


TABLE I: Comparison of Jumanji to prior LLC designs.

Tail latency Security Batch speedup
P

ri
o

r
w

o
rk

Tail-aware [12, 35, 51] 3 7 7
Secure [20, 63, 64, 65] 7 3 7

D-NUCA [6, 8, 93] 7 7 3

Jumanji 3 3 3

so Jigsaw tends to shift resources away from them to reduce

data movement of batch applications. While such decisions

may make sense from a data movement perspective, they cause

latency-critical applications to miss their deadlines, harming

overall system performance. It is therefore inadequate for D-

NUCAs to focus exclusively on data movement—D-NUCAs

must incorporate applications’ goals.

Security: By clustering data near cores, D-NUCA naturally

avoids sharing cache state between applications. As a result, D-

NUCA can offer stronger isolation between applications than

conventional cache partitioning, since data reside in physically

separate cache banks. This makes it difficult for attackers to

observe or interact with victims’ cache accesses, simply because

they do not share any cache with them.

D-NUCAs can thus solve two security flaws with NUCA-

oblivious LLC designs. First, as we show in Sec. VI, LLCs

are vulnerable to timing attacks on shared cache ports. Prior

secure LLC designs do not defend this attack. Second, we show

that standard partitioning defenses offer imperfect performance

isolation due to leakage through the shared cache replacement

policy, and also significantly harm performance by lowering

associativity. D-NUCA avoids all of these problems by placing

untrusted applications’ data in different LLC banks.

Unfortunately, prior D-NUCAs do not specifically target

security, so these benefits so far arise only as a happy accident

and cannot be relied upon by datacenter customers.

Jumanji: Redesigning D-NUCA for tail latency and security

We design a new D-NUCA called Jumanji to capitalize

on the above advantages while addressing the disadvantages.

Fig. 1b shows how Jumanji’s allocations differ from Jigsaw.

Jumanji enforces tail latency by reserving enough cache space

for each latency-critical application to meet its deadlines, using

feedback control [12, 51]. Since data placement significantly

reduces data movement, Jumanji actually meets deadlines with

much less cache space than prior work, freeing cache space

to accelerate batch applications. Jumanji enforces security by

placing data from untrusted applications, e.g., from different

virtual machines (VMs) [45], in different banks, guaranteeing

strong isolation between untrusted applications. Jumanji further

optimizes data placement within each VM’s allocation to

minimize data movement for each application.

Table I compares Jumanji against prior LLC designs in terms

of tail latency, security, and batch performance. Jumanji gets the

best of all worlds: it meets tail-latency deadlines, defends a wide

range of cache attacks, and nearly matches Jigsaw’s speedup.

Jumanji is the only design that meets all of these objectives.

Moreover, Jumanji achieves these benefits by leveraging prior

D-NUCAs to simplify its implementation, requiring only a few,

simple changes in software over Jigsaw.

Contributions

This paper’s message is that D-NUCA offers superior

performance and security for datacenter applications than

existing techniques. Specifically, we contribute the following:

• We present Jumanji, the first D-NUCA designed for tail la-

tency and security. Jumanji achieves these goals with better

performance and energy efficiency than prior solutions.

Moreover, Jumanji is practical, requiring only a few simple

software changes to existing D-NUCAs.

• We show that Jumanji meets tail-latency deadlines with sig-

nificantly less cache capacity than prior work, freeing space

for other applications. As a result, Jumanji significantly

improves batch performance.

• We show that Jumanji offers stronger security than prior

secure LLC designs. We give the first demonstration of an

LLC port attack and of performance leakage in a strictly

partitioned LLC. Jumanji defends all LLC attacks, including

conventional content-based attacks and these new ones, with

much better performance than prior designs.

• We evaluate Jumanji in microarchitectural simulation on

a 20-core multicore system running mixes of batch and

latency-critical applications. We show that Jumanji speeds

up batch applications by 11%–15%, vs. 11%–18% for

Jigsaw and 0%–4% for NUCA-oblivious designs, and that

Jumanji comes within 2% of the batch performance of an

idealized design that eliminates competition between batch

and latency-critical applications.

Road map: Sec. II discusses prior work on NUCA, tail latency,

and security. Sec. III motivates Jumanji with an extended case

study. Sec. IV presents a high-level overview of Jumanji’s

design. Sec. V discusses how Jumanji enforces tail-latency

deadlines, and Sec. VI how Jumanji eliminates cache bank

attacks. Sec. VII gives our experimental methodology, and

Sec. VIII evaluates Jumanji. Finally, Sec. IX concludes.

II. BACKGROUND

A. Data movement and multicore caching

Data movement is more expensive than compute, and is

becoming only more so [15, 39, 76]. This fact has led to a

resurgence in cache research to reduce data movement.

Non-uniform cache access (NUCA): To improve scaling,

large caches are implemented via many smaller cache banks

connected over an on-chip network [40]. Commercial proces-

sors use a “static NUCA” (S-NUCA) design that simply stripes

data across banks. S-NUCA exposes non-uniform latency, but

suffers from a large average distance to data.

Dynamic NUCA designs try to place data closer to cores.

Early D-NUCAs treated LLC banks as a hierarchy [4, 5, 10,

13, 59, 68, 93], e.g., by checking the local bank before a global

“home bank.” In contrast, single-lookup D-NUCAs restrict each

memory address to live at a single LLC bank at a time [2, 6,

11, 14, 23, 33], avoiding LLC directories and multiple lookups.



These D-NUCAs typically control placement at page granularity

and cache page locations in the TLB.

Though single-lookup D-NUCAs originally used the page

table out of convenience, this design lets software control where

data is placed. Software scheduling algorithms can find near-

optimal data placements that would be too expensive to find

in hardware alone [2, 6, 8, 79, 80]. Single-lookup D-NUCAs

thus significantly reduce data movement over other D-NUCAs,

at the cost of modest complexity in the operating system (OS).

Beyond reducing data movement: Applications often care

about objectives other than raw performance or energy effi-

ciency. Hardware alone cannot manage data movement, as only

software knows to optimize for. To achieve a wide range of

application goals, hardware must yield control of the cache to

software. Cache partitioning mechanisms [27, 69, 73, 82] let

systems allocate the shared LLC among applications to manage

tail latency [21, 35, 51], improve fairness [60, 66], eliminate

side channels [45, 65], or minimize data movement [69, 84,

85]. However, these partitioning mechanisms ignore NUCA,

needlessly increasing data movement.

Jumanji vs. prior work on caching: A key insight of this

paper is that, because they place data in software, single-lookup

D-NUCAs can also optimize for high-level objectives like tail

latency and security, while still greatly reducing data movement

vs. cache partitioning techniques. Jumanji is the first D-NUCA

to realize this opportunity. Jumanji thus generalizes prior D-

NUCAs to support modern datacenter workloads.

B. Redesigning systems for tail latency

User-facing applications in the datacenter are increasingly

driving growth in computing [29]. Unlike traditional computer

systems that run scientific, analytic, or other batch workloads,

these user-facing applications care about response latency,

which must be short (e.g., 100 ms) to keep users engaged [16,

75]. Moreover, since serving a request requires completing

many tasks, the overall response latency is set by the longest

of these tasks, making systems sensitive to tail latency.

Prior work has re-designed systems for tail latency in many

ways [3, 18, 56]. Systems minimize power through dynamic

voltage and frequency scaling (DVFS) [26, 34, 50, 51, 52,

86, 92], varying parallelism [22, 62, 67] as load fluctuates,

or finding jobs that can safely run alongside latency-critical

applications [17, 18, 19, 55, 89]. This work is complementary

to Jumanji and falls outside the scope of this paper.

Caching for tail latency: A few systems focus on the effect

of the LLC on tail latency. Ubik [35] partitions the LLC to

safely co-locate batch and latency-critical applications. Similar

to DVFS, Ubik gives idle latency-critical applications minimal

LLC space and “boosts” the allocation once a request arrives.

Since latency-critical applications are mostly idle, Ubik non-

trivially increases batch allocations.

Heracles [51] and Parties [12] control LLC space, core DVFS,

memory bandwidth, and network traffic to meet tail-latency

deadlines. These systems manage resources through feedback

control and partition the LLC using Intel CAT [27] (i.e., way-

partitioning). We compare Jumanji with a similar scheme;

however, we compare them only at the LLC.

Jumanji vs. prior work on tail latency: We echo this broad

body of work in showing that D-NUCA must be designed for

tail latency explicitly; designing for overall system efficiency

is insufficient (Sec. V). Like prior work, Jumanji focuses on

the LLC’s impact on tail latency and uses feedback control.

However, no prior work has considered NUCA, which we show

leaves significant performance on the table.

C. Security and cache attacks

Recent work has demonstrated many microarchitectural

security vulnerabilities. This paper focuses on shared-cache

attacks which allow an attacker either to learn a victim’s

access pattern through side channels [37, 38, 65] or harm

a victim’s performance. Prior work considers content-based

timing side-channel attacks, specifically conflict attacks where

an attacker primes the cache so that a victim’s access will evict

the attacker’s data [46, 64, 88]. The attacker detects what data

the victim accesses by timing its own cache accesses.

Defending conflict attacks: Prior work offers many de-

fenses for conflict attacks [37, 47, 71, 72, 88]. However,

way-partitioning (i.e., Intel CAT [27]) is the simplest and

by far the most common defense. Way-partitioning restricts

different processes to different cache ways, eliminating conflict

attacks. Unfortunately, way-partitioning reduces associativity,

so only a few partitions can be used before performance drops

precipitously. Consequently, prior way-partitioning designs can

only defend a small amount of data, which must be explicitly

designated as sensitive by the OS [41, 45, 83]. Many alternatives

to way-partitioning face similar limitations [43, 49, 90] or do

not guarantee isolation [53, 73, 82].

Other cache attacks: The above techniques address conflict

attacks, but they leave other LLC attacks undefended. In partic-

ular, port attacks exploit shared structures to leak information,

as queueing delay reveals when a victim uses the shared

structure [1, 9]. Caches’ limited ports make them vulnerable

to port attacks, which have been demonstrated in CPU L1

caches [31] and GPUs [32]. In Sec. VI, we demonstrate that

CPU LLCs are also vulnerable to port attacks.

Moreover, we show that way-partitioning offers incomplete

performance isolation due to shared microarchitectural state

in the replacement policy. This allows untrusted processes to

harm a victim’s performance, e.g., by causing missed deadlines.

The only prior defense against these attacks is Ironhide [63].

Ironhide is a secure enclave that splits a multicore into two

clusters of tiles, “trusted” and “untrusted”, and prevents all

resource sharing across them. Ironhide defends LLC attacks,

but it comes at a high price and with some disadvantages. For

example, the enclave approach has limited scalability, since,

e.g., each cluster requires its own memory controller (Ironhide

supports just two clusters). Finally, Ironhide ignores tail latency

and does not optimize data placement within each cluster to

reduce data movement.















contain many architectural and microarchitectural components,

which expose a large attack surface when shared among

untrusted processes. Isolating VMs into separate cache banks

protects against all bank attacks and mitigates uncontrollable

performance impacts. However, though D-NUCA has natural

advantages as an LLC defense mechanism, prior D-NUCAs

only realize these advantages heuristically.

Listing 3: Jumanji’s D-NUCA data-placement algorithm first
reserves space for latency-critical applications to meet deadlines,
then allocates entire banks among VMs to defend against cache
attacks. Finally, it uses Jigsaw’s data-placement algorithm to
optimize batch applications within each VM.

1 def JumanjiPlacer(bankBalance): # capacity per bank
2 latAppAllocs = LatCritPlacer(bankBalance)
3 batchBalance = sum(bankBalance) - sum(latAppAllocs)
4 vmCurves = CalculateMissCurve(VMs)
5 sizeOfVMs = JumanjiLookahead(batchBalance ,vmCurves,

latAppAllocs)
6 foreach VM:
7 sizeofVMs[VM] += latAppAllocs[VM]
8 while VMs not all placed:
9 AllocatePreferredBankToNextVM()

10 foreach VM:
11 allocs[VM] = latAppAllocs[VM]
12 allocs[VM] += Jigsaw(batchApps[VM])
13 return allocs

Jumanji’s approach: Jumanji improves prior D-NUCAs to

completely defend LLC attacks while maintaining high perfor-

mance. Jumanji defends these attacks by preventing untrusted

applications (e.g., from different VMs) from sharing banks.

We propose the JumanjiPlacer, which guarantees bank iso-

lation between VMs, and efficiently meets tail-latency deadlines

by building on LatCritPlacer (Listing 2). Jumanji achieves

these benefits through a two-tiered placement algorithm which

only allows shared banks between applications in the same

VM, as shown in Listing 3.

JumanjiPlacer starts by calling LatCritPlacer to ob-

tain the allocations for latency-critical applications. Next, it

computes a combined miss-rate curve for each VM’s batch

applications using the model in [61, Appendix B]. Remaining

LLC capacity is then divided among batch applications using

a slightly modified version of the Lookahead algorithm [69]

that guarantees each VM gets a bank-granular allocation. For

example, if a latency-critical application needs 1.3 LLC banks,

then JumanjiLookahead will allocate batch applications in

the same VM either 0.7, 1.7, 2.7, . . . , or 18.7 banks so that

the total LLC space allocated to the VM is a whole number.

Jumanji next places allocations in banks. Jumanji prior-

itizes meeting tail-latency deadlines over batch data move-

ment by starting with the latency-critical allocations from

LatCritPlacer. JumanjiPlacer assigns remaining banks

in a round-robin fashion, letting each VM take the closest

remaining bank (according to NoC topology).

Finally, Jumanji optimizes batch data placement within each

VM. To do this, Jumanji simply calls Jigsaw’s batch placement

algorithm within each VM’s allocation (Listing 3, line 12).

Putting it all together: Jumanji guarantees that latency-critical

applications meet their deadlines by reserving them space in the

LLC, and then partitions LLC banks across VMs to avoid new

Cores 20 cores, x86-64 ISA, 2.66 GHz OOO Nehalem [77]

L1 caches
32 KB, 8-way set-associative, split data and instruction
caches, 3-cycle latency

L2 caches
128 KB private per-core, 8-way set-associative, inclusive,
6-cycle latency

Coherence MESI, 64 B lines, no silent drops; sequential consistency

Last-level
cache

20 MB shared LLC, 5×4 1 MB banks; 32-way
set-associative, 13-cycle bank latency; mesh NoC, 128-bit
flits and links, X-Y routing, 2-cycle pipelined routers,
1-cycle links

Memory 4 memory controllers at chip corners; 120-cycle latency

TABLE II: System parameters in our experimental evaluation.

security threats that we identify. With these simple software

changes, Jumanji generalizes Jigsaw to support the needs of

modern datacenter applications.

VII. METHODOLOGY

We evaluate Jumanji through detailed microarchitectural

simulation using ZSim [74]. Our experimental methodology is

similar to prior work [35, 79] and is detailed below.

System: Parameters are shown in Table II. We model a 20-

core system with a 20 MB shared LLC, with out-of-order cores

modeled on Nehalem [77]. We focus on data placement in the

LLC, which is distributed into 20 banks connected by a 5×4

mesh. NoC delays are taken from prior work [23, 24, 54, 79].

Each LLC bank uses way-partitioning (i.e., Intel CAT [27]) and

DRRIP replacement [30]. Main memory models bandwidth

partitioning with fixed latency [28, 51].

Applications: We use latency-critical applications from Tail-

bench [36] and batch applications from SPEC CPU2006. Each

experiment runs four latency-critical applications with a ran-

dom mix of sixteen SPEC applications.1 The latency-critical

applications evaluated are masstree, xapian, img-dnn, silo,

and moses. Tailbench integrates a client and server together

in one process. The client issues a stream of requests with

exponentially distributed interarrival times at a given rate [57,

58]. We run experiments with both (i) random mixes of multiple

latency-critical applications and (ii) multiple instances of the

same latency-critical application.

VM environment: Except where stated otherwise, we consider

a datacenter scenario where four VMs share the resources of

a single system. Each VM occupies five cores in one corner

of the chip and runs one latency-critical application and four

batch SPEC applications. All applications within a VM trust

each other, and all applications from other VMs are untrusted.

Security metrics: We report vulnerability to port attacks by

computing the average number of potential attackers per LLC

access, as in Fig. 4c. Specifically, for a single LLC access, we

calculate the average number of applications from other VMs

which occupy any space in the LLC bank being accessed, and

then average across all LLC accesses.

Performance metrics: We measure 95th-percentile latency for

Tailbench applications and weighted speedup for batch applica-

1SPEC applications are chosen from 401, 403, 410, 429, 433, 434, 436,
437, 454, 459, 462, 470, 471, 473, 482, and 483.
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