

position, i.e., where they can serve a large number of requests

with small dissimilarity cost.

We prove that in a stationary setting, with an opportune

choice of the gradient step sizes, GRADES converges to a

cache configuration that corresponds to a critical point of the

service cost (likely a local minimum). Our experiments based

on realistic traces (made available online [17]) shows that

GRADES outperforms existing similarity caching policies both

for 360◦ videos and recommendation systems applications.

The paper is organized as follows: related work in Sect. II,

formal problem definition in Sect. III, GRADES and its theo-

retical guarantees in Sect. IV, experimental results in Sect. V.

II. RELATED WORK

Most existing policies for similarity caches generalize well-

known exact caching policies, like LRU and LFU, to the

new context, where besides (exact)-hits and misses, also

approximate-hits are possible. For example SIM-LRU [4],

[12] maintains the content in an ordered queue and serves

an object from the cache if it is closer to the request than a

given threshold (an approximate hit occurs). The object is then

moved to the front of the queue. When no object in the cache

is close enough to the request, there is a miss. The answer is

then retrieved from the server and inserted at the front of the

queue, possibly evicting items from the back. RND-LRU [4]

is a variant of SIM-LRU where the threshold is replaced

by a random variable that is a function of the dissimilarity

cost. As SIM-LRU and RND-LRU are adaptions of LRU,

qLRU-∆C [18] modifies qLRU [19] introducing a refresh

probability that depends on the similarity. Finally, DUEL [18]

is inspired by LFU, and decides which object to evict by

tracking the dissimilarity cost (i.e., the cost associated to the

distance between a cached object and the request) accumulated

over a given time-window. In our experiments we compare

GRADES with SIM-LRU, qLRU-∆C, and DUEL.

Our algorithm was inspired by the work from Jorge Cortés

and his coauthors on coordination algorithms for mobile

agents (see e.g. [20], [21], [22]). In their setting mobile

agents (e.g., drones) place themselves in the space to be able

to detect the largest number of events in the environment.

Similarly, the objects in the cache need to position themselves

to optimally serve the requests popping out over the space.

Despite similarities at a high-level, their work focuses on a

two-dimensional space and needs to take into account agents’

movement and communication constraints that do not hold in

our context.

From another point of view, GRADES gradient update can

be considered as a generalization of stochastic K-means

algorithms, where the function we want to minimize is not

necessarily the squared Euclidean distance (as it is the case for

K-means). Our proofs rely on techniques for non-convex op-

timization originally proposed in [23] also to study K-means.

Online caching policies based on gradient methods have

been proposed in the stochastic request setting (see, e.g., [24],

[25]), and, more recently, in the adversarial setting [26]. In

these papers, the gradient step updates a vector of length equal

to the catalog size, whose component i (in [0, 1]) represents

which fraction of object i should be stored in the cache or

equivalently the probability to store i in the cache. Differently

from this line of work, GRADES uses the gradient step to

modify the objects in the cache and maintains a vector of size

equal to the cache—then much smaller than the catalog size.

A costly operation in any similarity search system is to find

the closest object to the request. A simple solution is to index

the collection, e.g., with a tree based data structure, to find

the exact closest object. Unfortunately, when the number of

dimensions d of the representation space exceeds 10, such an

approach has a computational cost comparable to a full scan of

the collection [14]. For this reason a number of approximate

search techniques have been developed, which trade accuracy

for speed and provide one or more points close to the request,

but not necessarily the closest. Prominent examples are the

solutions based on locality sensitive hashing [27], product

quantization [28], [29], pivots [30], or graphs [31]. In the ex-

periments in this paper, we have performed an exact similarity

search, but any of these approximated search techniques could

be used in GRADES.

III. PROBLEM DEFINITION

We consider a similarity search system where a server

answers users’ queries with the most similar object from a

locally stored catalog. We assume that each request or object in

the catalog can be represented as a point in the d-dimensional

Euclidean space R
d. In what follows we will refer to such

representations as embeddings and, for the sake of simplicity,

we will identify each object/request with its embedding (e.g.,

we will say that object x belongs to R
d).

Requests satisfied by the server incur a retrieval cost Cr,

which quantifies the delay the user experiences to retrieve the

object from the remote server, and/or the additional load for

the server, and/or the additional load for the network.

In alternative, the request may be satisfied by a similarity

cache which stores a subset of the catalog. The cache provides,

in general, a less similar object than what the server could

provide, but incurs a negligible retrieval cost, as, for example,

it is located closer to the user, or uses a faster memory storage

or can perform faster lookup operations on the smaller set of

stored contents. For simplicity we assume all objects have the

same size and the cache can store up to k objects.

Our model of the system is similar to the one considered in

previous papers on similarity caching in the continuous setting

like [4], [18].

Let Z and X denote the catalog and the set of possible

requests, respectively. Both sets may be finite or infinite, but

we require them to be compact (to be able to retrieve a closest

object to a given request). The “quality” of a similarity search

for x depends on how similar the response object z is to the

request. We assume the dissimilarity cost is quantified by the

function Cd(x, z) = h(‖x − z‖), where h : R → R
+ is a

non-decreasing non-negative function and ‖·‖ is a norm in

R
d (e.g., the Euclidean one). For example Faiss (Facebook

1378

A. Introducing a Projection

As requests are only for objects in the bounded set X ,

there exists a norm-2 ball with radius R — B2(R) = {y ∈
R

d, ‖y‖2 ≤ R}) — such that X ⊂ B2(R) and C(x, y) = Cr

for each y /∈ B2(R) and each x ∈ X . There is no advantage

to store in the cache objects that do not belong to B2(R) as

they do not contribute to approximate any request. We then

modify (3) in order to make closer to B2(R) any cached object

y
(i)
t that the gradient update may have brought out of B2(R).

We write

y
(i)
t+1 = y

(i)
t − ηtg

(i)
t , (4)

g
(i)
t =















∇yC(xt, y
(i)
t), if (i = it) ∧ (y

(i)
t ∈ B2(R))

f(‖y
(i)
t ‖ −R)

y
(i)
t

‖y
(i)
t ‖2

, if y
(i)
t /∈ B2(R),

0, otherwise,

where f(u) = d
du

u4

1+u2 = 2u3 2+u2

(1+u2)2 (for technical reasons

explained in the proof of Theorem IV.2).

B. Convergence

In this section we provide convergence results for the basic

algorithm described by (4). We assume the cache update rule

generates embeddings that always correspond to objects in the

catalog. Moreover, we will ignore the cost of updates made

after the request is served. These two simplifications will be

removed in the next section.

It will be useful to denote the cache state as a vector

yt = (yt,1, . . . , yt,k) ∈ R
k×d, obtained concatenating the

embeddings of the different objects in the cache. Similarly,

we define the different costs as function of yt and then write

Cd(yt), C(yt), and C(yt).
We are now going to prove that algorithm (4) converges

almost surely to a stationary point of C(y).
The trajectory of yt is bounded almost surely:

Lemma IV.1. Let the learning rate ηt be selected so that
∑+∞

t=1 ηt = +∞ and
∑+∞

t=1 η
2
t < +∞. The sequence (yt) is

bounded almost surely.

This lemma, whose proof is sketched in App. A, is used in

the proof of the following convergence result.

Theorem IV.2. Let the learning rate ηt be selected so that
∑+∞

t=1 ηt = +∞ and
∑+∞

t=1 η
2
t < +∞. If C() is continuously

differentiable up to the second order then

lim inf
t→∞

‖∇yC(yt)‖2 = 0 a.s.

If C() is continuously differentiable up to the third order then

lim
t→∞

∇yt
C(yt) = 0 a.s.

The sequence (yt) converges then to a critical point of C(·),
i.e., a point where the gradient is zero. This may be a saddle

point, a local maximum or a local minimum of C(·). The latter

is more likely as it is the only one locally stable. The proof

of Theorem IV.2 is in App. B.

Algorithm 1 GRADES

1: Let k be the cache size and x the object requested

2: if (|SV,t| < k) ∧ (x /∈ SV,t) then . still space in cache

3: Insert x in VC

4: Retrieve and insert ρ(x) in PC

5: µ(x) = ρ(x)

6: yV = argminy∈SV,t
Cd(x, y)

7: Update SV,t according to (4)

8: if Cd(x, yV) ≤ Cθ then . virtual hit

9: if ‖x− yV ‖ < ‖µ(yV)− yV ‖ then . x approximates

yV better than µ(yV)
10: Evict µ(yV)
11: Retrieve and Insert ρ(x) in PC

12: µ(yV) = ρ(x)

13: GRAFT HIT UPDATE(x, SV,t)

14: yP = argminy∈SP,t
Cd(x, y)

15: ξ ∼ Uniform(0, 1)
16: if ξ < p then

17: (update, ω) =GRAFT MISS UPDATE(SV,t, x, ρ(x))
18: if update then

19: Evict ω and µ(ω)
20: Retrieve and Insert ρ(x) in VC and PC

21: µ(ρ(x)) = ρ(x)
22: yP = ρ(x)

23: if (Cd(x, yP) ≤ Cθ) ∨ (ρ(x) inserted in PC) then

24: Serve yP
25: else

26: Retrieve and Serve ρ(x)

C. Implementation

In this section we present our complete caching policy

GRADES, whose pseudo-code is in Algorithm 1. Theorem IV.2

shows that the basic gradient update (4) attains a critical point

of the expected cost C(·). Nevertheless, we have assumed

that this update rule always generates embeddings in R
d that

correspond to objects in the catalog. However, if the catalog

has a finite number of objects, this is unlikely to happen, as the

update (4) can potentially generate any real vector. Moreover,

the update (4) may modify an object in the cache upon each

request and then generate a high load on the server and the

network to retrieve the new modified objects.

In Sect. IV-C1 we describe how our algorithm addresses

these issues. We then move on in Sect. IV-C2 to describe

some additional features that provide a higher adaptivity of the

algorithm to deal with highly non-stationary request processes,

allowing for some random insertions with probability p.

1) Dealing with Finite Catalogue and Reducing Server

Load: We propose to maintain a virtual cache (VC) and a

physical cache (PC). The VC only stores some metadata, but

no actual object; its use is common to other policies like

2-LRU [19] or ADAPTSIZE [34]. The VC is sometimes called

shadow cache.

In our case the VC stores k vectors in R
d that are updated

upon each request according to the basic algorithm in (4).

1380

These vectors are the embeddings of the objects we would

like to store in the cache, but, as discussed above, such objects

may not exist, or they may not have been retrieved yet from

the server. The PC contains objects from the catalog together

with their embeddings.

At a high level, the main idea behind GRADES is to maintain

the PC as close as possible to the VC. We use then the

current state of the VC to drive updates at the PC, i.e., object

eviction and insertion. In particular each vector yV in the VC

is matched by an actual object µ(yV) in the PC and GRADES

will opportunistically update µ(yV) to make it as close as

possible to yV .

We now describe in details Alg. 1 using the following

additional notation:

• SV,t and SP,t denote the state of the VC and the PC,

respectively.

• ρ(x) denotes the closest object in the catalogue to x.

The gray lines correspond to changes to increase algorithm

adaptivity and will be discussed in Sect. IV-C2.

Upon a request for x, if there is still space in the cache, we

retrieve the most similar object in the catalogue ρ(x). GRADES

inserts x and ρ(x) in the VC and in the PC, respectively, and

matches them (µ(x) = ρ(x)). These operations are described

in lines 2–5. The cache will finally serve ρ(x).
If the cache is already full, the closest object in VC i.e., yV

will be updated according to (4) (lines 6–7). Upon a virtual hit,

if x is closer to yV than the currently matching object µ(yV)
in the PC, GRADES takes advantage of this request to replace

µ(yV) with ρ(x) (lines 9–12). In a stationary setting, the state

of VC converges to a critical point of the cost (Theorem IV.2)

and the PC should become closer and closer to it. Finally, the

most similar object in PC is served if it is close enough to x,

or if in any case ρ(x) has been retrieved (line 11).

2) Increasing Adaptivity: According to what we described

above, only the closest object in VC is updated upon a request

(unless some projection back to B(R) is needed). A potential

problem is that if an object x far from any other object has

been accidentally inserted in VC (and the corresponding object

ρ(x) in PC), it may never be updated and may uselessly

occupy cache space. Moreover, if at some point the request

process changes abruptly, some objects in the cache that were

initially useful may find themselves too far from the new

requests. Again, the gradient algorithm, by itself, would not

update such objects.

To overcome this problem, we can graft to GRADES a more

dynamic caching policy that occasionally (with probability p)

updates the VC, hopefully evicting the least useful object in

the VC.

The “grafting” is described by the grey lines in Algorithm 1

and has been designed to support general cache eviction

algorithms like LRU, LFU, and their variants. The grafted

caching policy internally maintains its own data structure, e.g.,

an ordered queue for LRU. Upon an approximate hit, the

hit update rule of the grafted policy is called (line 13). For

example, LRU would move the requested object (if present in

the cache) to the front of the queue. Also, with probability p,

TABLE I: Traces description

Trace Number of requests Catalog size Dimension (d)

Synthetic 2,000,000 97,969 2
360

◦ videos 10,000,000 25,393 3
Amazon trace 908,179 63,891 100
CiteULike trace 2,411,819 153,277 100
Movielens trace 620,222 136,677 200

GRADES invokes the miss update rule of the grafted policy,

that may lead to select an element ω to be evicted. GRADES

then updates accordingly the VC and the PC (lines 19–22).

V. EXPERIMENTS

In this section, we empirically validate our algorithm

through simulations. First we demonstrate the benefit of the

algorithm, by using synthetic traces. Next, to demonstrate

real world applicability of our algorithm, we use GRADES

in the domain of caching for 360 videos and recommendation

systems. We assume that the catalog coincides with the set

of possible requests (Z = X) and then set Cθ = Cr. The

retrieval cost Cr is always equal to 1. Table I summarizes

the main characteristics of the traces. Further details about the

experimental setup and the properties of request traces will be

described in the corresponding subsections. To the best of our

knowledge, there are no public traces for similarity caching;

we made our traces available online [17].

We compare GRADES with the following algorithms.

a) GREEDY is an offline static algorithm that progressively

fills the cache inserting the object that provides the largest cost

saving given the set of objects already inserted. The algorithm

provides a 1
2 approximation in terms of cost savings [35].

b) LRU+ updates the cache as the classic LRU evicting the

least recently used content when needed, but it can provide

approximate objects.

c) SIM-LRU [4] maintains the content in an ordered queue

as LRU. It moves objects to the front upon an approximate

hit, and evicts objects from the back when needed.

d) qLRU-∆C [18] is a variant of qLRU [19] that, upon

an approximate hit, moves the object to the front with a

probability which is proportional to the service cost reduction

the object has guaranteed on the current request.

e) DUEL [18], upon a request for object x not in cache,

x is matched with an object y in the cache in a tournament

aimed at deciding if x is a better candidate to be stored in the

cache as compared to y. The decision is made by comparing

the cost savings x and y provide over a fixed interval of time

(f). If the new object x provides a larger cost saving, then x
replaces y in the cache.

A. Synthetic Traces

We consider a setting similar to [18]. The catalog is made

by the points of a L × L bi-dimensional grid with L = 313.

For any two objects x and y on the grid we define the approxi-

mation cost to be proportional to the norm-1 distance between

the two points x and y, in particular Ca(x, y) =
1
10 ||x− y||1.

The cache has size k = 313.

1381

and of the inequalities above, we can derive the following

inequality

ft+1 − ft ≤
k

∑

i=1

[

−2ηty
(i)
t · g

(i)
t φ′(‖y‖22)

]

+ η2t (A+Bft) .

(5)

We take now the conditional expectation given Ht =
(y1,y2, . . . ,yt):

Ex[ft+1 − ft|Ht] ≤
k

∑

i=1

[

−2ηty
(i)
t · Ex

[

g
(i)
t

]

φ′(‖y
(i)
t ‖22)

]

+ η2t (A+Bft) ≤ η2t (A+Bft)., (6)

where the last inequality follows from φ′(‖y
(i)
t ‖22) = 0 for

y
(i)
t ∈ B2(R+ 1) and y

(i)
t · g

(i)
t > 0 for y

(i)
t ∈ B2(R+ 1).

From (6) we can reason as in [23, Sect. 5.2] to show

that {ft}t∈N is a quasi-martingale and apply convergence

results for quasi-martingales [23, Sect. 4.4] to conclude that

ft converges almost surely to a random variable f∞ ≥ 0
with E[f∞] < ∞. We want to conclude that f∞ = 0 with

probability one, and then yt is bounded almost surely.

Moving around the terms in (5) and summing over t, we

obtain

∞
∑

t=1

k
∑

i=1

2ηty
(i)
t · g

(i)
t φ′(‖y‖22)

≤ f1 − f∞ +
∞
∑

t=1

η2t (A+Bft) < +∞ a.s. (7)

because
∑

t η
2
t < ∞ and ft converges to f∞ < ∞.

Let H be the set of sequences such that f∞ > 0. For each

sequence in H, ft > f∞/2 for large t, and then there exists at

least a value it and an opportune ε > 0 such that ‖y
(it)
t ‖2 >

(R + 1) + ε. Then both y
(i)
t · g

(i)
t and φ′(‖y‖22) are bounded

below by positive quantities and the series in the LHS of (7)

diverges as
∑

t ηt = +∞. But we have concluded that this

series converges a.s., then Pr (H) = 0 and f∞ = 0 a.s.. Each

sequence (y1,y2, . . .) is then bounded a.s.

APPENDIX B

SKETCH OF THEOREM IV.2 PROOF

Proof. We denote by yt,i the i-th component of the vector

yt ∈ R
k×d, and by yi the i-th component of a generic vector

y ∈ R
k×d.

We define F (u) = u4/(1 + u2), L(y) =
∑k

i=1 1yi
t /∈B2(R)F

(

‖y
(i)
t ‖2 −R

)

, and C̃(x,y) = C(x,y) +

L(y). We observe that ∇yC̃(x,yt) = (g
(1)
t , . . . , g

(k)
t),

i.e., the dynamic in (4) is evolving according

to the gradient of C̃(x,yt). Similary we define

C̃(y) = Ex

[

C̃(x,y)
]

= C(y) + L(y). The function L(y) is

continuously differentiable up to the third order, then C̃(y) is

continuously differentiable up to the second/third order when

C(y) is so. Moreover, we observe that ‖∇yC̃(y)‖2 > 0 for

y(i) /∈ B2(R) for some i. Then, lim inft→∞‖∇yC̃(yt)‖2 = 0,

implies that lim inft→∞‖∇yC(yt)‖2 = 0.

Lemma IV.1 shows that the sequence H = (y1,y2, . . .)
is bounded a.s. Consider a bounded sequence H , such that

yt ∈ B2(R
′) for some R′ > 0. ∇C̃(x,yt) exists a.s. and it

is bounded for any x ∈ X . By the dominated convergence

theorem, it follows that we can invert the expectation and the

gradient Ex

[

∇yC̃(x,yt)
]

= ∇y Ex

[

C̃(x,yt)
]

= ∇yC̃(yt).

As C̃() is continously differentiable up to the second order

upon B2(R
′), the partial derivatives are bounded, in particular,

there exist two constants c1 and c2 such that |∂C̃(y)/∂yi| ≤ c1
and |∂2

C̃(y)/∂yi∂yj | ≤ c2 for each i, j ∈ {1, 2, . . . , kp}.

Using Taylor formula we can arrive to

C̃(yt+1)− C̃(yt) ≤ −ηt∇yC̃(yt) · ∇yC̃(xt,yt) + η2t b, (8)

where b = c2c
2
1kp/2.

After summing for t = 1, . . . , T , we take the expected

value, and let T diverges to obtain

∞
∑

t=1

ηt E
[

‖∇yC̃(yt)‖
2
2

]

≤ E

[

C̃(y1)
]

+
∞
∑

t=1

η2t b < +∞. (9)

The series on the LHS is then summable. It follows that
∞
∑

t=1

ηt‖∇yC̃(yt)‖
2
2 < +∞ a.s. (10)

and then we can complete the proof of the first thesis:

lim inf
t→∞

‖∇yC̃(yt)‖2 = 0 a.s.

Consider now that C() is continously differentiable up to

the third order and then its third order partial derivatives are

bounded over B2(R
′), i.e., |∂3

C̃(yt)/∂yi∂yj∂yl| ≤ c3. Let

a(y) = ‖∇yC̃(y)‖
2
2. This is continuously differentiable up to

the second order. We can then use again the Taylor formula

as above and obtain:

a(yt+1)− a(yt) ≤ −2ηt

kp
∑

i,j=1

∂C̃(y)

∂yj

∂2
C̃(y)

∂yi∂yj

∂C̃(xt,yt)

∂yi

+ η2t
c′2c

2
1(kp)

2

2
,

where c′2 = 2kp(c22 + c1c3).
If we now compute the conditional expectation given the

history up to t, Ht = (y1,y2, . . . ,yt), we obtain

E[a(yt+1)− a(yt)|Ht] ≤ 2c2kpηt‖∇yC̃(yt)‖
2
2 + η2t

c′2c
2
1(kp)

2

2
.

From which we can show that {a(yt)}t∈N is a quasi-

martingale and converges almost surely to a random variable

a∞ with finite expected value. As a∞ > 0 if and only if

‖∇yC̃(yt)‖
2
2 > 0 for large t, it is possible to reason as at the

end of the proof of Lemma IV.1 and use (10) to conclude that

a∞ = 0 almost surely. It follows that

lim
t→∞

∇C̃(yt) = 0 a.s..

1385

REFERENCES

[1] E. Chávez, G. Navarro, R. Baeza-Yates, and J. L. Marroquı́n. Searching
in metric spaces. ACM Comput. Surv., 33(3):273–321, September 2001.

[2] S. Berchtold, C. Böhm, B. Braunmüller, D. A Keim, and H. Kriegel.
Fast parallel similarity search in multimedia databases. ACM SIGMOD

Record, 26(2):1–12, 1997.

[3] F. Falchi, C. Lucchese, S. Orlando, R. Perego, and F. Rabitti. A metric
cache for similarity search. In Proc. of the 2008 ACM Workshop on

Large-Scale Distributed Systems for Information Retrieval, LSDS-IR
’08, pages 43–50, New York, NY, USA, 2008. ACM.

[4] S. Pandey, A. Broder, F. Chierichetti, V. Josifovski, R. Kumar, and
S. Vassilvitskii. Nearest-neighbor caching for content-match applica-
tions. In Proc. of the 18th International Conference on World Wide

Web, WWW ’09, pages 441–450, New York, NY, USA, 2009. ACM.

[5] D. Asanov. Algorithms and methods in recommender systems. Berlin

Institute of Technology, Berlin, Germany, 2011.

[6] P. Sermpezis, T. Giannakas, T. Spyropoulos, and L. Vigneri. Soft cache
hits: Improving performance through recommendation and delivery of
related content. IEEE Journal on Selected Areas in Communications,
36(6):1300–1313, June 2018.

[7] B. Yan, D. R. Lovley, and J. Krushkal. Genome-wide similarity search
for transcription factors and their binding sites in a metal-reducing
prokaryote geobacter sulfurreducens. Biosystems, 90(2):421–441, 2007.

[8] A. F. Auch, H. Klenk, and M. Göker. Standard operating procedure for
calculating genome-to-genome distances based on high-scoring segment
pairs. Standards in genomic sciences, 2(1):142, 2010.

[9] J. Weston, S. Chopra, and A. Bordes. Memory networks. In Proc. of the

International Conference on Learning Representations (ICLR), 2015.

[10] A. Graves, G. Wayne, and I. Danihelka. Neural Turing Machines. arXiv

preprint arXiv:1410.5401, 2014.

[11] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap.
Meta-learning with memory-augmented neural networks. In Proc. of

The 33rd International Conference on Machine Learning, volume 48,
pages 1842–1850, New York, New York, USA, 20–22 Jun 2016. PMLR.

[12] D. Crankshaw, X. Wang, J. E. Gonzalez, and M. J. Franklin. Scalable
training and serving of personalized models. In NIPS 2015 Workshop

on Machine Learning Systems (LearningSys), 2015.

[13] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin,
Joseph E. Gonzalez, and Ion Stoica. Clipper: A low-latency online
prediction serving system. In 14th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 17), pages 613–627, Boston,
MA, 2017. USENIX Association.

[14] R. Weber, H. Schek, and S. Blott. A quantitative analysis and perfor-
mance study for similarity-search methods in high-dimensional spaces.
In VLDB, volume 98, pages 194–205, 1998.

[15] T. Spyropoulos and P. Sermpezis. Soft cache hits and the impact of
alternative content recommendations on mobile edge caching. In Proc.

of the Eleventh ACM Workshop on Challenged Networks, CHANTS
16, page 5156, New York, NY, USA, 2016. Association for Computing
Machinery.

[16] A. Bellet, A. Habrard, and M. Sebban. Metric learning, volume 9.
Morgan & Claypool Publishers, 2015.

[17] Similarity caching trace repository. https://sim-
cache.gitlabpages.inria.fr/similarity-caching-traces/.

[18] M. Garetto, E. Leonardi, and G. Neglia. Similarity Caching: Theory and
Algorithms. In IEEE Intl. Conference on Computer Communications

(INFOCOM), Toronto, Canada, July 2020.

[19] M. Garetto, E. Leonardi, and V. Martina. A unified approach to the
performance analysis of caching systems. ACM Trans. Model. Perform.

Eval. Comput. Syst., 1(3):12:1–12:28, May 2016.

[20] J. Cortes, S. Martinez, T. Karatas, and F. Bullo. Coverage control
for mobile sensing networks. IEEE Transactions on Robotics and

Automation, 20(2):243–255, April 2004.

[21] J. Cortés and F. Bullo. Coordination and geometric optimization
via distributed dynamical systems. SIAM Journal on Control and

Optimization, 44(5):1543–1574, 2005.

[22] J. Cortés, S. Martı́nez, and F. Bullo. Spatially-distributed coverage
optimization and control with limited-range interactions. ESAIM: COCV,
11(4):691–719, 2005.

[23] L. Bottou. On-line learning and stochastic approximations. In David
Saad, editor, On-line Learning in Neural Networks, pages 9–42. Cam-
bridge University Press, New York, NY, USA, 1998. online version
updated in May 2018.

[24] S. Ioannidis, L. Massoulié, and A. Chaintreau. Distributed caching over
heterogeneous mobile networks. In Proc. of the ACM SIGMETRICS

international conference on Measurement and modeling of computer

systems, pages 311–322, 2010.
[25] S. Ioannidis and E. Yeh. Adaptive caching networks with optimality

guarantees. SIGMETRICS Perform. Eval. Rev., 44(1):113124, 2016.
[26] G. S. Paschos, A. Destounis, L. Vigneri, and G. Iosifidis. Learning to

cache with no regrets. In IEEE INFOCOM 2019 - IEEE Conference on

Computer Communications, pages 235–243, 2019.
[27] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approxi-

mate nearest neighbor in high dimensions. In IEEE FOCS, pages 459–
468, 2006.

[28] J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity search with
gpus. IEEE Transactions on Big Data, 2019.

[29] A. Babenko and V. Lempitsky. The inverted multi-index. IEEE

transactions on pattern analysis and machine intelligence, 37(6):1247–
1260, 2014.

[30] B. Naidan, L. Boytsov, and E. Nyberg. Permutation search methods are
efficient, yet faster search is possible. arXiv preprint arXiv:1506.03163,
2015.

[31] Y. A. Malkov and D. A. Yashunin. Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs.
IEEE transactions on pattern analysis and machine intelligence, 2018.

[32] Faiss: A library for efficient similarity search.
https://engineering.fb.com/data-infrastructure/faiss-a-library-for-
efficient-similarity-search/.

[33] E. G. Coffman and P. J. Denning. Operating systems theory, volume
973. Prentice-Hall Englewood Cliffs, NJ, 1973.

[34] D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter. Adaptsize:
Orchestrating the hot object memory cache in a content delivery net-
work. In 14th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 17), pages 483–498, Boston, MA, March 2017.
USENIX Association.

[35] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey. An analysis of

approximations for maximizing submodular set functions—II, pages 73–
87. Springer Berlin Heidelberg, Berlin, Heidelberg, 1978.

[36] X. Corbillon, G. Simon, A. Devlic, and J. Chakareski. Viewport-adaptive
navigable 360-degree video delivery. In 2017 IEEE international

conference on communications (ICC), pages 1–7. IEEE, 2017.
[37] F. Qian, L. Ji, B. Han, and V. Gopalakrishnan. Optimizing 360 video

delivery over cellular networks. In Proc. of the 5th Workshop on All

Things Cellular: Operations, Applications and Challenges, pages 1–6,
2016.

[38] M. Zink, R. Sitaraman, and K. Nahrstedt. Scalable 360 video stream
delivery: Challenges, solutions, and opportunities. Proc. of the IEEE,
107(4):639–650, 2019.

[39] J. Park and K. Nahrstedt. Navigation graph for tiled media streaming. In
Proc. of the 27th ACM International Conference on Multimedia, pages
447–455, 2019.

[40] J. McAuley, C. Targett, Q. Shi, and A. van den Hengel. Image-
based recommendations on styles and substitutes. In Proc. of the 38th

International ACM SIGIR Conference on Research and Development

in Information Retrieval, pages 43–52, New York, NY, USA, 2015.
Association for Computing Machinery.

[41] H. Wang, N. Wang, and D. Yeung. Collaborative deep learning for
recommender systems. In Proc. of the 21th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD 15, page
12351244, New York, NY, USA, 2015. Association for Computing
Machinery.

[42] C. Hsieh, L. Yang, Y. Cui, T. Lin, S. Belongie, and D. Estrin. Collab-
orative metric learning. In Proc. of the 26th International Conference

on World Wide Web, WWW 17, page 193201, Republic and Canton
of Geneva, CHE, 2017. International World Wide Web Conferences
Steering Committee.

[43] I. Shenbin, A. Alekseev, E. Tutubalina, V. Malykh, and S. I. Nikolenko.
Recvae: A new variational autoencoder for top-n recommendations with
implicit feedback. In Proc. of the 13th International Conference on

Web Search and Data Mining, WSDM 20, page 528536, New York,
NY, USA, 2020. Association for Computing Machinery.

[44] F. M. Harper and J. A. Konstan. The movielens datasets: History and
context. ACM Trans. Interact. Intell. Syst., 5(4), December 2015.

1386

