D coordinates
that can be used to generate skeletal and point-light displays of the
actions from different viewpoints.

The CNN models are trained to perform an action classification task
with the 15 categories defined in the Human 3.6 M dataset. The action
category with the highest score in the softmax layer is considered to be
the model prediction for that instance. We follow a two-phase protocol
to train the network as developed by Feichtenhofer et al. (2016). We
first train the single-stream networks (spatial CNN and temporal CNN)
independently with the task of 15-category action recognition. Then
activities from the conv5 layers of these two trained single-stream CNNs
are concatenated as inputs to train the fusion network in the two-stream
CNN. Simulation codes used in the current study are available online
(https://github.com/yjpeng11/BM_CNN).

In the following simulations, we used transfer training methods to
fine-tune the CNNs to enhance the generalization of the pre-trained
CNNs, so that these models can perform with new action stimuli and
visual tasks. Transfer training uses a small set of training data and to
adopt the previously learned features to new visual tasks. This tech-
nique has shown success in extending pre-trained networks to perform
in psychophysical tasks, such as shape recognition and object recogni-
tion (e.g., Baker, Lu, Erlikhman, & Kellman, 2018). Specifically, two
types of transfer training were applied for different simulations in the
present paper: unrestricted transfer training to adjust all connection
weights to optimize CNN model performance. Simulation 1, 2, and 3
used the unrestricted transfer training when a large number of training
data is available. Restricted transfer training, where the number of classes
is changed in the decision layer and learning is limited to the connec-
tions between dense FC layers and the decision layer. Simulation 3, 4,
and 5 used the restricted transfer training when relatively a small set of
training data is available.

The training of CNN models was assigned with a maximum of 100
epochs. Each epoch ran through a series of mini-batches of size 16.
Gradient descent was calculated after each mini-batch through an SGD


http://vision.imar.ro/human3.6m/description.php
https://github.com/yjpeng11/BM_CNN

Y. Peng, et al.

optimizer (learning rate 10~ %) to update model weights. After each
epoch, validation loss was calculated and model weights were saved if
validation loss decreased compared to the previous epoch. Training will
terminate before reaching 100 epochs if validation loss remains without
an increase for 10 consecutive epochs. Drop-out operations were im-
plemented for training FC layers with a fraction of the input units to
drop of 0.5 to prevent overfitting.

3. Simulation 1: Recognition of point-light actions

The hallmark demonstration of human biological motion perception
is that people can recognize actions from sparsely disconnected points,
even though such point-light displays are rarely observed in natural
environments. Ever since Johansson (1973), numerous studies have
shown that humans can recognize point-light actions without previous
exposure. Simulation 1 first trained the two-stream CNN model using
raw videos, and then tested how well the model can recognize actions
in point-light displays. If the two-stream CNN model exhibits a certain
degree of robustness in action recognition, as do humans, this would
demonstrate some ability to recognize point-light actions after training
with natural videos of human actions. If the model trained with natural
RGB videos fails to generalize to point-light displays, we will follow-up
with transfer learning to explore the possibility that the model’s gen-
eralization ability can be enhanced using a more diverse set of training
stimuli.

3.1. Stimuli and procedure

To train and test the CNNs, a large number of RGB videos were
generated. The Human 3.6 M dataset included 210 actions each lasting
for 1 to 2 min and performed by 7 actors. Actions were recorded from 4
different viewpoints simultaneously. Actions were segmented to a set of
short 5 s clips with a non-overlapping temporal window from the be-
ginning of each action to the end. This temporal segmentation proce-
dure yielded 7962 videos each of 5 s duration. Each video contained
150 frames with a 30 fps sampling rate. The image resolution of videos
was 1000 by 1000 pixels. 80% of the original 7962 videos were ran-
domly chosen for training and the rest 20% for cross-validation. To
enable the CNNs to acquire position invariance for recognition, variants
of the raw videos were included in the training by imposing image
transformations. For each original RGB video, 5 additional versions
were generated by altering image scale and position of the actors, in-
cluding a zoom-in version with scale enlarged by a factor of 1.67; and
spatially-shifted versions in which the human figure was shifted toward
the top-left, top-right, bottom-left, and bottom-right corners, with scale
enlarged by a factor of 1.25. Including the variants of RGB videos, we
used a total of 6370%6 videos for training and the remaining 1592*%6
videos for cross-validation testing. For the spatial CNN model, video
frames were down-sampled so that one out of every 10 frames were
provided as inputs. For the temporal CNN model, optical flow in-
formation calculated from every consecutive 10 frames were provided
as inputs.

As the Human 3.6 M dataset provides motion capture data with 3D
joint coordinates, we were able to generate skeletal and point-light
displays using the tracked joint positions for the same sets of actions. A
total of motion capture data from the 1976 actions were used to gen-
erate skeleton and point-light videos from any viewpoint. Point-light
videos were generated with 13 dots on major joints of an actor: head
point, two points on shoulders, elbows, hands, hips, knees, and feet.
Sample frames of videos from a subset of action categories are shown in
Fig. 2. Skeletal and point-light displays were generated using the Bio-
Motion toolbox (van Boxtel & Lu, 2013).

3.2. Results and discussion

Table 1 shows the recognition performance for the validation set
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after training with raw RGB videos, and corresponding testing accuracy
for skeleton and point-light displays. After training with RGB videos,
the model achieved good recognition performance for recognizing ac-
tions presented in the raw video format. The spatial CNN based on
appearance and the two-stream CNN with fusion network yielded better
recognition performance (> 0.85) than did the temporal CNN based on
optimal flow information (0.70).

To test whether the CNNs can generalize to other display formats of
actions, we used the test set of actions in skeletal and point-light dis-
plays. The results showed that the three CNNs have limited ability in
generalizing action recognition to untrained formats of displays in
which visual information, especially appearance of actors, was sig-
nificantly reduced. As shown in Table 1, the three CNN models showed
poor recognition performance for the skeletal displays (0.07, 0.15, and
0.11, respectively) and for point-light actions (0.09, 0.18, and 0.16).
Although all CNN models except the spatial CNN yielded accuracy
higher than the chance level of 0.067 (i.e., one out of 15 categories), the
significant reduction of performance for CNN models in recognizing
point-light actions was much worse than is observed for humans. In-
terestingly, the temporal CNN processing motion information showed a
slightly higher accuracy (0.18) in recognizing point-light actions than
did either the spatial CNN based on appearance information (0.08).
This result is consistent with previous modeling work showing that
spontaneous generalization from natural action stimuli to point-light
displays is more robustly supported by the motion pathway than by the
form pathway (Giese & Poggio, 2003).

As recognition performance for point-light actions was low for CNNs
trained with RGB natural videos, we introduced additional unrestricted
transfer training to enable the CNNs to perform well with the re-
cognition task with skeletal displays. The parameters (i.e., connection
weights) in CNNs trained with RGB videos were used as initial values in
retraining the CNN models with skeleton videos with the same two-
phase protocol. For skeletal displays, 7 different viewpoints were gen-
erated for each action, ranging from 30° counter-clockwise from the
central viewpoint to 30° clockwise from the central viewpoint, with a
step size of 10°. The image size of skeletal human figures was controlled
to be roughly the same size as actors in natural videos. A total of 13,769
skeleton videos (1967 actions * 7 viewpoints) were generated, of which
80% (i.e., 11,015) were used for training and the remaining 20%
(2754) for validation. After transfer training, 1967 frontal viewpoint
point-light actions were used to compute recognition accuracy for
testing.

This transfer training with skeletal actions enabled the CNN models
to succeed in recognizing actions in skeletal displays, showing high
accuracy in recognizing actions in the validation testing set 0.99 for the
spatial CNN processing appearance information, 0.98 for temporal CNN
processing motion information, and 0.99 for the two-stream CNN with
fusion network. When tested with point-light displays (see Table 2), the
temporal CNN based on motion processing yielded an accuracy of 0.42
in recognizing actions, significantly higher than chance (0.067 for
classifying 15 categories). The spatial CNN based on appearance pro-
cessing yielded low recognition performance (0.24), although sig-
nificantly above chance. These results provide converging evidence that
motion processing plays a primary role in recognizing point-light ac-
tions, with form processing serving as a secondary process that also
contributes to the recognition of point-light actions (Johansson, 1973;
Beintema & Lappe, 2002; Giese & Poggio, 2003; Lu, 2010). The two-
stream CNN with fusion network achieved an accuracy of 0.23 in re-
cognizing point-light actions. Although this recognition performance
was above chance level, test performance for the fusion network was
worse than that for the single-pathway spatial CNN and temporal CNN,
suggesting that the fusion network may adopt suboptimal integration of
the two pathways for recognizing point-light actions and demonstrate
limited generalization ability. Supplemental section 1 includes confu-
sion matrices of recognition judgments for three CNN models.
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Fig. 2. Sample video frames in the RGB display (top), the skeletal display (middle), and the point-light display (bottom). Videos were taken from the of Human 3.6 M

dataset and generated from corresponding motion capture data.

Table 1

Training validation and testing accuracy of action classification after training the CNNs using RGB videos. The CNN models are trained
with RGB videos, and tested with skeleton and point-light displays. The chance-level accuracy is 0.067 (i.e., one out of 15 categories).

Training validation Testing 1 Testing 2
RGB videos Skeleton displays Point-light displays
Appearance (spatial CNN) 0.85 0.07 0.08
Motion (temporal CNN) 0.70 0.15 0.18
Fusion (spatial + temporal two-stream CNN) 0.87 0.11 0.16
Table 2 recognition.

Training and testing accuracy of action classification in Simulation 1, in which
training used RGB videos and skeletal displays, and testing used point-light
displays.

Transfer training Testing

validation Point-light

Skeleton displays displays
Appearance (spatial CNN) 0.99 0.24
Motion (temporal CNN) 0.98 0.42
Fusion (spatial + temporal two-stream 0.99 0.23

CNN)

4. Simulation 2: Viewpoint-dependent effects in action
recognition

In the domain of biological motion, researchers have observed
viewpoint-dependent performance in identity recognition (Troje,
Westhoff, & Lavrov, 2005; Jokisch, Daum, & Troje, 2006) and gender
classification from walking gaits (Mather & Murdoch, 1994; Troje,
2002), as people show better performance in frontal view than in
profile view for point-light displays. A recent MEG study (Isik,
Tacchetti, & Poggio, 2017) found evidence that both viewpoint-de-
pendent representations and viewpoint-invariant representations are
used in action recognition for point-light displays, as brain activities
can be decoded for both within-view and cross-view recognition, but at
different time points. In Simulation 2, we examined whether the two-
stream CNN model exhibits viewpoint-dependent effects in action
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4.1. Stimuli and model training

A two-step training procedure similar to that employed in
Simulation 1 was used in this simulation. First, the CNN models were
trained using Human 3.6 M videos to recognize the 15 categories of
actions, with 80% of raw RGB video instances used for training and the
remaining 20% used as the validation set to test the model’s perfor-
mance. After reaching a saturated accuracy for the validation set, the
trained parameters for the CNN models were saved as initial values for
the subsequent transfer training. Second, additional unrestricted
transfer training was conducted using 1967 skeleton videos showing
only a frontal viewpoint (i.e., the model never saw skeleton videos from
other viewpoints), with 80% being used for training and the rest 20%
for validation. In Simulation 2, the testing stimuli were 7968 skeleton
videos in = 30° view and + 90° (profile) view, rotated either clockwise
or counterclockwise from the frontal view.

4.2. Results and discussion

As shown in Fig. 3, recognition accuracy for frontal view actions
was in the range of 0.72-0.81 (with a chance-level performance of
0.067 across 15 categories) for the three CNN models, indicating the
success of transfer training with skeletal displays for action recognition
given the relatively small number of training instances. Testing accu-
racy for 30° views showed slightly decreased but still relatively high
recognition accuracy in the range of 0.65-0.73 for spatial CNN,
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Fig. 3. Results of Simulation 2: model performance for 15-category action classification shows viewpoint-dependent effect with skeletal displays. The CNN models
were trained with actions in frontal view and tested in other new views (30 and 90°away from the frontal view).

temporal CNN and two-stream CNN models. These simulation results
indicate that the CNN models show a certain degree of viewpoint
generalization from a trained view (e.g., frontal view) to nearby testing
views (e.g., = 30° away from frontal). Viewpoint generalization is
achieved from both appearance and motion processes, manifested in
the spatial CNN and temporal CNN, respectively. We used a boot-
strapping approach to examine the variability of testing performance.
Ten iterations of testing were performed with 20% of testing data
randomly selected in each iteration. The standard deviation of testing
accuracy across 10 iterations was very small (< 0.004 for all three
CNNs) so error bars were not presented in figures.

However, when the testing actions were shown in 90° profile view
(a large difference from the frontal view used in training), action re-
cognition accuracy dropped significantly to ~0.3 (but still above
chance level) for all three CNN models. Such viewpoint-dependent
performance by CNN models is consistent with human recognition of
identity and gender from walking gaits (Troje et al., 2005; Jokisch
et al., 2006; Mather & Murdoch, 1994; Troje, 2002), as well as MEG
results showing viewpoint-dependent representations for action re-
cognition (Isik et al., 2017).

Together, these results indicate that both spatial and temporal
pathways contribute to the generalization of action recognition per-
formance from the trained viewpoint to nearby viewpoints (from
frontal view to 30° view). However, for a large viewpoint change (from
frontal view to profile view), recognition accuracy dropped sig-
nificantly, although it remained above chance level. The two-stream
CNN model with fusion network did not show stronger viewpoint-in-
variant recognition performance than did the single-stream CNNs. If
viewpoint-invariant representations of biological motion relied on the
later-stage representation after the integration of motion and form
processing, we would expect that the fusion network could increase the
generalization of recognition performance to untrained viewpoints for
the two-stream CNN model. However, the present simulation result
shows that adding the integration stage of appearance and motion
processes did not enhance viewpoint-invariant recognition for actions.
This model result supports the MEG findings (Isik et al., 2017) showing
that early neural signals encode viewpoint-invariant information, ra-
ther than later stage brain activities.

5. Simulation 3: Effects of local image motion in biological motion
perception

The previous two simulations have tested model performance for
different display formats and viewpoints, but it remains unknown
whether CNN models are able to recognize actions with noisy motion
input. Beintema and Lappe (2002) found that even when local inter-
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frame motion signals are eliminated in point-light displays, humans are
still able to recognize actions as long as stimuli preserve a certain de-
gree of the global form revealing dynamic posture changes. In Simu-
lation 3, we examined whether the CNN models demonstrate robust
recognition performance as do humans when image motion signals are
disrupted in point-light displays. If the CNN models can recognize ac-
tions in the absence of local inter-frame motion signals, we will further
examine the contributions of individual pathways to action recognition.
We used sequential position (SP) walkers created by Beintema and
Lappe (2002) to test the CNN models, and compared model perfor-
mance with human judgments in two experiments reported in their
study.

As shown in Fig. 4, SP point-light walkers were generated by ran-
domly placing points along the limbs in each frame (Beintema & Lappe,
2002). In addition to intact point-light walkers (Intact PL; Fig. 4, top),
we generated eight-point SP walkers (8P), four-point SP walkers (4P),
and inverted eight-point SP walkers (UD), to create the same four
conditions used in Experiment 1 of the study by Beintema and Lappe.
For eight-point SP walkers, eight dots were randomly positioned on the
eight limb segments between joints, with one dot on each limb segment
(Fig. 4, middle). In every frame of the animation, each point was re-
allocated to another randomly selected position on the limb. Therefore,
individual dots in the SP walkers did not carry informative inter-frame
motion signals reflecting the continuous trajectory of joint movements
in walking actions. However, because the moving limbs constrained the
possible locations for the dots, the sequence of underlying body pos-
tures was still maintained in the SP walkers (Beintema & Lappe, 2002).
Similarly, the 4-point SP walker was generated by placing four points
on four limbs, which were also randomly selected from the total of eight
limbs in each frame (Fig. 4, bottom). The upside-down SP walker was
generated by inverting the 8-point SP walker. All of the aforementioned
conditions were generated from the original 98 walking actions taken
from the CMU dataset.

Beintema and Lappe (2002) conducted a psychophysical experiment
using a fine discrimination task on walking direction of SP walkers. In
Beintena and Lappe’s Experiment 2, the key experimental manipula-
tions were to vary two stimulus parameters: the lifetime of the in-
dividual dots and the number of dots in SP walkers. With prolonged
lifetime, each dot remains on the same limb position for a longer period
of time and hence conveys more local image motion information. The
number of dots influences how well the form of body structure can be
extracted from the SP walker stimuli. With more dots along the limbs, it
will be easier to perceive postures in the sequence. The experiment
included 16 conditions with factorial combinations of the two stimulus
parameters, so this design allows quantitative comparisons between
humans and CNN models. In Simulation 3, we ran the CNN models for
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Fig. 4. Sample frames from an intact
. . & point-light (PL) walker (top), an eight-
e * » point SP walker (middle), and a four-
. . Y point SP walker (bottom) in Simulation
Intact PL Wa].ker . . 3. Intact point-light stimuli consisted of
¢ * ¢ 13 dots attached to the joints of a
. . ° . & moving human figure. In sequential
position (SP) stimuli, dots were posi-
tioned in a random location along the
limbs and jumped to another randomly
selected position in the next frame.
* . . . o ...
8P SP walker . e .
. ]
4P SP walker . .

frame 1

the same experimental task to examine whether the models exhibit si-
milar performance as humans. The Supplemental section 2 includes
additional simulation results for Experiment 1 in the study by Beintema
and Lappe (2002).

5.1. Stimuli and model training

The walking actions in Simulation 3 were generated from the CMU
motion capture database (http://mocap.cs.cmu.edu/), which includes
98 walking actions performed by 18 actors. Each walking action video
lasted 2 s. Based on the motion capture data, point-light walkers were
generated using the BioMotion toolbox (van Boxtel & Lu, 2013). Point-
light walkers were presented in either a left profile view or a right
profile view, yielding 98 instances facing left and 98 facing right. The
walkers were presented in place as if walking on a treadmill. We used
the same procedure as in the study of Beintema and Lappe (2002) to
generate SP walkers.

Simulation 3 manipulated dot number and dot lifetime in SP
walkers, generating 16 conditions. For the manipulation of dot numbers
in SP walkers, each frame contained one, two, four, or eight dots (i.e.,
1P, 2P, 4P, and 8P conditions). For the manipulation of dot lifetime,

frame 5

>
frame 10

each dot stayed at a specific limb position for one, two, four, or eight
frames before it was reallocated to another randomly selected limb
position (i.e., lifetime 1, 2, 4, and 8 conditions). Initial values of lifetime
were assigned randomly to each dot. Accuracy for discriminating the
walking direction (left vs. right) on each trial was then measured.
First, the CNNs were trained with the 15-category action classifi-
cation task by adopting the same two-step training used in Simulation
2, except that Simulation 3 used skeleton videos from the Human 3.6 M
dataset with all seven viewpoints for the unrestricted transfer training.
To perform the walking direction discrimination task as in the human
experiment, Simulation 3 included an additional restricted transfer
training for the CNN models. Specifically, the additional transfer
training used 196 point-light walking actions from the CMU dataset
(half leftward-facing and the other half rightward-facing) to update the
connection weights in the FC and softmax layers so that the CNNs can
discriminate walking directions from the PL displays (80% used for
training and 20% for validation). The decision layer with 15 nodes in
previous simulations was replaced by a decision layer with 2 nodes,
representing leftward or rightward walking directions. After the two-
step transfer training, all three CNN models achieved close-to-perfect
accuracy (> 0.95) for discriminating walking direction of intact point-
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Fig. 5. Results of Simulation 3: Human and model performance for walking direction discrimination of SP walkers as a function of dot numbers and dot lifetime. (a)

Human accuracy in walking direction discrimination (Beintema & Lappe, 2002, Experiment 2). Error bars represent +

CNN, temporal CNN, and two-stream CNN model with fusion network.
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light walkers. In Simulation 3, we used a range of SP walkers with
different dot numbers and lifetime as testing stimuli.

5.2. Results and discussion

As shown in Fig. 5a, Beintema and Lappe (2002) found that human
discrimination accuracy depended on the number of points in SP
walkers, with better performance as more dots were included in the SP
walker stimuli. However, longer lifetime of dots did not improve the
discrimination performance of walking direction for SP walkers. Rather,
a trend toward a slight reduction was observed as dot lifetime was in-
creased, especially with fewer SP dots in the stimulus. This result was
interpreted as indicating that fewer dots with prolonged lifetime re-
sulted in more loss of form information in the SP stimulus.

The SP walkers were input to the spatial CNN, temporal CNN and
two-stream CNN models to compute the average accuracy for the
walking direction discrimination task. Results of the spatial CNN
(Fig. 5b, left) revealed greater accuracy with an increasing number of
dots: chance-level performance for 1P SP walkers and up to almost 0.8
accuracy for 8P SP walkers. The effect of the dot number on the per-
formance of the spatial CNN is consistent with human behavioral pat-
terns. Performance of the spatial CNN did not vary as a function of dot
lifetime for SP walkers with 8 points and 4 points, which was consistent
with the human performance for these two conditions. However, the
spatial CNN failed to account for human performance with a smaller
number of points in SP walker (i.e., 1 or 2 points), i.e., worse perfor-
mance with prolonged lifetime. Additionally, overall recognition ac-
curacy for the spatial CNN was lower than human accuracy. The overall
correlation between human performance and predictions of the spatial
CNN model was 0.70 across all 16 experimental conditions.

For the temporal CNN, the model showed an impact of the number
of dots in SP walkers on discrimination accuracy, with high dis-
crimination performance for the 8-point SP walker, and reduced per-
formance for SP walkers with fewer dots (Fig. 5b, middle). In addition,
the discrimination performance of the temporal CNN was also affected
by the lifetime of dots. Especially for SP walkers with a small number of
dots, model performance dropped as the lifetime of dots increased. In
general, the temporal CNN qualitatively captured the impacts of dot
number and lifetime on human performance observed in the psycho-
physical experiment with a high correlation (0.94) between model
predictions and human performance. The good fit to human perfor-
mance suggests that some motion features in SP walkers provided in-
formative cues for the fine discrimination task such as walking direction
discrimination. This finding is consistent with the previous work sug-
gesting that horizontal motion in SP walkers provides reliable cues for
walking direction discrimination (Casile & Giese, 2005). However, the
temporal CNN predicted worse performance in 8-point SP stimuli for a
prolonged lifetime, which is inconsistent with the human performance
for this condition.

For the two-stream CNN model, discrimination performance overall
was more similar to the spatial CNN, consistent with previous simula-
tion results indicating that the two-stream CNN model appears to im-
plement weighted fusion with more weight to the spatial CNN than to
the temporal CNN. Across the 16 experimental conditions, the overall
correlation between human performance and predictions of the two-
stream CNN model was 0.69. The worse fit of the two-stream CNN than
of the temporal CNN suggests that the integration in the fusion network
learned from the two streams was not optimal for this specific task and
SP stimuli. In contrast, humans may adjust the weighting strategy be-
tween the two streams in a more flexible way for specific stimuli and
tasks.

In research on biological motion perception, the finding that people
can recognize SP walkers has been used to support a template matching
theory based on configural cues (Lange et al., 2006; Lange & Lappe,
2006; Theusner, de Lussanet, & Lappe, 2014). The spatial CNN could be
considered as an approximation to this computational theory, as it
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learns a hierarchy of configural cues from a large quantity of action
videos to acquire the ability to process appearance-based posture
changes. The simulation results in supplemental materials (Section 2)
show that the spatial CNN revealed similar activity patterns for the 8-
point SP walker and the PL walker, as the template-matching theory
predicts, suggesting the contribution of form processing to biological
motion perception.

However, our simulation results also reveal the role of motion
processing in recognizing SP walkers. What features/cues could the
temporal CNN employ? It has been suggested (Casile & Giese, 2005)
that SP walker stimuli contain a considerable amount of horizontal
motion information that can be exploited for walking direction dis-
crimination. The temporal CNN may take advantage of such motion
cues in representing actions in SP walkers.

The interaction effect between lifetime and number of dots in
human performance likely suggests that both body form and motion
cues are important in supporting the recognition of biological motion.
In this walking direction discrimination task, when enough dots were
provided, body form provides informative cues to overcome the loss of
local inter-frame motion information. However, with weakened form
information due to fewer dots, prolonged lifetime of SP dots provided
less informative motion cues capturing the joint movements in actions,
resulting in a performance decrement. Taken together, our simulation
results imply that the human visual system may integrate optical flow
and body shape information overtime at different resolution levels to
process the visual information in SP walkers. This integrated processing
hypothesis is consistent with electrophysiological evidence that motion
neurons are found in the upper bank/fundus STS of the macaque cortex
and “snapshot” neurons in the lower bank of the STS and inferior
temporal convexity (Vangeneugden, Pollick, & Vogels, 2009), and also
with psychophysical evidence showing that local motion features (ra-
ther than global form templates) are critical for perceiving point-light
biological motion (Thurman & Grossman, 2008).

6. Simulation 4: Inversion effects in biological motion perception

The inversion effect is another classic finding in biological motion
perception, with people showing worse discrimination performance
when point-light actions are presented upside-down (Bardi, Regolin, &
Simion, 2014; Pavlova & Sokolov, 2000; Reed, Stone, Bozova, &
Tanaka, 2003; Troje & Westhoff, 2006; for a review, see Blake &
Shiffrar, 2007). The inversion effect has been used to support structural
processing or holistic form processing in biological motion perception
(Shiffrar & Pinto, 2002). However, Troje and Westhoff (2006) showed
that the inversion effect can also be observed in the absence of whole-
body configural information when dots in the point-light displays were
spatially scrambled. This finding provided strong evidence that the
human visual system is specifically tuned to some characteristic fea-
tures of joint locomotion. Recent studies have found converging evi-
dence that humans show high sensitivity to foot movements in walking
actions (Wang, Zhang, He, & Jiang, 2010; Chang & Troje, 2009; van
Boxtel & Lu, 2015), and to punching movements in a visual search task
with boxing actions (van Boxtel & Lu, 2012). In Simulation 4, we ex-
amined whether the CNN models exhibit inversion effects after training
with a large dataset of human action videos and whether these models
exhibit sensitivity to critical joint movements, such as those that have
been described as a “life detector” (Troje & Westhoff, 2006).

6.1. Stimuli and model training

The same 98 CMU walking actions used in Simulation 3 were used
to generate test stimuli for Simulation 4. All test stimuli in Simulation 4
were created using four different types of scrambling manipulations,
modeled closely on the conditions examined in Troje and Westhoff
(2006) study: intact point-light, spatial scrambled, phase scrambled,
and frequency scrambled conditions. Intact point-light displays were
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generated by showing walking actions in the point-light format. Spa-
tially scrambled displays were generated by randomly placing initial
locations of dots of the intact point-light walker within a spatial
window, but maintaining the same motion trajectory for individual
dots. Phase scrambled displays were generated by randomizing the re-
lative phase of dot movements (i.e., each dot started the motion se-
quence from a random frame in the cycle instead of starting from frame
1). Frequency scrambled displays were generated by scrambling the
frequency of individual dot movements. The frequency scrambling
manipulation was performed by multiplying the veridical speed of each
dot by a ratio randomly selected within the range of 0.5 and 2 (fol-
lowing a uniform distribution on a logarithmic scale).

The same set of models, the spatial CNN, the temporal CNN, and the
two-stream CNN trained and used in Simulation 3 were employed in
Simulation 4 to perform the walking direction discrimination task for
different experimental conditions.

6.2. Results and discussion

In the Troje and Westhoff (2006) study, humans were asked to judge
the walking direction of intact and scrambled point-light walkers in
both upright and upside-down body orientations. The researchers
showed that humans were able to judge walking directions even when
body configuration was disrupted by scrambling in upright orientation.
Additionally, people showed clear inversion effects across all condi-
tions, with better performance in upright orientation than in upside-
down orientation for both intact point-light walkers and scrambled
walkers (including spatial scramble, temporal scramble, and frequency
scramble). These results indicate that the configural form of body
structure is not the only cue supporting the inversion effects found in
biological motion perception. Rather, local motion signals of joint
movements also contribute to the well-established inversion effects.

For the intact upright point-light walkers, all three CNN models
achieve 1.00 accuracy in discriminating the walking direction. As
shown in Fig. 6, all three CNN models (spatial CNN, temporal CNN, and
two-stream CNN model) showed inversion effects for conditions of in-
tact point-light walker, phase scrambling, and frequency scrambling.
The model performance in these three conditions are qualitatively
consistent with human performance showing higher discrimination
performance in the upright condition than in the upside-down condi-
tion.

However, none of the three CNN models exhibited an inversion
effect in the spatial scrambling condition, in contrast with the inversion
effect shown in human experiment for this condition. When dots in
point-light displays were spatially scrambled, the CNN models yielded
chance-level performance for direction discrimination in both upright
and upside-down orientations. While phase scrambling and frequency
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scrambling both disturb coordinated movements of dots in the point-
light display, the configural form of body structure is still preserved to a
certain extent, as in these conditions the walking action is still re-
cognizable but tends to be perceived as a wobbling walker or with an
uncoordinated walking style. In contrast, spatial scrambling completely
removes the configural form of the body and only preserves the pend-
ular joint movements of a walker. Hence, the failure to discriminate
walking direction in the spatially-scrambled upright walkers demon-
strated that CNN models have not acquired specialized visual feature
detector for biological movements (i.e., hypersensitivity to certain
signature features in joint movements, such as foot movements in
walking actions). These results suggest that the CNN models lack a
specialized mechanism to maintain high sensitivity to critical motion of
local joints (e.g., bipedal movements of feet) that signals biological
movements, and/or a mechanism of passing this information directly to
later layers for facilitating recognition or detection of biological
movements indicative of living organisms. Another possibility of the
CNN models lacking sensitivity to bipedal movements could be partially
due to the smoothing procedures involved in the algorithm of calcu-
lating optical flow information from videos. The algorithm used to
extract optical flow field from videos was the iterative Lucas-Kanade
method with pyramids (i.e., function calcOpticalFlowPyrLK from the
openCV toolbox). This algorithm involves smoothing image compo-
nents to detect displacements over time. Especially for tracking high-
speed motion, the algorithm reduces spatial resolutions of image
frames. This blurring process might mitigate the precision of optical
flow with fast body movements (such as foot) in action videos, yielding
low sensitivity to bipedal movements in walking actions.

7. Simulation 5: Sensitivity to motion congruency in actions

In addition to recognizing actions from sparse information, humans
also show the ability to perceive motion congruency in biological mo-
tion governed by causal relations (Peng et al., 2017) and to mentalize
intention (Runeson & Frykholm, 1983). As a simple example, navi-
gating the body through the environment provides humans with direct
experience of cause-effect relations, because the human body moves via
locomotory movements that leverage gravity and limb biomechanics to
propel the body in a particular direction. This process creates a relation
between limb movements as the cause and whole-body translation as
the effect, resulting in expectations about the relation between the two
motion cues (i.e., relative limb movements with reference to body-
centered coordinates, and body displacements with reference to distal
world coordinates). Several studies have shown that humans are sen-
sitive to the congruency between relative limb movements and body
displacements (Masselink & Lappe, 2015; Murphy, Brady, Fitzgerald, &
Troje, 2009; Thurman & Lu, 2016; Peng et al., 2017). A compelling
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Fig. 6. Results of simulation 4: model performance for walking direction discrimination as a function of different scrambling conditions for upright and inverted
walkers. Humans show an inversion effect in all four conditions (Troje & Westhoff, 2006). All CNN models showed the inversion effect in intact, phase scrambling and
frequency scrambling conditions, but neither model showed the inversion effect in spatial scrambled condition.
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demonstration of the strong sense of causality elicited by actions is
provided by the famous “moonwalk” dance movement, which creates
the illusion that the dancer is being pulled backward by an unseen force
while attempting to walk forward. People seem to inevitably sense that
the moonwalk movement is somehow odd and surprising.

To examine whether the two-stream CNN model supports a deeper
understanding of motion information in human actions, Simulation 5
examined the ability of the CNN models to make refined discrimina-
tions among different types of walking stimuli, including intact forward
walking, backward walking, moonwalk, and in-place walking. If CNNs
trained for recognition of action categories fail the discrimination task,
we will further test whether the CNN models can be trained to dis-
criminate between walking actions either consistent or inconsistent
with motion congruency, and whether the CNNs show sensitivity to
causal directionality underlying motion congruency.

Studies of biological motion perception have shown that people are
sensitive to facing direction (i.e., leftward- vs. rightward-facing) and
walking directions (forward vs. backward walking) of a point-light
walker (Verfaillie, 2000; Theusner et al., 2011; Lange & Lappe, 2007;
Miller & Saygin, 2013; Pavlova, Krageloh-Mann, Birbaumer, & Sokolov,
2002; Sumi, 1984; Troje & Aust, 2013). In Simulation 5 we examined a
variety of walking actions, including forward/backward walking,
moonwalk and walking on a treadmill. The CNN models were trained
with intact walking sequences with consistent facing and walking di-
rections, and then were tested with other walking sequences that al-
tered facing and walking directions. If the CNN models are able to learn
to be sensitive to the congruency of motion signals, then inconsistency
between motion cues in the three testing action conditions would affect
discrimination performance.

7.1. Stimuli and model training

The same 98 CMU walking actions employed in previous simula-
tions were used to generate test stimuli. Some walking stimuli in
Simulation 5 showed body displacements in the display. Four condi-
tions of walking actions were generated: (1) forward walking, (2)
backward walking, (3) moonwalk, and (4) in-place walking. The for-
ward walking condition included the normal forward walking actions
with consistent limb movements and body displacements, and also
congruent facing direction and walking direction. The backward
walking actions were generated by reversing the frame sequence of the
entire video, so that limb movements and body displacements are
congruent, but the walking direction is opposite to the facing direction.
The moonwalk condition was generated by reversing the horizontal
moving direction of the global body translation while keeping the limb
movements sequence intact. Thus in a moonwalk, when a walker moves
limbs in a way to naturally propel the body to move left, the body
instead shifts to the right. Finally, in-place walking actions were gen-
erated by removing the global body translation component and only
keeping the limb movements, as in walking on a treadmill.

Classification categories for all walking actions were defined based
on the corresponding facing direction (i.e., whether the body is facing
left or right regardless of limb or body movements). Fig. 7 illustrates
examples that would be classified as “right” in all four conditions. As
shown in Fig. 7, in the intact forward walking condition, a walker faces
right and also walks towards the right. In the backward walking con-
dition, the actor faces right, although both limb movements and body
translation show leftward motion. In the moonwalk condition, the actor
still faces right, and limb movements would indicate a rightward
walking direction which is inconsistent with the leftward body trans-
lation shown in this condition. In the in-place walking condition, the
actor faces right with the limb movements consistent with rightward
motion, but the body position is stationary as in walking on a treadmill.
Because simulation 1 showed that the two-stream models showed good
recognition performance with skeletal displays, all the training and
testing action stimuli in Simulation 5 were presented using skeletal
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Fig. 7. lllustrations of the four walking conditions: intact forward walking,
backward walking, moonwalk, and in-place walking. Here, illustrations of all
conditions show instances of the “facing right” category for all four conditions.
Each plot shows several possible limb movements for a stick-figure resulting
from posture changes over time. The sticks in the walker change from light to
dark color to denote elapsed time. Arrows below the stick-figures indicate the
global body translation direction. In the in-place condition, the walker re-
mained in a stationary location.

displays. The same set of CNNs trained in Simulation 1 was used, fol-
lowed by a restricted transfer training with forward walking skeleton
videos to perform a discrimination task of facing directions. Training
and validation stimuli were randomly chosen from 196 forward
walking skeleton videos with a proportion of 80% and 20% respec-
tively. The saturated model weights after transfer training were used for
testing backward walking, moonwalk, and in-place walking conditions.
Accuracy and confusion matrices were calculated for each condition.

7.2. Results and discussion

All three CNNs showed very high performance (> 0.91) in dis-
criminating facing directions of forward walking actors in skeletal
displays. Model performance is summarized in Table 3. When testing
the spatial CNN in the various walking conditions, the spatial CNN's
judgment on the facing direction of walkers was influenced by the
absence of body displacement, but not by the congruency of limb
movements and body translation. Specifically, for in-place walking
actions in the absence of body displacement, accuracy of facing direc-
tion judgments was reduced to 0.60. However, when body displacement
was present in the moonwalk and backward walking conditions, the
spatial CNN reached ceiling performance 0.91 of facing direction dis-
crimination for the moonwalk condition and 0.95 for the backward
walking condition, suggesting that spatial processing of appearance
information extracts facing direction as long as the body moves with
translation, regardless of whether the body moves to the direction in

Table 3

Training and testing response proportion to the facing direction in Simulation
5.1. From top to bottom, the rows show results for the spatial pathway, tem-
poral pathway, and fusion.

Training: Testing: Testing: Testing:

Forward Backward Moonwalk In-place

walking walking walking
Appearance (spatial CNN) 0.91 0.95 0.91 0.60
Motion (temporal CNN) 0.97 0.89 0.80 0.63
Fusion (spatial + temporal 0.95 0.91 0.84 0.59

two-stream CNN)
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accordance with limb motion. As training action stimuli in Simulation 5
included body displacement of the sort humans usually observe human
actions in the environment, it is not surprising that the spatial CNN
showed sensitivity to the presence of body displacements in dis-
crimination. However, the lack of differences between moonwalk and
backward walking conditions suggests that the model has not learned
the appropriate binding between posture changes from limb move-
ments and the corresponding body translation in the environment.

The temporal CNN reached perfect accuracy (0.97) in the facing
discrimination task for the forward walking actions after training.
When tested with in-place walking, accuracy of the temporal CNN
dropped to 0.63, revealing that the CNN likely relied on body dis-
placement direction to decide on the facing directions of a walker.
When tested with moonwalk and backward walking actions, the tem-
poral CNN yielded performance of 0.80 and 0.89, respectively, sug-
gesting that when body translation is opposite to the facing direction of
the walker, the temporal CNN's ability in identifying the facing direc-
tion was weakened.

The two-stream CNN with fusion network showed performance in-
termediate between that of the spatial CNN and the temporal CNN,
indicating a compromised decision based on appearance and motion
features processed by the two pathways.

Simulation 5 showed that CNN models revealed small differentia-
tion in judging the facing directions of moonwalk actions and of
backward walking actions. This result may be due to the fact that these
CNN models were trained to discriminate the facing direction of a
walker, rather than the consistency among motion cues (in particular,
motion congruency between limb movements and body displacements).
In the additional simulation (see details in supplemental materials
Section 3), we conducted restricted transfer training using a 3-way
decision task that required the explicit differentiation among forward
walking, backward walking, and moonwalk actions. Both forward
walking and backward walking exhibit a causal congruency between
limb movements and body translations (i.e., limb movements cause
body translations), whereas moonwalk violates the causal congruency.
The simulation results showed that the targeted training enables the
three CNN models to acquire some sensitivity to temporal direction in
accordance with the cause-effect relation in body movements.

8. General discussion

In the present study, we assessed whether single-stream CNN
models and a two-stream CNN model for action recognition can account
for classic findings involving human biological motion perception.
Simulation 1 showed that despite attaining high accuracy after training
with raw videos and skeletal displays, in comparison to humans, CNN
models showed less robust performance for action recognition with
novel point-light displays. Furthermore, even though the temporal CNN
of motion processing produced above-chance performance, the two-
stream CNN with fusion network did not show strong recognition per-
formance for point-light stimuli, suggesting that the integration stage in
the two-stream CNN overweights the image features extracted by the
spatial CNN based on appearance processing, but underweights the
motion features from the temporal CNN.

In Simulation 2, CNN models showed viewpoint-dependent re-
cognition and limited ability to generalize from a trained viewpoint to
nearby views. In Simulation 3, we found that the CNN models showed
some ability to recognize walking actions when local image motion
signals are disrupted in SP walkers. Both the spatial CNN based on
appearance processing and the temporal CNN based on motion pro-
cessing contribute to the recognition of walkers with degraded motion
information. Simulation 4 revealed that the CNN models predict the
inversion effect attributable to global configural cues, but fail to predict
the inversion effect attributable to specialized local motion cues (i.e.,
“life detectors”).

Simulation 5 systematically examined whether CNN models can
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capture more fine-grained features of action stimuli, such as causal
congruency between motion cues. Simulation 5 trained the CNNs with a
facing-direction discrimination task. We found that CNNs demonstrated
a certain degree of sensitivity to the presence of global body displace-
ment in action stimuli, as the models showed worse performance for in-
place walkers. However, the CNNs did not show clear differentiation for
backward walking and moonwalk. Additional simulation used a tar-
geted task to train the CNNs to discriminate forward walking, backward
walking and moonwalk. After training, all three CNN models showed
some sensitivity to temporal direction in accordance with the cause-
effect relation in body movements.

Together, these findings indicate that CNN models can achieve near
human-level performance in action recognition after intensive training
with raw RGB videos, and show a certain degree of generalization to
novel displays of biological motion after transfer training. However, the
CNN models have not achieved the robustness as human perception of
biological motion. In particular, CNNs trained with raw RGB videos
show weak performance in recognizing point-light actions, which
contrasts with humans’ remarkable ability to perform point-light action
recognition without any need for extra training. In object recognition,
researchers found that CNN models primarily rely on the statistical
regularities of low-level appearance information to perform visual re-
cognition, and lack the ability to extract global shape cues (Baker et al.,
2018). The CNN models for action recognition exhibit the similar
weakness, showing limited generalization from training data (raw vi-
deos) to other display types (e.g., point-light display). Additional
transfer training is necessary for the CNN models to recognize actions in
point-light displays. Whereas the CNN models rely heavily on a large
sample of training instances, the human visual system can form a
concept from even a single encounter (Carey & Bartlett, 1978). Even
though CNN models are powerful in capturing the appearance patterns
and motion kinematics from action videos, they lack a high-level ab-
stract representation of actions.

Another shortcoming of the two-stream CNN model involves the
integration module within the fusion network, which appears to assign
a higher weight to the spatial stream of processing appearance than to
the temporal stream of processing motion after training with raw RGB
videos. In four simulations (i.e., simulations 1 — 4), the two-stream CNN
with fusion network showed similar performance as that of the spatial
CNN. This fusion strategy may be optimal for the trained task and da-
taset with raw RGB videos. However, the lack of flexibility in adjusting
the weighting strategy between form processing and motion processing
significantly limits the model’s ability to achieve human-level gen-
eralization to novel stimuli.

All three CNN models lack sensitivity to specialized motion cues
that signal animacy or life in biological motion. As has been shown in
studies with adult humans (Troje & Westhoff, 2006), newborns (Bidet-
Ildei, Kitromilides, Orliaguet, Pavlova, & Gentaz, 2014), and newly-
hatched chicks (Vallortigara & Regolin, 2006), characteristic move-
ments of feet serve as an important indicator of living animals in lo-
comotion, and attract visual attention automatically. The two-stream
CNN model does not have a mechanism to differentiate visual filters
that are tuned to specialized movement patterns such as a life detector.
Furthermore, due to the architecture of the CNN models, the lack of
long-range connections across layers makes it difficult to directly pass
certain critical local motion cues to later decision layers in support of
efficient detection of biological motion. Whereas the human visual
system may be able to detect life signals based on scattered motion
signals and flexibly assemble motion information by integrating dif-
ferent visual cues (Thurman & Lu, 2013) to form biological motion
representations for novel creatures, CNN models have limited ability to
adaptively integrate local motion information and global body form for
specific tasks and stimuli.

Finally, many psychophysical studies have revealed important top-
down influences on biological motion perception (Lu, Tjan, & Liu,
2006), an interplay with motor training (Casile & Giese, 2006) and
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social perception (Johnson, McKay, & Pollick, 2011; Klin, Lin,
Gorrindo, Ramsay, & Jones, 2009), and interaction with visual atten-
tion (Thornton & Vuong, 2004; Thompson & Parasuraman, 2012). In
contrast, the CNN models are constructed in a pure feedforward manner
for both spatial and temporal pathways, without top-down influences
through feedback connections and interactions between the two path-
ways. This architecture enables the model to learn visual patterns
(appearance and motion) associated with action categories, but limits
its capability to manipulate attention and to incorporate prior knowl-
edge, such as physical laws and biological constraints.

These shortcomings indicate that CNN models for action recognition
are susceptible to a mismatch between training and testing datasets,
due to their limited ability to form robust representations of human
body movements. Controlled stimuli commonly used in psychophysical
studies provide a useful tool to assess the generalization ability of
CNNs. Future work should focus on overcoming the aforementioned
limitations to enhance the models’ generalizability to novel stimuli and
a larger range of tasks, rather than focusing solely on recognition ac-
curacy for a specific task. In addition to the behavioral findings ex-
plored in the present paper, many other psychophysical effects in bio-
logical motion perception (e.g., size invariance, embodiment) can be
used to further gauge the underlying representational commonalities
and differences between human action perception system and the op-
eration of CNN models.
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