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ABSTRACT

This paper studies the online energy scheduling problem in a hy-
brid model where the cost of energy is proportional to both the
volume and peak usage, and where energy can be either locally
generated or drawn from the grid. Inspired by recent advances in
online algorithms with Machine Learned (ML) advice, we develop
parameterized deterministic and randomized algorithms for this
problem such that the level of reliance on the advice can be adjusted
by a trust parameter. We then analyze the performance of the pro-
posed algorithms using two performance metrics: robustness that
measures the competitive ratio as a function of the trust parameter
when the advice is inaccurate, and consistency for competitive ratio
when the advice is accurate. Since the competitive ratio is analyzed
in two different regimes, we further investigate the Pareto optimal-
ity of the proposed algorithms. Our results show that the proposed
deterministic algorithm is Pareto-optimal, in the sense that no
other online deterministic algorithms can dominate the robustness
and consistency of our algorithm. Furthermore, we show that the
proposed randomized algorithm dominates the Pareto-optimal de-
terministic algorithm. Our large-scale empirical evaluations using
real traces of energy demand, energy prices, and renewable energy
generations highlight that the proposed algorithms outperform
worst-case optimized algorithms and fully data-driven algorithms.
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1 INTRODUCTION

The electricity bill is a significant operating cost of large energy cus-
tomers such as data centers, businesses, and university campuses.
For example, in data center operations, the largest expenditure
is energy consumption, e.g. energy cost is more than 30% of the
total operating costs of Google and Microsoft’s data centers [25].
Consequently, managing the energy consumption and cost of large
energy customers has become critically important. This has led to
substantial research on incorporating local renewable sources [19],
energy-aware server provisioning [18], geographical load balanc-
ing [17, 20], and on-site energy storage systems [31].

The electricity bill for large energy customers is usually based on
a hybrid model that uses both the volume and peak of the energy
consumption. Specifically, assuming that each billing cycle can
be divided into T time slots, and the energy demand in slot ¢ is
e(t), the electricity bill is the sum of the following two terms: (1)
the volume pricing, which is the aggregate energy usage over the
cycle, ie., 33, p(t)e(t), where p(t) is the real-time unit price at ¢,
and (2) the peak pricing, which is the peak demand drawn over
the cycle, i.e., max;¢[7] e(t), multiplied by p,, as the peak price.
The contribution of peak pricing in the electricity bill is usually
substantial. The peak price is often more than 100 times higher than
the maximum spot price, e.g., 118X for PG&E or 227X for Duke
Energy Kentucky. Hence, the contribution of peak charging in the
energy bill for large energy costumers can be considerable, e.g.,
from 20% to 80% for Google data centers [30].

A promising approach to reduce the contribution of peak charges
in the final electricity bill is to install on-site generation units that
can “shave the peak” by covering that portion of the demand [33].
A notable example is Microsoft’s plan to add 72 new generators at
its Quincy, Washington data center campus [1]. The global market
for on-site generators is growing and expected to reach a revenue
of around $5 billion in 2023 [2]. With an on-site generator, one can
schedule its generation such that part of the total energy demand
is satisfied by the local generator, hence, the peak net demand from
the grid is reduced over the billing cycle.

However, peak-aware energy generation scheduling of local
generators is a challenging problem due to the uncertainty of the
demand of energy customers, especially in data centers. For data
centers the energy demand is highly unpredictable because user
demand for internet services is variable. For instance, a data center
serving videos to users can experience an unexpected flash crowd
of users for a popular video release. Furthermore, sophisticated
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Figure 1: A motivating example for the peak-aware energy
scheduling problem.

optimization algorithms are being used in Google data centers
to improve the energy efficiency of data center’s internal oper-
ations [12], which can further increase the variability of energy
demand. In geographical load balancing schemes [17, 20], a global
load balancer could move user demand into or out of the data center,
resulting in unexpected changes in the energy patterns. Lastly, the
integration of renewables into data centers provides even more
uncertainty, since the production level of renewables is uncertain
and intermittent [13].

The peak-aware energy generation scheduling problem (hence-
forth PAES) has been tackled using the competitive online frame-
work [33]. More specifically, two deterministic and randomized
algorithms have been proposed that can achieve the best compet-
itive ratio as the well-established performance metric for online
algorithms [6]. Competitive ratio is defined as the ratio between
the cost of an online algorithm and that of the offline optimal for
the worst-case over all feasible instances to the problem. The com-
petitive online framework, however, aims to be provably efficient
against worst-case input instances. Toward this end, it assumes
that no stochastic, exact, or noisy measurement of future inputs is
available and tries to make the best decisions without future knowl-
edge. This assumption makes online algorithms overly pessimistic
in practice, since worst-case scenarios rarely happen in reality. On
top of that, it is reasonable to have at least a noisy prediction of
future data in most online problems.

1.1 Motivation

As a motivating example, we consider the performance of online
algorithms designed with three different paradigms. Figure 1 shows
the normalized cost achieved by three algorithms for PAES. The
three online algorithms shown are: (a) the algorithm that achieves
the best competitive ratio for “pessimistic” worst-case inputs for
the energy cost minimization problem [33]; (b) the algorithm that
makes decisions assuming an “optimistic” world of perfect predic-
tions; and (c) a proposed online algorithm in this paper that aims
to perform well in both worlds. The figure shows the cumulative
probability distribution of the 99 percentile normalized cost of 100+
trials for traffic and energy inputs from 200+ Akamai data center
locations in the United States (details on experimental data and
setting in §6). Although the state-of-the-art “pessimistic” online
algorithm is guaranteed to achieve a bounded normalized cost in
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the worst-case, Figure 1 demonstrates that its average performance
is not promising. The average normalized cost is far from optimal,
with even the best performing trials achieving normalized cost no
less than 1.6. Conversely, an “optimistic” data-driven online algo-
rithm has better average performance, with about 60% of trials
having a normalized cost of 1.25 or lower. As a trade-off, it has
a heavy tail of worst-case instances where the normalized cost
is worse than 2. However, online algorithms with ML advice (the
algorithmic approach of this work) achieve the best of both worlds:
good average performance as well as the best guarantee for the
worst-case tail performance through prudent usage of predictions
spanning between pure optimism and pure pessimism.

1.2 Algorithmic Approach

The goal of this paper is to design competitive algorithms with
advice for the PAES problem. Our approach is inspired by the recent
effort on integrating machine learned (ML) advice to improve the
practical performance of online algorithms [14, 16, 22, 24]. The key
motivation is two-fold: (1) to keep the core competency of online
algorithms, i.e., performance guarantee against the worst-case; and
(2) to achieve a provably improved performance if the accuracy of
ML-predictor is satisfactory. The two motivations could be analyzed
for learning-assisted online algorithms [22, 24] by introducing the
notions of (1) robustness that characterizes the first motivation; and
(2) consistency that characterizes the second one.

Specifically, suppose that (A is a learning-assisted online algo-
rithm that leverages an ML-predictor in decision making. The
algorithm A is (a, y)-competitive where o and y represent the
robustness and consistency of A, respectively. That is, the com-
petitive ratio of A is always less than & regardless of the error in
ML-predictor. Also, A is y-consistent if with perfect predictions
it achieves the competitive ratio of y. Robustness measures how
well the algorithm does in the worst-case of poor predictions, while
consistency measures how well the algorithm does under perfect
predictions. In this framework, the performance of an algorithm is
evaluated using two criteria, i.e., robustness and consistency. Hence,
investigating the optimality of an algorithm naturally leads to the
consideration of Pareto optimality. Therefore, the eventual goal
in this setting is to design an algorithm A that is Pareto-optimal,
meaning that there is no other algorithm that can achieve a bet-
ter consistency (resp., robustness) than A without sacrificing the
robustness (resp., consistency).

With this analytical framework, one is able to achieve “the best
of both worlds” paradigm from the perspective of learning-assisted
competitive algorithms. While it might slightly degrade the ro-
bustness against worst-case, or ideally maintain the worst-case
guarantee, it resolves the fundamental drawback of competitive
analysis of pessimistic decision making by incorporating ML predic-
tions. More importantly, unlike classic prediction-based competitive
designs [7, 9, 10, 15], the framework used in this paper leverages a
trust parameter that determines how much the algorithms trust the
predictors, enabling the full spectrum coverage from pure worst-
case to fully prediction-based decision making.
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Table 1: A summary of theoretical results. Here A € (0, 1] is
the trust parameter, § € (0,1) is a problem-specific parame-
ter, and @4, ®, are expressions for the randomized algorithm
defined in Algorithm 3.

Algorithm Theoretical results Property
Robustness:
OnMLEng 1+(1-p)/A OnMLEng is
(Deterministic) Consistency: Pareto optimal
1+A(1-p)
Robustness:
max{l+®; (1 - f),

— ronMLEng
rONMLEng b+ :I;i(l P ) dominates the
(Randomized) [(e o= 1/A)(1/A=1) +1/A°]} | Pareto optimal

Consistency: deterministic

lgorith
max{1+®A>(1 - f), algorithm
1+0,(1-p)}

1.3 Summary of Contributions

Inspired by the above direction of learning-assisted algorithm de-
sign, we develop deterministic and randomized algorithms for PAES
that take into account advice from an ML model in decision making.
This paper makes the following contributions, with a summary of
theoretical results outlined in Table 1.

First, we propose OnMLEng, a deterministic algorithm parame-
terized by a trust parameter A € (0, 1], that achieves a competitive
ratio of 1+ (1—f)/A, where § € (0,1) is a problem-specific parame-
ter that determines the ratio between the unit price of the grid and
local generator. We show that OnMLEng is (1+(1—f)/A)-robust and
(1+ A(1 — p))-consistent. The trust in ML prediction is interpreted
as follows. Greater trust in ML prediction is achieved by setting A
close to 0, which means that OnMLEng is 1-consistent, i.e., it achieves
the optimal performance with perfect advice. On the other hand,
less trust in ML advice is achieved by setting A close to 1, and the
robustness result guarantees the optimal online competitive ratio
of 2 — f as in [33]. More importantly, we show that OnMLEng is
Pareto-optimal, showing that our deterministic algorithm achieves
the best possible robustness and consistency bounds.

Second, we propose rOnMLEng, a randomized algorithm with a
trust parameter A that has both robustness and consistency guaran-
tees. With A = 1, rOnMLEng recovers the competitive ratio of the best
randomized algorithm with the competitive ratio of e/(e — 1+ f) <
1.58. With A — 0, rOnMLEng is 1-consistent, i.e., it behaves opti-
mally. The design and analysis of rOnMLEng is a significant theoret-
ical contribution of this paper. Specifically, it is worth noting that
the probability distribution functions of rOnMLEng are carefully
designed to achieve solid robustness and consistency guarantees.
These distribution functions are customized based on Yao’s prin-
ciple [32] to provide robustness and consistency results in a more
systematic manner compared to the randomized algorithm design
for online problems in [16, 22, 24]. Finally, we show that rOnMLEng
dominates the Pareto-optimal deterministic algorithm OnMLEng.

Last, we empirically evaluate the performance of the algorithms
using real-world data traces. We use energy demand traces from
Akamai data centers [23] as an example of large-scale industrial
load, as well as energy price values from New York energy mar-
ket (NYISO). The results show the improved performance of our
proposed online algorithms with ML advice as compared to the
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purely online algorithm. We also investigate the impact of several
parameters and provide insights that reveal the practical benefits
of learning-assisted algorithms.

2 PROBLEM STATEMENT

We consider the scenario where the energy demand can be covered
by either local generators or the external grid. The peak-aware
energy scheduling problem (PAES) aims to prudently choose the
source of energy, so that the energy demand can be met at each
time step while the total cost is minimized.

We focus on one billing cycle 7 = {1,---, T} with T discrete
time slots of uniform length. The billing cycle is usually one month
and the length of each slot is 5 minutes. Let the energy demand in
slot ¢ be e(t) and e = [e(t)];¢[7]- We consider an online scenario
in which the values of demand are unknown for future slots. The
demand can be covered by two sources, the local generator and
external grid. The local generator can satisfy at most C > 1 KWs of
demand in each slot, with cost py. In reality, some traditional gen-
erators [21] have maximum ramp-up and ramp-down constraints
that limit the change of output between two adjacent slots. In this
paper, we focus on “fast-responding” generators that can ramp up
and down without any limit. In experiments (§6.3.3), we investigate
the impact of ramp constraints.

We consider a typical energy cost model for industrial energy
customers that follows a hybrid charging model that has both total
usage (a.k.a. energy charge) and peak usage (a.k.a. demand charge)
components. The energy cost is the sum of the following two terms:
(1) the usage-based pricing, which is the total energy usage over the
cycle, and (2) the peak pricing, which is the peak demand drawn
over the cycle. Following the dynamics of the energy market, the
grid provides electricity with a spot price p(t) at time ¢, where we
assume p(t) = p™n > 0. In reality, the unit cost of local genera-
tors py is usually higher than that of external grid, i.e., pg 2 p(t).
Otherwise, it is always optimal to use local generators as much
as possible for both online and offline algorithms. However, the
expensive local generator can shave the peak demand (peak charge)
of the external grid. In addition, p, is the peak charge price that
is known and fixed over the billing cycle. Note that py, is usually
more than 100 times larger than p(t). For ease of exposition, denote
B & pming Pg < 1as the ratio between the minimum grid price and
the unit cost of local generation. We characterize the performance
of our algorithms as a function of f.

Let o(t) and u(t) be the optimization variables that determine the
amount of electricity procured from the external grid and local gen-
erator, respectively. For the grid, its cost consists of volume charge
and peak charge. The volume charge is the sum of volume cost over
the time horizon, ie., >}; p(¢)o(t). The peak charge is based on the
maximum single-slot power and peak price py,, i.e., p, max; v(t)
[30, 33]. The cost of using local generators, is >.; pgu(t). There-
fore, with u = [u(t)];cq and v = [0(t)];c7, the PAES problem is
defined as

PAES: min Ho(t) + pm maxo(t) + u(t
n t;p() () + pm maxo(t) tezrpg ()
L u(t)+o(t) >e(t), teT,

u(t) <C, tefT,

-

S.
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o(t) 2 0,u(t) =0, teT,

where the first constraint ensures that the demand is satisfied, and
the second constraint is due to the generator capacity limitation.
We note that in our algorithm design we focus on a basic version of
PAES, where the demand e(t) only takes binary values 0 or 1. Our
algorithms and competitive analysis, however, could be extended
to the general case as discussed in Section 4.6.

PAES with e(t) and p(t) values known in advance is a linear
program. Hence, it can be solved using any linear programming
algorithm. However, in practice e(¢) and p(¢) are unknown in ad-
vance and hard to predict, hence an online approach is required. We
use a recently proposed algorithmic framework [22, 24] for devising
online algorithms with advice, and provide a brief overview of the
framework in the following section.

3 ALGORITHMIC FRAMEWORK

In this section, we give an overview of the recently proposed frame-
work for designing competitive algorithms with ML advice [22, 24].
In this framework the goal is to utilize ML advice to improve the
performance of online algorithms, both in theory and practice. To-
ward this, it is assumed that there is advice from an untrusted ML
model that might be subject to error or even vulnerable to malicious
activities. The goal is to develop online algorithms that are able to
determine the level of trust in the ML advice.

Trust. The trust parameter determines how much the algorithm
trusts the ML advice. More formally, let A € (0, 1] be a trust param-
eter that indicates the level of trust that we place on the advice. In
our algorithms, setting A — 0 represents full trust in ML advice,
and A — 1indicates no trust at all, i.e., making worst-case decisions
similar to the classic competitive framework. Any value in between
indicates partial trust in ML advice.

Robustness and Consistency. The performance of an algorithm
in this framework is captured using two metrics that reflect two
extreme cases when the advice is inaccurate and when the advice
is fully accurate. Specifically, suppose that A is an online algo-
rithm that leverages ML advice in decision making with the trust
parameter A. Let € be the error of the ML advice, which is the ab-
solute difference between the advice and actual outcome. Denote
ALG(€, A) as the cost of A given A as the trust parameter and
€ as the error of the ML advice, and OPT as the offline optimum,
respectively.

DEFINITION 1. (Robustness) A} is a-robust if ALG(e, A) < a-OPT
for all € and feasible instances to the problem.

DEFINITION 2. (Consistency) A, is y-consistent if ALG(0, ) <
Y - OPT when the ML advice is accurate (¢ = 0) and for all feasible
instances to the problem.

Note that o and y could be functions of the problem parameters
as well as A and e. Intuitively, robustness measures how well the
algorithm does in the worst-case of poor advice, and consistency
measures how well the algorithm does with perfect advice.

Pareto Optimality. In the traditional framework with competitive
ratio as the performance metric, the notion of optimality refers
to an online algorithm that achieves the best possible competitive
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ratio. In the new framework with ML advice, the performance of
algorithms is measured by two criteria: robustness and consistency.
The superiority of an algorithm in a bi-criteria setting against an
alternative can be measured using the notion of dominance and
Pareto optimality.

DEFINITION 3. (Dominance) For comparing two online algorithms
A and B, we say that A dominates B if it is better in both criteria, i.e.,
ap < apandyys < yB.

With the trust parameter, we develop a class of online algorithms
in which each instance of the algorithm refers to a specific value of
trust parameter. Hence, for analyzing the dominance of the algo-
rithms, our goal is to investigate the Pareto frontier properties of a
class of algorithms.

DEFINITION 4. (Pareto Optimality) Let A = {A),A € (0,1]} be
the class of online algorithms with trust parameter A. A is Pareto-
optimal if for any other online algorithm B, there exists A) € A such
that A) dominates B.

In Section 4, we develop deterministic and randomized algo-
rithms using the above framework and analyze their robustness,
consistency, and Pareto-optimality in Section 5. Our proposed algo-
rithms are built on top of existing fully online algorithms that do
not use ML advice for decision making. We briefly introduce these
algorithms in the following subsection.

Existing Online Algorithms without ML advice. The idea of prior
online algorithms (OnEng) [33] lies in constructing a break-even
point that balances between the cost of using generators and the
peak charge of using the grid. Specifically, break-even point o is

o= 3 (g~ p(0)e(0)] m

teT

The parameter o plays a critical role in algorithm design. For an
optimal offline algorithm, we have v*(t) = e(¢), Vt € 7, when
o > 1;and 0™ (¢) = 0, Vt € T, otherwise. The optimal output of the
local generator is then u*(t) = e(t) — v*(¢).

The value of o can be calculated easily in an offline manner. How-
ever, with unknown price and demand values, this value cannot
be fully computed online. The high-level idea of OnEng is make a
decision based on a partially-calculated value of o over the current
and past slots. Specifically, OnEng keeps using the local genera-
tor initially and switches to the grid at the first time 7 such that
2ie1(pg = p(t))e(t) = pm. The competitive ratio of OnEng is 2 - .
The proof ideas are similar to the ski-rental problem and they
show that the break-even point is the best balance between being
aggressive (paying the one-time premium peak cost) and being
conservative (using the local generator). Finally, the competitive
ratio has been improved to e¢/(e — 1 + ) < 1.58, by developing
a randomized algorithm (rOnkng), in which the algorithm starts
purchasing grid electricity when ¥ . (pg — p(7)) > s - pm, where s
is chosen randomly according to the following distribution

s

e—eTﬁ’ when s € [0, 1];
F1(5) = | :258(0), when's = oo; @)
0, otherwise.



Online Peak-Aware Energy Scheduling with Untrusted Advice

4 ALGORITHM DESIGN

In this section, we first introduce how the ML advice could be
constructed for the PAES problem, then present a Pareto-optimal
deterministic algorithm, and finally a randomized algorithm that
dominates our proposed Pareto-optimal deterministic algorithm.
We also highlight our technical results. The detailed derivation of
the theoretical results are given in Section 5.

4.1 ML advice for the PAES problem

First, we introduce the ML advice. Assume that there is a learning
model that predicts the future values of external grid prices, p(t),
and energy demand, é(t). The key idea in our online algorithm
design lies in constructing a break-even point using these two
values so as to balance between the cost of using generators and
the peak charge of using the grid. Given these two values, let 6 be
the predicted break-even point using the learning model as

N 1 PN
52— (pg-pe)é). )
Pm i
Note that it is even possible that the ML model directly predicts the
value of 6 based on historical break-even points. Hence, predicting
individual values of f(¢) and é(t) for the cycle is not needed.

4.2 A Simple Consistent and Non-Robust
Algorithm

We first show that there exists an algorithm Eng-dd for PAES that
naively uses the predicted break-even point and is 1-consistent, i.e.,
its competitive ratio is 1 when the advice is accurate. However, it is
straightforward to show that this algorithm is not robust since the
competitive ratio can be arbitrarily large in the case of incorrect
predictions. We empirically compare the result of our robust and
consistent algorithms with this simple algorithm in Section 6.

Algorithm 1 Eng-dd

if 6 > 1 then

use the local generator entirely
else

use the grid entirely
end if

4.3 OnMLEng: A Deterministic Robust and
Consistent Algorithm

We propose an online algorithm OnMLEng with ML advice that uses
the trust parameter A € (0, 1] to determine the level of trust in
advice as introduced in Section 3. OnMLEng makes decisions based
on the values of 6 and A as summarized in Algorithm 2. Note that
in OnMLENng, A — 0 (full trust) is equivalent to running Eng-dd.

THEOREM 1. The OnMLENg algorithm achieves the competitive ratio
of1+ (1 - p)/A, where A € (0,1].

COROLLARY 1. OnMLENg is (1 + (1 — f)/A)-robust.

COROLLARY 2. OnMLENg is (1 + A(1 — f))-consistent.

e-Energy '21, June 28-July 2, 2021, Virtual Event, Italy

Algorithm 2 OnMLEng

if 6 > 1 then
se— A
else
s—1/A
end if
Use local generator first and commit to switching to the grid
starting at the first time 7 where

Z;l(f’g —p(t)e(t) > s pm.

Algorithm 3 rOnMLEng

Denote ¢, = —1 __ and ®, = 1
eA—1+A28 6%—1+/%2ﬁ
if 6 > 1 then Dyed, se[0,A];
£ (s) = {@14265(0), s = oo;
0, otherwise.
else Doe’, s € [o, %];
fy(s) = { @295 5(0), s = oo;
0, otherwise.
end if

Pick a value s randomly according to probability distribution
fi(s) or f; (s), and switch to grid electricity starting at the first
time 7 where

D (pg—p)e(t) = s prm.

t=1

Intuitively, s € (0, ) is a function of 6 and A that determines
when OnMLEng switches to the grid. Setting A = 1 will fix s = 1,
which recovers the robustness competitive ratio of 2 — f from the
optimal online algorithm OnEng [33]. This implies that with bad
advice it suffices to completely distrust the advice to be robust
against worst-case performance. On the other hand, setting A — 0
will result in s — 0 or s — oo, which means immediately switching
to the grid or entirely staying with the local generator respectively.
This results in a consistency of 1. Tuning the value of A effectively
adjusts the level of trust in advice by determining s.

Next, in Theorem 2, we show that OnMLEng represents a family
of Pareto-optimal algorithms specified by the trust parameter A,
based on Definition 4.

THEOREM 2. OnMLEng defines the Pareto frontier of robustness
and consistency for the PAES problem, and is Pareto-optimal for all
deterministic algorithms that solve PAES.

The above result shows that OnMLEng defines the Pareto fron-
tier. In other words, there is no other family of deterministic algo-
rithms that can achieve a better consistency (resp., robustness) than
OnMLEng without sacrificing the robustness (resp., consistency).

Furthermore, we show that for any deterministic algorithm A
that solves PAES, it can be expressed by a deterministic algorithm
with a switching parameter, i.e., OnMLEng is Pareto-optimal for any
deterministic algorithm A.
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4.4 rOnMLEng: A Randomized Robust and
Consistent Algorithm

In randomized algorithms, the decision making is based on ran-
dom variable draws from a proper probability distribution function.
We develop a randomized algorithm, rOnMLEng, as summarized in
Algorithm 3. In rOnMLEng we modify the probability distribution
function of rOnEng [33] based on A and ¢ as in Eq. (3).

THEOREM 3. rOnMLEng achieves a competitive ratio of
max{1+® (1 - ), 1+ P (1= f)[(e/* =1-1/2)(1/A = 1) +1/A%]},

where A € (0,1], 1 = and @, =

1 1
er—1+A28 el/A-1+1/2.B"

COROLLARY 3. rOnMLEng is (max{1+®; (1—), 1+®5 (1-f) [ (eX/A -
1-1/0)(1/A = 1) + 1/A%]})-robust.

COROLLARY 4. rOnMLEng is (max{1+®11%(1-f), 1+®(1-p)})-
consistent.

CoRrOLLARY 5. The consistency and robustness bounds of rOnMLEng
are strictly better than those of OnMLEng.

The probability distributions f*(s), f; (s) are designed to satisfy
two critical conditions. First, setting A = 1 retains the original
distribution function of the optimal randomized online algorithm
ronkng, and therefore would recover its competitive ratio of e /(e —
1+ ). Second, setting A — 0 guarantees picking s = 0 or s =
oo depending on the advice driven break-even point . This will
result in a competitive ratio of 1 for consistency, meaning matching
optimal performance once the ML advice is accurate. Note that this
follows the same selection of s in ONMLEng when A — 0.

Corollary 5 shows that the proposed randomized algorithm
ronMLEng dominates OnMLEng, the Pareto optimal deterministic
algorithm. Lastly, in Appendix B we show that the randomized al-
gorithm that naively modifies the distribution function of OnEng (2)
based on the guidelines in deterministic algorithm fails to achieve
satisfactory robustness and consistency at the same time.

4.5 OnMLEng-dyn and rOnMLEng-dyn: Dynamic
Break-even Point Algorithms

OnMLEng and rOnMLEng utilize a static predicted break-even point
¢ that persists over the entire billing cycle, but our results can
also be extended to utilizing a set of dynamic break-even points
6 = {61, 62, ..., 67}. Having a dynamic break-even point captures a
broad range of algorithms and allows a rich design space within
OnMLEng and rOnMLEng. For example, predictions can be adjusted
and possibly improved according to observed values over time. Al-
gorithms that use a sliding window of predictions also fit within this
framework, since the break-even point is dynamically calculated
according to the available predictions.

Define OnMLEng-dyn as the version of OnMLEng where the set of
predictions at each time step may change over time. In other words,
let & = [é-()]se[T), Pr = [Pr()]se(T)> be the set of predictions
for demand and grid price at time 7 € [1, T]. Then the advice is
dynamically provided as

be=——| 3 by = he)Ex 0], @

pm i

[authors]

and the decision to switch from the local generator to the grid is
made according to 67 and A. Similarly, define rOnMLEng-dyn as the
version of rOnMLEng using a set of break-even points o, with all
else remaining the same. The detailed forms of OnMLEng-dyn and
ronMLEng-dyn can be found in Appendix C.

THEOREM 4. The robustness and consistency of OnMLEng-dyn and
ronMLEng-dyn are equivalent to those of OnMLEng and rOnMLEng,
respectively.

While the theoretical bounds of dynamic break-even algorithms
are the same for robustness, consistency, and Pareto optimality,
these algorithms are of practical importance because they can cap-
ture scenarios such as a sliding window of available predictions or
improved prediction quality over time. We empirically evaluate the
performance of one such algorithm in Section 6.

4.6 Extending Algorithms for Energy Problem
to the General Case

The proposed algorithms for PAES in the paper are analyzed for a
basic version in which the demand takes binary values of 0 or 1. Also,
the corresponding competitive analyses are dedicated to the basic
setting. However, the results can be straightforwardly extended to
the general problem of non-negative integer demand. This is done
by dividing the integer demand e(t) into multiple sub-problems
with binary demand. At a given layer i, the layered demand at time
tis 1ife(t) < iand 0 otherwise. Then the result in [33, Theorem 3]
can be applied. By using the layered sub-problems strategy, the
competitive ratio of an algorithm which solves the sub-problem
with binary demand is an upper bound to the competitive ratio of
an algorithm which solves the general integer demand problem.
Similarly, the robustness and consistency of the binary demand
setting provide an upper bound to the robustness and consistency
of the general setting. Further proof and discussion on extending
to the general case is in Appendix E.

5 PROOFS OF MAIN RESULTS

In this section, we provide the main proofs for the algorithms. The
proofs for the competitive ratio of the randomized algorithm and
dynamic algorithms are given in Appendix A and C.

5.1 Proof of Theorem 1

We analyze the competitiveness of OnMLEng. Given the structure of
Algorithm 2, we can parameterize any online algorithm by parame-
ter s. Let A be an online algorithm with a specific parameter s, e.g.,
OnMLEng is in this category with the value of s as in Algorithm 2.
Let h(As, o) be the ratio between the cost of algorithm A and that
of an optimal offline algorithm given o. The following proposition
characterizes the closed-form value of h(As, o), and facilitates the
analysis of the proposed algorithm.

ProPosITION 1. [33] For any online algorithm A, we have

1, ifs > o
h <1, h(Aso0)=
whena (As. ) 1+ I%Z“(l —B), otherwise.
(c-1)(1-4) .
+ 20V P) s > o
wheno > 1, h(As, o) = (;(71:1))“ f
m, otherwise.
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We proceed to prove the robustness and consistency results. We
first consider the robustness. The worst-case cost ratio for a general
deterministic algorithm A with parameter s is when o = s, where
the online algorithm pays for the peak charge premium but has no
net demand to serve anymore. From Proposition 1, this worst case
cost ratio maxg h(As, 0) is

ifs <1;

1+1a-p),
mo?‘Xh(ﬂSa O-) = {1 Ss(lfﬁ)

+ (=St otherwise.

®)

We compute the competitive ratio of OnMLEng under two cases:

(i) 6 > 1: According to OnMLEng, s = A < 1. From (5), we have
CR(AY =1+ -p)/A

(ii) & < 1: According to OnMLEng, s = 1/A > 1. From (5), we have
CR(Ap) =1+ U(/l)k——ﬁl))//i-l

This means that OnMLEng is (1 + (1 — f8)/A)-robust. Note that
setting A = 1 recovers the competitive ratio of the optimal online
algorithm.

Next, we consider the consistency. For consistency guarantees,
we compute the competitive ratio assuming the predictions are
correct. There are two cases to consider here:

(i)6 =0 > 1,ie,s = A. From Proposition 1, wheno > 1 > s = A,
we have CR(Ay/y) =1+ (c/}gll—;/@l <1+ A(1-p).

(ii) 6 = 0 < 1,ie.,s = 1/A From Proposition 1, when o <
1 < s = 1/A, the worst case occurs when s = 1/A = ¢. Then
CR(ﬂl/A) =1+A(1-p).

This means that OnMLEng is (1 + A(1 — f3))-consistent. Note that
setting A — 0 results in a competitive ratio of 1, which means
optimal performance with accurate predictions.

5.2 Proof of Theorem 2

First, we establish that OnMLEng is Pareto optimal for all deter-
ministic algorithms with a switching parameter. From Theorem 1,
OnMLENng is (1 + A(1 — f))-consistent and (1 + %(1 — p))-robust.
Denote the consistency and robustness bounds as y4 = 1+ A(1 - f)
andayq = 1+ %(1 - p).

Consider an arbitrary algorithm A’ that takes prediction-based
advice with a consistency bound y 4’ and robustness bound a4/. A’
switches at either i - py, or j - p;, based on the advice. Without loss
of generality, we assume i < j.

LEMMA 1. A’ must be at least yq > %(1 — pB)—consistent and
ay > %(l — pB)-robust.

Proor. We consider a couple of cases for the true break-even
point o utilizing Proposition 1: First, when o < 1, A’ will either
select s = i or s = j for competitive ratios of 1 + %(l - p) or
1+ %(1 — B), respectively. We now consider the corresponding
consistency and robustness:

(i) For consistency, A” has perfect predictions and knows exactly
that ¢ < 1. As a result, A’ will rationally pick s = j, since i < j
implies that %(l -p) < %(1 —pB). Thenya > %(l - p).

(ii) For robustness, A’ does not have perfect predictions and
cannot have full certainty that o < 1. Then A’ could rationally pick
s =iors = j,and in the worst case s = i will be chosen. Then
ax > 1(1-p). O
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Assume that A” has a lower consistency bound than OnMLEng,
ie.ya <1+A(1—p). Itfollows that 1+i(1—f) < 1+ A(1-p),
and subsequently i < A. Applying this to the robustness bound for
ay yieldsaq > 1+ %(1 -p) =1+ %(l —p) =au.

This concludes the proof that OnMLEng is Pareto optimal for all
deterministic algorithms with a switching parameter, since y4 <
YA guarantees that @y > ay for any algorithm A” with switching
parameters i, j.

LEMMA 2. Any deterministic algorithm for PAES can be expressed
by a deterministic algorithm with a switching parameter.

The main idea for proving this lemma is that time slots assigned
to the local generator and the grid can be reordered such that the
assignment can be determined by a single parameter. The full details
of the proof are given in Appendix D. Combining Lemma 1 and
Lemma 2 concludes the proof of Theorem 2.

demand renewable net demand

[——demand —renewable net demand|

Wwﬂ“ | W I Y

TUUL (daya) TIIIIL d\w

~

Demand (kWh)
Z
Dcmand (kWh)

(a) New York City (b) Rochester

Figure 2: Time-varying energy demand with incorporation
of renewables for two Akamai data centers in NY. Although
there is a roughly diurnal pattern for energy demand in New
York City, Rochester is comparably more unpredictable.

6 EXPERIMENTS

We use real-world traces to experimentally evaluate the perfor-
mance of proposed learning-assisted algorithms as compared to
the pure online algorithms and the offline optimum. Our proposed
algorithms characterize a class of algorithms that are determined
by the choice of trust parameter. Our experiments consider such al-
gorithms in both the worst-case performance and practical average-
case performance scenarios. The results answer these questions:

(1) How does the OnMLEng algorithm compare to the pure on-
line algorithm? Our results show that OnMLEng consistently
achieves better average performance than the pure online
algorithm, sometimes even achieving near-optimality.

(2) What is the effect of varying prediction quality via renew-
able penetration? Lower-quality predictions noticeably de-
grade the worst-case performance of OnMLEng instances that
are too optimistic about advice, while the performance of
OnMLEng instances with more cautious trust parameter se-
lection is robust to poorer prediction quality.

(3) How do problem parameters such as peak price and grid capac-
ity constraints affect the performance? The normalized cost of
the best performing OnMLEng algorithm remains extremely
close to optimal under four different varying parameters.
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Table 2: Summary of algorithms that are evaluated

[ The online algorithms with ML advice that we evaluate l

OnMLEng-opt

OnMLEng with the optimal trust parameter (offline)
OnMLEng with the best historical trust parameter
(online)

OnMLEng-hist with time-varying predictions that
are adjusted to align with observed values

A simple data-driven algorithm for PAES that fully
Eng-dd trusts the break-even point of the previous
instance

OnMLEng-hist

OnMLEng-hist-dyn

[ Other algorithms for comparison |

ENG-OPT [ Optimal offline cost for PAES
[ OnEng [33] | The best competitive online algorithm for PAES |

6.1 Data Traces and Comparison Algorithms

6.1.1 Data Center Energy Demands. For representing the energy
demands of data centers, we use a dataset including the server
load information for 300+ Akamai data centers across the United
States, collected every 5 minutes [23]. Since some data centers are
co-located with on-site renewable sources, we use wind data traces
from [3] and inject renewable sources with 40% penetration in
our experiments, unless the penetration level is otherwise stated.
Two sample one week trajectories of energy demand for different
locations in the United States are depicted in Figure 2. While we
see a roughly diurnal pattern for the New York City energy de-
mand, the pattern is less visible for Rochester. For both cities, the
high unpredictability of renewable generation leads to comparable
unpredictability in the net energy demand, regardless of diurnal
patterns in energy demand. These observations show the impor-
tance of ML advice, as well as the possibility of tuning the level of
trust in a principled manner.

6.1.2  Energy Pricing Data. We use the 2018 spot energy prices
from the New York Electricity Market (NYISO). The value of spot
prices changes in real-time over intervals of 5 minutes. As an ex-
ample, the spot prices in April 2018 vary between $13.69/MWh
and $64.62/MWh. The value of p,, is set to be roughly 100 x
max;cq p(t), which is based on common practice by U.S. utilities
such as PG&E and Duke Energy. The cost of local generation is set
to pg = max;cq p(t). Finally, the capacity of the local generator is
set to be roughly 60% of the energy demand.

6.1.3 Comparison Algorithms. Table 2 summarizes the acronyms
for different algorithms in our experiments. Here, we use two ap-
proaches to determine the trust parameter: first, offline optimal
selection of the trust parameter - this approach searches over all
possible values of A in a brute force manner as input to OnMLEng and
selects the best performing choice of A. Although selecting the best
choice of A is not possible in online settings, the optimal hybrid algo-
rithm serves to demonstrate the full potential of algorithms with ML
advice. In experiments, the offline optimal algorithm OnMLEng-opt
is used for PAES. Second, as a practical online selection, we choose
the trust parameter based on the historical optimal value, that
is the best A for the previous instance of the problem. The algo-
rithm OnMLEng-hist is used for this scenario. To demonstrate time-
varying predictions, algorithm OnMLEng-hist-dyn aligns the pre-
dictions used in ONMLEng-hist according to observed values in an
online manner.

[authors]

In experiments, we report the normalized cost of different algo-
rithms. The normalized cost is the ratio between the cost of the
algorithm and the offline optimal cost (i.e., ENG-OPT for PAES). The
normalized cost is always greater than or equal to 1. The lower
the cost ratio of an algorithm, the better the performance. Finally,
to show how online algorithms with ML advice achieve the best
of both worlds, we compare their normalized cost to pure online
algorithms (OnEng [33]) and naive data-driven algorithms that fully
trust the advice (Eng-dd).

6.2 Large-scale Trace-Driven Evaluation

6.2.1 Analysis at Single Renewable Penetration Level. We first evalu-
ate the performance of the proposed algorithms over a large variety
of locations and trials, with emphasis on demonstrating how the
proposed algorithms are able to achieve the best of both worlds.
To begin, we focus on the cumulative probability distribution of
normalized cost at a single penetration level. In Figure 3, we report
results for PAES over 338 locations and 30 trials at 30% renewable
penetration. Specifically, we observe that OnEng is strictly upper
bounded by the theoretically guaranteed bound of approximately
1.85, but the majority (over 80%) of locations have normalized cost
of greater than 1.6. The Eng-dd algorithm has comparatively better
normalized cost for the majority of locations, but has a heavy tail.
OnMLEng-opt and OnMLEng-hist clearly outperform OnEng and
Eng-dd since they leverage advice for better decision making. Last
but not least, the performance of OnMLEng and its variants largely
depend on the level of uncertainty in energy demand. To investigate
the impact of this uncertainty, we report additional experimental
results at varying renewable penetration levels in Appendix F.

6.2.2  Evaluating a Dynamic Break-even Point Algorithm. A natural
choice for a dynamic break-even point algorithm within OnMLEng-dyn
is one that aligns the predictions with observed past and current
values, i.e. once p(t), e(t) are observed at time 7’ then the pre-
dictions for all current and future time slots 7 > 7’ are set as
Pror(t) = p(t), ér>(t) = e(t). This type of algorithm is a natural
middle ground between OnEng and OnMLEng, since the predicted
break-even points are gradually aligning with observed values.
We consider a variant of this algorithm OnMLEng-hist-dyn which
uses the best historical trust parameter, and compare it against
OnMLEng-hist. From Figure 4, we see that OnMLEng-hist-dyn is
slightly better than OnMLEng-hist in worst case and 99 percentile
scenarios, but functionally equivalent in the average case scenario.
This correlates closely with Theorem 4, as the two algorithms have
equivalent theoretical robustness bounds.

6.3 Evaluation Results for PAES

In this section, we investigate the impact of different parameters
on the performance of the proposed algorithms.

6.3.1 The Impact of Trust Parameter. Introducing the trust param-
eter in the algorithm design allows effective usage of predictions
in algorithmic actions. Specifically, setting A close to 0 represents
more trust in predictions, while A close to 1 represents almost no
trust in predictions. To scrutinize the impact of A on the perfor-
mance of OnMLEng, in Figure 5(a) we vary the value of A from 0
to 1. We report the average normalized cost over several locations
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Figure 3: Cumulative probability distribution of normalized cost of different algorithms at 30% penetration level. We consider
some key observations from these plots. First, algorithms with ML advice almost strictly outperform OnEng in mean normalized
cost, but careful selection of trust level is important as prediction quality decreases. Second, the worst-case performance in
OnMLEng-hist is noticeably robust to degrading prediction quality when compared to Eng-dd, indicating that careful selection

of trust level will restrict poor worst-case performance.
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Figure 4: Cumulative probability distribution of dynamic vs. static break-even advice algorithms at 50% penetration. The key
observation is that OnMLEng-hist-dynis slightly better than OnMLEng-hist in worst case scenarios, but equivalent in the practical

average case scenario.
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Figure 5: Evaluation results of five different experiments for PAES. Key observations are noted in 6.3.

and trials, with ML advice in three regimes: (i) accurate denotes
perfect ML advice, (ii) high error denotes poor ML advice, and (iii)
previous with the values of the previous run of the algorithm as
the ML advice. These three regimes represent a broad range of ML
advice and the goal is to investigate the impact of level of trust
in different algorithms. The notable observations are summarized
as follows: (1) With accurate ML advice, and A < 0.1, OnMLEng
achieves the optimal performance. (2) With high error in ML ad-
vice, unfavorable values of A (high trust on prediction) lead to even
worse performance than the pure online algorithms. (3) Favorable
setting of A, e.g., A > 0.4 for OnMLEng, achieves better performance
even with high error in ML advice. This experiment signifies the

importance of setting right values for the trust parameter in order
to outperform purely online algorithms without advice.

6.3.2  The Impact of Peak Price. The peak price pp, is an important
parameter that impacts the break-even point. Case studies show
that the peak charge varies substantially in different geographical
locations, ranging from 20% to 80% of the total electricity bill [30].
In this experiment, we investigate the impact of this parameter
on different algorithms. We scale the value of peak price from
1X to 20X of its original value and report the average normalized
cost values of 30 runs in Figure 5(b). The result shows that the
normalized cost of OnMLEng with trust A = 0.5 is constantly better
than OnEng. OnMLEng-hist is always very close to OnMLEng-opt
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and is substantially better than OnEng. Interestingly, the normalized
costs of all algorithms are better in the extremes of low and high
peak prices. This is reasonable since with low peak prices it is
natural to use the grid. At high peak prices, the optimal decision is
clearly to fully utilize the generators. So, despite the uncertainty of
the input, decisions in these two extreme regimes are trivial.

6.3.3 The Impact of Ramp Constraints. The algorithms proposed
in this paper work for fast-response generators. In practice, there
are several generators that are slow-response and cannot switch
their output level quickly. The proposed algorithms are easily mod-
ified to incorporate ramp constraints. Specifically, let R be the ramp
constraints, so that |u(t) —u(t — 1)| < RVt € T, i.e., the changes
in generator output level should be always less than R. We can
easily modify OnMLEng and OnEng, as explained in [34, Section 4],
to reflect the ramp constraint. The idea is to first run the algorithm
without the ramp constraints, and then, project the obtained values
to the feasible region to respect the ramp constraints. In Figure 5(c),
we vary the ramp to capacity ratio from 10% to 100%, and report the
average normalized cost of OnEng and OnMLEng. The result shows
that OnMLEng always achieves better performance than OnEng. Al-
though the normalized costs for OnEng and OnMLEng increase as we
relax the ramp constraints, for OnMLEng-hist and OnMLEng-opt
those values are robust.

6.3.4 The Impact of Local Generation Capacity. A drawback of pure
online algorithms such as OnEng is that they are too conservative in
decision making. An example of such performance degradation is
once the capacity of the generator is above 60% of the total energy
demand (see Figure 5 in [33]). By leveraging ML advice, we can
effectively prevent this performance degradation. To show this, we
investigate the cost saving of different algorithms as the capacity of
generator changes. We define p = C/max; e(t) as the ratio between
the capacity of generator and the maximum energy demand, and
change this value from 10% to 100%. Figure 5(d) shows the normal-
ized cost of of different algorithms. To better illustrate the benefit
of algorithms with ML advice, in Figure 5(e) we report the cost re-
ductions as compared to a baseline without local generation. With
p < 30%, all algorithms perform more or less similarly. However,
with p > 40% the performance of OnEng and OnMLEng with A = 0.5
degrades substantially, while the cost reduction of OnMLEng-opt
and OnMLEng-hist increases. We consider this observation as an-
other critical motivation to use online algorithms with ML advice
for tackling online problems.

7 ALGORITHMIC DISCUSSION

The framework of ML advice for online algorithms is recently pro-
posed and has been utilized for several online problems, e.g., online
caching [22, 26, 28], bin packing [4], ski rental [5, 24, 27, 29] and
job scheduling [24, 29]. However, this work is the first that uses
this framework in the context of energy scheduling. Traditional
approaches incorporating predictions often assume the prediction
or prediction error follows a particular distribution or stochastic
process, which limits the generality and practicality of their pre-
diction framework. Other works [10, 11] use prediction windows
of limited size that do not provide any information about events
further into the future. These works apply predictions directly into
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the optimization for decision making. In this paper, predictions are
used to generate advice for decision making. From our theoretical
analysis and numerical evaluation, using advice is more power-
ful because only high-level structure such as break-even points is
needed. This is in contrast to requiring detailed prediction of each
time slot and modelling the error structure of each prediction.

PAES is an extended version of the ski-rental problem [8], in
which a skier is going to ski for an unknown number of days. For
each day, the skier can either rent skis at unit price or buy them
for a higher price of b > 1 and ski for free from then on. The
best known deterministic algorithm for ski-rental problem is the
break-even algorithm: rent the first b — 1 days and buy on day b. In
PAES, there is a rent-vs-buy dilemma in usage-based vs. peak-based
decision making and the online algorithms in literature follow the
break-even structure [33]. However, there is an additional unique
challenge dedicated to PAES, namely that the “buy” option is not
fully free and has an additional time-varying unit price. In our
algorithm design with ML advice, we assume that an ML model
provides an estimate of the break-even point to the problem. We
do not assume any modeling from ML and treat it as a black-box
that provides input to our algorithms.

8 CONCLUDING REMARKS

This paper improves the performance of classic competitive algo-
rithms with ML advice in a principled manner for the peak-aware
energy scheduling problem. Different from prior literature on using
prediction for online algorithms, our algorithms are empowered
with a parameter that determines the level of trust in the ML ad-
vice. For all algorithms we characterized the competitive ratio as
a function of the trust parameter and showed that our algorithms
are provably the best possible algorithms in this framework since
they are Pareto optimal. By extensive large-scale experiments we
showed the improved performance of the proposed algorithms
against pure online algorithms as well as data-driven algorithms
that naively trust the advice, verifying that our algorithms achieve
the best of both worlds. While we focused on an energy scheduling
problem, the rent-vs-buy nature and the category of break-even
point algorithms appear frequently in broad application domains
such as server on/off scheduling, TCP acknowledgment, and rent-
ing cloud servers, and a promising future direction is to extend the
break-even point algorithms for those problems. Another promis-
ing direction is to incorporate the energy storage systems into the
peak-aware energy scheduling problem.

ACKNOWLEDGMENTS

Russell Lee and Mohammad Hajiesmaili acknowledge the support
from the U.S. National Science Foundation (NSF) under grant num-
bers CNS-1908298, NGSDI-2105494, and CAREER-2045641. Jessica
Maghakian and Zhenhua Liu’s research is supported in part by
the NSF under grant numbers CNS-1717588, CNS-1730128, CNS-
1919752, CNS-1839287, Graduate Research Fellowship, and an IBM
Academic Award. Jian Li received support from the U.S. DOE Of-
fice of Energy Efficiency and Renewable Energy (EERE) under the
Solar Energy Technologies Office Award Number DE-EE0009341.
Also, Ramesh Sitaraman received support from the NSF under grant
numbers CNS-1763617 and NGSDI-2105494.



Online Peak-Aware Energy Scheduling with Untrusted Advice

REFERENCES

(1]

[10]

[11]

[12

(13

[14

[15]

(16

[17]

(18]

[19

[20

[21]

[22]

[23

[24

2018. Generator Permit Indicates Microsoft Plans Big Quincy Data Center Expan-
sion. available at https://www.datacenterknowledge.com/microsoft/generator-
permit-indicates- microsoft- plans-big-quincy- data- center-expansion, accessed
May 2021.

2019. Global Data Center Generator Market to Generate Revenues of $5
Billion During 2018-2023. available at https://www.prnewswire.com/news-
releases/global-data- center-generator-market-to-generate-revenues- of-5-
billion-during-20182023- - market-research-by-arizton-300789765.html, accessed
May 2021.

2020. Eastern and Western Data Sets. available at https://www.nrel.gov/grid/
eastern-western-wind-data.html.

Spyros Angelopoulos, Christoph Diirr, Shendan Jin, Shahin Kamali, and Marc
Renault. 2019. Online Computation with Untrusted Advice. arXiv preprint
arXiv:1905.05655 (2019).

Etienne Bamas, Andreas Maggiori, and Ola Svensson. 2020. The Primal-Dual
method for Learning Augmented Algorithms. In Proc. of NeurIPS.

A. Borodin and R El-Yaniv. 1998. Online computation and competitive analysis.
Cambridge University Press.

Joan Boyar, Lene M Favrholdt, Christian Kudahl, Kim S Larsen, and Jesper W
Mikkelsen. 2016. Online algorithms with advice: a survey. Acm Sigact News 47, 3
(2016), 93-129.

Niv Buchbinder, Joseph Seffi Naor, et al. 2009. The design of competitive online
algorithms via a primal-dual approach. Foundations and Trends® in Theoretical
Computer Science 3, 2-3 (2009), 93-263.

Niangjun Chen, Anish Agarwal, Adam Wierman, Siddharth Barman, and Lach-
lan LH Andrew. 2015. Online convex optimization using predictions. In ACM
SIGMETRICS Performance Evaluation Review, Vol. 43. ACM, 191-204.

Niangjun Chen, Joshua Comden, Zhenhua Liu, Anshul Gandhi, and Adam Wier-
man. 2016. Using predictions in online optimization: Looking forward with an
eye on the past. ACM SIGMETRICS Performance Evaluation Review 44, 1 (2016),
193-206.

Joshua Comden, Sijie Yao, Niangjun Chen, Haipeng Xing, and Zhenhua Liu. 2019.
Online Optimization in Cloud Resource Provisioning: Predictions, Regrets, and
Algorithms. Proceedings of the ACM on Measurement and Analysis of Computing
Systems 3, 1 (2019), 16.

Richard Evans and Jim Gao. 2016. DeepMind Al Reduces Google Data Centre
Cooling Bill by 40%. https://deepmind.com/blog/deepmind-ai-reduces-google-data-
centre-cooling-bill-40/ (2016).

iﬁigo Goiri, William Katsak, Kien Le, Thu D Nguyen, and Ricardo Bianchini. 2013.
Parasol and greenswitch: Managing datacenters powered by renewable energy.
In ACM SIGPLAN Notices, Vol. 48. ACM, 51-64.

Sreenivas Gollapudi and Debmalya Panigrahi. 2019. Online Algorithms for Rent-
Or-Buy with Expert Advice. In International Conference on Machine Learning.
2319-2327.

Mohammad H Hajiesmaili, Chi-Kin Chau, Minghua Chen, and Longbo Huang.
2016. Online microgrid energy generation scheduling revisited: The benefits
of randomization and interval prediction. In In Proceedings of the ACM Seventh
International Conference on Future Energy Systems.

Rohan Kodialam. 2019. Optimal Algorithms for Ski Rental with Soft Machine-
Learned Predictions. arXiv preprint arXiv:1903.00092 (2019).

Tan N Le, Jie Liang, Zhenhua Liu, Ramesh K Sitaraman, Jayakrishnan Nair, and
Bong Jun Choi. 2018. Optimal Energy Procurement for Geo-distributed Data
Centers in Multi-timescale Electricity Markets. ACM SIGMETRICS Performance
Evaluation Review 45, 2 (2018), 185-197.

Minghong Lin, Adam Wierman, Lachlan LH Andrew, and Eno Thereska. 2013. Dy-
namic right-sizing for power-proportional data centers. IEEE/ACM Transactions
on Networking 21, 5 (2013), 1378-1391.

Zhenhua Liu, Yuan Chen, Cullen Bash, Adam Wierman, Daniel Gmach, Zhikui
Wang, Manish Marwah, and Chris Hyser. 2012. Renewable and cooling aware
workload management for sustainable data centers. In ACM SIGMETRICS Perfor-
mance Evaluation Review, Vol. 40. 175-186.

Zhenhua Liu, Minghong Lin, Adam Wierman, Steven Low, and Lachlan LH
Andrew. 2014. Greening geographical load balancing. IEEE/ACM Transactions on
Networking 23, 2 (2014), 657-671.

Lian Lu, Jinlong Tu, Chi-Kin Chau, Minghua Chen, and Xiaojun Lin. 2013. Online
energy generation scheduling for microgrids with intermittent energy sources
and co-generation. ACM SIGMETRICS Performance Evaluation Review 41, 1 (2013),
53-66.

Thodoris Lykouris and Sergei Vassilvtiskii. 2018. Competitive Caching with
Machine Learned Advice. In International Conference on Machine Learning. 3302—
3311.

Erik Nygren, Ramesh K Sitaraman, and Jennifer Sun. 2010. The akamai network:
a platform for high-performance internet applications. ACM SIGOPS Operating
Systems Review 44, 3 (2010), 2-19.

Manish Purohit, Zoya Svitkina, and Ravi Kumar. 2018. Improving Online Algo-
rithms via ML Predictions. In Advances in Neural Information Processing Systems.

e-Energy '21, June 28-July 2, 2021, Virtual Event, Italy

9661-9670.

Asfandyar Qureshi, Rick Weber, Hari Balakrishnan, John Guttag, and Bruce
Maggs. 2009. Cutting the Electric Bill for Internet-scale Systems. In Proc. ACM
SIGCOMM.

Dhruv Rohatgi. 2020. Near-Optimal Bounds for Online Caching with Machine
Learned Advice. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms. SIAM, 1834-1845.

Shufan Wang, Jian Li, and Shigiang Wang. 2020. Online Algorithms for Multi-
shop Ski Rental with Machine Learned Advice. In Proc. of NeurIPS.

Alexander Wei. 2020. Better and Simpler Learning-Augmented Online Caching.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques (APPROX/RANDOM 2020). Schloss Dagstuhl-Leibniz-Zentrum fiir
Informatik.

Alexander Wei and Fred Zhang. 2020. Optimal Robustness-Consistency Trade-
offs for Learning-Augmented Online Algorithms. In Proc. of NeurIPS.

Hong Xu and Baochun Li. 2014. Reducing Electricity Demand Charge for Data
Centers with Partial Execution. In Proc. ACM e-Energy. 51-61.

Lin Yang, Mohammad H Hajiesmaili, Ramesh Sitaraman, Enrique Mallada, Wing S
Wong, and Adam Wierman. 2019. Online Inventory Management with Appli-
cation to Energy Procurement in Data Centers. arXiv preprint arXiv:1901.04372
(2019).

Andrew Chi-Chin Yao. 1977. Probabilistic computations: Toward a unified mea-
sure of complexity. In 18th Annual Symposium on Foundations of Computer Science
(sfes 1977). IEEE, 222-227.

Ying Zhang, Mohammad H Hajiesmaili, Sinan Cai, Minghua Chen, and Qi Zhu.
2018. Peak-aware online economic dispatching for microgrids. IEEE Transactions
on Smart Grid 9, 1 (2018), 323-335.

Ying Zhang, H Mohammad, Sinan Cai, Minghua Chen, and Qi Zhu. 2015.
Peak-Aware Online Economic Dispatching for Microgrids. arXiv preprint
arXiv:1508.03996 (2015).

[25

[26

[27

[28

[29

[30

[31

[32

®
3

[34

A PROOF OF ROBUSTNESS AND
CONSISTENCY OF RONMLENG

A.1 Proof of Corollary 3 and Corollary 4

Proor. First we show the consistency and robustness bounds
of Corollary 3 and Corollary 4 hold when ¢ > 1.

(i) 6 > 1,0 < A < 1. Note this is an incorrect prediction scenario,

so the final upper bound lies in the robustness setting. The expected
cost is given by fs h(s, o) f" (s)ds

o _ A
=q>1/ 1+ﬂ(1—ﬁ) esds+<1>1/ eSds + 01 (1)A%B
0 o

(o2

=d1 (! =1+ 1%B) + 01 (1 - p)
=1+d1(1-p).
(if) 6 > 1,4 < o < 1. Note this is an incorrect prediction scenario,

so the final upper bound lies in the robustness setting. The expected
cost is given by /S h(s, o) f] (s)ds

p _
:@1/ 1+ 22985 (4 gy lesds + @1 (10228
0 (e}

A o
1-—
sq>1/ esds+<I)1/ L29%5 (1 py|esds + 21428
0 0 o

=1+®,(1-p).

Case (ii) is clearly upper bounded by case (i), so the robustness
bound holds.

(iif) 6 > 1,4 < 1 < 0. Note this is a best case correct prediction
scenario, so the final upper bound lies in the consistency setting.
The expected cost is given by fs h(s,0)f] (s)ds

o [ sA-p) | s (@-DI-p|,»
_Qll l+m€d§+¢1l+mlﬂ
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_ 2, (F-1-H(A-1)
—1+(1—ﬁ)q)1/1 W

(2) 1+(1-P)D1[A%+0] < 1+D1A%(1 - p),

where (a) holds true since we have 0 < e} =1 - A for A € (0,1]
from the discussions in Case (i), and A — 1 < 0.
We now consider the cases where 6 < 1.

(ivye<1,1< % < 0. Note this is a worst case failed prediction

scenario. The expected cost is given by /S h(s, o) f5 (s)ds

=<I>2/01M [H%}MH% 1+%§;;? ’TlZﬁ
=1+®y(1 —ﬁ)[ei(% _(1;1- 1);’%1(0_ Dﬁ]
= 1+®(1 —ﬁ)[(e (0'1 _1)_/;?1_ = ’%2]

where (c) holds since (6 —1)f+1 > 1and (e% -1- %) is positive
as shown in case (i) that f(1/4) is increasing for A € [0,1] so
F@a/a = f() >o.
WV)6<L1<0< >
scenario. The expected cost is given by fs h(s, o) f5 (s)ds

- Note this is a worst case failed prediction

=c1>2/OU 1+% e*ds+

D, 1+% /Ui sd3+/12ﬁ

14 (;Dz_(ll—)ﬂ/i)l1+(a—1)el+(0—l) B
R R
<1+0y(1-p) (ei—l—%)(%—m%],

where (e) is true since o < % The final step is is true since inequality
(e) is equivalent to inequality (b) from case (iv), so the competitive
ratio of case (v) reduces to the competitive ratio of case (iv). So the
same robustness bound from (iv) will also dominate OnMLEng.
vij6<lLo<1< % This is a correct prediction scenario. The

expected cost is given by fs h(s,0)f5 (s)ds

o
/
0

1
A
=CI)2(€ _l+ﬁ

=1+d(1-p).

_ A
1+ﬂ(1—ﬂ) esds+(I>2/ esds+fD2(l)iﬁ
o o A2

p)+22(1-p)

[authors]

A.2 Proof of Corollary 5

Proor. We show that Corollary 5 is true for each of the above 6
cases. We begin with the cases where 6 > 1.

(1) Consider case (i) above with bound 1 + ®1(1 — f8). We show
that this bound is better that of the deterministic algorithm, i.e.,

1+®(1-p) <1+3(1—p) ford e (0,1] and f € [0,1]. In
other words, we need to show @ < % ie., m < l . Since
m < eﬂl I weonlyneedtoprovethat—_ < )lL,le 1>

Afor A € (0,1]. Define f(1) = ed—1- A 1Itis easy to check that
f(Q) is increasing in (0, 1], hence f (1) > f(0) = 0.

(2) The result for case (i) holds, since case (ii) is upper bounded
by case (i).

(3) Consider case (iii) above with bound 1+A2®; (1- f8). We show
that this bound is better than that of the deterministic algorithm,
ie,1+A20(1-p) <1+ A(1—p)for A e (0,1] and B € [0,1].
Given ®; we only need to show m < Aie, m < %
which holds true from case (i).

So cases (1) - (3) demonstrate that when 6 > 1, rOnMLEng domi-
nates the robustness and consistency bounds of OnMLEng.

New, we consider the cases where 6 < 1. (4) Consider case (iv)
above with bound 1 + ®,(1 — ﬁ)((eﬂ -1- _)(Z -1+ 2). We
show that this bound is better than that of OnMLEng, i.e., 1+ <I>g(1 -

Pt —1-Ht-n+L) <1411-p)ie, @z((e% —1-

%)(I -1+ AZ) < Z'TO showthis, we have
1.1 1 1
((eh ~1- (5 =D+ 35) < 3
1.1 1 1

o(er —1—1)(1—1) 2z S M’z
1 1.1 1 1,1 1

@(6/1—1—1)(1—1)+A_2SZ(e/l—l+)'—2ﬁ)

Sy -1- D+ -t 1= s 5h 14 35p)
‘ = 2z
11 1 1 1 1 1 1 1 1 1

@( EA—Z—A—Zﬁ-F)—(eA—l—z)S(Zeﬂ—I+A—3‘B)

A
11 1 1 1 11 1 1
@(Ze*—z)—(“—1—/—1)3(1“—Z+ﬁﬂ)

1 1 1
@0—(eﬂ—l—z)s0+ﬁ[3
1

_ﬂ’

<0 (% 1 1)(i)0<0+
¢ AT T T A3

where (d) holds true from (e% -1- }1) is positive. The inequal-
ity holds true, thus the robustness bound of rOnMLEng dominates
OnMLEng when & < 1.

(5) The result for case (iv) holds, since case (v) is upper bounded
by case (iv).

(6) Consider case (vi) above with bound 1 + ®;(1 — ). We show
that this bound is better than that of OnMLEng, ie, 1+ <I>2 (1- ﬁ) <
l+/1(1 -p),ie, Py < A It1s easy to show thatet —1 > 1 Theneﬂ -
1+ el ,B > /1’ ie., 3 > 7 from the definition of ®5. Therefore we
have ®y < A. Thus the competitive ratio dominates the consistency
bound of OnMLEnNg. So cases (3) - (6) demonstrate that the rOnMLEng
dominates the robustness and consistency bounds of OnMLEng when
6<1. O
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B A RANDOMIZED ALGORITHM WITH
DIRECT EXTENSION OF THE EXISTING
RANDOMIZED ALGORITHM

The goal in this section is to show that a naive incorporation of
the ML advice in designing a randomized algorithm lead to an
algorithm that is neither robust nor consistent. Specifically, we
show that a randomized algorithm that modifies the distribution
function proposed in Equation (2) fails to achieve both robustness
and consistency at the same time. In particular, a first attempt to
change the distribution function is to naturally modify according
to the enhancements in deterministic algorithms and obtain the
following functions:

if 6 > 1:
dre’, s € [0,4];
fi(s) = {@14B5(0) s = oo;
0, o.W.,
if6<1
el//%+1+ﬁ’ s € [0,1/A];
fl*(s) = ﬁ&(o)’ s = oo;
0, 0.W.

Our analysis below demonstrates that with these functions,
ronMLEng is max { min {l/ﬁ, 1//1} - %, ﬁ}-robust and
(1/p)-consistent. This means that with above distribution functions
the consistency could be large as f approaches 0.

(i) 6 > 1,0 < A < 1. This is an incorrect prediction scenario. The
expected cost is given byfS h(s,0)f; (s)ds

o 1-0+s et
=/0 [1+ . (1_ﬁ)}—el—1+ﬁd3+

A &S B
</o'eﬂ'—l+ﬁds+(1)eﬂ'—l+ﬁ

A

et —1 . 1-p N B

=14 A—1+p eA-1+p
eA—1+p

(ii) 6 > 1,A < o < 1. This is an incorrect prediction scenario.

The expected cost is given by /s h(s, o) f] (s)ds

A s
1—o+s e B
= 1+ 1- ds+ (1
/0 o ( ﬁ)}ek—1+ﬁ ()el—1+ﬁ
A s o _ s
S/ e—ds+/ ! G+s(1—ﬁ) L S
0 et—1+p 0 o eA-1+p
B
ed—14+p
A -
__¢ 1 N 1-p . B
-1+ A -1+B eA-1+p
eA—1+p
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(iif) 6 > 1,4 < 1 < 0. Note this is a correct prediction scenario.
The expected cost is given by /s h(s,0)f} (s)ds

S

[t s(1-5) €

‘/0 T oDt | Ao ta gt
(e-1)(1-5) B

[l+ (c-1DB+1 |eA-1+p

B 1 (1-petd-1n

_1+e/1—1+/3 o-Df+1 +(1 ,B)]

_ A la-na-p

-1+ A—1+f| (c-D+1
eA

< —.

Ter-14+p

(iv) 6 < 1,1 < 1/A < o. This is an incorrect prediction sce-
nario.The expected cost is given by /s h(s,0)f; (s)ds
s(1-p) } e

1/A
:/0 [1+(o—1)ﬁ+1 el/A—1+p

(c-1)(1-p)
[” (G- Dp+1

ds+

B

el/A -1+

__ e | a-na-p
TOA_14p (G- Dp+1
(c) el/2
S 1+(1//1—1)(1—,B)}
d  elA
< —el/A—1+ﬂ 1+(1//1—1)]

1 el//l
:Iel/’l—1+/3’

where (c) holds since (o — 1) + 1 > 1, and (d) is true since 0 <
1 - B < 1. However, note the following upper bound also holds:

(1/A-1)(1-p) (c-1)(1-p)
T eonpr1 ST oo npet
L o-D(-p)
B (c—-1)p
(1-5)
Sl+—ﬁ
1
< -—.
B

Then the competitive ratio in this case is

1/A

/h(s, 0)f; (s)ds < min {1//1 1/1} : el/;_—l_|_ﬁ
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(v) 6 £ 1,1 < o < 1/A. This is an incorrect prediction scenario.

S

The expected cost is given by /s h(s, o) f; (s)ds
s(1-p) e

:/0 [1+(a—l)ﬂ+1

el/A -1+

(c-1)(1-p) YA e B
(c-Dp+1 / el/a_u/s”’”el/a_uﬁ
_ e (1/2-1(1-p)
_el//l—l+ﬁ * (c-1B+1

QA (o-1/)p+1
A —1+p (c-1p+1
@ e ya 1 e
S A_14p 1 AeA-14p

ds

+ 1+

where (d) is true since 1 < 0 < 1/A,0-1/A < 0,ando —1 > 0.
Then the competitive ratio in this case is

o1/

el —14p

/Sh(s, 0)f; (s)ds < min {1/;3, 1/1} :

(vi) 6 < 1,0 <1 < 1/A. Note this is a correct prediction scenario.
The expected cost is given by fs h(s, o) f, (s)ds

° l—o+s e’
_/0 [1+ p (l_ﬂ)]el/l—1+ﬁds+
1/ s
/ € g —2
c er_14p el/A—1+p8

1/4 e’ 9(1-0+s e’
= —ds + —(1- —d
/0 e1/A_1+ﬂs /0 [ o 1=p el/A_1+/3$

P

el/A -1+
el a-p B el
el 14 A -1+ eVA—14p  eA-14p

Next, we consider the consistency. For consistency guarantees,
we compute the competitive ratio assuming the predictions are
correct. There are two cases to consider here

(i) 6 = o > 1. With a selected parameter s from the distribution
fi*(s), the algorithm uses the local generator for the first T* time
slots before switching to the grid. Then the cost of the algorithm is
ALG = ZtT:sl pge(t) + Z,T:Ts p(t)e(t) + pm. Since o > 1, the optimal
offline solution uses the grid for the whole duration with cost
OPT = Zthl p(t)e(t) + pm. Then we have the following:

T T
ALG= " pge(t)+ > p(t)e(t) +pm
t=1 t=T5+1

T° T
= > (pg = p()e(®) + D p(t)e(t) + pm
t=1 t=1

T T
<5 pm+ ) P(Oe(t) +pm < (1+5) - pm+ > p(t)e(t)
t=1 t=1

[authors]

T
< (1+5)(pm + Zp(t)e(t)) < (1+5)OPT.
=1
To compute the expected expected cost of the randomized al-
gorithm, we need to know a special case of the cost of ALG when
s = oo, With s = oo, the algorithm never switches to grid electricity

T T P D) T
ALG (gm0} = ) | Pge(t) = ) Fi)p(oem < p,,f,.,, D p(be(t)
t=1 t=1 t=1

_li (t)e(t)<li (1)e(t) + ~ pm = ~OPT
g’ NE-N prm T

Then the expected cost of the randomized algorithm is
E[ALG] = /ALG - fy (s)ds
N
A e’ 1
< / (1+5)(OPT) ————ds+ —
0 ed—14+p
A
< — 1+/ e +se’ds
er—1+p 0
OP

T y!
+ﬁ(l+/le ).

(OPT) —'B

B -1+
OPT

et -1
If A = 0, we have (1/f)-consist.

(ii) 6 = o < 1. With the trust parameter A, the algorithm uses
the local generator for the first T2 time slots before switching
to the grid, where T4 < T. Then the cost of the algorithm is

1/2 .
ALG = ST pge(t) + ZtT:TWHp(t)e(t) + pm. Since o < 1, the
optimal offline solution uses the grid for the whole duration with
cost OPT = Zthl pge(t). Then we have the following:

T2 T
ALG= D" pge(t)+ Y. p(t)e(t) +pm

t=1 F=TVA41

T2 T

D Pee(t) +pm = OPT+pp
t=T1*+1

< Z pge(t) +
t=1
(e) TV +1
< 0PT+A( > (pg —p(t))e(t))
t=1

T
<OPT+ A( Zpge(t))

t=1
= (1+ A)OPT,

where (e) is true from Algorithm rOnMLEng.

C THE ROBUSTNESS AND CONSISTENCY OF
ONMLENG-DYN AND RONMLENG-DYN

This appendix presents Algorithm 4 and Algorithm 5 as the pseu-
docode of the dynamic break-even algorithms OnMLEng-dyn and
ronMLEng-dyn introduced in Section 4.5.

C.1 Proof of Theorem 4

Proor. The key observation is that Proposition 1 still holds
with a dynamic break-even point, where we can characterize the
competitive ratio of any online algorithm A with parameter s.
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Algorithm 4 OnMLEng-dyn

Algorithm 7 Converted-switching-parameter

Use local generator first and switch to the grid starting at the
first time 7 where

T
> (pg = p(t)e(t) = 50 pm,
and s; is defined by

A, 6't > 1;
St = N
1/)., or < 1.

Algorithm 5 rOnMLEng-dyn

Denote ®; = —L— and &y = —L—
et-1+A28 e%—l*‘fzﬂ
if 6; > 1 then e, s € [0,A];
fi@s) = O12%85(0), s =o00;
0, otherwise.
else Dye, selo, %];
() = {025 85(0), s = oo;
0, otherwise.
end if

Pick a value s; randomly according to probability distribution
fi"(s) and s likewise from f(s).
Switch to grid electricity starting at the first time 7 where

D (pg = p(D)e(t) = 5t - pm,

=1
and s; is defined by

Although the value of s will change over time in OnMLEng-dyn with
dynamic advice 63, the possible values of s remain the same as the
possible values in OnMLEng. The possible competitive ratios must be
the same, and subsequently the robustness and consistency are the
same. Similarly for rOnMLEng-dyn and rOnMLEng, s may be time
varying but is still constrained to the same two distributions.

]

D PROOF OF LEMMA 2

We show that an arbitrary deterministic algorithm can be expressed
by a deterministic algorithm with a switching parameter.

We first define two algorithms: (i) Generic-set-selection, a
deterministic algorithm that is not limited by a switching parameter;
and (ii) Converted-switching-parameter, rearranges price and
demand p(t), e(t) such that Generic-set-selection is replicated.

Algorithm 6 Generic-set-selection

Use local generator for a set of timeslots T; € 77, and use grid
electricity starting for the set of timeslots Ty =7 - T;

Let the timeslots of T; be specified Tj = {l1, Iz, ..[|7;|} and T, be
specified Ty = {91. 92, -.9|1,| }-

Define a new ordering of price and demand p’(t), e’ (t) according
to:

, Ip), ift <|T|,
P (t)= p( l’) | '[|
p(gs), otherwise.

o) {e(l», if t < |1,

e(g;), otherwise.

Choose switching parameter s according to:
1 N7 o
Pm thl (pg —p'(t))e'(t) =s.

Under the new ordering, use local generator first and switch to
the grid electricity starting at the first time 7 where

Z;l(pg -p' (1)’ (t) = s pm.

We consider Algorithm 6 with Tj, Ty, and an arbitrary determin-
istic algorithm A modeled by Algorithm 6 with T;, T

Let t* be the last timeslot before |T;| in the new demand ordering
e’(¢) with nonzero demand, i.e. t* is defined by

= max L.

t<|T;l.e’ (¢)=1

We will show that the switching parameter algorithm will switch
at time t*. In other words, the timeslots chosen for local generator
and the grid will be the same as T; and Ty, except for some timeslots
from t* to |T;| with 0 demand. As a results, the cost is equivalent
since timeslots with 0 demand contribute nothing to the cost.

Since e’(t) = 0 for t* < t < |T;|, we have

T Ii ZZ’J (pg —p"(1))e’ ()

- j% Zil (g =p'(1)e’ (1) + ﬁ leltl*.'.l (pg -p' (1) -0

) 1% Z;(Pg —-p'(1)e’(t) +0,

ie. B, (pg = p' (D)€' (1) = s pim.
Similarly, since e’ (t*) = 1, p(t) < pg, Vt, we have
1 t* , ,
5= o= Dt P =P ()E')
e, (= p ()
= om thl (pg —p"(1))e’ (1) + = m

] pL Zi:(pg —p' ()€’ (),

e, 215" (pg = p/ (D)€' (1) <'s - pm-

Therefore the first time 7 where Y.7_, (pg — p'(£))e’(t) = s - pm
will be at 7 = ¢*.

Timeslots 1, - - - , t* are selected for the local generator. These are
correctly assigned since t* < |Tj|. If t* < |T;|, then timeslots t* <
t < |T;| are incorrectly assigned to the grid. However, e’(t) = 0 for
t* < t < |T;|, which means there is no difference in cost. Timeslots
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Figure 6: Cumulative probability distribution of normalized cost of different algorithms at 30%, 40%, and 50% penetration

levels.

[Tj|+1,- - -, T are correctly assigned to the grid. Therefore switching
at time ¢* in the new ordering has an equivalent cost as assigning
T and Ty.

E EXTENDING RESULTS TO THE GENERAL
DEMAND SETTING

Consider an instance of PAES with integer demand. We can con-
struct a binary demand instance PAES-B at the k-th layer by denot-
ing ek (t) = 1{e(t)>k}- The full details of decomposing PAES into
PAES-B are inspired by [33], so we outline the necessary adaptions
for robustness and consistency analysis.

Denote v¥(¢) and u¥(¢) the energy usage from the grid and
local generator respectively from the k-th layer of binary demand.
Note that max; )y ok (1) = ik max; ok (1), ie. the overall peak
grid utilization is the sum of the layered peak utilization. Similarly,
u(t) = 2k uk (1), 0(r) = Sk ok (1), i.e. the overall grid and generator

usage is the sum of the layered grid and generator usage. Then we
have

cost(PAES — ALG) = Z cost(PAES-B — ALG)
k

i.e. the cost of PAES is equal to the sum of the costs over the
binary demand problems PAES-B.

E.1 Extending Consistency and Robustness
Results

Let an algorithm which solves PAES-B be a-robust and y-consistent
in the binary demand setting. Then we demonstrate that extending
to the integer demand setting PAES is also & robust and y consis-
tent. Consider the consistency scenario, where the integer demand
predictions é(t) are correct. Then each layer prediction é¥ (t)would
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also be correct. We can then use the y consistency bound. Consider
a binary demand layer k:

cost(PAES-B — ALG) < ycost(PAES-B — OPT), Vk
Then summing over k gives:
cost(PAES — ALG) < ycost(PAES — OPT)

Now consider the robustness scenario, where the overall demand
prediction é(t) is not necessarily accurate. Then each consider a
binary demand layer k will be a robust:

cost(PAES-B — ALG) < acost(PAES-B — OPT), Vk
Then summing over k gives:
cost(PAES — ALG) < acost(PAES — OPT)
We can just substitute the respective consistency and robustness
bounds of OnMLEng and rOnMLEng for y and a. Thus the upper

bounds on OnMLEng and rOnMLEng extend to the general demand
setting.

E.2 Extending the Pareto Optimality of OnMLEng

Observe that PAES-B is a special case of PAES. Then it is impossible
for an algorithm which solves PAES to dominate OnMLEng in the
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integer demand setting. If such an algorithm existed, then it would
dominate OnMLEng in the binary demand setting, which contradicts
Theorem 2. Thus the pareto optimality of OnMLEng extends to the
general demand setting.

F ADDITIONAL EXPERIMENTAL RESULTS
WITH DIFFERENT RENEWABLE
PENETRATION

The quality of advice for PAES could be substantially influenced
by the renewable penetration level. Hence, it is also valuable to
see a comparison of algorithms at varying penetration levels. The
experiments in Figure 3 were done at 30% penetration, but exper-
iments at 40% (Figure 6(b)) and 50% (Figure 6(c)) are also shown
for comparison. For better illustration of the results, the results
for 40% penetration are also included again in Figure 6(b). Overall,
increasing the penetration degrades the accuracy of the predictions
and subsequently drives the normalized cost higher. This is most
prevalent in the worst case scenario, where the heavy tails beyond
the theoretical guarantee increase from 20% to 40% for Eng-dd. On
the other hand, the mean normalized cost is relatively robust de-
grading predictions via penetration level. For all algorithms, the
mean normalized cost remains below the theoretical guarantee.
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